DESY 97-106 WUE-ITP-97-017 hep-ph/9706371 June 1997

Small-*x* Resummations for the Structure Functions $F_2^{\ p}$, $F_L^{\ p}$ and $F_2^{\ \gamma \ 1}$

J. Blümlein^{*} and A. $Vogt^{\dagger}$

*DESY-Zeuthen, Platanenallee 6, D-15735 Zeuthen, Germany † Institut für Theoretische Physik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Abstract. The numerical effects of the known all-order leading and next-toleading logarithmic small-x contributions to the anomalous dimensions and coefficient functions of the unpolarized singlet evolution are discussed for the structure functions $F_2^{ep}(x, Q^2)$, $F_L^{ep}(x, Q^2)$, and $F_2^{e\gamma}(x, Q^2)$.

Introduction

The evolution kernels of the deep-inelastic scattering (DIS) structure functions contain large logarithmic contributions for small Bjorken-x. The effect of resumming these terms to all orders in α_s can be consistently studied in a framework based on the renormalization group (RG) equations, which describes the mass factorization. In this framework, the evolution equations of fixed-order perturbative QCD are generalized by including the resummed small-x contributions to the respective anomalous dimensions and Wilson coefficients [] beyond next-to-leading order in α_s (NLO). The numerical impact of these higher-order contributions has been investigated for the non-singlet nucleon structure functions F_2^{p-n} and $F_3^{\nu N}$ [], g_1^{p-n} [] and $g_5^{\gamma Z}$ []; for the polarized singlet quantity $g_{1,S}^p$ [], and for the unpolarized singlet structure functions $F_{2,S}$ [] and $F_{L,S}^p$ []. $F_{2,S}^p$ and $F_{L,S}^p$ have been studied using different RG-based approaches as well [].

In the present note we extend a previous account [] by considering, besides the resummed next-to-leading logarithmic small-x (NLx) quark terms of ref. [], also the recently derived NLx contributions $\propto N_f$ to the anomalous dimension

 $^{^{1)}\,}$ Talk presented by J. Blümlein. To appear in: Proceedings of the 5th International Workshop on Deep Inelastic Scattering and QCD (DIS 97), Chicago, April 1997

 γ_{gg} [] and their impact on F_2^p . Furthermore, we briefly discuss the numerical resummation effects on the evolution of F_L^p and the photon structure function F_2^{γ} . Details of the calculations may be found in ref. [].

The NLx Contributions $\propto N_f$ to γ_{gg}

These terms were calculated in ref. []. In the $\overline{\text{MS}}$ -DIS scheme they read []

$$\gamma_{gg,\mathrm{NL}}^{q\overline{q},\mathrm{DIS}} = \gamma_{gg,\mathrm{NL}}^{q\overline{q},Q_0} + \frac{\beta_0}{4\pi} \alpha_s^2 \frac{d\ln R(\alpha_s)}{d\alpha_s} + \frac{C_F}{C_A} \left[1 - R(\alpha_s)\right] \gamma_{qg,\mathrm{NL}}^{Q_0}$$
$$\equiv \alpha_s \sum_{k=1}^{\infty} \left[\frac{N_f}{6\pi} \left(d_{gg,k}^{q\overline{q},(1)} + \frac{C_F}{C_A} d_{gg,k}^{q\overline{q},(2)}\right) + \frac{\beta_0}{4\pi} \hat{r}_k\right] \left(\frac{\overline{\alpha}_s}{N-1}\right)^{k-1} , \qquad (1)$$

with $\gamma_{gg,\mathrm{NL}}^{q\overline{q},Q_0}$ being the N_f contribution in the Q_0 scheme []. N denotes the usual Mellin variable, $\overline{\alpha}_s \equiv C_A \alpha_s / \pi$, and $R(\alpha_s)$ is defined in ref. []. $\gamma_{gg,\mathrm{NL}}^{q\overline{q}}$ contains terms $\propto C_F/C_A$ in both schemes, whereas the β_0 -contribution originates in transformation from the Q_0 scheme to the $\overline{\mathrm{MS}}$ -DIS scheme. Numerical values for the coefficients $d_{gg,k}^{q\overline{q},(1,2)}$ and \hat{r}_k are given in Table 1.

