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Abstract

Fragmentation functions forDmesons, based on the convolution of a perturbative part,

related to the heavy quark perturbative showering, and a non-perturbative model for its

hadronization into the meson, are used to describe D

�

production in e

+

e

�

and ep collisions.

The non-perturbative part is determined by �tting the e

+

e

�

data taken by ARGUS and

OPAL at 10.6 and 91.2 GeV respectively. When �tting with a non perturbative Peterson

fragmentation function and using next-to-leading evolution for the perturbative part, we

�nd an � parameter sensibly di�erent from the one commonly used, which is instead found

with a leading order �t. The use of this new value is shown to increase considerably the

cross section for D

�

production at HERA, suggesting a possible reconciliation between

the next-to-leading order theoretical predictions and the experimental data.
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1 Introduction

The study of fragmentation functions (FF) for heavy quarks has recently attracted an increased

interest due to the large amount of data accumulated at LEP and HERA. From the theoretical

side predictions have been obtained by combining perturbative QCD - which allows to resum

large logarithms with a resulting milder renormalization/factorization scale sensitivity - with

a non perturbative component which describes the hadronization of the heavy quark into the

meson, after the perturbative cascade.

In e

+

e

�

annihilation an analysis along these lines was performed by Colangelo and Nason

[1] up to LEP energies, for both charm and beauty mesons. Due to the presence of the c(b)

component only, their results were not applicable to the production of heavy mesons in hadronic

collisions, where the gluon-gluon and quark-gluon scattering play an important role. Then in

a previous analysis [2] a set of NLO fragmentation functions for D, D

�

mesons was given,

including the gluon term as well, and predictions for large transverse momentum production

cross sections were also provided.

The aim of the present analysis is to reconsider the situation of charmed meson fragmen-

tation functions both in e

+

e

�

annihilation and in photoproduction, where new data have been

obtained at HERA.

On the perturbative side, we consider the full set of perturbative fragmentation functions

(PFF's) and their mixing in the evolution. This is important as the OPAL data do indeed

show a rise in the small x region, due to the gluon splitting, which is absent in the ARGUS

data. In addition, by parametrizing the non-perturbative component by di�erent forms and

�tting e

+

e

�

data, we study the variation of the non perturbative parameters, in particular for

the Peterson form [3], as related to the accompanying approximation, leading (LO) or next-

to-leading order (NLO), used in the perturbative component. We �nd indeed that a NLO

evolution favours a much smaller value of the � parameter in the non-perturbative Peterson FF

than given in the literature. In turn this also helps reconciling the recent HERA data with the

theoretical predictions. When however a LO evolution only is considered, as in many of the

parton shower Monte Carlo codes used in the experimental analyses, the "conventional" value

for � is recovered. This result can be understood by noting that the e�ect of parton showering,

which is larger in a NLO analysis, softens the distribution of the partons, acting qualitatively

as a non perturbative FF, which can henceforth behave more softly. Therefore the value of �

used in the phenomenological analyses must be closely related to the level of the approximation

followed in the perturbative QCD evolution.

This paper is structured as follows: in Section 2 we recall the theoretical framework, partly

already introduced in [2], on which this work is based. Section 3 presents the results of �ts

to ARGUS and OPAL data in e

+

e

�

collisions. Section 4 makes use of the non perturbative

parameters previously determined to give predictions for D

�

photoproduction in ep collisions

at HERA. Our conclusions are then given in Section 5.
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2 Theoretical Framework

We have already introduced in Ref. [2] the theoretical framework for evaluating D mesons

cross section within a fragmentation approach. In that paper, the following ansatz for the

fragmentation function (FF) of a parton i into a meson D was made:

D

D

i

(x; �) = D

c

i

(x; �)
D

D

np

(x): (1)

In this equation, D

c

i

(x; �) is the perturbative fragmentation function (PFF) for a massless

parton to fragment, via a perturbative QCD cascade, into the massive charm quark c. D

D

np

(x)

is instead a non-perturbative fragmentation function, describing the transition from the heavy

quark to the meson. Finally, the symbol 
 indicates convolution, i.e.

f(x)
 g(x) �

Z

1

x

dz

z

f(z)g(x=z): (2)

The formalism of PFF's has been introduced a few years ago [4], and will not be given here

in detail. We just recall that it allows to extract from perturbative QCD (pQCD) the initial

state conditions for the PFF's at a scale �

0

of the order of the heavy quark mass m (and we

will take �

0

= m):

D

c

c

(x; �

0

) = �(1� x) +

�

s

(�

0

)C

F

2�

"

1 + x

2

1 � x

 

log

�

2

0

m

2

� 2 log(1� x)� 1

!#

+

(3)

D

c

g

(x; �

0

) =

�

s

(�

0

)T

F

2�

(x

2

+ (1 � x)

2

) log

�

2

0

m

2

(4)

D

c

q;�q;�c

(x; �

0

) = 0 (5)

where c represents here the heavy quark and g and q the gluon and light quarks respectively.

Moreover, C

F

= 4=3 and T

F

= 1=2.

