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Abstract

The order �

s

corrections to the Wilson coe�cients of the dipole operators (O

7

; O

8

) at the

matching scale � = m

W

are a crucial ingredient for a complete next-to-leading logarithmic

calculation of the branching ratio for b ! s. Given the phenomenological relevance and the

fact that this two-loop calculation has been done so far only by one group [1], we present a

detailed re-calculation using a di�erent method. Our results are in complete agreement with

those in ref. [1].
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1 Introduction

By de�nition, rare B meson decays only arise at the one loop level in the standard model (SM).

Therefore these decays are particulary sensitive to e�ects from new physics. Among these

decays, the inclusive modes likeB ! X

s

 are particulary interesting, because no speci�c model

is needed to describe the �nal hadronic state in contrast to the exclusive decay modes. Indeed,

heavy quark e�ective theory tells us that the decay width �(B ! X

s

) is well approximated by

the partonic decay rate �(b! X

s

) which can be analyzed in renormalization group improved

perturbation theory. The class of non-perturbative e�ects which scales like 1=m

2

b

is expected

to be well below 10% [2]. This numerical statement is supposed to hold also for the recently

discovered non-perturbative contributions which scale like 1=m

2

c

[3].

Up to recently, only the leading logarithmic (LL) perturbative QCD corrections were cal-

culated systematically [4]. The error of these calculations is dominated by a large renormal-

ization scale dependence at the �25% level. The measured branching ratio BR(B ! X

s

) =

(2:32 � 0:67) � 10

�4

reported in 1995 by the CLEO collaboration [5] overlaps with the esti-

mates based on leading logarithmic calculations (or with some next-to-leading e�ects partially

included) and the experimental and theoretical errors are comparable [6, 7, 8, 9, 10, 11]. How-

ever, in view of the expected increase in the experimental precision in the near future, it became

clear that a systematic inclusion of the next-to-leading logarithmic (NLL) corrections becomes

necessary [8]. This ambitious NLL enterprise was recently completed; combining the results of

di�erent groups [1, 6, 10, 12, 13, 14], the �rst complete theoretical prediction to NLL pecision

for the b! X

s

+ branching ratio was presented in [14]: BR(B ! X

s

) = (3:28�0:33)�10

�4

.

This prediction is still in agreement with the CLEO measurement at the 2�-level. The the-

oretical error is twice smaller than in the leading logarithmic prediction. So the inclusive

B ! X

s

+  mode will provide an interesting test of the SM and its extensions when also more

precise experimental data will be available.

Before discussing in some more detail the principle steps leading to a next-to-leading result

for b! X

s

, we briey have to recall the formalism. We use the framework of an e�ective low-

energy theory with �ve quarks, obtained by integrating out the top quark and the W -boson.

The e�ective Hamiltonian relevant for b! s and b! sg reads

H

eff

(b! s) = �

4G

F

p

2

�

t

8

X

i=1

C

i

(�)O

i

(�) ; (1.1)

where O

i

(�) are the relevant operators, C

i

(�) are the corresponding Wilson coe�cients, which

contain the complete top- and W- mass dependence, and �

t

= V

tb

V

�

ts

with V

ij

being the CKM

matrix elements

2

. Neglecting operators with dimension > 6 which are suppressed by higher

powers of 1=m

W=t

-factors and using the equations of motion for the operators, one arrives at

the following basis

3

of dimension 6 operators [15]

O

1

= (�c

L�



�

b

L�

) (�s

L�



�

c

L�

) ;

O

2

= (�c

L�



�

b

L�

) (�s

L�



�

c

L�

) ;

O

3

= (�s

L�



�

b

L�

)

h

(�u

L�



�

u

L�

) + :::+

�

�

b

L�



�

b

L�

�i

;

2

The CKM dependence globally factorizes, because we work in the approximation �

u

= 0.

3

In [14] another basis was used. We comment on this in the summary.
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O

4

= (�s

L�



�

b

L�

)

h

(�u

L�



�

u

L�

) + :::+

�

�

b

L�



�

b

L�

�i

;

O

5

= (�s

L�



�

b

L�

)

h

(�u

R�



�

u

R�

) + :::+

�

�

b

R�



�

b

R�

�i

;

O

6

= (�s

L�



�

b

L�

)

h

(�u

R�



�

u

R�

) + :::+

�

�

b

R�



�

b

R�

�i

;

O

7

= (e=16�

2

) �s

�

�

��

(m

b

(�)R +m

s

(�)L) b

�

F

��

;

O

8

= (g

s

=16�

2

) �s

�

�

��

(m

b

(�)R +m

s

(�)L) (�

A

��

=2) b

�

G

A

��

:

(1.2)

In the dipole type operators O

7

and O

8

, e and F

��

(g

s

and G

A

��

) denote the electromagnetic

(strong) coupling constant and �eld strength tensor, respectively.

It is well-known that the QCD corrections enhance the b! s decay rate by more than a fac-

tor of two; these QCD e�ects can be attributed to logarithms of the form �

n

s

(m

b

) log

m

(m

b

=M),

where M = m

t

or M = m

W

and m � n (with n = 0; 1; 2; :::). Working to NLL preci-

sion means, that one is resumming all the terms of the form �

n

s

(m

b

) ln

n

(m

b

=M), as well as

�

s

(m

b

) (�

n

s

(m

b

) ln

n

(m

b

=M)). This is achieved by performing the following 3 steps:

Step 1 One has to match the full standard model theory with the e�ective theory at the

scale � = �

Wt

, where �

Wt

denotes a scale of order m

W

or m

t

. At this scale, the matrix

elements of the operators in the e�ective theory lead to the same logarithms as the full

theory calculation. Consequently, the Wilson coe�cients C

i

(�

Wt

) only pick up small

QCD corrections, which can be calculated in �xed order perturbation theory. In the NLL

program, the matching has to be worked out at the O(�

s

) level.

Step 2 Then one performs the evolution of these Wilson coe�cients from � = �

Wt

down to

� = �

b

, where �

b

is of the order of m

b

. As the matrix elements of the operators evaluated

at the low scale �

b

are free of large logarithms, the latter are contained in resummed form

in the Wilson coe�cients. For a NLL calculation, this RGE step has to be performed

using the anomalous dimension matrix up to order �

2

s

.

Step 3 The corrections to the matrix elements of the operators hsjO

i

(�)jbi at the scale � = �

b

have to be calculated to order �

s

precision.

The most di�cult part in Step 1 is the two-loop (or order �

s

) matching of the dipole operators,

which has been worked out by Adel and Yao [1] some time ago. Step 3 basically consists of

Bremsstrahlung corrections and virtual corrections. The Bremsstrahlung corrections, together

with some virtual corrections needed to cancel infrared singularities, have been worked out

by Ali and Greub [6, 10]; later, this part was con�rmed and extended by [12]. Recently, a

complete analysis of the virtual corrections (up to the contributions of the 4 Fermi operators

with very small coe�cients) were presented by Greub, Hurth and Wyler [13]. The main result

of the latter analysis consists in a drastic reduction of the renormalization scale uncertainty

from about �25% to about �6%. Moreover, the central value was shifted outside the 1� bound

of the CLEO measurement. However, at that time, the essential coe�cient C

7

(�

b

) was only

known to leading-log precision. It was therefore unclear, how much the overall normalization

will be changed, when using the NLL value for C

7

(�

b

). Very recently, the order �

2

s

anomalous

matrix (step 2) has been completely worked out by Chetyrkin, Misiak and M�unz [14]. Using

the matching result of Adel and Yao, these authors got the next-to-leading result for C

7

(�

b

).

