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Abstract

We present leading logarithmic QCD corrections to the decay B

s

! 

 in the Standard Model.

Further, the form factor F

1

(0) of B

s

! �
 is calculated in the framework of QCD sum rules and

found to be in agreement with the result existing in the literature. Using Vector Meson Dominance

model, the amplitude forB

s

! �
 ! 

 is calculated as an estimate of the O

7

-type contributions to

the long-distance e�ects in the B

s

! 

 decay. The resulting branching ratio B(B

s

! 

)

SD+LD

O

7

is analysed in view of its strong dependence on the non-perturbative parameter

�

�

s

, describing bound

state e�ects, and the renormalization scale �.

�
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1 Introduction

Rare B decays induced by 
avor changing neutral currents (FCNC) are known to provide information

about the Standard Model (SM) at quantum level and quantitative information on the SM parameters,

such as the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. The CLEO observation [1] of the

radiative decay mode B ! X

s


 has been analysed in the SM and the rate agrees with the SM-based

theoretical calculations [2]. Another example is B

s

! �
, which is CKM allowed due to the dominant

CKM matrix element dependence of the decay rate. The calculational procedure of such decay rates

is to use an e�ective Hamiltonian obtained by integrating out the top quark and the W

�

bosons [3]

H

eff

= �4

G

F

p

2

V

tb

V

�

ts

8

X

i=1

C

i

(�)O

i

(�) : (1)

Here O

i

are suitable operators and C

i

are Wilson coe�cients renormalized at the scale �. The

coe�cients can be calculated perturbatively. Hadronic matrix elements < V jO

i

jB > can be calculated

using some non-perturbative methods like QCD sum rules, which is one of the powerful methods to

calculate matrix elements in a model independent way.

Among rare decays, B

s

! 

 is a potential candidate to test the SM and search for new physics.

The �nal state contains CP-odd and CP-even states, allowing us to study CP violating e�ects. Mea-

surement of these odd and even states is a powerful test of the underlying theory, in particular SM. In

the literature, B

s

! 

 decay has been investigated earlier in the lowest order [4{6] and the branching

ratio is found to be 4:5 � 10

�7

in the SM context for m

s

= 0:5 GeV and other parameters given in

Table 1, using the constituent quark model.

In the present work we give the leading logarithmic QCD-improved rates for B

s

! 

. This

can be achieved through a matching of the full theory with the e�ective theory at a scale � = m

W

,

using the e�ective Hamiltonian in eq. (1), and performing an evolution of the Wilson coe�cients from

m

W

down to � � O(m

b

), thus resumming all large logarithms of the form �

n

s

(m

b

)log

m

(

m

b

m

W

), where

m � n (n = 0; 1; 2; : : :). In the leading logarithmic approximation, which we use here, m = n. The

e�ective Hamiltonian in eq. (1) is identical for b ! s
 and for b ! s

 to this order of

1

m

2

W

. Since

there exists after applying the equations of motion no gauge-invariant FCNC-2-photon operator with

�eld dimension � 6, the set of operators (eq. (6)) is a basis for both decays [7]. The bound state

e�ects of the B

s

meson are modeled through an Heavy Quark E�ective Theory (HQET) inspired

approach following [8]. We estimate further the additional contribution in the decay B

s

! 

 through

B

s

! �
 followed by � ! 
 using Vector Meson Dominance (VMD) [9]. In the language of the

operator basis in eq. (1), this contribution involves the operator O

7

, (see eq. (6) below). The decay

B

s

! �
 was studied in the literature in the framework of Light-cone QCD sum rules [10]. We have

repeated the calculation using the ordinary QCD sum rules including the contribution from the gluon

1



condensate. The CP-odd and CP-even amplitudes in B

s

! 

 are then estimated by considering

the � ! 
 process using a �-photon conversion factor supplied by the VMD model. In this part an

extrapolation from p

02

= m

2

�

(needed for B

s

! �
) to p

02

= 0 (required for B

s

! 

) is necessary.

We assume, that the form factor is dominated by a single pole, which is a good approximation for

light mesons. The decay rate for B

s

! 

 depends sensitively on the model parameters (m

b

;

�

�

s

) and

�. For typical values (m

b

;

�

�

s

) = (5GeV; 370MeV) and �=5 GeV, we get (including long-distance

e�ects through O

7

) the branching ratio B(B

s

! 

