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Abstract. The numerical e�ects of the known all-order leading and next-to-

leading logarithmic small-x contributions to the anomalous dimensions and coef-

�cient functions of the unpolarized singlet evolution are discussed for the struc-

ture functions F

ep

2

(x;Q

2

), F

ep

L

(x;Q

2

), and F

e

2

(x;Q

2

).

Introduction

The evolution kernels of the deep-inelastic scattering (DIS) structure func-

tions contain large logarithmic contributions for small Bjorken-x. The e�ect

of resumming these terms to all orders in �

s

can be consistently studied in

a framework based on the renormalization group (RG) equations, which de-

scribes the mass factorization. In this framework, the evolution equations

of �xed-order perturbative QCD are generalized by including the resummed

small-x contributions to the respective anomalous dimensions and Wilson co-

e�cients [] beyond next-to-leading order in �

s

(NLO). The numerical impact

of these higher-order contributions has been investigated for the non-singlet

nucleon structure functions F

p�n

2

and F

�N

3

[], g

p�n

1

[] and g

Z

5

[]; for the polar-

ized singlet quantity g

p

1;S

[], and for the unpolarized singlet structure functions

F

2;S

[] and F

p

L;S

[]. F

p

2;S

and F

p

L;S

have been studied using di�erent RG-based

approaches as well [].

In the present note we extend a previous account [] by considering, besides

the resummednext-to-leading logarithmic small-x (NLx) quark terms of ref. [],

also the recently derived NLx contributions / N

f

to the anomalous dimension

1)
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gg

[] and their impact on F

p

2

. Furthermore, we briey discuss the numerical

resummation e�ects on the evolution of F

p

L

and the photon structure function

F



2

. Details of the calculations may be found in ref. [].

The NLx Contributions / N

f

to 

gg

These terms were calculated in ref. []. In the MS{DIS scheme they read []
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X
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d
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+

C

F

C

A

d
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�

+

�

0

4�
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�

�

s
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with 

qq;Q

0

gg;NL

being the N

f

contribution in the Q

0

scheme []. N denotes the usual

Mellin variable, �

s

� C

A

�

s

=�, and R(�

s

) is de�ned in ref. []. 

qq

gg;NL

contains

terms / C

F

=C

A

in both schemes, whereas the �

0

-contribution originates in

transformation from the Q

0

scheme to the MS{DIS scheme. Numerical values

for the coe�cients d

qq; (1;2)

gg;k

and r̂

k

are given in Table 1.

k d

qq; (1)

gg;k

d

qq; (2)

gg;k

r̂

k

1 {1.000000000E+0 0.000000000E+0 0.000000000E+0

2 {3.833333333E+0 0.000000000E+0 0.000000000E+0

3 {2.299510376E+0 0.000000000E+0 0.000000000E+0

4 {5.065605818E+0 3.205485075E+0 9.616455224E+0

5 {3.523670351E+1 8.568702514E+0 {3.246969702E+0

6 {3.218245315E+1 1.835447655E+1 2.281241061E+1

7 {1.060268680E+2 8.632838009E+1 1.654162989E+2

8 {4.853159484E+2 1.924088636E+2 {2.469139930E+0

9 {5.806186371E+2 4.962344972E+2 7.458249428E+2

10 {2.176371931E+3 1.794742819E+3 2.784859262E+3

11 {7.553679737E+3 4.023320193E+3 1.505001272E+3

12 {1.158215080E+4 1.136559381E+4 1.818320928E+4

13 {4.328579102E+4 3.589638820E+4 4.899274185E+5

14 {1.269309428E+5 8.412529889E+4 6.109247725E+5

15 {2.392549581E+5 2.456097133E+5 3.984470167E+5

16 {8.469557573E+5 7.168572021E+6 9.205515787E+5

17 {2.262541206E+6 1.764587230E+6 1.783326920E+6

18 {4.974873276E+6 5.167844173E+6 8.347774614E+6

19 {1.648990863E+7 1.443009883E+7 1.842662795E+7

20 {4.222994214E+7 3.702246358E+7 4.535538189E+7

Table 1: Numerical values of the expansion coe�cients for 

qq;DIS

gg;NL

in eq. (1).
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Less Singular Small-x Contributions to 