k	$d_{gg,k}^{q\overline{q},(1)}$	$d_{gg,k}^{q\overline{q},(2)}$	\hat{r}_k
1	-1.00000000 E+0	$0.000000000 \mathrm{E}{+}0$	$0.000000000 \mathrm{E}{+}0$
2	-3.833333333 E+0	$0.000000000 \mathrm{E}{+0}$	$0.000000000 \mathrm{E}{+}0$
3	$-2.299510376 \to +0$	$0.000000000 \mathrm{E}{+0}$	$0.000000000 \mathrm{E}{+}0$
4	-5.065605818 ± 0	$3.205485075\mathrm{E}{+0}$	$9.616455224 \to +0$
5	$-3.523670351\mathrm{E}{+1}$	$8.568702514\mathrm{E}{+0}$	$-3.246969702 \mathrm{E}{+0}$
6	$-3.218245315 \mathrm{E}{+1}$	$1.835447655\mathrm{E}{+1}$	$2.281241061\mathrm{E}{+1}$
7	$-1.060268680 \text{ E}{+2}$	$8.632838009\mathrm{E}{+1}$	$1.654162989 \mathrm{E}{+2}$
8	$-4.853159484 \mathrm{E}{+2}$	$1.924088636\mathrm{E}{+2}$	$-2.469139930 \mathrm{E}{+0}$
9	$-5.806186371\mathrm{E}{+2}$	$4.962344972\mathrm{E}{+2}$	7.458249428 ± 2
10	$-2.176371931\mathrm{E}{+3}$	$1.794742819\mathrm{E}{+3}$	$2.784859262 \text{ E}{+3}$
11	$-7.553679737 \text{ E}{+3}$	$4.023320193\mathrm{E}{+3}$	$1.505001272 \mathrm{E}{+3}$
12	$-1.158215080 \text{ E}{+4}$	$1.136559381\mathrm{E}{+4}$	$1.818320928 \mathrm{E}{+4}$
13	$-4.328579102 \text{ E}{+4}$	$3.589638820\mathrm{E}{+4}$	$4.899274185 \mathrm{E}{+5}$
14	$-1.269309428 \text{ E}{+5}$	$8.412529889\mathrm{E}{+4}$	$6.109247725 \mathrm{E}{+5}$
15	$-2.392549581\mathrm{E}{+5}$	$2.456097133\mathrm{E}{+5}$	$3.984470167 \mathrm{E}{+5}$
16	$-8.469557573 \text{ E}{+5}$	$7.168572021\mathrm{E}{+6}$	$9.205515787 \mathrm{E}{+5}$
17	-2.262541206 E+6	$1.764587230\mathrm{E}{+6}$	$1.783326920 ext{ E+6}$
18	-4.974873276 E+6	$5.167844173\mathrm{E}{+6}$	8.347774614 ± 6
19	$-1.648990863 \mathrm{E}{+7}$	$1.443009883\mathrm{E}{+7}$	$1.842662795 \mathrm{E}{+7}$
20	-4.222994214 E+7	$3.702246358\mathrm{E}{+7}$	$4.535538189 \mathrm{E}{+7}$

Table 1: Numerical values of the expansion coefficients for $\gamma_{gg,\mathrm{NL}}^{q\overline{q},\mathrm{DIS}}$ in eq. (1).

Less Singular Small-x Contributions to γ

The small-x resummed anomalous dimension matrix $\hat{\gamma}^{\text{res}}$ does not comply with the energy-momentum sum rule for the parton densities. Several prescriptions have been imposed for restoring this sum rule beyond NLO [], e.g.,

$$\begin{aligned}
\mathbf{A} &: \quad \hat{\gamma}^{\,\mathrm{res}}(n,\alpha_s) \to \hat{\gamma}^{\,\mathrm{res}}(n,\alpha_s) - \hat{\gamma}^{\,\mathrm{res}}(0,\alpha_s) \\
\mathbf{B} &: \quad \hat{\gamma}^{\,\mathrm{res}}(n,\alpha_s) \to \hat{\gamma}^{\,\mathrm{res}}(n,\alpha_s) \left(1-n\right) \\
\mathbf{D} &: \quad \hat{\gamma}^{\,\mathrm{res}}(n,\alpha_s) \to \hat{\gamma}^{\,\mathrm{res}}(n,\alpha_s) \left(1-2n+n^3\right) .
\end{aligned}$$
(2)

The difference between the results obtained with these prescriptions allows for a rough estimate of the possible effect of the presently unknown higher-order terms less singular at small-x ($n \equiv N-1 \rightarrow 0$).

The Resummed Evolution of F_2^{ep} and F_L^{ep}

The numerical effect of the known small-x resummations on the behavior of the proton structure functions F_2 and F_L is illustrated in Fig. 1. For both the NLO and the resummed calculations, the MRS(A') DIS-scheme parton densities have been employed as initial distributions at $Q_0^2 = 4 \text{ GeV}^2$, together with $\Lambda_{\overline{\text{MS}}}^{(4)} = 231 \text{ MeV}$ []. They behave like $xg, xq \sim x^{-0.17}$ at small x, with the quark part rather directly constrained by present HERA F_2 data.

Figure 1: The resummed small-x evolutions of the proton structure functions F_2 and F_L compared to the NLO results. The dotted curve in the F_2 part represents the contribution of $\gamma_{gg, NL}^{q\bar{q}, DIS}$ only. The possible impact of (presently unknown) less singular higher-order terms is indicated, cf. eq. (2) and the discussion in the text.