2



Numerically, the LL and the NLL value for C

7

(�

b

) are rather similar; the NLL corrections to

the Wilson coe�cient C

7

(�

b

) lead to a change of the b! X

s

 decay rate which does not exceed

6% [14]: The new contributions can be split into a part which is due to the order �

s

corrections

to the matching (Step 1) and into a part stemming from the improved anomalous dimension

matrix (Step 2). While individually these two parts are not so small (in the NDR scheme, which

was used in [14]), they almost cancel when combined as illustrated in [14]. This shows that all

the di�erent pieces are numerically equally important. However, strictly speaking the relative

importance of di�erent NLO-corrections at the scale � = �

b

, namely the order �

s

corrections

to the matrix elements of the operators (Step 3) and the improved Wilsoncoe�cients C

i

(Step

1+2), is a renormalization-scheme dependent issue; so we stress that the discussion above was

done within the naive dimensional regularization scheme (NDR).

Each of the three steps implies rather involved computations: The calculation of the matrix

elements (Step 3) involves two-loop diagrams where the full charm mass dependence has to be

taken into account. Also the matching calculation (Step 1) involves two-loop diagrams both in

the full and in the e�ective theory. Finally, the extraction of some of the elements in the O(�

2

s

)

anomalous dimension matrix involves three-loop diagrams. Given the fact, that it took a rather

long time until the leading logarithmic calculations performed by di�erent groups converged

to a common answer, it is certainly desirable that all three steps mentioned above should be

repeated by other independent groups, and, may-be using other methods.

Making a step into this direction, we present in this paper a re-calculation of the two-loop

matching of the dipole operators O

7

and O

8

. We extracted the O(�

s

) contributions of the

corresponding Wilson coe�cents C

7

and C

8

by calculating the on-shell processes b ! s and

b! sg in both versions of the theory up to order �

s

. We worked out the two-loop integrals by

using the Heavy Mass Expansion method [16], which we describe in some detail in section 2.4.

The rest of the paper is organized as follows. In section 2 we make some preparations

for the two-loop calculations. We �rst explain how to extract the order �

s

corrections to the

Wilson coe�cients C

7

(�

Wt

) and C

8

(�

Wt

) in principle. Then, in various subsections we discuss

and illustrate the technical methods used. Sections 3, 4 and 5 are devoted to the computation

of C

71

(�

Wt

): In section 3 we calculate QCD corrections to b ! s in the full theory together

with the corresponding counterterm contributions, while in section 4 the same is done in the

e�ective theory. Comparing the results from section 3 and section 4, we extract C

71

(�

Wt

) in

section 5. Similarly, sections 6, 7 and 8 are devoted to the computation of C

81

(�

Wt

): In section

6 we calculate QCD corrections to b ! sg in the full theory together with the corresponding

counterterm contributions, while in section 7 the same is done in the e�ective theory. Comparing

the results from section 6 and section 7, we extract C

81

(�

Wt

) in section 8. Finally, we give a

brief summary in section 9.

2 Preparations for the two-loop calculations

2.1 Strategy for extracting C

71

and C

81

Let

^

M denote the (on-shell) b ! s matrix element calculated in the e�ective theory.

^

M can

be written in the form

^

M =

X

i

C

i

(�) hO

i

(�)i ; hO

i

(�)i � hsjO

i

(�)jbi : (2.1)

3



To keep the notation simpler, we denote the matching scale by � instead of �

Wt

. Making use

of the �

s

expansion for C

i

(�) and O

i

(�)

C

i

(�) = C

i0

(�) +

�

s

4�

C

i1

(�) + : : : ; hO

i

(�)i = hO

i

(�)i

0

+

�

s

4�

hO

i

(�)i

1

+ : : : ; (2.2)

we get the corresponding expansion for

^

M in the form

^

M = C

i0

(�) hO

i

(�)i

0

+

�

s

4�

(C

i0

(�) hO

i

(�)i

1

+ C

i1

(�) hO

i

(�)i

0

) + : : : : (2.3)

On the other hand, let M denote the b ! s matrix element evaluated in the full theory

after discarding power supressed terms of order 1=m

3

W=t

; M has the expansion

M = M

0

+

�

s

4�

M

1

+ : : : : (2.4)

Requiring M =

^

M and taking the coe�cient of �

1

s

, we get the O(�

s

) matching condition

M

1

= C

i0

(�) hO

i

(�)i

1

+ C

i1

(�) hO

i

(�)i

0

: (2.5)

All coe�cients in eq. (2.5) are known [17, 18], except

4

C

71

and C

81

. As C

81

comes together

with hsjO

8

(�)jbi

0

, which is zero, eq. (2.5) has only one unknown, viz. C

71

, i.e., just what we

want to extract.

The discussion for the extraction of C

81

goes exactly along the same lines, using the process

b! sg instead of b! s.

A general remark is in order here. One could also match o�-shell Greens functions instead

of on-shell matrix elements. However, in this case one is not allowed to work in the operator

basis given in eq. (1.2), because one has used the equations of motion for the operators to get

this 8 dimensional basis. This Hamiltonian therefore only reproduces on-shell matrix elements

correctly [19]. As we would have to work in the o�-shell basis when matching Greens functions,

we preferred to do on-shell matching. There is of course a price to pay: The on-shell processes

b! s and b! sg are plagued with infrared singularities, which have to be treated carefully.

However, as we will see later, this is not a real problem.

2.2 Technical details

We work in d = 4 � 2� dimensions; in the full theory we use anticommuting 

5

, which should

not be a problem, because there are no closed fermion loops involved. We also use this naive

dimensional regularization scheme (NDR) in the e�ective theory. The calculations are done

in the `t Hooft-Feynman gauge (electroweak sector) and the gluon propagator is taken in the

Feynman gauge. To avoid Euler 

E

terms and ln(4�) factors in our expressions, we introduce

the renormalization scale in the form �

2

exp(

E

)=(4�) (MS subtraction then corresponds to

subtracting the poles in �). Besides the ultraviolet singularities also the infrared singularitites

are dimensionally regularized. As we could clearly separate infrared and ultraviolet singularities,

we labeled the infrared poles by the index ir (e.g., 1=�

ir

). We put m

s

= 0, except in situations

where mass singularities appear, i.e., we treat m

s

as a regulator of these singularities. We

work in the approximation �

u

= 0. To keep the formulae more compact, we put immediately

Q

u

= 2=3 (Q

d

= �1=3) for up-type (down-type) quark charges. For the same reason we also

immediately insert the numerical values for the color factors in the b! sg case.

4

Of course C

71

and C

81

are also known from Adel and Yao [1], but this is what we want to check.
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2.3 Reducing the number of diagrams

For reasons of gauge invariance, we know that the �nal result for the b ! s matrix element

can be written in the form

M(b! s) = F (masses, couplings) hsjO

7

jbi

tree

: (2.6)

For m

s

= 0, the quantity hsjO

7

jbi

tree

is given by

16�

2

e

hsjO

7

jbi

tree

= 2m

b

�u(p

0

) "= q=R u(p) = �u(p

0

)

h

2m

2

b

"=L � 4m

b

(p")R

i

u(p) ; (2.7)

where u(p

0

) and u(p) are the Dirac spinors for the s and the b quarks, respectively, and q (")

the momentum (polarization vector) of the photon. In the last step we used q = (p � p

0

) and

q" = 0 , where p (p

0

) is the momentum of the b- (s-) quark. When calculating a given Feynman

diagram, it is su�cient to work out only the term proportional to (p")R. After adding all the

diagrams, the full answer can be reconstructed by means of eq. (2.7). This reduces the number

of diagrams; e.g., when calculating the O(�

s

) corrections for b! s in the full theory, "only"

the graphs in Fig. 2 have a non-zero projection on the term (p")R.

A similar projection for the process b! sg (with obvious changes) can also be obtained.

2.4 Method for calculating of the two-loop diagrams

To extract C

71

and C

81

various one- and two- loop diagrams have to be calculated in both

versions (full/e�ective) of the theory. As the one-loop diagrams are straightforwardly obtained

by conventional techniques, we directly move to the two-loop diagrams. When working out

b ! s and b ! sg in the e�ective theory at the matching scale �

Wt

, the only two-loop

contributions leading to terms of order �

s

are those associated with the operator O

2

. For the

b! s case, these terms have been obtained in [13]. We anticipate, that in the corresponding

full theory calculation a term appears which can be identi�ed with the O

2

contribution in the

e�ective theory. Consequently, the O

2

contribution is not needed explicitly for extracting C

71

and C

81

.

