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Abstract. We present a perturbative constructionof the '

4

model on a smooth

globally hyperbolic curved space-time. Our method relies on an adaptation of

the Epstein and Glaser method of renormalization to curved space-times using

techniques from microlocal analysis.

1. Introduction

Renormalization led to a well de�ned perturbation expansion of quantum

�eld theory whose lowest order terms are in excellent agreement with experi-

mental particle physics [1]. First, in the late 40's, quantum electrodynamic was

renormalized by the method of Schwinger, Feynman, Tomonaga and Dyson,

leading to truly remarkable predictions, e.g., on the magnetic moment of the

electron. In the seventies, the renormalization program was extended to non-

abelian gauge theories by the works of Faddeev-Popov, 't Hooft, Becchi-Rouet-

Stora and others, and led to the present standard model of elementary particle

physics. Attempts to include also gravity in the renormalization program failed;

more recent proposals look for theories of a di�erent kind like string theory

which is hoped to describe all known forces.

Because of the large di�erence between the Planck scale (10

�33

cm) and scales

relevant for the present standard model (10

�5

� 10

�17

cm) a reasonable ap-

proximation should be to consider gravity as a classical background �eld and

therefore investigate quantum �eld theory on curved space-times. This Ansatz

already led to interesting results, the most famous being the Hawking radia-

tion of black-holes [2]. But a look through the literature (see, e.g., [3]) shows

that predominantly free �eld theories were treated on curved backgrounds. To

our knowledge, e.g., there is no serious attempt to discuss the in
uence of in-

teraction on the Hawking e�ect. Most of the papers on interacting quantum
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2 BRUNETTI AND FREDENHAGEN

�eld theory on curved spacetime deal with the Euclidean case and discuss the

renormalization of certain diagrams. There seems to exist only one attempt to

a general proof of renormalizability for �'

4

, that given by Bunch [4]. However,

also his attempt is con�ned to the rather special case of real analytic space-times

which can be analytically continued to the Euclidean situation. It is interesting

to note that the main technical tool of this paper is a kind of local Fourier

transformation which is a particular case of the powerful techniques that we

use in this paper.

The situation is then tricky for general (smooth) space-times with the (phys-

ical) Lorentzian signature. Here more or less nothing was done.

Why is the problem of renormalization so di�cult on curved spacetime? The

main problem is absence of translation invariance. So there is no notion of a

vacuum, which is a central object in most treatments of quantum �eld theory;

the spectrum condition (positivity of the energy operator), responsible for deep

theorems like the Spin-Statistics Theorem, cannot be formulated. There is no

general connection between the Riemannian and Lorentzian �eld theory, and the

meaning of the functional integral for quantum �eld theory on curved spacetime

is unclear. On the more technical side, a momentum space description is not

possible, so the BPHZ method of renormalization [5] is not directly applicable.

Also the popular method of dimensional renormalization seems to be restricted

to the Euclidean situation [6].

On the other hand, physically motivated by the Equivalence Principle, a

quick look at the possible ultraviolet divergences indicates that they are of the

same nature as in 
at space, so no obstruction for renormalization on curved

spacetime is visible. Despite of the interest in its own right, renormalization on

curved spacetime might also trigger a conceptual revisitation of renormalization

theory on 
at space in the light of the principle of locality.

We sketch on this paper only the main ideas. The complete proofs should

be found in [15].

2. The Epstein and Glaser Method

A direct application of BPHZ or dimensional renormalization seems not to

be possible for curved spacetime with Lorentzian signature. But there exists

another general method developed by Epstein and Glaser [7] (also [8]) on the

basis of ideas generally attributed to Bogoliubov, St�uckelberg and their collab-

orators (see [9] and references therein). This method is local in spirit and is

therefore our favorite candidate for renormalization on curved spacetime. A

closer inspection shows that also in this method translation invariance plays an

important role, both conceptually and technically, and it will require a lot of

work to replace translation invariance by other structures. In the past there

has been an attempt on Minkowski space for quantum electrodynamics with ex-

ternal time independent electro-magnetic �elds done by Dosch and M�uller [10].