The small-x resummed anomalous dimension matrix ̂

res

does not comply with

the energy-momentum sum rule for the parton densities. Several prescriptions

have been imposed for restoring this sum rule beyond NLO [], e.g.,

A : ̂

res

(n; �

s

)! ̂

res

(n; �

s

)� ̂

res

(0; �

s

)

B : ̂

res

(n; �

s

)! ̂

res

(n; �

s

) (1 � n)

D : ̂

res

(n; �

s

)! ̂

res

(n; �

s

) (1 � 2n + n

3

) :

(2)

The di�erence between the results obtained with these prescriptions allows for

a rough estimate of the possible e�ect of the presently unknown higher-order

terms less singular at small-x (n � N�1! 0).

The Resummed Evolution of F

ep

2

and F

ep

L

The numerical e�ect of the known small-x resummations on the behavior of

the proton structure functions F

2

and F

L

is illustrated in Fig. 1. For both

the NLO and the resummed calculations, the MRS(A

0

) DIS-scheme parton

densities have been employed as initial distributions at Q

2

0

= 4 GeV

2

, together

with �

(4)

MS

= 231 MeV []. They behave like xg; xq � x

�0:17

at small x, with the

quark part rather directly constrained by present HERA F

2

data.
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Figure 1: The resummed small-x evolutions of the proton structure functions F

2

and F

L

compared to the NLO results. The dotted curve in the F

2

part represents

the contribution of 

qq;DIS

gg;NL

only. The possible impact of (presently unknown) less

singular higher-order terms is indicated, cf. eq. (2) and the discussion in the text.
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The resummation e�ects on F

2

(x;Q

2

) at small x are displayed in Fig. 1 (a).

Note the huge e�ect arising from the NLx quark anomalous dimensions []

and its large uncertainty due to unknown less singular terms. The impact

of 

qq

gg;NL

[] is displayed separately. It amounts to less than 3% over the full

x-range shown. It will be interesting to see to which extent the forthcoming

complete NLx anomalous dimensions [] will modify these results.

The longitudinal structure function F

L

(x;Q

2

) is considered in Fig. 1 (b).

Obviously substantial contributions can also be expected from subleading

small-x terms in the coe�cient functions C

L

. In fact, these uncertainties

are large. Thus both for the small-x resummed contributions to anomalous

dimensions and coe�cient functions further subleading terms need to be cal-

culated. Further insight into the interplay of leading and less singular terms in

N may also be gained from the structure of the �xed-order anomalous dimen-

sions and coe�cient functions. Besides the known NLO result, particularly

the yet unknown 3{loop anomalous dimensions are of interest here.

The Resummation of the Small-x Contributions to F



2

The evolution of the photon structure functions is, at the lowest order in

�

em

considered here, governed by an inhomogeneous generalization of the

hadronic evolution equations. At the present resummation accuracy [] the ad-

ditional anomalous dimensions 

q

and 

g

do not receive any non-vanishing

higher-order small-x contributions []. Hence the resummation e�ect on the

photon-speci�c inhomogeneous solution originates solely from the resummed

homogeneous evolution operator.
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Figure 2: The small-x evolution of the photon structure function F
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in NLO and

using the NLx resummed anomalous dimensions.
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The resummed evolution of the structure function F



2

is compared to the

NLO results in Fig. 2. The NLO GRV parametrization has been used for

the initial distributions at Q

2

0

= 4 GeV

2

, together with �

(4)

MS

= 200 MeV [].

The overall small-x behavior, presented in Fig. 2 (a), is rather similar to the

hadronic case, due to the dominance of the homogeneous solution. Note,

however, the signi�cantly enhanced resummation e�ect in the inhomogeneous

solution separately shown in Fig. 2 (b). This behavior is dominated by the

convolution of the resummed hadronic evolution operator with the leading-

order photon-quark anomalous dimension, which, unlike the hadronic initial

distributions, is large for x! 1.
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