Therefore, we directly discuss the calculation of the two-loop contributions in the full theory.

In order to match dimension 6 operators, it is su�cient to extract the terms of order m

b

m

2

b

M

2

(M = m

W

;m

t

) from the full-theory matrix elements for b! s and b! sg (term supressed by

additional powers of m

b

=M correspond to higher dimensional operators in the e�ective theory).

A systematic expansion of the matrix elements in inverse powers ofM can naturally be obtained

by using the well-known Heavy Mass Expansion (HME). In our context we use this HME only

as a method for working out the dimensionally regularized two-loop Feynman graphs (and not

to get directly renormalized quantities). The theory of asymptotic expansions of Feynman

diagrams is already a textbook matter [20]

5

. Therefore, we only recall those properties of the

HME, which are of practical importance for our calculation (for the mathematical foundations

5

The idea of deriving operator product expansions using subtractions of leading asymptotics goes back to

Zimmermann [21]. Later this idea was systematically developed within the BPHZ scheme [22]. The simple

explicit formulae for asymptotic expansion within dimensional regularisation like (2.8) have been systematically

derived in [16].
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of this method we refer to the literature [16]):

Suppose that all the masses of a given Feynman diagram � can be divided into a set of large

M = fM

1

;M

2

; : : :g and small m = fm

1

;m

2

; : : :g masses and assume that all external momenta

q = fq

1

; q

2

; : : :g are small compared to the scale of the large masses M ; then the statement is

that the dimensionally regularised (unrenormalized) Feynman integral F

�

associated with the

Feynman diagram � can we written as

F

�

M!1

�

X



F

�=

� T

q



;m



F



(q



;m



;M) ; (2.8)

where the sum is performed over all subgraphs  of � which ful�ll the following two conditions

simultaneously:

�  contains all lines with heavy masses (M ) and

�  consists of connectivity components that are one-particle-irreducible with respect to lines

with small masses (m).

Here some clarifying remarks are in order:

� The operator T performs a Taylor expansion in the variables q



and m



, where m



denotes

the set of light masses in  and q



denotes the set of all external momenta with respect to the

subgraph ; to be more speci�c, an external momentum with respect to the subgraph  can

be an internal momentum with respect to the full graph �. F

�=

denotes the Feynman integral

corresponding to the reduced graph �=. Note that the operator T is understood to act directly

on the integrand of the subgraph . The decomposition of the original, say l-loop-diagram �

into the subdiagram  and the diagram �= is achieved in the corresponding Feynman integral

by factorizing the product of scalar propagators as �

�

= �

�=

�



such that

F

�=

� T

q



;m



F



=

Z

dk

1

� � � dk

l

�

�=

T

q



;m



�



: (2.9)

� The full graph � is always a subgraph contributing in the sum

P



.

� It is instructive to look at the special case where all masses are large compared to the external

momenta in a given diagram �. In this case only the full graph � contributes to the sum

P



in (2.8). The complete HME expansion reduces to a naive Taylor expansion in the external

momenta of the integrand of the Feynman integral:

F

�

M!1

� T

q

� F

�

(q

�

;M) (2.10)

� The Taylor operator T introduces additional spurious IR- or UV-divergences in the various

terms of the sum

P



, as we will see in an explicit example below. It is a nontrivial property of

the HME that all these arti�cial divergences cancel after making a summation over all possible

subgraphs . For our calculations this property provides a nontrivial check for the individual

diagrams, as this cancellation has to happen diagram by diagram.

Now we illustrate this rather formal description for the diagram in Fig 1b, for an internal top

quark and denote it D

top

. It belongs to the Set1 in Fig 2. TheW - and �-exchange contributions

6



are understood to be added. The corresponding Feynman integral has the following form (the

Dirac spinors u(p

0

) and u(p) are amputated):

D

top

= X exp(2

E

�)�

4�

(4�)

�2�

Z

d

d

r

(2�)

d

Z

d

d

l

(2�)

d

� (2.11)

Dirac

1t

(p� q + r)

2

�m

2

s

1

r

2

Dirac

2t

[((l + r)

2

�m

2

t

) (l

2

�m

2

t

) ((l+ q)

2

�m

2

t

) ]

1

(l+ p � q)

2

�m

2

W

In (2.11) the functions Dirac

1t

and Dirac

2t

are the respective Dirac structures, whose explicit

form is not important for explaining the principle steps of the expansion. The constant X

collects all the remaining constant factors like coupling constants and CKM-factors.

We �nd two subdiagrams  of D

top

which ful�ll the two conditions given below eq. (2.8):

The �rst contribution of the HME corresponding to the subdiagram 

1

shown in Fig. 1c is

given by

D

1

top

= X exp(2

E

�)�

4�

(4�)

�2�

Z

d

d

r

(2�)

d

Z

d

d

l

(2�)

d

� (2.12)

Dirac

1t

(p� q + r)

2

�m

2

s

1

r

2

T

r;p;q

 

Dirac

2t

[((l + r)

2

�m

2

t

) (l

2

�m

2

t

) ((l+ q)

2

�m

2

t

) ]

1

(l + p� q)

2

�m

2

W

!

:

The second contribution is the naive one, 

2

= D

top

(see Fig. 1d):

D

2

top

= X exp(2

E

�)�

4�

(4�)

�2�

Z

d

d

r

(2�)

d

Z

d

d

l

(2�)

d

� (2.13)

T

p;q

 

Dirac

1t

(p � q + r)

2

�m

2

s

1

r

2

Dirac

2t

[((l + r)

2

�m

2

t

) (l

2

�m

2

t

) ((l + q)

2

�m

2

t

) ]

1

(l + p� q)

2

�m

2

W

!

:

So we end up with

D

top

M!1

� D

1

top

+D

2

top

: (2.14)

The integrals are considerably simpli�ed after the Taylor operation T and can be solved

analytically after introducing Feynman parametrization. We mention that the Dirac algebra

has been done with the algebraic program REDUCE [23] and the integrals have been done with

the symbolic program MAPLE [24].

As mentioned above we can discard terms of order 1=M

3

. Simple dimensional arguments

tell us that we have to perform the Taylor operation T up to second order in the external

momenta r, p, q in D

1

top

and also up to second order in p, q in D

2

top

. Restoring all the factors

which we symbolized by X, and projecting on the term (p")R, we get

D

top

=

4 iG

F

�

t

p

2

�

s

4�

C

F

e

16�

2

(�4m

b

) (p")R

h

d

1

top

+ d

2

top

i

: (2.15)

The quantities d

1

top

and d

2

top

are given by (z = (m

t

=m

W

)

2

):

d

1

top

= �

S

�

(1� 2 ln(m

b

=m

W

) �� 2 ln(m

s

=m

b

) �+ 4 ln(�=m

W

) � )�

9z

2

� 8z + 2

36(z � 1)

4

ln

2

z

+

11z

4

� 14z

3

+ 234z

2

� 180z + 24

108(z � 1)

4

ln z �

229z

3

+ 15z

2

+ 744z � 538

648(z � 1)

3

(2.16)
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d

2

top

= +

S

�

ir

(1 + 4 ln(�=m

W

) � ) +

�108z ln z + 60z

4

� 258z

3

+ 468z

2

� 294z + 24

108(z � 1)

4

�

�

�

m

W

�

4�

+

9z

2

+ 10z + 2

12(z � 1)

4

ln

2

z �

142z

4

� 538z

3

+ 753z

2

� 218z + 26

108(z � 1)

4

ln z

�

z

4

� 40z

3

+ 27z

2

� 10z � 2

18(z � 1)

4

Li(1 �

1

z

)�

67z

3

+ 2343z

2

� 2766z + 230

648(z � 1)

3

; (2.17)

where the function S is

S =

(�54z

2

+ 48z � 12) ln z + 11z

4

� 14z

3

+ 27z

2

� 38z + 14

108(z � 1)

4

: (2.18)

The 1=� poles in d

1

top

correspond to spurious ultraviolet singularities produced in the r-

integration after expanding the subdiagram 

1

. The 1=�

ir

poles in d

2

top

on the other hand arise

due to the worsened infrared behaviour induced when expanding the s-quark propagator. As

we explicitly see, these arti�cal singularites cancel when adding d

1

top

and d

2

top

.