This use of the Hadamard parametrix of the Dirac operator is already much in

the spirit of a local formulation of perturbation theory; by the assumption of

time independence of the external �elds, however, translation invariance w.r.t.

time still plays a crucial role in their approach. At this point one might get

the impression that a combination of techniques from their paper and that of

Bunch (see above) will provide a useful purely local perturbation theory. As a
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matter of fact, it will turn out that techniques from microlocal analysis [11] are

ideally suited to carry through the program.

Let us describe the general strategy on the example of the '

4

theory on

a d = 4 dimensional globally hyperbolic space-time (M; g). We start from a

quasi-free state ! of a free massive �eld ', satisfying the Klein-Gordon equation

of motion

(�

g

+m

2

)' = 0

where �

g

is the d'Alembertian operator w.r.t. the metric g and where ! is

supposed to satisfy the Hadamard condition [12]

!('(x)'(y)) =

u

�

+ v log� +w

with �(x; y) denoting the square of the geodesic distance between x and y and

u; v; w being smooth functions where u; v are determined only by geometry.

The commutator of the �eld is

['(x); '(y)] = iE(x; y)

where E(x; y) = E

ret

(x; y)�E

adv

(x; y), and E

ret

, resp. E

adv

are retarded resp.

advanced Green functions which are uniquely de�ned on globally hyperbolic

space-times.

As it is known one de�nes the \S-matrix" by a formal power series in the

\coupling constant"' which in the Epstein and Glaser scheme is a �xed test-

function on space-time

S(�) � 1+

1

X

n=1

i

n

n!

Z

T

n

(x

1

; : : : ; x

n

)�(x

1

) � � ��(x

n

) d�

1

� � �d�

n

where � 2 D(M) and d� is the natural invariant volume measure on M w.r.t.

the �xed Lorentzian metric g. We remark that this de�nition is purely local

thanks to the introduction of the space-time \coupling constant" �. Eventually,

this test function should be sent to a �xed value over all space-time, but this

amounts to treat the infrared nature of the theory to which this paper is not

addressed.

In the Epstein and Glaser scheme the natural objects to use for constructing

the theory are the time-ordered products

T

k

1

;:::;k

n

n

(x

1

; : : : ; x

n

); k

i

� 4; n 2 N

which are operator-valued distributions on the GNS-Hilbert space induced by

!. T

k

n

is interpreted as the time-ordered product of the Wick's monomials

:'

k

1

(x

1

) :; : : : ; :'

k

n

(x

n

) :. It is characterized by the following properties;

(P1) T

k

1

(x) =:'

k

(x) :,

(P2) T

k

1

;:::;k

n

n

(x

1

; : : : ; x

n

), is symmetric under permutations of indices.

Crucial is the following causality property;

(P3) If none of the points x

1

; : : : ; x

l

(1 � l � n) lies in the past of the points

x

l+1

; : : : ; x

n

, then the time-ordered product factorizes,

T

k

1

;:::;k

n

n

(x

1

; : : : ; x

n

) = T

k

1

;:::;k

l

l

(x

1

; : : : ; x

l

) T

k

l+1

;:::;k

n

n�l

(x

l+1

; : : : ; x

n

):
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3. Wick's Polynomials and Theorem 0

In the Epstein and Glaser scheme one requires in addition translation covari-

ance and proves then that the T

n

's have an expansion into Wick's products

(P4) For any integer n it holds

T

k

1

;:::;k

n

n

(x

1

; : : : ;x

n

)

=

X

t

l

1

;:::;l

n

n

(x

1

; : : : ; x

n

) :'

k

1

�l

1

(x

1

) � � �'

k

n

�l

n

(x

n

) :

where now, the t

n

's are translation invariant numerical distributions. It is

crucial for the program that the Wick polynomials are operator-valued distri-

butions and that they can be multiplied with translation invariant numerical

distributions. This is the content of Epstein and Glaser Theorem 0.