))

SD+LD

O

7

= 1:18 � 10

�6

, which is a factor 1:9

larger compared to the lowest order estimate for the same values of the parameters. However, varying

(m

b

;

�

�

s

) and � in the allowed range results in signi�cant variation on the branching ratio, yielding

0:38 � 10

�6

� B(B

s

! 

)

SD+LD

O

7

� 1:43 � 10

�6

.

The paper is organized as follows: In section 2 we display the amplitude for B

s

! 

 in a HQET

inspired model and present the leading logarithmic QCD corrections. In section 3, we calculate the

form factor F

1

in the decay B

s

! �
 using QCD sum rules and compare our result with the previous

result obtained in [10]. Section 4 is devoted to the estimate of the B

s

! �
 ! 

 amplitude in the

framework of VMD. We discuss the resulting branching ratio B(B

s

! 

)

SD+LD

O

7

and its parametric

dependence on the model parameters (m

b

;

�

�

s

) and the scale � in section 5.

2 Leading logarithmic improved short-distance contributions in B

s

!



 decay

The amplitude for the decay B

s

! 

 can be decomposed as [4{6]

A(B

s

! 

) = �

�

1

(k

1

)�

�

2

(k

2

)(A

+

g

��

+ iA

�

�

����

k

�

1

k

�

2

) ; (2)

where the k

i

and �

�

i

(k

i

) denote the four-momenta and the polarization vectors of the outgoing photons,

respectively

1

. Using the e�ective Hamiltonian in eq. (1), the CP-even (A

+

) and CP-odd (A

�

) parts

in the SM can be written as (for diagrams see �g. 1 and �g. 2) in a HQET inspired approach

2

:

A

+

= �

�

em

G

F

p

2�

f

B

s

�

t

 

1

3

m

4

B

s

(m

eff

b

�m

eff

s

)

�

�

s

(m

B

s

�

�

�

s

)(m

eff

b

+m

eff

s

)

C

eff

7

(�)

�

4

9

m

B

2

s

m

eff

b

+m

eff

s

(�m

b

J(m

b

) +m

s

J(m

s

))D(�)

!

;

A

�

= �

�

em

G

F

p

2�

2f

B

s

�

t

�

1

3

1

m

B

s

�

�

s

(m

B

s

�

�

�

s

)

g

�

C

eff

7

(�)

�

X

q

Q

2

q

I(m

q

)C

q

(�) +

1

9(m

eff

b

+m

eff

s

)

(m

b

4(m

b

) +m

s

4(m

s

))D(�)

!

; (3)

1

We adopt the convention Tr(


�




�




�




�




5

) = 4i�

����

, with �

0123

= +1.

2

In an earlier version of this paper the contributions of the operators O

1;3:::6

in the irreducible part in A

+

and A

�

were not completely taken into account. This is corrected here. As a second improvement we give the amplitudes in a

formalism inspired by HQET to estimate the uncertainties coming from the bound state.
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where we have used the unitarity of the CKM-matrix

P

i=u;c;t

V

�

is

V

ib

= 0 and have neglected the

contribution due to V

�

us

V

ub

� V

�

ts

V

tb

� �

t

. In eq. (3) N

c

is the colour factor (N

c

= 3 for QCD) and

Q

q

=

2

3

for q = u; c and Q

q

= �

1

3

for q = d; s; b. The QCD-corrected Wilson coe�cients in leading

logarithmic approximation [3], C

1:::6

(�) and C

eff

7

(�), enter the amplitudes in the combinations

C

u

(�) = C

d

(�) = (C

3

(�)� C

5

(�))N

c

+ C

4

(�)� C

6

(�) ;

C

c

(�) = (C

1

(�) + C

3

(�)� C

5

(�))N

c

+ C

2

(�) + C

4

(�)� C

6

(�) ;

C

s

(�) = C

b

(�) = (C

3

(�) + C

4

(�))(N

c

+ 1)�N

c

C

5

(�)� C

6

(�) ;

D(�) = C

5

(�) + C

6

(�)N

c

: (4)

While C

1:::6

(�) are the coe�cients of the operators O

1:::6

, C

eff

7

(�) is the "e�ective" coe�cient of O

7

and contains renormalization scheme dependent contributions from the four-quark operators O

1:::6

in H

eff

to the e�ective vertex in b ! s
. In the NDR scheme, which we use here, C

eff

7

(�) =

C

7

(�)�

1

3

C

5

(�)� C

6

(�), see [3] for details. The initial values of C

1:::6

(�) and C

eff

7

(�) in the SM are

C

1;3:::6

(m

W

) = 0 ;

C

2

(m

W

) = 1 ;