The PFF's, evolved up to any scale � via the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) equations, can be used to evaluate heavy quark cross sections in the large transverse

momentum (p

T

) region (i.e. p

T

� m) by convoluting them with cross section kernels for

massless partons [5, 6, 7], subtracted in the modi�ed minimal subtraction (MS) scheme, where

the heavy quark is also treated as a massless active avour and therefore also appears in the

parton distribution functions of the colliding hadrons. This has been done in Ref. [8] for p�p,

in Ref. [9] for p and �nally in Ref. [10] for  collisions. In all cases it has been shown

how the results agree with the full massive ones (Refs. [11], [12] and [13] respectively) in

an intermediate p

T

region (say from twice to four times the mass of the heavy quark). For

larger p

T

they are more reliable (and hence have a smaller scale dependence) because the large

logarithms originating from gluon emission and gluon splitting are resummed by the evolution

of the PFF's (see Ref. [8] for a more complete discussion on this point).

The fragmentation functions of eq. (1) will be also evolved with the DGLAP equations. It

is to be noted that in doing so we assume the evolution to be entirely perturbative in character:

we evolve the full FF's (1) as we would the PFF's only. The non-perturbative part of the overall

FF's is kept �xed and determined at a given experiment.
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Indeed, the non-perturbative part of the FF's cannot be predicted by pQCD. In fact, the

process through which a heavy quark binds to a light one to form the meson involves ex-

changes of gluons with momenta of order �

QCD

or smaller, and is therefore intrinsically non-

perturbative. However, a few features of this function can be determined. In contrast to light

quark hadronization, this FF is hard [14] because the meson retains a larger fraction of the

heavy quark initial momentum. Moreover, one expects the non-perturbative FF to be squeezed

towards x = 1 linearly in the mass of the heavy quark. This statement is proved in [15] under

the hypothesis of softness of the hadronization process and in the in�nite mass limit (see also

[16] for a discussion on this point).

In the following we will employ two di�erent functional forms for the non-perturbative part

of the fragmentation function.

The �rst one is dictated mainly by its semplicity, and is given by

D

np

(x;�; �) = A(1� x)

�

x

�

(6)

with

1

A

=

Z

1

0

(1� x)

�

x

�

dx = B(� + 1; �+ 1); (7)

B(x; y) being the Euler Beta function. This functional form had already been employed in [1]

for �ts to e

+

e

�

data and was also used in our previous paper on charmed meson FF's [2]. It

is exible enough to describe the data and has the advantage of an easily calculable Mellin

transform, given by

D

np

(N ;�; �) �

Z

1

0

dxx

N�1

D

np

(x;�; �) =

=

B(� +N;� + 1)

B(� + 1; �+ 1)

=

�(� +N)�(� + � + 2)

�(� + 1)�(� + � +N + 1)

; (8)

with �(x) being the Euler Gamma function.

However, this functional form has no immediate physical motivation. A successful descrip-

tion of e

+

e

�

data could be not enough to ensure the correctness of the predicted cross sections

in, say, ep production evaluated with the same non-perturbative FF, since higher moments

could play an important role. Indeed, in e

+

e

�

collisions it is the mean scaled energy, i.e.

R

dzzD(z) - or the second moment when talking Mellin transforms language - the most im-

portant observable. Di�erent FF's could therefore agree on this second moment but then have

di�erent higher moments which could lead to di�erent prediction in other kinds of reactions.

We have therefore chosen to employ also a di�erent non-perturbative fragmentation, based

on a physical model: the so called Peterson form [3]. It is derived by considering the transition

amplitude for a fast moving heavy quark Q to fragment into (Q�q) + q, q being a light quark.

It reads

D

np

(x; �) =

A

x [1� 1=x� �=(1 � x)]

2

; (9)

with the normalization factor A now given by

1

A

=

(�

2

� 6�+ 4)

(4 � �)

p

4�� �

2

(

arctan

�

p

4�� �

2

+ arctan

2� �

p

4�� �

2

)

+

1

2

ln �+

1

4 � �

: (10)
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From the derivation one �nds that the � parameter is related to the heavy quark mass by

� ' �

2

=m

2

, where � stands for a hadronic scale. Since the average scaled energy goes like

hxi = 1�

p

�, we see it respects the prediction of scaling linearly with the heavy quark mass.

While this form of non-perturbative fragmentation function is certainly more physical and

the order of magnitude of its unknown parameter can be estimated from �rst principles, it has

however the drawback of a much more complicated Mellin transform. The full expression is

given in the Appendix of Ref. [17], and will not be repeated here.

3 Production in e

+

e

�

collisions

According to QCD factorization theorems, the cross section for the production of a hadron H

in the e

+

e

�

process

e

+

e

�

! ; Z ! H X; (11)

at a center-of-mass energy Q =

p

s, can be written as

d�

H

dx

=

X

i

Z

1

x

dz

z

C

i

(z; �

s

(�); Q; �)D

H

i

�

x

z

; �

�

�

X

i

C

i

(z; �

s

(�); Q; �)
D

H

i

(z; �); (12)

x being the energy fraction of the produced hadron, x = 2E=Q. The functions C

i

(z; �

s

(�); Q; �)

are the so called coe�cient functions, which describe the hard part of the scattering process

and can be calculated in perturbation theory as series expansions in the strong coupling �

s

(�).