We now discuss the corresponding diagram D

charm

where the internal top quark is replaced

by the (light) charm quark. The quantitiesD

1

charm

andD

2

charm

corresponding to the subdiagrams



1

and 

2

(see Fig. 1c,d) are given by the analogous formulae (2.12) and (2.13), where m

t

is

replaced by m

c

and the Taylor operator T

r;p;q

in (2.12) is replaced by T

r;p;q;m

c

and T

p;q

in (2.13)

by T

p;q;m

c

. As we are discarding terms of order 1=M

3

, it turns out that only the zeroth order

term in the m

c

expansion has to be retained; this amouts to putting m

c

= 0 in D

1

charm

and

D

2

charm

.

Moreover, in the charm-case there is a third contribution to the HME which corresponds to

the subdiagram 

3

in Fig. 1e. The latter consists of the W=�-line only. As we neglect terms

of order 1=M

3

, the Taylor expansion of the corresponding Feynman integral just amounts to

replace the W and � propagator by i=m

2

W

and �i=m

2

W

, respectively. As the Feynman integral

of the � diagram has an additional factor of order (m

c

m

b

)=m

2

W

from the Yukawa couplings,

only the four Fermi version of theW exchange diagram e�ectively contributes to D

3

charm

. Stated

di�erently, D

3

charm

is directly related to the O

2

contribution in the e�ective theory. Of course,

this is not suprising when keeping in mind how the e�ective Hamiltonian is constructed.

To summarize, D

charm

is given by

D

charm

M!1

� D

1

charm

+D

2

charm

+D

3

charm

: (2.19)

2.5 The matching to leading-log precision

To establish some lowest order matching functions which are frequently used in the following

sections and in order to explain an important subtelty in the NLL matching calculation, we

recall the results of the LL matching: In the full theory the lowest order matrix elements M

0

for b! s and b! sg are obtained by expanding the diagrams shown in Fig. 1a up to second

order in the external momenta. The results read in d = 4� 2� dimensions

M

0

(b! s) =

4 iG

F

�

t

p

2

K

70

hsjO

7

jbi ; M

0

(b! sg) =

4 iG

F

�

t

p

2

K

80

hsgjO

8

jbi ; (2.20)
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where the functions K

70

and K

80

have an expansion in � of the form

K

70

= K

700

+ �K

701

+ �

2

K

702

+ : : : ; K

80

= K

800

+ �K

801

+ �

2

K

802

+ : : : : (2.21)

On the other hand, the lowest order result

^

M

0

in the e�ective theory reads (also in d = 4� 2�

dimensions)

^

M

0

(b! s) = C

70

hsjO

7

jbi ;

^

M

0

(b! sg) = C

80

hsgjO

8

jbi : (2.22)

As the matching is understood to be done in 4 dimensions, we get the connections

C

70

= K

700

; C

80

= K

800

: (2.23)

Therefore, in d dimensions M

0

and

^

M

0

di�er by terms of order �. This detail becomes an

important subtelty when going to higher loop orders; we best explain this by means of an

example: one type of order �

s

corrections is given by multiplying the lowest order result by

ultraviolet singular

p

Z

2

factors which are the same for both versions of the theory. In the full

theory, this leads to �nite terms proportional to K

701

(and K

801

); the corresponding terms in

the e�ective theory are not generated.

When working out the two-loop integrals corresponding to the diagrams in Figs. 2 and 3

in the full theory for b ! s (or b ! sg), there are contributions in which the dimensionally

regularized lowest order result, taken up to �rst or second order in �, factorizes. As we will

see later, the infrared singularity stucture is precisely of this form. As we will use the explicit

expressions for the Inami-Lim [25] functions K

700

, K

800

, K

701

and K

801

at several places, we

list them here. Using z = (m

t

=m

W

)

2

, they read

K

700

= C

70

=

z [6z(3z � 2) ln z � (z � 1) (8z

2

+ 5z � 7)]

24(z � 1)

4

(2.24)

K

800

= C

80

= �

z [6z ln z + (z � 1) (z

2

� 5z � 2) ]

8(z � 1)

4

(2.25)

K

701

= �

z

h

18z(3z � 2) ln

2

z + (44z

3

� 314z

2

+ 324z � 96) ln z + 56z

3

� 35z

2

� 56z + 35

i

144(z � 1)

4

+2K

700

ln (�=m

W

) (2.26)

K

801

= �

z

h

�18z ln

2

z + (10z

3

� 28z

2

+ 108z � 48) ln z + 25z

3

� 118z

2

+ 119z � 26

i

48(z � 1)

4

+2K

800

ln (�=m

W

) (2.27)

3 b! s in the full theory

In section 3.1 we present the results for the dimensionally regularized matrix element M for

b! s in the full theory. In section 3.2 we discuss the various counterterm contributions.
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3.1 Two-loop Feynman diagrams

As in eq. (2.4), we write the b ! s matrix element M in the form M = M

0

+

�

s

4�

M

1

. When

using the "reduction technique" described in section 2.3, the complete list of two-loop diagrams

contributing to M

1

is given in Fig. 2, where the cross stands for the possible locations where

the photon can be emitted. Note that diagram 5b in Fig. 2 does not contribute in the limit

m

s

= 0. We write the result for M

1

in the form

�

s

4�

M

1

= V

h

R

1+2

t

�R

1+2

c

�R

3

c

i

; (3.1)

where V is an abbreviation for the often occurring quantity

V =

4 iG

F

�

t

p

2

�

s

4�

C

F

hsjO

7

jbi

tree

; C

F

=

4

3

: (3.2)

In eq. (3.1) R

1+2

t

(R

1+2

c

) denotes the sum of the �rst and second contribution in the Heavy Mass

Expansion (HME) (see section 2.4) of the dimensionally regularized (unrenormalized) Feynman

integrals for internal top (charm) quark; R

3

c

is the third contribution in the HME, which has to

be considered only for the light internal quarks, which in our present case is the charm quark

(�

u

= 0). According to the HME, R

3

c

is obtained by working out the charm loops using the

four-Fermi approximation of the W -propagator. Stated di�erently, R

3

c

is directly related to the

order �

s

contribution of matrix element of the operator O

2

, provided the latter is evaluated in

the NDR scheme; more precisely,

R

3

c

= �

^

R

2

(3.3)

where

^

R

2

is the quantity de�ned through the equation

hsjO

2

jbi =

�

s

4�

C

F

hsjO

7

jbi

tree

^

R

2

: (3.4)

As the same contribution is also present in the e�ective theory, we will not need to know R

3

c

explicitly

6

in order to extract the order �

s

corrections in the Wilson coe�cient C

71

(�

Wt

).

Making use of the various K�functions given in (2.24){(2.27) and denoting r = (m

s

=m

b

)

2

, we

now give the dimensionally regularized expression for R

1+2

� R

1+2

t

�R

1+2

c

.

R

1+2

= �(K

700

+ �K

701

)

�

�

m

W

�

2�

�

ir

ln r + g

1

�

�

m

W

�

4�

�

+

1

2

K

700

ln

2

r

+2K

700

ln r ln(m

b

=m

W

)� 2K

700

ln r + g

2

ln(m

b

=m

W

) + g

3

: (3.5)

The �rst term in eq. (3.5) is due to infrared singularities in the on-shell b ! s amplitude as

suggested by the notation

7

1=�

ir

. This term is entirely due to those diagrams in set 3 of Fig.

2 where the photon is radiated from the internal quark or the W (or �) boson. The quantities

g

1

, g

2

and g

3

in eq. (3.5) can be written as (z = (m

t

=m

W

)

2

, Li(x) = �

R

x

0

dt

t

ln(1 � t) )

g

1

=

(�324z

4

� 450z

3

+ 270z

2

+ 72z) ln z + 112z

5

+ 244z

4

+ 55z

3

� 931z

2

+ 593z � 73

72(z � 1)

5

�

35

216

(3.6)

6

The reader who whishes to see the explicit form for

^

R

2

is referred to eq. (2.35) in ref. [13].