C

eff

7

(m

W

) =

3x

3

� 2x

2

4(x� 1)

4

ln x+

�8x

3

� 5x

2

+ 7x

24(x� 1)

3

; (5)

and x = m

2

t

=m

2

W

. For comparison, C

1

(m

b

) = �0:246, C

2

(m

b

) = 1:106, C

3

(m

b

) = 0:011, C

4

(m

b

) =

�0:025, C

5

(m

b

) = 0:007, C

6

(m

b

) = �0:031 and C

eff

7

(m

b

) = �0:313 for the input values given in

Table 1. The operator basis of H

eff

is given as

O

1

= (�s

L�




�

b

L�

)(�c

L�




�

c

L�

);

O

2

= (�s

L�




�

b

L�

)(�c

L�




�

c

L�

);

O

3

= (�s

L�




�

b

L�

)

X

q=u;d;s;c;b

(�q

L�




�

q

L�

);

O

4

= (�s

L�




�

b

L�

)

X

q=u;d;s;c;b

(�q

L�




�

q

L�

);

O

5

= (�s

L�




�

b

L�

)

X

q=u;d;s;c;b

(�q

R�




�

q

R�

);

O

6

= (�s

L�




�

b

L�

)

X

q=u;d;s;c;b

(�q

R�




�

q

R�

);

O

7

=

e

16�

2

�s

�

�

��

(m

b

R+m

s

L)b

�

F

��

;

O

8

=

g

16�

2

�s

�

T

a

��

�

��

(m

b

R+m

s

L)b

�

G

a��

; (6)

where L and R denote chiral projections, L(R) = 1=2(1� 


5

) and � and � are SU(3) colour indices.

Note that O

8

does not contribute here in this order of �

s

. The functions I(m

q

); J(m

q

) and 4(m

q

)

3



come from the irreducible diagrams with an internal q type quark propagating, see �g. 1, and are

de�ned as

I(m

q

) = 1 +

m

2

q

m

2

B

s

4(m

q

) ;

J(m

q

) = 1�

m

2

B

s

� 4m

2

q

4m

2

B

s

4(m

q

) ;

4(m

q

) =

0

@

ln(

m

B

s

+

q

m

2

B

s

� 4m

2

q

m

B

s

�

q

m

2

B

s

� 4m

2

q

)� i�

1

A

2

for

m

2

B

s

4m

2

q

� 1;

4(m

q

) = �

0

@

2 arctan(

q

4m

2

q

�m

2

B

s

m

B

s

)� �

1

A

2

for

m

2

B

s

4m

2

q

< 1: (7)

The parameter

�

�

s

enters eq. (3) through the bound state kinematics. For de�niteness, we consider

the decay B

s

� (

�

bs)! 

. We write the momentum of the

�

b-quark inside the meson as p = m

b

v + k,

where k is a small residual momentum, v is the 4-velocity, which connects the quark with the meson

kinematics through P = m

B

s

v and P is the momentum of the meson. In the B

s

rest frame, v =

(1; 0; 0; 0). For the reducible diagrams, see �g. 2, we need to evaluate p:k

i

and p

0

:k

i

, i = 1; 2, where

k

i

; p

0

are the momenta of the outgoing photon and s-quark, respectively. Now following [8], we average

the residual momentum of the

�

b-quark through

< k

�

> = �

1

2m

b

(�

1

+ 3�

2

)v

�

;

< k

�

k

�

> =

�

1

3

(g

��

� v

�

v

�

) ; (8)

where �

1

; �

2

are matrix elements from the heavy quark expansion. Using P = p � p

0

, P:k

i

=

m

2

B

s

2

,

v:k

i

=

m

B

s

2

and the HQET relation [8]

m

B

s

= m

b

+

�

�

s

�

1

2m

b

(�

1

+ 3�

2

) (9)

one gets:

p:k

i

=

m

B

s

2

(m

B

s

�

�

�

s

) ;

p

0

:k

i

= �

m

B

s

2

�

�

s

;

(m

eff

b

)

2

� p

2

= m

2

b

� 3�

2

;

(m

eff

s

)

2

� p

02

= (m

eff

b

)

2

�m

2

B

s

+ 2m

B

s

�

�

s

: (10)

The non-perturbative parameter

�

�

s

can be related to

�

�, which has been extracted (together with

�

1

) from data on semileptonic B

�

; B

0

decays by [11], and the measured mass di�erence 4m =

m

B

s

� m

B

= 90 MeV [12], de�ning

�

�

s

=

�

� +4m. The matrix element �

2

is well determined from

the B

�

(s)