Explicit expressions up to NLO for all the coe�cient functions we need can be found, for

instance, in Ref. [18]. Since we take the partons in the hard scattering to be massless, collinear

singularities appear, and these are subtracted in the MS scheme and reabsorbed into the

fragmentation functions. � is the factorization scale at which this subtraction is performed,

which in this case we have for simplicity taken equal to the renormalization scale. The sum is

to run on all the partons which can be considered massless in the coe�cient functions. Since in

general mass terms of the form of powers ofm=Q will appear, we see that already at Q = 10 GeV

the charm can to a good approximation be taken as massless. The same will be true also for the

bottom quark at Q = 91 GeV, whereas its production should instead be strongly suppressed

at the lower energy. We will therefore include four and �ve active avours respectively at these

two center-of-mass energies.

When dealing with light hadrons the fragmentation functions can only be determined by

comparison with experiment. Since in our case the hadron in question is instead the heavy

meson D

�

, we can make use of our ansatz of eq. (1), and �t to the experimental data only the

non-perturbative part of the FF's.

We start by trying to �t the non-perturbative FF to experimental data for D

��

production

taken by ARGUS [19] and OPAL [20] at 10.6 GeV and 91.2 GeV respectively. The cross section

is evaluated by means of the formula in eq.(12), the fragmentation functions are given by the

initial conditions reported in the previous section, evolved up to the desired scale with the

DGLAP equations to next-to-leading (NLO) order and convoluted with the non-perturbative

component.
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� � �

2

/d.o.f

With Sudakov resummation

ARGUS, Ref. [1] 0.4 4.6

ARGUS 0.51 � 0.37 4.9 � 1.7 0.70

OPAL 0.30 � 0.21 4.5 � 1.5 1.26

Without Sudakov resummation

ARGUS 1.0 � 0.6 6.7 � 2.3 0.86

OPAL 0.9 � 0.3 6.4 � 1.9 1.32

Table 1: Results for the �tting of � and � in (1�x)

�

x

�

to ARGUS and OPAL

data. Evolution is performed to NLO and with �

5

= 200 MeV and �

0

= m.

3.1 Fits with (1 � x)

�

x

�

We �rst perform �ts with the \simple" form (1�x)

�

x

�

. Similar �ts had already been performed

a few years ago in Ref. [1]. In that paper only the non-singlet component of the FF's had been

taken into account, a valid approximation at the low energy of 10.6 GeV. When going to higher

energy, on the other hand, the mixing with the gluons through the evolution will become more

and more important. The OPAL data do indeed show a rise in the small x region, due to gluon

splitting and absent in the ARGUS data. We have therefore included the full set of FF's and

mixings in the evolution.

As a �rst step, we have re�tted the same ARGUS data already considered in Ref. [1]. We

have taken �

5

= 200 Mev and included in the PFF's the resummation of Sudakov terms in the

x ' 1 region, as described in [4] and consistently with [1]. A normalization factor is always

�tted along with the parameters determining the shape of the non-perturbative FF. The results

are shown in the upper part of Table 1.

They can be seen to be consistent with those obtained in Ref. [1]. It is also worth mentioning

that the last point in the ARGUS data has not been included in our �t. In that region non-

perturbative e�ects become very large, spoiling the evaluation of the perturbative part of the

FF's: the PFF's evolved to NLO become indeed negative in the large x region. We have

therefore preferred not to include that point in the �t.

We have also presented along with the �ts to ARGUS the results of a similar �t to OPAL

data. Also in this case a few points have been excluded from the �t: the last one, where

again large non-perturbative e�ects set it, and the �rst three ones, where the rise due to gluon

splitting is observed. Since unaccounted for threshold e�ects may play an important role here,

and the theoretical curve cannot be made to describe the data very well, we have preferred to

avoid biasing the �tted parameters and therefore excluded this region altogether.

The main result is the consistency of the two sets of parameters: the same values which

�t the ARGUS data also describe the OPAL data, taken at a center-of-mass energy almost

one order of magnitude larger. This �nding lends support to our initial hypothesis of scale

independence of the non-perturbative part of the fragmentation functions.

Other �ts with this \simple" non-perturbative FF have been performed, this time excluding

the resummation of Sudakov terms. The reason for this is that when making convolutions of

5



�

5

= 100 MeV �

5

= 200 MeV �

5

= 300 MeV

Next-to-leading order evolution

ARGUS .031 (1.09) .019 (1.27) .011 � .003 (1.53)

OPAL .033 � .005 (1.25) .015 � .002 (1.54) .008 � .001 (1.72)

Leading order evolution

ARGUS .07 (1.65) .055 (2.1) .036 (2.72)

OPAL .10 � .01 (2.02) .08 � .01 (2.48) .06 � .01 (2.98)

Table 2: Results for the �tting of the � parameter of the Peterson FF to AR-

GUS and OPAL data, for three di�erent values of �

5

and with next-to leading

order coe�cient functions and NLO or LO evolution of the PFF's. Sudakov

resummation is not included explicitly, and is therefore e�ectly reabsorbed

into the non-perturbative FF. The number between the round brackets is the

�

2

per degree of freedom of each �t.

the PFF's with the Sudakov included in the x space (rather than in Mellin moments space as

we do now) the integration convergence is much more di�cult. We have therefore chosen to

incorporate the e�ect of the Sudakov resummation into the non-perturbative part, with the

results given in the lower part of Table 1. Once more, full consistency is found between the �ts

to ARGUS and to OPAL data. The results of these two �ts are shown in �gure 1.