7

We could separate ultraviolet and infrared poles in our calculation. In the follwing, 1=�

ir

(1=�) stands for

infrared (ultraviolet) poles.
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g

2

= �

(�216z

3

+ 162z

2

� 72z) ln z + 44z

4

+ 154z

3

� 393z

2

+ 274z � 79

36(z � 1)

4

�

7

4

(3.7)

g

3

= �

z(8z

3

+ 61z

2

� 40z + 4)

6(z � 1)

4

Li(1�

1

z

) +

2

3

i �K

800

+

2

27

�

2

+

3155

1296

�

h

(�4860z

4

� 18954z

3

+ 11502z

2

+ 648z) ln

2

z

+(3240z

5

+ 16956z

4

+ 37638z

3

� 56586z

2

+ 20688z � 2496 � 216�

2

(z

3

� z

2

)) ln z

+(�1442z

5

� 55910z

4

+ 109651z

3

� 69271z

2

+ 20999z � 4027)

+(60z

5

� 228z

4

+ 636z

3

� 924z

2

+ 552z � 96)�

2

i

=(1296(z � 1)

5

) (3.8)

3.2 Counterterms

The counterterms relevant for calculating on-shell matrix elements are generated by expressing

the bare parameters in the original Lagrangian in terms of the renormalized quantites. Working

up to order �

s

, the only parameters which need renormalization in the present situation are

the t-quark mass and the b- quark mass (in principle also the s- quark mass if we did not

work in the limit m

s

= 0). Using on-shell renormalization for the external b-quark mass and

MS renormalization for the (internal) top quark mass, the connection between the bare and

renormalized masses reads

m

t;bare

= m

t

� �m

t

;

�m

t

m

t

=

�

s

4�

C

F

3

�

m

b;bare

= m

b

� �m

b

;

�m

b

m

b

=

�

s

4�

C

F

�

3

�

+ 6 ln(�=m

b

) + 4

�

(3.9)

Note, these mass shifts not only shift the mass terms like m

t

�

t t, but also the Yukawa terms

like � g

�

b (m

b

L�m

t

R )t�

�

, where �

�

is the unphysical charged Higgs �eld which appears in

covariant gauges. These counterterms, induced by the shifts �m

t

and �m

b

, generate corrections

for the b ! s matrix element, which we denote by �M

b

and �M

t

, respectively. Writing

�M

f

= V �R

f

(f = t; b) with V given in eq. (3.2), we get

�R

b

=

�

�

(6z � 8) ln z � 7z

2

+ 16z � 9

�

�

2

�

+ 4 ln(�=m

b

) + 8=3

�

+(�6z + 8) ln

2

z + (20z

2

� 26z) ln z � 19z

2

+ 44z � 25

o

�

�

m

W

�

2�

z

16(z � 1)

3

(3.10)

while �R

t

is given by

�R

t

=

�

6

�

�

(18z

3

+ 30z

2

� 24z) ln z � 47z

3

+ 63z

2

� 9z � 7

�

+ 18z (�3z

2

� 5z + 4) ln

2

z

+(246z

3

+ 114z

2

� 288z + 96) ln z + 44z

4

� 547z

3

+ 855z

2

� 413z + 61

o

�

�

�

m

W

�

2�

z

24 (z � 1)

5

(3.11)
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When writing down the expression for �R

b

, we should mention, that we did not include the

insertion of �m

b

�

b b in the external b-quark leg. This is quite in analogy of omitting self-energy

diagrams for the external legs. Such corrections on the external legs are taken into account

by multiplying the amputated diagram with the factor

q

Z

2;b

Z

2;s

, where Z

2;b

and Z

2;s

are the

residues taken at the (physical) pole position of the regularized b- and s- quark two point

functions, respectively. Making use of the expression (in Feynman gauge)

Z

2

(m) = 1 �

�

s

4�

C

F

�

�

m

�

2�

�

1

�

+

2

�

ir

+ 4

�

; (3.12)

the counterterm �M

Z

2

induced by the Z

2

- factors of the external quark �elds reads (again

writing �M

Z

2

= V �R

Z

2

)

�R

Z

2

= �

�

�

m

W

�

2�

�

2

�

ir

(K

700

+ �K

701

) +

1

�

(K

700

+ �K

701

)

+

�

4� 6 ln(m

b

=m

W

)�

3

2

ln r

�

K

700

�

: (3.13)

4 b! s in the e�ective theory

As in the full theory, we �rst discuss the matrix elements for b ! s of the operators in basis

(1.2). In section 4.2 we list the various counterterm contributions.

4.1 Regularized Feynman diagrams

We write the matrix element

^

M for b! s as a sum of the contributions due to the operators

O

i

in the e�ective Hamiltonian, i.e.,

^

M =

8

X

i=1

^

M

i

;

^

M

i

=

4iG

F

�

t

p

2

C

i

hsjO

i

jbi : (4.1)

To facilitate later the comparison between the results in the two versions of the theory (full vs.

e�ective), we write

^

M

i

=

^

M

i

0

+

�

s

4�

^

M

i

1

and cast the term proportional to �

s

in the form

�

s

4�

^

M

i

1

= V

^

R

i

; (4.2)

where V is given in eq. (3.2).

We �rst discuss the contributions of the four-Fermi operators O

1

{O

6

. As the Wilson coe�-

cients of O

1

, O

3

, O

4

, O

5

and O

6

start at order �

1

s

, we only have to take into account their order

�

0

s

(one-loop) matrix elements; it is well-known that in the NDR scheme only O

5

and O

6

have a

non-vanishing one-loop matrix element for b! s. Making use of the Wilson coe�cients (see

[17])

C

5

(�) =

�

s

(�)

4�

C

F

�

�

1

6

ln

�

m

W

�

1

8

~

E

�

; C

6

(�) =

�

s

(�)

4�

C

F

�

1

2

ln

�

m

W

+

3

8

~

E

�

; (4.3)
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^

R

5

and

^

R

6

are readily obtained

^

R

5

= �

1

3

�

�

1

6

ln

�

m

W

�

1

8

~

E

�

;

^

R

6

= �

�

1

2

ln

�

m

W

+

3

8

~

E

�

; (4.4)

with

~

E = �

2

3

ln z +

z

2

(15 � 16z + 4z

2

)

6(1 � z)

4

ln z +

z(18 � 11z � z

2

)

12(1 � z)

3

�

2

3

: (4.5)

On the other hand, the Wilson coe�cient of the operator O

2

starts at order �

0

s

. Consequently,

we have to take in principle one- and two-loop matrix elements of this operator. In prac-

tice, however, the order �

0

s

(one-loop) matrix element of O

2

vanishes and therefore only the

contribution of the order �

1

s

(two-loop) matrix element remains:

^

R

2

: (4.6)

As this contribution also occurs in the full theory result in section 3.1 (see eqs. (3.1) and (3.3)),

the explicit expression for the r.h.s. of eq. (4.6) is not needed for the extraction of C

71

.

