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Next-To-Leading Logarithmic Results in B ! X
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We give a brief review of the next-to-leading logarithmic results in B ! X

s


.

Combining the results of di�erent groups, a practically complete next-to- leading-

logarithmic prediction of the inclusive decay rate was recently presented. The

theoretical uncertainty in the decay rate is now less than half of the error in the

previously leading-logarithmic result. Therefore, the inclusiveB ! X

s


 mode will

provide important tests of the SM and its extensions when more precise experi-

mental data is available.

Rare B meson decays provide an alternative approach in the search for

new physics: The B ! X

s


 decay in particular does not arise at the tree level

in the standard model (SM) but is induced by one-loop W-exchange diagrams.

Therefore nonstandard contributions (charged scalar exchanges, SUSY one-

loop diagrams etc.) are not suppressed by an extra factor �=4� relative to

the standard model amplitude which implies the high sensitivity of this decay

for new physics. However, even within the SM, the B ! X

s


 decay is also

important for constraints on the Cabibbo-Kobayashi-Maskawamatrix elements

which involve the top-quark. For both these reasons, precise experimental and

theoretical work on these decays is required.

The experimental status of this decay can be summarized as follows: Fol-

lowing the �rst observation of the exclusive B ! K

�


 mode

1

, the �rst evi-

dence for a penguin decay ever, the CLEO collaboration measured the inclusive

B ! X

s


 branching ratio to be (2:32� 0:57� 0:35)� 10

�4

, where the �rst er-

ror is statistical and the second is systematic

2

. In fact, there are two separate

CLEO analyses. The �rst one measures the inclusive photon spectrum from

B-decay near the end point. The second technique constructs the inclusive

rate by summing up the possible exclusive �nal states. The branching ratio

a
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stated above is the average of the two measurements, taking into account the

correlation between the two techniques. In the upcoming years much more

precise measurements are expected from the upgraded CLEO detector, as well

as from the B-factories presently under construction at SLAC and KEK. In

view of the expected high luminosity of the B-factories, experimental accuracy

below 10% seems to be possible.

The inclusive B ! X

s


 mode in contrast to exclusive decay modes is

theoretically clean in the sense that no speci�c model is needed to describe

the �nal hadronic state. Indeed, heavy quark e�ective theory tells us that

the decay width �(B ! X

s


) is well approximated by the partonic decay

rate �(b ! X

s


) which can be analyzed in renormalization group improved

perturbation theory. The class of non-perturbative e�ects which scales like

1=m

2

b

is expected to be well below 10%

3

. This numerical statement is supposed

to hold also for the recently discovered non-perturbative contributions which

scale like 1=m

2

c

4

. Therefore, we focus on the dominant partonic decay rate in

the following.

It is well-known that the QCD corrections enhance the partonic decay rate

�(b! s
) by more than a factor of two. These QCD e�ects can be attributed

to logarithms of the form �

n

s

(m

b

) log

m

(m

b

=M ), where M = m

t

or M = m

W

and m � n (with n = 0; 1; 2; :::). In order to get a reasonable result at all,

one has to resum at least the leading-log (LL) series (m = n). Working to

next-to-leading-log (NLL) precision means that one is also resumming all the

terms of the form �

s

(m

b

) (�

n

s

(m

b

) ln

n

(m

b

=M )).

An appropriate framework to achieve the necessary resummations is an

e�ective low-energy theory, obtained by integrating out the heavy particles

which in the SM are the top quark and theW -boson. The e�ective Hamiltonian

relevant for b! s
 and b! sg in the SM and most of its extensions reads

H

eff

(b! s
) = �

4G

F

p

2

�

t

8

X

i=1

C

i

(�)O

i

(�) ; (1)

where O

i

(�) are the relevant operators, C

i

(�) are the corresponding Wilson

coe�cients, which contain the complete top- and W- mass dependence, and

�

t

= V

tb

V

�

ts

with V

ij

being the CKM matrix elements

b

. Neglecting operators

with dimension > 6 which are suppressed by higher powers of 1=m

W=t

and

using the equations of motion for the operators, one arrives at the following

basis of dimension 6 operators

5

O

1

= (�c

L�




�

b

L�

) (�s

L�




�

c

L�

) ;

b

The CKM dependenceglobally factorizes, because we work in the approximation�

u

= 0.

2



O

2

= (�c

L�




�

b

L�

) (�s

L�




�

c

L�

) ;

O

7

= (e=16�

2

) �s

�

�

��

(m

b

(�)R+m

s

(�)L) b

�

F

��

;

O

8

= (g

s

=16�

2

) �s

�

�

��

(m

b

(�)R +m

s

(�)L) (�

A

��

=2) b

�

G

A

��

: (2)

Because the Wilson coe�cients of the penguin induced Four-Fermi operators

O

3

; ::O

6

are very small, we do not list them here. The perturbative QCD

corrections for the b! s
 decay rate are twofold:

1 � The corrections to the Wilson coe�cients C

i

(�) at the scale � � m

b

.

2 � The corrections to the matrix elements of the operators O

i

also at the

low-energy scale � � m

b

.

Only the sum of the two contributions is renormalization scheme independent

and in fact, from the �-independence of the e�ective Hamiltonian, one can

derive a renormalization group equation (RGE) for the Wilson coe�cients

C

i

(�):

�

d

d�

C

i

(�) = 


ji

C

j

(�) ; (3)

where the (8�8) matrix 
 is the anomalous dimension matrix of the operators

O

i

. The standard procedure to calculate the two contributions involves the

following three steps:

ad 1a � One has to match the full standard model theory with the e�ective

theory at the scale � = �

W

, where �

W

denotes a scale of order m

W

or m

t

.