� B

(s)

mass splitting, �

2

= 0:12GeV

2

. With the help of eq. (9), the correlated values of

�

�

4



and �

1

can be transcribed into a correlation between

�

�

(s)

and m

b

. We select 3 representative values

3

(m

b

;

�

�

s

) = (5:03; 370); (4:91; 480); (4:79; 590) in (GeV;MeV) to study the hadronic uncertainties of

our approach. Furthermore, we have used the de�nition

< 0j�s


�




5

bjB

s

(P ) > = if

B

s

P

�

; (11)

which leads together with the o�-shellness of the quarks inside the meson to the matrix element of

the pseudoscalar current

< 0j�s


5

bjB

s

(P ) > = �if

B

s

m

2

B

s

m

eff

b

+m

eff

s

: (12)

The auxiliary function g

�

= g

�

(m

eff

b

;

�

�

s

) is de�ned as

g

�

= m

B

s

(m

eff

b

+m

eff

s

)

2

+

�

�

s

(m

2

B

s

� (m

eff

b

+m

eff

s

)

2

) : (13)

Note that in the limit

�

�

s

! m

s

, m

eff

b;s

! m

b;s

and usingm

B

s

= m

b

+m

s

we recover the result obtained

by the constituent quark model [4{6], ignoring QCD corrections. Using the above expressions, the

partial decay width is then given by :

�(B

s

! 

) =

1

32�m

B

s

(4jA

+

j

2

+

1

2

m

4

B

s

jA

�

j

2

) : (14)

Now, there are 2 new observations to be made:

First, the Wilson coe�cients in eq. (3) depend on the scale �. Therefore, since the behaviour of these

short-distance (SD) coe�cients under renormalization is known from the studies of B ! X

s


 [2,3],

one can give an improved width for B

s

! 

 by including the leading logarithmic QCD corrections,

by renormalizing the coe�cients C

1:::6

and C

eff

7

from � = m

W

down to the relevant scale � � O(m

b

).

The explicit O(�

s

) improvement in the decay width �(B

s

! 

) requires the calculation of a large

number of virtual corrections, which we have not taken into account. Varying the scale � in the

range

m

b

2

� � � 2m

b

, one introduces an uncertainty, which can be reduced only when the complete

next-to-leading order (NLO)-analysis is available, similar to the recently completed calculation for the

B ! X

s


 decay [2].

The second point concerns the strong dependence of the decay width �(B

s

! 

) on

�

�

s

, � � O(

1

�

�

2

s

)

in eq. (14). It originates in the s-quark propagator in the diagram with an intermediate s-quark in �g. 2.

In the earlier work the authors of e.g. [4] evaluated the decay width with m

s

� m

K

, assuming that the

constituent quarks are to be treated as static quarks in the meson. This is a questionable assumption.

In the HQET inspired approach, this gets replaced by

�

�

s

, which is well-de�ned experimentally. This

formalism implies, that the decay width �(B

d

! 

) will involve the parameter

�

�, which avoids the

unwanted uncertainty on m

d

.

3

We choose (�

1

;

�

�) = (�0:09; 280); (�0:19; 390); (�0:29; 500) in (GeV

2

;MeV) from �g. 1 in [11].

5



b

s

q q


 


Figure 1: The generic diagram contributing to b ! s

 in the e�ective theory due to the (Fierz

ordered) four-quark operators. The diagram with interchanged photons is not shown.

b b b

s s s


 
 
 


Figure 2: The reducible diagrams contributing to b ! s

. The blob denotes the FCNC operator

O

7

. The diagrams with interchanged photons are not shown.

Lowering the scale � from � = m

W

to � ' O(m

b

) and

�

�

s

enhances the branching ratio B(B

s

! 

).

The dependence of the branching ratio as a function of the scale � for di�erent values of (m

b

;

�

�

s

) is

discussed in the last section including the O

7

-type long-distance (LD) estimate.