3.2 Fits with the Peterson form

Fits to the same ARGUS and OPAL data have also been performed using the Peterson form

(9) as the non-perturbative part of the FF's. The �t is in this case a two- rather than a three-

parameter one, namely the normalization and the � parameter only. Using NLO evolution and

coe�cient functions, but again no Sudakov resummation, and three di�erent values for �

5

, we

have found the results displayed in Table 2, while the curves resulting from these �ts, for the

choice �

5

= 200 MeV, are shown in �gure 1.

It is to be noted that the �tter was not able, in a few instances, to produce realistic errors

when �tting ARGUS data, due to numerical inaccuracies resulting from the inverse Mellin

transform of the Peterson FF. However, taking the error in the corresponding �t to OPAL data

as an indication, we see that also in this case the two �ts are consistent, pointing to a scale

independence of the non-perturbative part of the fragmentation functions.

The most striking feature of these �ts is however the discrepancy between their results and

the value commonly used for the parameter � when describing c quarks fragmentation to D

�

mesons. It is indeed found in the literature (see, for instance, Ref. [21]), and has been used

in recent phenomenological papers [22, 17], the value � = 0:06. The �tted values (except for

the one at �

5

= 100 MeV) also appear to be at variance with the result found by the OPAL

Collaboration [20] as a �t to their own data, �

OPAL

= 0:035 � 0:007 � 0:006.

This discrepancy should however not come as a surprise if one considers carefully how �

so far has been extracted from experimental data. Experiments usually report the energy or

momentum fraction (x

E

or x

p

) of the observed hadron with respect to the beam energy. On the

other hand the momentum fraction which appears as the argument of the non-perturbative FF

6
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Figure 1: Distributions of D

�

mesons as measured by the ARGUS and OPAL

experiments, together with the theoretical curves �tted to the same data with

the (1 � x)

�

x

�

(full line) and the Peterson (dashed line) non-perturbative

fragmentation functions.

is rather the fraction with respect to the fragmenting quark momentum, usually denoted by z

(see for instance [21] for a discussion on this point). These two fractions are not coincident, due

to radiation processes which lower the energy of the quark before it fragments into the hadron.
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In order to deconvolute these e�ects one usually runs a Monte Carlo simulation of the collision

process at hand, including both the parton showers and the subsequent hadronization of the

partons into the observable hadrons. The latter can be parametrized in the Monte Carlo by

the same Peterson fragmentation function we have been using, and the value of � which best

describes the data can be extracted. But what can be di�erent in our approach is of course the

perturbative QCD part, namely the parton shower. This showering softens the distribution of

the partons, producing an e�ect qualitatively similar to that of the non-perturbative FF. On

the quantitative level, the amount of softening (and hence the value of �) required by the non-

perturbative FF to describe the data is related to the amount of softening already performed at

the perturbative level. Monte Carlo's simulations so far only perform a leading order description

of the showering, and can hence di�er from our NLO evolution.

Therefore there is not a \unique" and \true" value for the parameter �, but only a value

closely interconnected with the details of the description of the pQCD part of the problem.

For instance, a higher value of �

5

results in a larger �

s

and hence in more parton showering.

This softens even more the perturbative part of the FF, and consequently less softening will be

required from the non-perturbative part. The results in Table 2 show that this is indeed the

case, a smaller value of � corresponding to a harder Peterson FF.

A double check that the di�erent description of the perturbative part can indeed responsible

for the di�erent � can be done by rerunning our �ts with a leading order evolution, in such a

way to mimick as closely as possible the Monte Carlo description of the process. The results

are displayed in Table 2, and can be seen to be indeed much closer to the commonly used value

of 0.06. The tendency to a discrepancy between ARGUS and OPAL �ts could actually be an

indication of the inadequacy of a leading order description of the scale violations taking place

from 10 to 90 GeV. All this should however not be taken literally, as many other details might

be included in the leading order Monte Carlo description of the perturbative showering and be

missing or di�erently treated here.

A further check of the modi�cation of the value for � when going from a leading to a next-

to-leading description of the perturbative parton shower can be obtained in the following way,

to be taken as a kind of toy-model.