The order �

s

contribution of the matrix elements of the dipole operator O

7

(see Figs. 4a,b)

yields

^

R

7

=

3

4

C

71

� C

70

�

�

m

W

�

2�

�

ir

ln r +

C

70

2

ln

2

r + 2C

70

ln r ln(m

b

=m

W

)� 2C

70

ln r : (4.7)

The �rst term on the r.h.s. of eq. (4.7) comes from the tree-levelmatrix element in Fig 4a, being

multiplied with the the order �

s

part (i.e. C

71

) of the Wilson coe�cient C

7

. The remaining

terms are due to the one-loop graph in Fig. 4b. Note that C

71

is the quantity we ultimately

wish to extract. Finally, the diagrams of O

8

are depicted in Figs. 4c,d; its contribution is [13]

^

R

8

= �

C

80

9

�

�

12

�

� 33 + 2�

2

+ 24 ln(m

b

=�) � 6 i �

�

: (4.8)

4.2 Counterterms

As the operators mix under renormalization, we have to consider counterterm contributions

induced by operators of the form C

i

�Z

ij

O

j

. We denote their contributions to b! s by

�

^

M

ij

=

4 iG

F

�

t

p

2

hsjC

i

�Z

ij

O

j

jbi : (4.9)

The non-vanishing matrix elements read (using �

^

M

ij

= V �

^

R

ij

)

�

^

R

25

=

1

36

1

�

�

�

m

b

�

2�

; �

^

R

26

= �

1

4

1

�

�

�

m

b

�

2�

; �

^

R

27

=

29

27

1

�

; �

^

R

77

=

4

�

C

70

; �

^

R

87

= �

4

3�

C

80

;

(4.10)

where we made use of the renormalization constants [4]

( �Z

25

; �Z

26

; �Z

27

; �Z

77

; �Z

87

) =

�

s

4�

C

F

�

�

1

12�

;

1

4�

;

29

27�

;

4

�

; �

4

3�

�

: (4.11)
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It is well-known that the renormalization of the four-Fermi operators requires the introduction

of counterterms proportional to evanescent operators [26]. Calculating b ! s up to order

�

s

, there are potential counterterm contributions involving evanescent operators needed to

renormalize O

2

. As the initial conditions for the four-Fermi operators (which we partially used

in section 4.1) depend on the actual choice of the evanescent operators, we have to use the same

set when calculating their e�ect of b! s. We consistently take both, the initial conditions of

the four-Fermi operators and the set of evanescent operators from refs. [17, 26, 27, 28]. The

only potentially relevant matrix element of evanescent operators contributing b! s is

hsj

1

�

E

1

[O

2

] jbi ; (4.12)

where the evanescent operator E

1

[O

2

] is of the form

E

1

[O

2

] = [�s

�

1



�



�



�

Lc

�

2

�c

�

3



�



�



�

Lb

�

4

� (4 + a

1

�) �s

�

1



�

Lc

�

2

�c

�

3



�

Lb

�

4

] K

�

1

�

2

�

3

�

4

K

�

1

�

2

�

3

�

4

=

1

2

�

�

1

�

3

�

�

2

�

4

�

1

6

�

�

1

�

2

�

�

3

�

4

: (4.13)

However, as these matrix elements are identically zero (in d dimensions), there are no contri-

butions from counterterms proportional to evanescent operators.

Besides the counterterms induced by operator mixing, we also have to renormalize the b-

quark mass which explicitly appears in the operator O

7

and in addition we have to multiply the

lowest order matrix element by the factor

q

Z

2

(m

b

)Z

2

(m

s

), quite in analogy to the calculation

in the full theory. The counterterm due to the b-quark mass renormalization �

^

M

b

= V �

^

R

b

yields

�

^

R

b

= �

�

3

�

+ 6 ln(�=m

b

) + 4

�

C

70

; (4.14)

when using the on-shell de�nition for the b-quark mass, while the counterterm �

^

M

Z

2

= V �

^

R

Z

2

is given by

�

^

R

Z

2

= �

�

�

m

W

�

2�

�

2

�

ir

C

70

+

1

�

C

70

+

�

4� 6 ln(m

b

=m

W

)�

3

2

ln r

�

C

70

�

: (4.15)

5 Extraction of C

71

(�

Wt

)

To summarize section 3, the order �

s

part M

ren

1

of the renormalized matrix element for b! s

in the full theory reads

�

s

4�

M

ren

1

= V

h

R

1+2

+

^

R

2

+ �R

b

+ �R

t

+ �R

Z

2

i

; (5.1)

where the quantities in the bracket on the r.h.s. of eq. (5.1) are given in eqs. (3.5), (3.3),

(3.10), (3.11) and (3.13), respectively; the prefactor V is given in eq. (3.2).

The corresponding renormalizedmatrix element

^

M

ren

1

in the e�ective theory can be obtained

from the information in section 4;

^

M

ren

1

reads

�

s

4�

^

M

ren

1

= V

h

^

R

2

+

^

R

5

+

^

R

6

+

^

R

7

+

^

R

8

+ �

^

R

25

+ �

^

R

26

+ �

^

R

27

+ �

^

R

77

+ �

^

R

87

+ �

^

R

b

+ �

^

R

Z

2

i

;

(5.2)
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where the various quantities in the bracket are given in eqs. (4.6), (4.4), (4.7), (4.8), (4.10),

(4.14) and (4.15).

Before we are able to correctly extract C

71

, a remark concerning the infrared structure is in

order. We split M

ren

1

into a infrared singular and an infrared �nite piece, i.e.,

M

ren

1

= M

ren

1;ir

+M

ren

1;f in

: (5.3)

As this splitting is not unique (concerning the �nite terms), we de�ne the singular part to be

M

ren

1;ir

= �(K

700

+ �K

701

)

�

�

m

W

�

2�

�

ir

ln r � 2 (K

700

+ �K

701

)

�

�

m

W

�

2�

�

ir

; (5.4)

where the �rst and second term on the r.h.s. are due to the two-loop diagrams (3.5) and

the counterterms (3.13), respectively. We do now an analogous splitting for the renormalized

matrix element in the e�ective theory, i.e.,

^

M

ren

1

=

^

M

ren

1;ir

+

^

M

ren

1;f in

; (5.5)

with

^

M

ren

1;ir

= �C

70

�

�

m

W

�

2�

�

ir

ln r � 2C

70

�

�

m

W

�

2�

�

ir

: (5.6)

As the matching has to be done in four dimensions, we cannot - strictly speaking - use

the process b ! s to do the matching, because of the infrared singularities. To cancel these

singularities, we have to include the gluon Bremstrahlung process b ! sg in both versions

of the theory. In the e�ective theory, the process has been worked out in [6, 10, 12] (but the

explicit result is not important here); the result in the full theory is obtained from the e�ective

theory result by replacing C

70

byK

700

+�K

701

. The correct physical matching condition consists

in requiring the infrared �nite quantity � = �(b! s)+�(b! sg;E



� E

min



) to be equal in

both versions of the theory. Due to the speci�c form of eqs. (5.3) { (5.6) and due to the speci�c

di�erence in the bremsstrahlung contribution, it follows that the physical matching condition

implies

M

ren

1;f in

=

^

M

ren

1;f in

: (5.7)

The extraction of C

71

is now straightforward. In summary: Writing the Wilson coe�cient

C

7

(�

Wt

) at the matching scale �

Wt

in the form

C

7

(�

Wt

) = C

70

(�

Wt

) +

�

s

4�

C

71

(�

Wt

) ; (5.8)

we obtain (in the naive dimensional regularization scheme)

C

71

(�

Wt

) = �

2z (8z

3

+ 61z

2

� 40z + 4)

9(z � 1)

4

Li(1�

1

z

) +

2z

2

(3z

2

+ 23z � 14)

3(z � 1)

5

ln

2

z

�

2 (51z

5

+ 294z

4

+ 1158z

3

� 1697z

2

+ 742z � 116)

81(z � 1)

5

ln z

+

1520z

4

+ 12961z

3

� 12126z

2

+ 3409z � 580

486(z � 1)

4

�

4z

2

(3z

2

+ 23z � 14)

3(z � 1)

5

ln z ln(�

Wt

=m

W

)

+

2 (106z

4

+ 287z

3

+ 1230z

2

� 1207z + 232)

81(z � 1)

4

ln(�

Wt

=m

W

) : (5.9)
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Here, z = (m

t

(�

Wt

)=m

W

)

2

, where m

t

(�

Wt

) is the MS top quark mass at the renormalization

scale �

Wt

. The lowest order function C

70

is given in eq. (2.24).

Taking into account that the result of Adel and Yao [1] is given in the so-called R

�

renor-

malization scheme, we got the same result for C

71

(�

Wt

).

6 b! sg in the full theory

As in the b! s case we �rst give the results for the two-loop diagrams and then move to the

counterterm contributions.