3 QCD sum rule for the B

s

! �
 form factor

3.1 Calculation of the sum rule

The amplitude for the B

s

! �
 transition A(B

s

! �
) =< �
jH

eff

jB

s

> reduces to

A(B

s

! �
) = �

�

Cm

b

< �(p

0

)j�s�

��

Rq

�

bjB

s

(p) > (15)

with the constant C

C =

G

F

p

2

e

2�

2

V

�

ts

V

tb

C

eff

7

(�) ; (16)

where we just take the contribution due to the electromagnetic penguin operator O

7

into account and

put m

s

= 0, justi�ed by m

s

� m

b

. Here � and q are the photon polarization and the (outgoing)

photon momentum, respectively. Lorentz decomposition gives further:

< �(p

0

)j�s�

��

Rq

�

bjB

s

(p) > = i�

����

�

��

p

�

p

0�

F

1

(q

2

)

+ (�

�

�

p:q � p

�

q:�

�

)G(q

2

) ; (17)

6



Parameter Value

m

c

1:4 (GeV)

m

b

4:8 (GeV)

�

�1

em

129

�

t

0.04

�

tot

(B

s

) 4:09 � 10

�13

(GeV)

f

B

s

0:2 (GeV)

m

B

s

5:369 (GeV)

m

t

175 (GeV)

m

W

80:26 (GeV)

m

Z

91:19 (GeV)

�

(5)

QCD

0:214 (GeV)

�

s

(m

Z

) 0:117

�

2

0:12 (GeV

2

)

Table 1: Values of the input parameters used in the numerical calculations unless otherwise speci�ed.

where p; p

0

denote the four-momenta of the initial B

s

-meson and the outgoing �, respectively and �

�

�

is

the polarization vector of the �-meson. At the point q

2

= 0, it is enough to calculate F

1

(0), since both

form factors coincide [13]. Note, that the form factors introduced above are in general functions of

two variables q

2

and p

02

. Since � is on-shell, we abbreviate here and in the following unless otherwise

stated F

1

(q

2

) � F

1

(q

2

; p

02

= m

2

�

).

The starting point for the sum rule is the three-point function [14]

T

��

= �

Z

d

4

xe

ipx�ip

0

y

< 0jT [J

�

(x)T

�

(0)J

5

(y)]j0 > ; (18)

where J

�

= �s


�

s, J

5

= �si


5

b and T

�

= �s

1

2

�

��

q

�

b correspond to the electromagnetic, pseudoscalar

currents and the penguin operator, respectively. Performing now an operator product expansion

(OPE) of T

��

, we obtain a perturbative term, the so-called bare loop, and non-perturbative power

corrections, diagrammatically shown in �g. 3. The bare loop diagram can be obtained using a double

dispersion relation in p

2

and p

02

,

T

bare

=

1

�

2

Z

1

m

2

b

ds

Z

1

0

ds

0

�(s; s

0

)

(s� p

2

)(s

0

� p

02

)

+ subtractions : (19)

Technically, the spectral density �(s; s

0

) can be calculated by using the Cutkowsky rule, namely, by

replacing the usual propagator denominator by a delta function:

1

k

2

�m

2

! �2�i�(k

2

�m

2

)�(k

0

). As a result we get

�(s; s

0

) =

N

c

8

m

4

b

s

0

(s� s

0

)

3

: (20)
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p

B

s

p

0

�

O

7




X X

X X

X

X X

X

X

X

Figure 3: Contributions of perturbation theory and of vacuum condensates to the B

s

! �
 decay.

The dashed lines denote soft gluons.

OPE enables us further to parametrize the non-perturbative e�ects in terms of vacuum expectation

values of gauge-invariant operators up to a certain dimension, the so-called condensates. We consider

up to dimension-5 operators; i.e. the quark condensate, gluon condensate and the quark-gluon (mixed)

condensate contributions (�g. 3). This calculation is carried out in the �xed point gauge, i.e. A

�

:x

�

=

0. We get

T

dim�3

=

�m

b

2

< �ss >

1

(p

2

�m

2

b

)p

02

;

T

dim�4

=

�

s

144�

< G

2

>

Z

1

0

dx

Z

1�x

0

dy

Z

1

0

d��

3

� (c

1

+ c

2

P

2

+ c

3

P

02

)e

��(d

1

+d

2

P

2

+d

3

P

02

)

;

T

dim�5

=

m

b

2

g < �s�Gs > [

m

2

b

2(p

2

�m

2

b

)

3

p

02

+

m

2

b

3(p

2

�m

2

b

)

2

p

04

+

1

2(p

2

�m

2

b

)

2

p

02

] ; (21)

where

c

1

= m

4

b

x

4

;

c

2

= m

2

b

x

4

(1� x� y) ;

c

3

= m

2

b

x

3

(3 + y)(1� x� y) ;

d

1

= m

2

b

x ;

d

2

= x(1� x� y) ;

8



d

3

= y(1� x� y) : (22)

Here we used the exponential representation for the gluon condensate contribution:

1

D

n

=

1

(n� 1)!