The resummation effects on $F_2(x, Q^2)$ at small x are displayed in Fig. 1 (a). Note the huge effect arising from the NLx quark anomalous dimensions [] and its large uncertainty due to unknown less singular terms. The impact of $\gamma_{gg,NL}^{q\bar{q}}$ [] is displayed separately. It amounts to less than 3% over the full x-range shown. It will be interesting to see to which extent the forthcoming complete NLx anomalous dimensions [] will modify these results.

The longitudinal structure function $F_L(x, Q^2)$ is considered in Fig. 1 (b). Obviously substantial contributions can also be expected from subleading small-x terms in the coefficient functions C_L . In fact, these uncertainties are large. Thus both for the small-x resummed contributions to anomalous dimensions and coefficient functions further subleading terms need to be calculated. Further insight into the interplay of leading and less singular terms in N may also be gained from the structure of the fixed-order anomalous dimensions and coefficient functions. Besides the known NLO result, particularly the yet unknown 3-loop anomalous dimensions are of interest here.

The Resummation of the Small-x Contributions to F_2^{γ}

The evolution of the photon structure functions is, at the lowest order in $\alpha_{\rm em}$ considered here, governed by an inhomogeneous generalization of the hadronic evolution equations. At the present resummation accuracy [] the additional anomalous dimensions $\gamma_{q\gamma}$ and $\gamma_{g\gamma}$ do not receive any non-vanishing higher-order small-x contributions []. Hence the resummation effect on the photon-specific inhomogeneous solution originates solely from the resummed homogeneous evolution operator.

Figure 2: The small-x evolution of the photon structure function F_2^{γ} in NLO and using the NLx resummed anomalous dimensions.

The resummed evolution of the structure function F_2^{γ} is compared to the NLO results in Fig. 2. The NLO GRV parametrization has been used for the initial distributions at $Q_0^2 = 4 \text{ GeV}^2$, together with $\Lambda_{\overline{\text{MS}}}^{(4)} = 200 \text{ MeV}$ []. The overall small-x behavior, presented in Fig. 2 (a), is rather similar to the hadronic case, due to the dominance of the homogeneous solution. Note, however, the significantly enhanced resummation effect in the inhomogeneous solution separately shown in Fig. 2 (b). This behavior is dominated by the convolution of the resummed hadronic evolution operator with the leading-order photon-quark anomalous dimension, which, unlike the hadronic initial distributions, is large for $x \to 1$.

Acknowledgement: This work was supported in part by the German Federal Ministry for Research and Technology (BMBF) under contract No. 05 7WZ91P (0).

REFERENCES

- 1. Y. Balitsky and L. Lipatov, Sov. J. Nucl. Phys. 28 822 (1978).
- 2. S. Catani and F. Hautmann, Nucl. Phys. B427 475 (1994).
- 3. G. Camici and M. Ciafaloni, Phys. Lett. B386 341 (1996); hep-ph/9701303.
- 4. R. Kirschner and L. Lipatov, Nucl. Phys. B213 122 (1983);
- J. Bartels, B. Ermolaev, and M. Ryskin, Z. Phys. C72 627 (1997).
- 5. J. Blümlein and A. Vogt, Phys. Lett. B370 149 (1996);
- Acta Phys. Polonica **B27** 1309 (1996).
- 6. J. Kiyo, J. Kodaira, and H. Tochimura, hep-ph/9701365.
- 7. J. Blümlein, S. Riemersma, and A. Vogt, Nucl. Phys. B (Proc. Suppl.) 51C 30 (1996).
- 8. J. Blümlein and A. Vogt, Phys. Lett. B386 350 (1996).
- 9. R.K. Ellis, F. Hautmann, and B. Webber, Phys. Lett. B348 582 (1995);
- R. Ball and S. Forte, *Phys. Lett.* **B351** 313 (1995), **B358** 365 (1995).
- 10. J. Blümlein and A. Vogt, DESY 96–096.
- 11. I. Bojak and M. Ernst, Phys. Lett. B397 296 (1997); hep-ph/9702282.
- 12. J. Forshaw, R. Roberts, and R. Thorne, Phys. Lett. B356 79 (1995);
- R. Thorne, *Phys. Lett.* **B392** 463 (1997); hep-ph/9701241.
- 13. M. Ciafaloni, *Phys. Lett.* **B356** 74 (1995).
- 14. A.D. Martin, R.G. Roberts, and W.J. Stirling, Phys. Lett. B354 155 (1995)
- 15. M. Ciafaloni et al., in preparation.
- 16. M. Glück, E. Reya, and A. Vogt, Phys. Rev. D46 1973 (1992).