On curved spacetime the �rst step to do is to prove the existence of Wick

products as operator-valued distributions (even this was, to our knowledge,

not done previous to our work [13]). Our construction relies on the �nd-

ing of Radzikowski [14] that the wavefront set

2

of the two-point function of

a Hadamard state is

WF(!

2

) = f(x; k;x

0

;�k

0

) 2 T

�

M

2

n f0g j (x; k) � (x

0

; k

0

); k 2 V

+

g

where the equivalence relation � means that there exists a light-like geodesic

from x to x

0

such that k is coparallel to the tangent vector to the geodesic

and k

0

is its parallel transport from x

1

to x

2

. The proof then uses H�ormander's

Theorem [11] that distributions can be pointwise multiplied provided the convex

combinations of their wave front sets do not meet elements of the zero section.

In our case the convexity of the forward light-cone is crucial.

The time-ordered two-point function E

F

(Feynman propagator) arising from

!

2

is given by

iE

F

(x

1

; x

2

) = !

2

(x

1

; x

2

) +E

ret

(x

1

; x

2

):

It has wave front set as

WF(E

F

) =

f(x; k;x

0

;�k

0

) 2 T

�

M

2

n f0g j (x; k) � (x

0

; k

0

); x 6= x

0

; k 2 V

�

if x 2 J

�

(x

0

)g

[ f(x; k;x;�k); x2 M; k 2 T

�

x

Mn f0gg

where J

�

(x

0

) are the future/past, respectively, of x

0

.

The next step amounts to replace the EG axiom of translation invariance

by something else. We therefore assume, as an Ansatz, the expansion (P4),

but need some restriction on the distributions t

n

which replaces the notion of

translation invariance.

We impose, instead of translation invariance, a condition on the wavefront

set which should be satis�ed by time-ordered functions. We require

(P5) It holds

WF(t

n

) � �

to

n

2

The wavefront set of a distributionf onM is de�ned asWF(f) = f(x; k) 2 T

�

Mnf0gj� 2

D(M); �(x) 6= 0; cone C 3 k )

c

�f does not decay rapidly in Cg. Hence, it is a closed conic

set in T

�

Mnf0g.
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where

�

to

n

= f(x

1

; k

1

; : : : ;x

n

; k

n

) 2 T

�

M

n

n f0g j 9 a graph G with vertices

f1; : : : ; ng, and an association of lines l from vertex i = s(l) to j = r(l)

of G to future oriented lightlike geodesics 


l

which connect x

i

and x

j

and a covariantly constant covector �eld k

l

2 V

+

on 


l

coparallel to

_


l

such that k

i

=

X

m:s(m)=i

k

m

(x

i

)�

X

n:r(n)=i

k

n

(x

i

)g

This may be motivated by the fact that for non coinciding points t

n

can be

expressed in terms of the usual Feynman graphs and for the set of coinciding

points we have an in�nitesimal remnant of translation invariance.

One then proves [15]: If WF(t

n

) � �

to

n

then

t

n

(x

1

; : : : ; x

n

) :'

k

1

(x

1

) � � �'

k

n

(x

n

) :

is a well-de�ned operator-valued distribution (microlocal version of Theorem 0

of Epstein and Glaser).

4. Algebraic formulation of the Epstein and Glaser approach.

In the algebraic formulation of quantum �eld theory the basic object is a net

of algebras

O ! A(O)

where O is a relatively compact region in M and A(O) is a von Neumann

algebra of observables localized in O which in typical cases is known to be a

hyper�nite type III

1

factor. The basic hypotheses the net has to satisfy are

A1. Isotony. If O

1

� O

2

then

A(O

1

)!A(O

2

):

where i

O

1

;O

2

is an injective unital homomorphism for which

i

O

3

;O

2

� i

O

2

;O

1

= i

O

3

;O

1

if O

1

� O

2

� O

3

:

A2. Locality. If O

1

;O

2

� O

3

and O

1

is spacelike separated from O

2

then

i

O

3

;O

1

(A(O

1

)) � i

O

3

;O

2

(A(O

2

))

0

where A

0

means the commutant.