Consider a distribution for the energy variable x, like the ones given by ARGUS and OPAL

and plotted in �g. 1. Thinking of them as described by the convolution of a perturbative and

a non perturbative fragmentation function, the average value of x, call it hxi

exp

, can be written

as a product of the average values of the perturbative and the non-perturbative FF's, i.e.

hxi

exp

= hxi

pert

hxi

np

: (13)

If we now assume that both a leading and a next-to-leading description of the perturbative

part can describe the data, provided they are matched by the appropriate non-perturbative FF

(i.e., the appropriate value of � is chosen), we can write

hxi

exp

= hxi

LO

pert

hxi

LO

np

= hxi

NLO

pert

hxi

NLO

np

; (14)

which leads us to

hxi

NLO

np

=

hxi

LO

pert

hxi

NLO

pert

hxi

LO

np

: (15)
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In this equation hxi

pert

refers to the second Mellin moment of the perturbative fragmentation

function D

c

c

, while the hxi

np

can be calculated from the Peterson FF, like hxi

np

=

R

xD(x; �)dx.

The su�xes \LO" and \NLO" on the perturbative parts mean that a leading or next-to-leading

evolution kernel has been included before taking the average. The non-perturbative part is

considered to be adjusted to �t the data together with the given perturbative term.

The perturbative fragmentation function returns the following averages when evolved with

�

5

= 200 MeV:

hxi

LO

pert

hxi

NLO

pert

hxi

LO

pert

=hxi

NLO

pert

10.6 GeV .75 .65 1.15

91.2 GeV .64 .56 1.14

We can clearly see from this table how the NLO description does indeed soften the perturbative

FF more than the LO one, producing a lower value for the average energy.

Assuming � = 0:06 to be the right value to describe the data when a leading order pertur-

bative description is used, we get hxi

LO

np

= 0:67 and hence, from eq. (15), hxi

NLO

np

= 0:77. Upon

inspection we see this average value for the Peterson FF corresponds to � = 0:016, i.e. a value

fully compatible with the ones returned by the �ts.

Before closing this Section on the �ts, we wish to point out once more that there is not a

\best candidate" value for �, but only a value of � more suited to match the description of the

perturbative showering one is actually employing. Surely enough, if the QCD description is at

NLO a harder �, like our � = 0:015, should be used rather than the larger (and softer) � = 0:06,

since part of the softening is now already included through more perturbative gluon emission.

4 Production in ep collisions

The use of fragmentation functions for heavy quarks to evaluate NLO cross sections for charm

photoproduction has already been considered in Ref. [9].

In this paper we use exactly the same formalism to evaluate cross sections for D

�

production,

by complementing the PFF's used in the previous work with a non-perturbative component as

described by eq. (1) and according to Ref. [2].

The p cross section reads, schematically,

d�

p

=

Z

F

i=p

d�̂

i!k

D

D

k

+

Z

F

i=p

F

j=

d�̂

ij!k

D

D

k

: (16)

In this expression F

i=p

and F

j=

are the parton distribution functions (pdf's) for the proton

and the photon, since the so called direct and resolved component are both included. Unless

otherwise stated, we will make use of the MRS-G [23] and ACFGP [24] sets respectively. The �̂'s

are the kernel cross sections (= coe�cient functions) for massless parton production [5, 6] and

D

D

k

is the meson fragmentation function of eq. (1). We will use in this FF the non-perturbative

parameters �tted in the previous section to e

+

e

�

data and, since the non-perturbative FF's

are normalized to one, we include the branching ratio BR(c ! D

�+

) = BR(�c ! D

��

) = 0:26

[20]. This produces an absolute, parameter free, prediction, to be directly compared with the

experimental data.
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We also convolute our p cross sections with the Weizs�acker-Williams ux factor,

�

ep

(s) =

Z

y

max

y

min

dyf

=e

(y)�

p

(ys) (17)

with

f

=e

(y) =

�

2�

"

1 + (1 � y)

2

y

ln

Q

2

max

Q

2

min

+ 2m

2

e

y

 

1

Q

2

max

�

1

Q

2

min

!#

; (18)

where y = E



=E

e

, Q

2

min

= m

2

e

y=(1 � y) and m

e

is the electron mass, to mimick as closely as

possible the experimental setup. For comparisons with ZEUS data we will adopt Q

2

max

= 4

GeV

2

and y

min

= 0:147, y

max

= 0:869, according to [26]. Moreover, we will present cross

sections in the pseudorapidity range �1:5 < � < 1 and in the p

T

range 3 < p

T

< 12 GeV.

As already stressed in Ref. [2], it is important to point out how this low p

T

boundary

casts doubts on the validity of an approach based on the use of massless cross section kernels,

and which had originally been devised for the resummation of large logarithms in the large p

T

region. In principle, one is missing terms of order m=p

T

, and the errors may therefore be large

when p

T

' m. Only a comparison with a full massive calculation can �nally assess whether

the results are meaningful enough. Such a comparison will be presented in �g. 2.

A description of D

�

photoproduction in ep collisions similar to ours has recently been given

in [17]. When including the Peterson FF these authors tackle the problem from an apparently

di�erent point of view, by evolving directly this non-perturbative FF and inserting instead the

initial conditions (3), (4) and (5) for the heavy quark PFF's into the coe�cient functions for

p to massless parton scattering. One can however easily see the two approaches are equivalent

at the perturbative level. The Appendix does indeed show how they should only di�er by

uncontrollable higher order terms and, other than this, in the interpretation of the various

components.