Z

1

0

d� �

n�1

e

��D

: (23)

The momenta P; P

0

in eq. (21) are euclidean.

For the calculation of the physical part of the sum rules we insert a complete set of on-shell states

with the same quantum numbers as B

s

and � in eq. (18) and get a double dispersion relation

T

phys

=

m

2

B

s

f

B

s

m

b

f

�

m

�

1

(p

2

�m

2

B

s

)(p

02

�m

2

�

)

F

1

(0) + continuum ; (24)

where f

�

and f

B

s

are the leptonic decay constants of the � and B

s

mesons respectively, de�ned as

usual by

< 0jJ

�

j� > = m

�

f

�

�

�

�

;

< 0jJ

5

jB

s

(p) > = f

B

s

m

2

B

s

=m

b

: (25)

We have absorbed all higher order states and resonances in the continuum.

Now, we equate the hadron-world with the quark-world by T

phys

= T

bare

+T

3

+T

4

+T

5

. Using quark-

hadron duality, we model the continuum contribution by purely perturbative QCD. To be de�nite, it

is the part in eq. (19) above the so-called continuum thresholds s

0

and s

0

0

. To get rid of subtractions

and to suppress the contribution of higher order states, we apply a Double Borel transformation

^

B

[17] with respect to p

2

and p

02

. We make use of the following properties of the Borel transform:

^

B(

1

(p

2

�m

2

)

n

) =

(�1)

n

(n � 1)!

e

�m

2

=M

2

(M

2

)

n

; (26)

^

B(e

��p

2

) = �(1� �M

2

) : (27)

Finally, this yields the sum rule:

F

1

(0) = exp(

m

2

B

s

M

2

+

m

2

�

M

02

)

m

b

f

B

s

f

�

m

�

m

2

B

s

f

1

�

2

Z

s

0

m

2

b

ds

Z

�s

0

ds

0

�(s; s

0

)e

�s=M

2

�s

0

=M

02

�

m

b

2

< �ss > e

(�m

2

b

=M

2

)

[1�m

2

0

(

m

2

b

4M

4

+

m

2

b

3M

2

M

02

�

1

2M

2

)]

+

�

s

�

< G

2

>

Z

x

max

0

N(x)dxg ; (28)

where �s = min(s�m

2

b

; s

0

0

) and x

max

=

M

02

M

2

+M

02

. Here we used the parametrization

g < �s�Gs > = m

2

0

< �ss > : (29)

The last term in eq. (28) is due to the gluon condensate contribution and the function N(x) is de�ned

by:

N(x) =

1

48

exp(�

m

2

b

M

2

(1� x � xM

2

=M

02

)

)m

2

b

M

06

x(m

2

b

M

04

� 4M

2

M

04

+ 5M

2

M

04

x

+ 5M

4

M

02

x�M

2

M

04

x

2

� 2M

4

M

02

x

2

�M

6

x

2

)=(M

4

(�M

02

+M

02

x+M

2

x)

5

) : (30)
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Figure 4: The dependence of the decay constant F

1

(0) on the Borel parameters M

2

and M

02

for

s

0

= 33 GeV

2

.

3.2 Analysis of the sum rule

First we list the values of the input parameters entering the sum rules (eq. (28)), which are not

included in Table 1: m

2

0

= 0:8 GeV

2

[15], < �ss >= �0:011 GeV

3

[16],

�

s

�

< G

2

>= 0:03 GeV

4

[17],

m

�

= 1:019 GeV and f

�

= 0:23 GeV [18].

We do the calculations for two di�erent continuum threshold values s

0

= 33 GeV

2

and s

0

=

35 GeV

2

and take s

0

0

= 1:8 GeV

2

. In �g. 4 we present the dependence of F

1

(0) on M

2

and M

02

for

s

0

= 33 GeV

2

. According to the QCD sum rules method, it is necessary to �nd a range of M

2

and

M

02

, where the dependence of F

1

(0) on these parameters is very weak and, at the same time, the

power corrections and the continuum contribution remain under control. From �g. 4 and �g. 5 follows

that the best stability region for F

1

(0) is 7 GeV

2

� M

2

� 9 GeV

2

, 2 GeV

2

� M

02

� 3 GeV

2

for

s

0

= 33; 35 GeV

2

. We get:

F

1

(0) = 0:24� 0:02 : (31)

This agrees for our value of m

b

within errors with the result given in the literature, based on Light-cone

QCD sum rule calculations [10].