One then proceeds to construct the C

�

-inductive limit of the net C

�

(A). In

the case of free �eld theories, the net construction can be made explicitely. In

the interacting case, there exist constructions only in the very special case of

two dimensional Minkowski spacetime mainly due to Glimm and Ja�e [20].

It seems to be less well-known that the Bogoliubov-St�uckelberg method of

S-matrices as functionals of spacetime dependent sources actually directly leads

to a de�nition of local nets for interacting theories (unfortunately, at present,

only in perturbation theory). Namely, let g; h be �nite families of test functions

on M, coupled to the various elements of the Borchers class of the free �eld,

and consider the relative S-matrices

V (g; h) = S(g)

�1

S(g + h):

From (P3) one �nds the causality relation
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Causality. V (g; h

1

+ h

2

) = V (g; h

1

)V (g; h

2

) whenever there are no future

directed causal curves from supp h

1

to supph

2

.

The physical interpretation of this property is that given an interaction de-

scribed by g the time evolution operator in the interaction picture w.r.t. any

additional interaction has the usual factorization property. One of the main

corollaries to this condition is that it implies locality. Indeed, if supph

1

is

spacelike separated from supp h

2

then this is equivalent to say that no causal

curves connect the two and hence

V (g; h

1

+ h

2

) = V (g; h

1

)V (g; h

2

) = V (g; h

2

)V (g; h

1

):

The local algebras of the interacting theory are now de�ned by

A

g

(O) � fV (g; h); supph � Og

00

; g 2 D(O):

We want to extend the de�nition of interacting nets A

g

to C

1

-functions g

with not necessarily compact support, e.g., for g = constant. It is gratifying

that this can be done without any infrared problem.

Let O � M be open and relatively compact. We de�ne the restriction of

the net A

g

to O to be isomorphic to the net A

g�

where � 2 D(M) with � � 1

on a neighbourhood of J

�

(O) \ J

+

(O). Since the net is, up to isomorphy,

uniquely de�ned by its restriction to relatively compact open subsets ofM, we

only have to show that A

g�

�

O

does not depend on the choice of �. Indeed, let

�

0

2 D(M) with �

0

� 1 on a neighbourhood of J

�

(O) \ J

+

(O). Then there

exist �

�

2 D(M) with �

0

= �+ �

�

+ �

+

such that J

+

(supp�

+

) \ J

�

(O) = ;

and J

�

(supp�

�

) \ J

+

(O) = ;. Let h 2 D(O). Then, by the de�nition of V ,

V (g�

0

; h) = V (g(�+ �

�

); g�

+

)

�1

V (g(�+ �

�

); g�

+

+ h)

= V (g(�+ �

�

); h)

where the last equality follows from causality. Hence the operator V (g�

0

; h) does

not depend on the interaction in the future of supph. It depends, however, on

the interaction in the past of supph,

V (g(�+ �

�

); h) = V (g�; g�

�

)

�1

V (g�; g�

�

+ h)

= AdV (g�; g�

�

)

�1

(V (g�; h))

where again we used the de�nition of V and causality. But the dependence is

through a unitary transformation which does not depend on h 2 D(O). Hence

the nets A

g�

�

O

and A

g�

0

�

O

are unitarily equivalent.

The interacting �elds can be de�ned through the Bogoliubov formula

'

g

(h) =

d

d�

V (g; �h) �

�=0

:

They may be considered as operators which are a�liated to the local algebras

A

g

(O). By the uniqueness above their local properties do not depend on the

behaviour of g outside O. In particular, one may expect that the wave front

sets of their n-point functions for a generic class of states can be determined

locally.