6.1 Two-loop Feynman diagrams

We again write the b ! sg matrix element M in the form M = M

0

+

�

s

4�

M

1

. Using the

"reduction technique" described in section 2.3, the complete set of two-loop Feynman graphs

is given by the abelian diagrams in Fig. 2 and by the non-abelian diagrams in Fig. 3, which

involve the triple gluon coupling. The crosses in Fig. 2 and Fig. 3 show the possible locations

from where the gluon can be emitted. Of course the graphs with a cross at the W line in Fig.

2 have to be omitted. Working in the limit m

s

= 0, diagram 5b in Fig. 2 vanishes. It is

convenient to write M

1

in the form

�

s

4�

M

1

= W

h

Q

1+2

t

�Q

1+2

c

�Q

3

c

i

; (6.1)

where the quantity W is de�ned as

W =

4 iG

F

�

t

p

2

�

s

4�

hsjO

8

jbi

tree

: (6.2)

In eq. (6.1) Q

1+2

f

denotes the sum of the �rst and second contribution in the Heavy Mass

Expansion for an internal quark of avor f (f = t; c); Q

3

c

is the third contribution in this

expansion, which only has to be considered for the light internal quarks. Like R

3

c

in eq. (3.1)

of section 3.1, Q

3

c

is just

Q

3

c

= �

^

Q

2

; (6.3)

where

^

Q

2

is the quantity de�ned through the relation

hsgjO

2

jbi =

�

s

4�

hsgjO

8

jbi

tree

^

Q

2

: (6.4)

As exactly the same term also appears in the e�ective theory, Q

3

c

drops out when extracting

the O(�

s

) correction to the Wilson coe�cent C

8

.

The dimensionally regularized expressions for Q

1+2

� Q

1+2

t

� Q

1+2

c

can be written in the

form

Q

1+2

=

1

6

(K

800

+ �K

801

)

�

�

m

W

�

2�

�

ir

ln r � 3 (K

800

+ �K

801

+ �

2

K

802

)

�

�

m

W

�

2�

�

2

ir

�

3

2

(K

800

+ �K

801

)

�

�

m

W

�

2�

�

ir

[2 + ln r � 4 ln(m

b

=m

W

) + 2i � ]
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+h

1

�

�

m

W

�

4�

�

+ h

2

ln

2

r + h

3

ln r ln(m

b

=m

W

) + h

4

ln r

+h

5

ln(m

b

=m

W

) + h

6

ln

2

(m

b

=m

W

) + h

7

: (6.5)

The �rst term on the r.h.s. of eq. (6.5) is due to infrared singularities coming from the

(abelian) graph in set 3 in Fig. 2, where the gluon is radiated from the internal quark; the

infrared structures appearing in the second and third term are due to non-abelian diagrams in

Fig. 3. Eq. (6.5) shows that the infrared singularities again just multiply the dimensionally

regularized version of the lowest order matrix element (see eqs. (2.20) and (2.21)).

The functions K

800

and K

801

appearing in eq. (6.5) are given in eqs. (2.25) and (2.27). We

note that the function K

802

is not needed explicitly in order to extract C

81

, as we will see later.

The functions h

i

in eq. (6.5) read (z = (m

t

=m

W

)

2

)

h

1

=

z (774z

2

+ 810z + 144) ln z + 137z

5

� 823z

4

+ 257z

3

� 425z

2

+ 958z � 104

72 (z � 1)

5

�

23

27

(6.6)

h

2

=

2

3

K

800

; h

3

=

8

3

C K

800

; h

4

= �

8

3

K

800

; h

6

= �6K

800

(6.7)

h

5

= �

z (162z � 72) ln z + 11z

4

� 110z

3

+ 57z

2

+ 82z � 40

18(z � 1)

4

+ 6 i � K

800

� 2 (6.8)

h

7

= �

z(4z

3

� 40z

2

� 41z � 1) Li(1�

1

z

)

6(z � 1)

4

�

8

3

i �K

800

�

59

108

�

2

�

185

324

�

h

(35964z

3

+ 54756z

2

+ 2592z) ln

2

z

+

�

7452z

5

� 42660z

4

� 92772z

3

� 73164z

2

+ 48984z � 3360 + 3186�

2

(z

3

� z

2

)

�

ln z

+(844z

5

+ 40012z

4

+ 90580z

3

� 148588z

2

+ 16688z + 464)

+(�885z

5

+ 3363z

4

� 9381z

3

+ 13629z

2

� 8142z + 1416)�

2

i

=(2592(z � 1)

5

)

(6.9)

6.2 Counterterms

As the discussion concerning the counterterms induced by the shifts in the t- and b- quark

masses is exactly the same as in the b ! s process in section 3.2, we give immediately the

result. Writing �M

f

= W�Q

b

(f = t; b) with W given in eq. (6.2), we get

�Q

b

=

�

�

�

2 ln z + z

2

� 4z + 3

�

�

2

�

+ 4 ln(�=m

b

) + 8=3

�

+2 ln

2

z + 2z (z � 4) ln z � z

2

+ 8z � 7

o

�

�

m

W

�

2�

z

2(z � 1)

3

(6.10)
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�Q

t

=

�

6

�

�

�6z (z + 1) ln z + z

3

+ 9z

2

� 9z � 1

�

+ 18z (z + 1) ln

2

z

+(�6z

3

� 84z

2

� 18z + 24) ln z + 5z

4

� 10z

3

+ 126z

2

� 158z + 37

o

�

�

�

m

W

�

2�

z

3 (z � 1)

5

(6.11)

Also the counterterms due to the

p

Z

2

factors of the external quark �elds are obtained in the

same manner as in section 3.2, leading to (�M

z

2

= W �Q

Z

2

)

�Q

Z

2

= �

�

�

m

W

�

2�

4

3

�

2

�

ir

(K

800

+ �K

801

) +

1

�

(K

800

+ �K

801

)

+

�

4 � 6 ln(m

b

=m

W

)�

3

2

ln r

�

K

800

�

: (6.12)

For the b ! sg case there are additional counterterm contributions due to the strong

coupling constant renomalization and due to the

p

Z

3

factor associated with the external gluon.

Denoting the combined e�ect by �M

g

= W �Q

g

, one obtains

�Q

g

=

�

�

3

�

+ f

�

(K

800

+ �K

801

) : (6.13)

As the �nite term f will appear also in the corresponding counterterm in the e�ective theory,

it will drop out when extracting C

81

.

7 b! sg in the e�ective theory

7.1 Regularized Feynman diagrams

In the e�ective theory the matrix element

^

M for b! sg is of the form

^

M =

8

X

i=1

^

M

i

;

^

M

i

=

4iG

F

�

t

p

2

C

i

hsgjO

i

jbi : (7.1)

We write

^

M

i

=

^

M

i

0

+

�

s

4�

^

M

i

1

and put the term proportional to �

s

into the form

�

s

4�

^

M

i

1

=W

^

Q

i

; (7.2)

where W is given in eq. (6.2). As the discussion how to get the quantities

^

Q

i

is basically

identical as in the b ! s case in section 4.1, we just give the results. Among the four-Fermi

operators, only O

2

and O

5

yield non-vanishing matrix elements for b! sg. We get

^

Q

2

;

^

Q

5

= �

2

9

ln

�

m

W

�

1

6

~

E ; (7.3)

where

~

E is given in eq. (4.5). Again, we do not have to know

^

Q

2

explicitly, because this term

also appears in the full theory result; it drops out when extracting C

81

.
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While there is no contribution from the dipole operator O

7

, there are various diagrams

associated with the operator O

8

(see Figs. 5,6). The sum of all these contribution is given by

^

Q

8

=

1

6

C

80

�

�

m

W

�

2�

�

ir

ln r � 3C

80

�

�

m

W

�

2�

�

2

ir

�

3

2

C

80

�

�

m

W

�

2�

�

ir

[2 + ln r � 4 ln(m

b

=m

W

) + 2i � ]

+C

80

0

B

@

11

3

�

�

m

W

�

2�

�

+ 6 i � ln(m

b

=m

W

)�

8

3

i � +

2

3

ln

2

r � 6 ln

2

(m

b

=m

W

)

�

8

3

ln r +

8

3

ln r ln(m

b

=m

W

) �

4

3

ln(m

b

=m

W

) +

1

3

+

59

36

�

2

�

+ C

81

: (7.4)

When comparing with the full-theory expression Q

1+2

in eq. (6.5), one immediately realizes

the correspondence of the infrared singularities. To this end it is important that one carefully

disentangles everywhere infrared and ultraviolet poles. Especially, one should use the formula

Z

d

d

r

(2�)

d

1

(r

2

)

2

=

i

16�

2

�

1

�

�

1

�

ir

�

instead of

Z

d

d

r

(2�)

d

1

(r

2

)

2

= 0 : (7.5)

An example, where such a situation occurs, is the diagram in Fig 6c.