Numerical analysis shows, as also mentioned in [14], that the natural hierarchy of the bare loop, the

power corrections and continuum contributions does not hold due to the smallness of the integration

region, and the power corrections exceed the bare loop contribution. The gluon condensate contribu-

tion is � 1% of the dim-3 + dim-5 condensate contributions and can therefore be safely neglected in

10



Figure 5: The dependence of the decay constant F

1

(0) on the Borel parameter M

2

for �xed M

02

at

s

0

= 33 GeV

2

(solid) and s

0

= 35 GeV

2

(dashed).

numerical calculations.

4 The B

s

! �
 ! 

 amplitude using VMD model

We consider the construction of a VMD amplitude using the amplitude for the decay B

s

! �
 as an

input. Our aim is to continue the B

s

! �
 decay amplitude from p

02

= m

2

�

to p

02

= 0, such that

the � meson propagates as a massless virtual particle before converting into a photon. Note that we

suppressed in our notation the dependence of the form factor F

1

(q

2

) = F

1

(q

2

; p

02

= m

2

�

) on the second

argument p

02

. We de�ne here

�

F

1

(Q

2

) � F

1

(q

2

= 0; Q

2

) for virtual momenta Q

2

= �p

02

. Assuming

pole-type behaviour of the form factor

�

F

1

(Q

2

) we extrapolate using the single-pole form

�

F

1

(Q

2

) =

�

F

1

(0)

1� Q

2

=m

2

pole

; (32)

which works well for light mesons. Using an m

pole

of order 1:7� 1:9 GeV, which corresponds to the

mass of the higher resonances of �, we estimate

�

F

1

(0) = 0:16� 0:02.

With the help of VMD [19] and factorization we can now present the amplitude for B

s

! 

.

Using the intermediate propagator

�1

Q

2

+m

2

�

at Q

2

= 0, the � ! 
 conversion vertex from the VMD

mechanism

< 0jJ

� em

j�(p

0

; �) >= eQ

s

f

�

(0)m

�

�

�

; (33)

and the A(B

s

! �
) amplitude, see eq. (15), we get:

A(B

s

! �
 ! 

) = �

�

1

(k

1

)�

�

2

(k

2

)(A

+

LD

O

7

g

��

+ iA

�

LD

O

7

�

����

k

�

1

k

�

2

) ; (34)

with the CP-even (A

+

LD

O

7

) and CP-odd (A

�

LD

O

7

) parts:

A

+

LD

O

7

= 2�Cm

b

m

2

B

s

�m

2

�

2

�

F

1

(0)
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=

p

2

�

em

G

F

�

�

F

1

(0)f

�

(0)�

t

m

b

(m

2

B

s

�m

2

�

)

3m

�

C

eff

7

(�) ;

A

�

LD

O

7

= 2�Cm

b

�

F

1

(0)

= 2

p

2

�

em

G

F

�

�

F

1

(0)f

�

(0)�

t

m

b

3m

�

C

eff

7

(�) ; (35)

where f

�

(0) = 0:18 GeV [9], Q

s

= �1=3 and C is de�ned in eq. (16). The factor 2 comes from the

addition of the diagrams with interchanged photons. Note, that while for the analysis of the sum

rule for B

s

! �
 we have used f

�

� f

�

(m

2

�

), here we take into account the suppression in f

�

(Q

2

)

going from Q

2

= m

2

�

to Q

2

= 0. We treated the polarization vector �

�

as transversal and replaced

�! �

1

; �

�

! �

2

; q ! k

1

; p

0

! k

2

. The conversion factor � is de�ned as

� = �eQ

s

f

�

(0)

m

�

: (36)

Adding this to the short-distance amplitudes (eq. (3)), we obtain the B

s

! 

 width including

the O

7

-type long-distance e�ects:

�(B

s

! 

)

SD+LD

O

7

=

1

32�m

B

s

(4jA

+

+A

+

LD

O

7

j

2

+

1

2

m

4

B

s

jA

�

+A

�

LD

O

7

j

2

) : (37)

Figure 6: Scale dependence of the ratio R(�) de�ned in eq. (38). The solid, short-dashed and long-

dashed lines correspond to the values (m

b

;

�

�

s

) in (GeV;MeV) as indicated in the �gure. The dotted

line depicts the suggested choice of the scale � from B ! X

s


 studies in NLO [2,3]. The parameters

used are given in Table 1.
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5 Numerical estimates

First we study the leading logarithmic �-dependence of the ratio

R(�) =

�(B

s

! 