RENORMALIZABILITY OF '

4

7

5. Inductive Construction up to the Diagonal

After these preparations we can mimick the argument of Epstein and Glaser

(see also [16]) to construct T

n

on M

n

n�

n

, where �

n

is the total diagonal in

M

n

, provided T

l

has been constructed for all l < n and satis�es the causality

condition (P3).

Let J be the set of all ; 6= I ( f1; : : : ; ng. Let C

I

= f(x

1

; : : : ; x

n

) 2M

n

; x

i

=2

J

�

(x

j

); i 2 I; j 2 I

c

g. On a globally hyperbolic space-time

[

I

C

I

=M

n

n�

n

:

In fact, if x

i

6= x

j

for some i 6= j, the points x

i

and x

j

can be separated

by a Cauchy surface S, containing none of the points x

k

k = 1; : : : ; n, hence

I = fk; x

k

2 J

+

(S)g 2 J , and (x

1

; : : : ; x

n

) 2 C

I

.

We set on C

I

T

k

1

;:::;k

n

I

(x

1

; : : : ; x

n

) = T

k

i

;i2I

jIj

(x

i

; i 2 I) T

k

j

;j2I

c

jI

c

j

(x

j

; j 2 I

c

):

According to the induction hypothesis and the microlocal Theorem 0, this is a

well-de�ned operator-valued distribution on D(C

I

). Di�erent C

I

's may overlap

but one can show [15] that, due to the causality (P3) hypothesis valid for the

lower order terms, for any x 2 C

I

1

\ C

I

2

we have T

I

1

(x) = T

I

2

(x).

Let now ff

I

g

I2J

be a smooth partition of unity of M

n

n�

n

subordinate to

fC

I

g

I2J

. Then we de�ne

0

T

n

=

X

I2J

f

I

T

I

as an operator-valued distribution on M

n

n�

n

.

We convince ourselves that

0

T

n

is independent of the choice of the partition of

unity and symmetric under permutations of the arguments: Namely, let ff

0

I

g

I2J

be another partition of unity. Let x 2 M

n

n�

n

, and let K = fI 2 J; x 2 C

I

g.

Then there exists a neighbourhood V of x such that V � \

I2K

C

I

, and supp f

I

and supp f

0

I

do not meet V for all I =2 K. Then

X

I2J

(f

I

� f

0

I

) T

I

�

V

=

X

I2K

(f

I

� f

0

I

) T

I

�

V

:

But on V , T

I

is independent of the choice of I 2 K. Since

P

I2K

f

I

=

P

I2K

f

0

I

= 1 on V , we arrive at the conclusion. To prove symmetry we just

observe that the permuted distribution

0

T

�

n

(x

1

: : : ; x

n

) =

0

T

n

(x

�(1)

; : : : ; x

�(n)

)

has the expansion

0

T

�

n

=

X

I2J

f

�

I

T

�

I

=

X

I2J

f

�

�(I)

T

�

�(I)

where we used the fact that the set J is invariant under permutations, but

T

�

�(I)

= T

I

and ff

�

�(I)

g

I2J

is a partition of unity subordinate to fC

I

g

I2J

, so

symmetry follows from the previous result on the independence of

0

T

n

on the

choice of the partition of unity.
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6. The Microlocal Scaling Degree

and the Extension of Distributions

We now want to extend

0

T

n

to the whole D(M

n

). For this purpose we use

the expansion of

0

T

n

into Wick polynomials

0

T

k

1

;:::;k

n

n

=

X

0

t

l

1

;:::;l

n

n

:'

k

1

�l

1


 � � � 
 '

k

n

�l

n

:

where

0

t

n

2 D

0

(M

n

n�

n

) and WF(�

0

t

n

) � �

to

n

for any choice of the l

i

and

any smooth function � 2 C

1

(M

n

) such that supp� �M

n

n�

n

.