Therefore the approach introduced in Ref. [2] and now discussed here in detail, and the

one successively used in [17] should give similar results. We compare them in �g. 2. It shows

the curve extracted from Ref. [17] (wide-dotted line) and our results, for the same value of

� = 0:06. No agreement is found, however, neither (full line) with what will be our standard

choice of renormalization/factorization scales (� = �

R

= �

F

= �m

T

= �

q

m

2

+ p

2

T

with � = 1,

�

0

= m, and �

5

= 200 MeV) nor (dashed line) when we make the same choice as Ref. [17],

taking �

R

= m

T

, �

F

= 2m

T

, �

0

= 2m, GRV-G HO [25] as the photon pdf's set.

Spurious higher order terms could be responsible for the discrepancy. If one does indeed

check �g. 2 of Ref. [17], by comparing curves C and D a di�erence similar to the one found

above between the wide-dotted and the dashed line can be seen. This large di�erence could

therefore be due to the moving of the initial condition terms for the fragmentation function to

the kernel cross sections for massless parton scattering (see Appendix). Curve D of Ref. [17]

has been made following our standard PFF formalism, and by comparing it with our results

we have indeed found agreement.

It is worth noting that the spurious terms contain large Sudakov logarithms of the form

log(1�x), and could indeed be not negligible. Since we �tted e

+

e

�

data with the same overall

fragmentation function we are now using here, we believe the large e�ect of these terms - if

present - to be e�ectively absorbed into the �xed non-perturbative component. Hence it should

not spoil a reliable evaluation of photoproduction cross sections.
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Figure 2: Comparison of our results with those of Ref. [17] (KKS) and

with the full NLO massive calculation of Ref. [22]. The GRV-G HO photon

parton distribution functions set is employed for all the curves except for the

\standard" one (full line). �

R

and �

F

refer to the ratios of the renormalization

and factorization scales to the transverse mass m

T

respectively.

Also shown on the same plot is the result of the full NLO massive calculation by [22] (close-

dotted line), itself convoluted with a Peterson FF with � = 0:06 too, as taken from [26]. Good

agreement with our result is found, especially when making our standard choice of scales. Such

a successful comparison could probably not have been expected beforehand, given the missing

m=p

T

terms, but a posteriori it can perhaps be considered a check of our results, being the

massive result the benchmark at these low p

T

values. The agreement will also allow us to

extrapolate to the massive calculation the e�ect of varying the value of �.

4.1 Comparison with experiment

We now compare our results with experimental photoproduction data obtained at HERA by

ZEUS [26] and H1 [27] Collaborations.

We �rst plot, in �g. 3, the pseudorapidity distributions, integrated over the p

T

, obtained

with the Peterson FF with di�erent values of �. These results have been obtained with the

pdf's set MRS-G for the proton, and ACFGP for the photon in the resolved component. For

the renormalization/factorization scales we made the standard choice � = �

R

= �

F

= m

T

and

taken �

0

= m as the starting value for the evolution of the FF's. �

5

is taken equal to 200 MeV.

As expected, the use of a smaller � hardens the non-perturbative FF and hence enhances

11
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Figure 3: Pseudorapidity distribution of D

�

as measured by the ZEUS ex-

periment and theoretical predictions for di�erent values of � in the Peterson

fragmentation function (full line) and with the (1� x)

�

x

�

FF (dashed line).

the cross section, since the partonic kernels fall rapidly with increasing p

T

. The cross section

obtained with � = 0:015 is 50% larger than that with � = 0:06, and while the latter seems to

fall short of describing the ZEUS data, the former does a good job, at least in the �rst two

bins. But we emphasize here once more how a full assessment of the reliability of these results

needs a comparison with the full massive calculation, rather than with the experimental data,

which however need to be improved in precision.

For comparison, the cross section obtained with the simple FF, (1 � x)

�

x

�

, with � = 0:9

and � = 6:4, is also shown (dashed line) in �g. 3. These values for � and � �t the OPAL data

from e

+

e

�

collisions like � = 0:015 does, see Section 3, and the photoproduction cross sections

are indeed also in good agreement. This on one side shows how in this case there is little

dependency on the precise shape of the non-perturbative fragmentation function. On the other

side, it strengthens our trust of the cross section with the Peterson, much harder to evaluate

due to the numerical di�culties related to the inverse Mellin transform.

The total cross sections, obtained by integrating the curves in �g. 3 over the pseudorapidity,

are also shown in Table 3. They are to be compared with the experimental result from ZEUS

[26] � = 10:6�1:7(stat:)�

1:6

1:3

(syst:) nb. Notice that the 17% increase found going from � = 0:06

to 0.035 is in good agreement with the 15% estimated in [26] using the massive calculation.