7.2 Counterterms

As the operators mix under renormalization we have to consider counterterm contributions

induced by operators of the form C

i

�Z

ij

O

j

. We denote their contributions to b! sg by

�

^

M

ij

=

4 iG

F

�

t

p

2

hsgjC

i

�Z

ij

O

j

jbi : (7.6)

The non-vanishing matrix elements read (using �

^

M

ij

=W �

^

Q

ij

)

�

^

Q

25

= �

1

9

1

�

�

�

m

b

�

2�

; �

^

Q

28

=

19

27

1

�

; �

^

Q

88

=

14

3

1

�

C

80

; (7.7)

where we made use of the renormalization constants [4]

�Z

25

= �

1

9�

�

s

4�

; �Z

28

=

19

27�

�

s

4�

; �Z

88

=

14

3�

�

s

4�

: (7.8)

We note that there are no contributions to

^

M(b ! sg) from counterterms proportional to

evanescent operators.

In analogy to the b! s case in section 4.2, there are the counterterms from renormalizing

the b-quark mass which explicitly appear in the de�nition of the operator O

8

and from the

p

Z

2

factors for the external quarks. The counterterm due to the b-quark mass renormalization

�

^

M

b

= W �

^

Q

b

yields

�

^

Q

b

= �

4

3

�

3

�

+ 6 ln(�=m

b

) + 4

�

C

80

; (7.9)
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when using the on-shell de�nition for the b-quark mass (3.9), while the counterterm �

^

M

Z

2

=

W �

^

Q

Z

2

is given by

�

^

Q

Z

2

= �

�

�

m

W

�

2�

4

3

�

2

�

ir

C

80

+

1

�

C

80

+

�

4� 6 ln(m

b

=m

W

)�

3

2

ln r

�

C

80

�

: (7.10)

Finally , there are counterterms due to the strong coupling constant renormalization and due

to the

p

Z

3

of the external gluon. As in the full theory, we only give the combined counterterm

�

^

M

g

= W

^

Q

g

�

^

Q

g

=

�

�

3

�

+ f

�

C

80

: (7.11)

As f is the same �nite quantity as in the corresponding result (6.13) obtained in the full theory,

we do not need its explicit form, because it drops out when extracting C

81

.

8 Extraction of C

81

(�

Wt

)

To summarize section 6, the order �

s

part M

ren

1

of the renormalized matrix element for b! sg

in the full theory is given by

�

s

4�

M

ren

1

= W

h

Q

1+2

+

^

Q

2

+ �Q

b

+ �Q

t

+ �Q

Z

2

+ �Q

g

i

; (8.1)

where the quantities in the bracket on the r.h.s. of eq. (8.1) are given in eqs. (6.5), (6.3),

(6.10), (6.11), (6.12) and (6.13),respectively; the prefactor W is given in eq. (6.2).

The corresponding renormalized matrix element in the e�ective theory can be obtained from

the information in section 7;

^

M

ren

1

reads

�

s

4�

^

M

ren

1

= W

h

^

Q

2

+

^

Q

5

+

^

Q

8

+ �

^

Q

25

+ �

^

Q

28

+ �

^

Q

88

+ �

^

Q

b

+ �

^

Q

Z

2

+ �

^

Q

g

i

; (8.2)

where the various quantities in the bracket are given in eqs. (7.3), (7.4), (7.7), (7.9), (7.10) and

(7.11).

Before we extract C

81

, which enters

^

M

ren

1

via

^

Q

8

(see eq. (7.4)), we should point out that

the discussion concerning the infrared singularities is similar as in the b! s case in section 5;

all the formulae are written in such a way that we simply can discard the terms proportional

to the poles in �

ir

in both versions of the theory. The extraction of C

81

is then straightforward.

To summarize: Writing the Wilson coe�cient C

8

(�

Wt

) at the matching scale �

Wt

in the

form

C

8

(�

Wt

) = C

80

(�

Wt

) +

�

s

4�

C

81

(�

Wt

) ; (8.3)

we obtain (in the naive dimensional regularization scheme)

C

81

(�

Wt

) = �

z (4z

3

� 40z

2

� 41z � 1)

6(z � 1)

4

Li(1�

1

z

)�

z

2

(17z + 31)

2(z � 1)

5

ln

2

z

�

210z

5

� 1086z

4

� 4839z

3

� 3007z

2

+ 2114z � 304

216(z � 1)

5

ln z

+

611z

4

� 13346z

3

� 29595z

2

+ 1510z � 652

1296(z � 1)

4

+
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+

z

2

(17z + 31)

(z � 1)

5

ln z ln

�

Wt

m

W

+

89z

4

� 446z

3

� 1437z

2

� 950z + 152

54(z � 1)

4

ln

�

Wt

m

W

:

(8.4)

Here, z = (m

t

(�

Wt

)=m

W

)

2

, where m

t

(�

Wt

) is the MS top quark mass at the renormalization

scale �

Wt

. The lowest order function C

80

is given in eq. (2.25).

Taking into account that the result of Adel and Yao [1] is given in the so-called R

�

renor-

malization scheme, our result is identical.

9 Summary

The order �

s

corrections to the Wilson coe�cients C

7

and C

8

are a very crucial ingredient for

the prediction of the branching ratio for b! X

s

 in next-to-leading logarithmic precision. As

these corrections, which involve many two-loop diagrams in the full theory, have been calculated

so far by one group [1] only, we presented in this work a detailed recalculation. We extracted

the O(�

s

) corrections to C

7

and C

8

by comparing the on-shell processes b! s and b! sg in

both versions of the theory. We evaluated the two-loop integrals in the full theory by using the

Heavy Mass expansion method. Our �

s

corrections (C

71

and C

81

) to the Wilson coe�cients C

7

and C

8

completely agree with the �ndings of Adel and Yao.

We should point out that our result (as well as Adel and Yao's) for C

71

(�

Wt

) and C

81

(�

Wt

)

is �a priori speci�c to the basis given in eq. (1.2). However, the same answer is obtained for

these Wilson coe�cients when working in the basis recently used by Chetyrkin, Misiak and

M�unz.
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Figure Captions

Figure 1

a Lowest order diagram for b! s in the full-theory. A cross denotes a possible location where

the photon can be emitted. The wavy line stands for a W or unphysical Higgs boson (�).

In the b! sg case the cross at the W=� has to be ignored.

b Typical two-loop graph for b! s.

c-e Subdiagrams of b) which contribute in the Heavy Mass Expansion. See text.

Figure 2

Complete list of two-loop diagrams for b ! s in the full-theory. A cross corresponds to a

possible location for the photon emission.

For the b! sg process, this �gure is a complete list of diagrams not involving the gluon triple

coupling. (In the b! sg case the crosses at the wavy (W=�) lines should be ignored.)

Figure 3

Complete list of two-loop diagrams involving the triple gluon vertex (for the b! sg process).

Figure 4

Diagrams associated with the operators O

7

and O

8

in the e�ective theory for b! s. See text.

Figure 5

Abelian diagrams associated with the operator O

8

in the e�ective theory for b! sg. See text.

Figure 6

Non-Abelian diagrams associated with the operator O

8

in the e�ective theory for b! sg. See

text.
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