)(�)

SD+LD

O

7

�(B

s

! 

)(m

W

)

SD+LD

O

7

: (38)

In the numerical analysis we neglect the masses of the light quarks. From �g. 6 we �nd an enhancement

factor of 1:3� 2:3 relative to the lowest order result obtained by setting � = m

W

, depending on the

model parameter (m

b

;

�

�

s

). Varying � in the range 2:5 GeV � � � 10:0 GeV, gives an uncertainty

4R=R(� = 5 GeV) � �(17; 19; 22)% for

�

�

s

= (590; 480; 370) MeV, respectively. Here one can argue,

that the choice � =

m

b

2

takes into account e�ectively the bulk of the NLO correction as suggested by

the NLO calculation for B ! X

s


 [2].

Table 2 shows the combined � and model parameter dependence of the branching ratio

B(B

s

! 

)

SD+LD

O

7

=

�(B

s

! 

)

SD+LD

O

7

�

tot

(B

s

)

: (39)

The dependence of the form factor

�

F

1

(m

2

�

) on the b quark mass has been extrapolated from �g. 3 [10].

Here

�

F

1

(0) = 0:14; 0:15; 0:16 has been used for m

b

= (5:03; 4:91; 4:79) GeV, respectively. Qualitatively,

�

�

�

s

= 370 MeV

�

�

s

= 480 MeV

�

�

s

= 590 MeV

(GeV) m

b

= 5:03 GeV m

b

= 4:91 GeV m

b

= 4:79 GeV

2:5 1:43 � 10

�6

8:1 � 10

�7

5:0 � 10

�7

5:0 1:18 � 10

�6

6:8 � 10

�7

4:3 � 10

�7

10:0 0:99 � 10

�6

5:9 � 10

�7

3:8 � 10

�7

Table 2: Branching ratio B(B

s

! 

)

SD+LD

O

7

for selected values (m

b

;

�

�

s

) and the renormalization

scale �.

the in
uence of the LD contribution through B

s

! �
 ! 

 reduces the width because of the

destructive interference of the LD + SD contributions. To quantify this, we de�ne

� �

B(B

s

! 

)

SD+LD

O

7

� B(B

s

! 

)

SD

B(B

s

! 

)

SD

; (40)

with �(B

s

! 

)

SD

given in eq. (14). We �nd, that � lies in the range:

� 15% � � � �27% ; (41)

depending mainly on (m

b

;

�

�

s

).

In conclusion, we have reanalysed the decay rate B

s

! 

 in the SM. We included the lead-

ing logarithmic QCD corrections and investigated the in
uence of the LD-contributions due to the

chain B

s

! �
 ! 

. Depending on

�

�

s

, the LD-contributions become sizeable. Other possible LD

contributions may also arise from the O

2

-type transitions.
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The decay rate of B

s

! 

 depends sensitively on (m

b

;

�

�

s

) and �. Fixing � to � =

m

b

2

as suggested

by the NLO calculation of B ! X

s


 and varying the model parameter (m

b

;

�

�

s

) (see Table 2), we �nd

that the branching ratio B(B

s

! 

)

SD+LD

O

7

is uncertain by a large factor

0:5 � 10

�6

� B(B

s

! 

)

SD+LD

O

7

� 1:4 � 10

�6

: (42)

Improving this requires NLO calculation in the decay rate B

s

! 

. With the choice of (m

b

;

�

�

s

) =

(5:03GeV; 370MeV), the resulting branching ratio (1:4 � 10

�6

) is substantially larger than what has

been stated in the literature. The present best limit on the decay B

s

! 

 is [20]

B(B

s

! 

) < 1:48 � 10

�4

; (43)

which is still a factor � 100� 300 away from the estimates given here.

Note added: Recently, the leading logarithmic QCD corrections for the short-distance part of the

decay B

s

! 

 have also been calculated by Chang et al. [21]. They derived the decay rate with the

full set of operators O

1:::8

and we agree with their analytical expression. Our model to incorporate the

bound state e�ects in the B

s

meson is inspired by HQET, resulting in the parameters (m

b

;

�

�

s

). The

strong parametric dependence of the decay rate �(B

s

! 

) on (m

b

;

�

�

s

) and on � has been studied

by us; Chang et al. [21] �x � = m

B

s

�m

b

, using the naive constituent quark model, and set � = m

b

.

We emphasize here that the decay rate is sensitive to both of these parameters and requires further

theoretical investigation.
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