To get a feeling of the stability of our results we plot in �g. 4a the results obtained for the

pseudorapidity distribution with di�erent choices of renormalization/factorization scales and

with the conservative value � = 0:02. While the central curve is obtained with � = m

T

, the

12



� (nb)

� = 0:9; � = 6:4 8.0

� = 0:015 7.7

� = 0:02; � = 0:5 9.6

� = 0:02 7.2

� = 0:02; � = 2 6.2

� = 0:035 6.2

� = 0:06 5.3

Table 3: Predictions for the total cross sections in the ZEUS untagged setup,

3 < p

T

< 12 GeV and �1:5 < � < 1.

two others are produced with � = �m

T

, with � = 0.5 and 2. The variation is not negligible,

especially in the lower scale direction, but we should bear in mind that at such a low scale we

are at the border of the applicability of perturbative QCD. Also shown on this plot are the

results obtained with two other photon pdf's sets, namely GRV-G HO and AFG [28]. The

variations are smaller than those given by varying the scales.

By comparing with the experimental results we can see that we can get a fairly good

description of the data already with a central choice of scales.

A similar comparison is also made, in �g. 4b, with the p

T

distribution obtained by the

ZEUS Collaboration. The curves, obtained with � = 0:02, seem to o�er a fair description of

the data.

Finally, we want to present a comparison of the results of our approach with more sets of

data. We now use H1 results, both in the tagged and the untagged experimental setup. These

we reproduce by taking in the Weizs�acker-Williams convolutionQ

2

max

= 0:01 GeV

2

, y

min

= 0:28,

y

max

= 0:65 and Q

2

max

= 4 GeV

2

, y

min

= 0:1, y

max

= 0:8 respectively, according to Ref. [27].

Fig. 5 shows the results for the rapidity distributions

1

, obtained with the Peterson FF with

� = 0:02 and the standard choice of scales, i.e. � = 1.

The total cross sections for these curves, integrated within the 2:5 < p

T

< 10 GeV and

�1:5 < y < 1 range, read 4.2 nb and 14.4 nb for the tagged and the untagged sample respec-

tively, to be compared with the experimental results 4:9 � 0:7�

0:74

0:59

nb and 20:2 � 3:3�

4:0

3:6

nb.

A quite good agreement can be seen, especially for the tagged sample.

5 Conclusions

In this paper we have applied the technique of fragmentation functions for heavy mesons to D

�

production in e

+

e

�

and ep collisions.

These fragmentation functions are made of a perturbative part, which we evolve with next-

1

H1 presents its experimental results as a function of the rapidity rather than of the pseudorapidity. Our

approach, in that it deals with massless partons in the kernel cross sections, cannot distinguish between the

two. The two quantities become of course identical in the large p

T

region, and at p

T

= 2:5 GeV already only

di�er by about 10%.
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Collaboration, Ref. [27].

to-leading accuracy, and a non-perturbative one, which we �t to e

+

e

�

data taken by ARGUS

and OPAL and subsequently use to predict photoproduction cross sections, to be compared

with data by H1 and ZEUS.
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When �tting e

+

e

�

data with a Peterson non-perturbative form we �nd values for the �

parameter sensibly di�erent from the commonly accepted value 0.06. A central value for our

�ts, when using NLO evolution, is � = 0:02. This hardens the non-perturbative fragmentation

function, and increases the photoproduction cross section, bringing it in better agreement with

the data.

Our photoproduction results are found in good agreement with the NLO full massive ones,

which are reliable at the low values of p

T

probed by the experiments and can be taken as a

benchmark for comparisons. Convoluting them with a Peterson with a lower � will also increase

the cross section, again producing a better agreement with the data. Slightly less conservative

choices than those made here for the renormalization/factorization scales, the photon parton

distribution functions set, the c! D

�

branching ratio and the value of � could easily make the

agreement even better.
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A Appendix

In this Appendix we show how the approaches of Refs. [2] and [17] are identical at the pertur-

bative level.

Consider a cross section for producing a heavy quark of massm at the large scaleQ, �(Q;m),

given by the convolution of a coe�cient function C(Q;�) and a perturbative fragmentation

function D(�;m). In the Mellin moments space we write this as a product:

�(Q;m) = C(Q;�)D(�;m); (19)

and � is the factorization scale. Since D(�;m) is the fragmentation function evolved up to the

scale �, we can write it in terms of an initial condition at a scale �

0

as

D(�;m) = E(�; �

0

)D(�

0

;m)D

np

: (20)

The factor E(�; �

0

) is the so called evolution kernel, and we have now also included a non-

perturbative term D

np

, for instance the Peterson FF, according to eq. (1). Indeed, to think it

to multiply the perturbative initial condition or the evolved PFF is absolutely identical, since

D(�) is in both cases simply a product of three terms.

Putting together the two equations we have

�(Q;m) = C(Q;�)E(�; �

0

)D(�

0

;m)D

np

; (21)

which is for instance the way we write our e

+

e

�

cross section in Mellin space, the one in x-space

to be found by numerical inverse Mellin transform.