At this scale, the matrix elements of the operators in the e�ective theory

lead to the same logarithms as the full theory calculation. Consequently, the

Wilson coe�cients C

i

(�

W

) only pick up small QCD corrections, which can be

calculated in �xed-order perturbation theory. In the LL (NLL) program, the

matching has to be worked out to order �

0

s

(�

1

s

).

ad 1b � Solving the RGE (3) and using the C

i

(�

W

) of Step 1a as initial

conditions, one performs the evolution of these Wilson coe�cients from � =

�

W

down to � = �

b

, where �

b

is of the order of m

b

. As the matrix elements

of the operators evaluated at the low scale �

b

are free of large logarithms, the

latter are contained in resummed form in the Wilson coe�cients. For a LL

(NLL) calculation, this RGE step has to be performed using the anomalous

dimension matrix 


ji

up to order �

1

s

(�

2

s

).

ad 2 � The corrections to the matrix elements of the operators hs
jO

i

(�)jbi

at the scale � = �

b

have to be calculated to order �

0

s

(�

1

s

) in the LL (NLL)

calculation.

Until recently, only the leading logarithmic (LL) perturbative QCD cor-

rections had been calculated

6

systematically. The error in these calculations

is dominated by a large renormalization scale dependence at the �25% level.

The measurement of the CLEO collaboration

2

overlaps with the estimates

3



Figure 1: Branching ratio for B ! X

s


 as a function of m

t

based on LL calculations. The

upper (lower) solid curve is for � = m

b

=2 (� = 2m

b

). The dotted curves show the CLEO

1� � bounds

2

. The other input parameters are taken at their central values.

based on leading logarithmic calculations (or with some next-to-leading e�ects

partially included) and the experimental and theoretical errors are comparable

(see Figure 1)

7;8;9

. However, in view of the expected increase in the experimen-

tal precision in the near future, it is clear that a systematic inclusion of the NLL

corrections becomes necessary. Already the large � dependence of the leading-

log result (�25%) indicates the importance of the NLL series. This ambitious

NLL enterprise was recently completed. All three steps (1a,1b,2) to NLL pre-

cision involve rather di�cult calculations. The most di�cult part in Step 1a

is the two-loop (or order �

s

) matching of the dipole operators O

7

and O

8

. It

involves two-loop diagrams both in the full and in the e�ective theory. It was

worked out by Adel and Yao

10

some time ago. Using a di�erent method, Greub

and Hurth recently presented a detailed re-calculation of this step, con�rming

the former result

11

. Step 2 basically consists of Bremsstrahlung corrections

and virtual corrections. While the Bremsstrahlung corrections (together with

some virtual corrections needed to cancel infrared singularities) were worked

out some time ago by Ali and Greub

7

and have been con�rmed and extended

by Pott

12

, a complete analysis of the virtual corrections (up to the contribu-

tions of the Four-Fermi operators with very small coe�cients) was presented

by Greub, Hurth and Wyler

13

. This calculation involves two- loop diagrams

where the full charm dependence has to be taken into account. The main

result of this analysis consists in a drastic reduction of the renormalization

4



Figure 2: Branching ratio for B ! X

s


 as a function of m

t

based on the NLL calculation,

not including the NLL corrections to the Wilson coe�cient C

7

.

scale uncertainty from about �25% to about �5%. Moreover, the central

value was shifted outside the 1� bound of the CLEO measurement (see Figure

2). However, at that time, the essential coe�cient C

7

(�

b

) was only known

to leading-log precision. It was therefore unclear how much the overall nor-

malization will be changed when the NLL value for C

7

(�

b

) is used. Recently,

the order �

2

s

anomalous matrix (Step 1b) has been completely worked out

by Chetyrkin, Misiak and M�unz

14

. The extraction of some of the elements

in the O(�

2

s

) anomalous dimension matrix involves pole parts of three-loop

diagrams. Using the matching result (Step 1a), these authors obtained the

next-to-leading correction to the Wilson coe�cient C

7

(�

b

) which is the only

relevant one for the b ! X

s


 decay rate. Numerically, the LL and the NLL

value for C

7

(�

b

) are rather similar; the NLL corrections to the Wilson coe�-

cient C

7

(�

b

) lead to a change of the b! X

s


 decay rate which does not exceed

6%

14

: The new contributions can be split into a part which is due to the order

�

s

corrections to the matching (Step 1a) and into a part stemming from the

improved anomalous dimension matrix (Step 1b). While individually these two

parts are not so small (in the NDR scheme, which was used in

14

), they almost

cancel when combined as illustrated in

14

. This shows that all the three di�er-

ent pieces are numerically equally important. However, strictly speaking the

relative importance of di�erent NLO-corrections at the scale � = �

b

, namely

the order �

s

corrections to the matrix elements of the operators (Step 2) and

the improved Wilson coe�cient C

7

(Step 1 a+b), is a renormalization-scheme

5



dependent issue; so we stress that the discussion above was done within the

naive dimensional regularization scheme (NDR).

Combining the NLL calculations of all the three steps (1a+b,2), the �rst

complete theoretical prediction to NLL pecision for the b! X

s

+ 
 branching

ratio was presented in

14

: BR(B ! X

s


) = (3:28� 0:33)� 10

�4

. The theo-

retical error has two dominant sources: The � dependence is reduced to 5% as

mentioned above. Another 5% uncertainty stems from the m

c

=m

b

dependence.

Summing up, the present NLL-prediction for the B ! X

s


 decay is still

in agreement with the CLEO measurement at the 2�-level. The theoretical

error is half of the uncertainty in the previous leading logarithmic prediction.

Clearly, the inclusive B ! X

s

+ 
 mode will provide an interesting test of the

SM and its extensions as soon as more precise experimental data are available.
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