If we now consider that both the coe�cient functions (see for instance Ref. [18]) and the

initial conditions of the PFF's (see eqs. (3), (4) and (5)) can be calculated as series expansions

in �

s

, like

C(Q;�) = 1 + �

s

(�)c(Q;�) and D(�

0

;m) = 1 + �

s

(�

0

)d(�

0

;m); (22)

inserting these expressions into eq.(21) and rearranging it, up to uncontrollable O(�

2

s

) terms

we can write

�(Q;m) =

�

1 + �

s

(�)c(Q;�) + �

s

(�

0

)d(�

0

;m)

�

E(�; �

0

)D

np

: (23)

This is (with the exception of �

s

(�

0

) which they take �

s

(�) instead) the form employed in

Ref. [17] when E(�; �

0

)D

np

is considered as an \evolved" non-perturbative FF, and with the

d(�

0

;m) functions changing the coe�cient function's scheme. If one takes �

0

= � the new

coe�cient function will be close to the cross section for massive quark production, containing

the logarithmic terms log(Q=m). Indeed, the d(�

0

;m) functions had been determined in [4]

exactly this way, but going the opposite way round, i.e. evaluating the full massive �(Q;m),

extracting from it the coe�cient function c(Q;�) in theMS scheme, and de�ning the remaining

piece to be the initial state condition of the fragmentation function.

17



References

[1] G. Colangelo and P. Nason, Phys. Lett. B285 (1992) 167

[2] M. Cacciari, M. Greco, S. Rolli and A. Tanzini, DESY 96-146 (hep-ph/9608213), in press

on Phys. Rev. D

[3] C. Peterson, D. Schlatter, I. Schmitt and P.M. Zerwas, Phys. Rev. D27 (1983) 105

[4] B. Mele and P. Nason, Nucl. Phys. B361 (1991) 626

[5] F. Aversa, P. Chiappetta, M. Greco and J.Ph. Guillet, Nucl. Phys. B327 (1989) 105

[6] P. Aurenche, R. Baier, A. Douiri, M. Fontannaz and D. Schi�, Nucl. Phys. B286 (1987)

553

[7] P. Aurenche, R. Baier, A. Douiri, M. Fontannaz and D. Schi�, Z. Phys. C29 (1985) 423;

L.E. Gordon, Phys. Rev. D50 (1994) 6753

[8] M. Cacciari and M. Greco, Nucl. Phys. B421 (1994) 530

[9] M. Cacciari and M. Greco, Z. Phys. C69 (1996) 459

[10] M. Cacciari, M. Greco, M. Kr�amer, G. Kramer, B. Kniehl and M. Spira, Nucl. Phys. B466

(1996) 173

[11] P. Nason, S. Dawson and R.K. Ellis, Nucl. Phys. B303 (1988) 607; Nucl. Phys. B327

(1989) 49; W. Beenakker et al., Phys. Rev. D40 (1989) 54; Nucl. Phys. B351 (1991) 507;

M.L. Mangano, P. Nason and G. Ridol�, Nucl. Phys. B373 (1992) 295

[12] R.K. Ellis and P. Nason, Nucl. Phys. B312 (1989) 551; J. Smith and W.L. van Neerven,

Nucl. Phys. B374 (1992) 36; S. Frixione, M.L. Mangano, P. Nason and G. Ridol�, Nucl.

Phys. B412 (1994) 225

[13] M. Kr�amer, J. Zunft, J. Steegborn and P.M. Zerwas, Phys. Lett. B348 (1995) 657

[14] V.A. Khoze, Ya.I. Azimovand and L.L. Frankfurt, Proceedings, Conference on high Energy

Physics, Tbilisi 1976; M. Suzuki, Phys. Lett. 71B (1977) 139; J.D. Bjorken, Phys. Rev.

D17 (1978) 339

[15] P. Nason, \Heavy Quark Production", in Heavy Flavours, Advanced Series on Directions

in High Energy Physics, vol. 10, A.J. Buras and M. Lindner eds, World Scienti�c

[16] J.H. Kuhn and P. M. Zerwas, \Heavy Flavours", in \Z Physics at LEP", CERN 89-08,

vol. 1, G. Altarelli, R. Kleiss and C Verzegnassi eds.

[17] G. Kramer, B. Kniehl and M. Spira, DESY 96-210

[18] P. Nason and B.R. Webber, Nucl. Phys. B421 (1994) 473

[19] H. Albrecht et al. (ARGUS Collab.) Z. Phys. C52 (1991) 353

18

http://xxx.lanl.gov/abs/hep-ph/9608213


[20] R. Akers et al. (OPAL Collab.), Z. Phys. C67 (1995) 27

[21] J. Chrin, Z. Phys. C36 (1987) 163

[22] S. Frixione, P. Nason and G. Ridol�, Nucl. Phys. B454 (1995) 3

[23] A.D. Martin, R.G. Roberts and W.J. Stirling, Phys. Lett. B354 (1995) 155

[24] P. Aurenche, P. Chiappetta, M. Fontannaz, J.Ph. Guillet and E. Pilon, Z. Phys. C56

(1992) 589

[25] M. Gl�uck, E. Reya and A. Vogt, Phys. Rev. D46 (1992) 1973

[26] J. Breitweg et al. (ZEUS Collab.), preprint DESY 97-026

[27] S. Aid et al. (H1 Coll.), Nucl. Phys. B472 (1996) 32

[28] P. Aurenche, M. Fontannaz and J.Ph. Guillet, Z. Phys. C64 (1994) 621

19