The extension to the diagonal of the tensor products of Wick's monomials

proceeds as in our last paper [13]. Everything is therefore reduced to the exten-

sion of the numerical distributions

0

t

n

which is performed in two steps. First

0

t

n

is extended by continuity to the subspace of test-functions which vanish

on �

n

up to a certain order, and then a general test-function is projected into

this subspace. It is this last step which corresponds to the method of countert-

erms in the classical procedure of perturbative renormalization. The extension

of

0

t

n

by continuity requires some topology on test-function space. The semi-

norms used by Epstein and Glaser in their paper are quite complicated, and

their generalization to curved space-times appears to be rather involved. We

found it preferable therefore to apply a di�erent method already introduced

by Steinmann [17], namely the concept of the scaling degree at a point of a

time-ordered distribution. Its generalization to curved spacetime is very simi-

lar to the concept of the scaling limit as introduced by Haag-Narnhofer-Stein

[18] and further developed by Fredenhagen and Haag [19]. Actually, what is

really needed to implement correctly the inductive procedure is a more general

concept than the scaling degree at a point. The requirement that the renormal-

ized time-ordered distribution t

n

should have wave front set in �

to

n

drives us to

consider a concept of scaling degree w.r.t. the diagonal �

n

. This is in order to

get more \uniformity" compared to the pointwise case. This uniformity may

be seen as a kind of translation invariance over the diagonal. For simplicity, we

�rst deal with the pointwise case and afterwards we comment on the necessary

changes for the general one.

Let then M be a smooth manifold of dimension d and x 2 M. Choose a

di�eomorphism � from some convex bounded neighbourhood V of the origin

in T

x

M onto some neighbourhood U of x such that �(x; 0) = x and d�

0

is

the natural identi�cation of the tangent space on the origin of T

x

M with T

x

M

itself (one may take the exponential map for de�niteness).

Let f 2 D

0

(U ). We de�ne the scaled distribution f

�

2 D

0

(U ) by

f

�

� �(�) = f � �(��) � 2 V; 1 � � � 0:

Note that f

�

is well de�ned on U = �(V ) since by assumption �V � V for

0 < � � 1. In case f 2 D

0

(U n fxg) we use the above de�nition with � 6= 0 and

obtain f

�

2 D

0

(U n fxg).

We say that f has scaling degree ! 2 Rat x if ! is the smallest number such

that 8!

0

> !

lim

�#0

�

!

0

f

�

(�) = 0
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in the sense of distributions. For our analysis we need a somewhat stronger

version of the scaling degree which controls also the wavefront sets of the dis-

tributions f

�

.

1. De�nition. f 2 D

0

(U ) has at x the microlocal scaling degree ! w.r.t. a

closed cone �

x

� T

�

x

U n f0g if

(i) there exists a closed conic set � � T

�

U n f0g with � \ T

�

x

U � �

x

such

that WF(f)

�

� � for su�ciently small �.

(ii) ! is the smallest number such that for all !

0

> !

lim

�#0

�

!

0

f

�

= 0

in the sense of the H�ormander pseudotopology on D

0

�

(U ).

We recall that by the H�ormander pseudotopology it is meant the following

[11]; given a sequence of distributions u

i

2 D

0

�

(M) � fv 2 D(M) j WF(v) �

�g, we say that the sequence converges to u in the sense of H�ormander pseudo-

topology in D

0

�

(M) whenever the following two properties hold true:

(a) u

i

! u weakly,

(b) for any properly supported pseudodi�erential operator A such that

WF(A) \ � = ;, we have that Au

i

! Au in the sense of C

1

(M)

where WF(A) is de�ned by the projection in T

�

M of the wave front set of the

Schwartz kernel associated to A.

For f 2 D

0

(U n fxg) we cannot directly de�ne the microlocal scaling degree.

We require instead that for all � 2 C

1

(U ) with x =2 supp� the sequence �f

�

(considered as a distribution on U ) satis�es the two conditions of the De�nition

above.

The microlocal scaling degree (�sd) has nice properties. For f

1

and f

2

with

�sd !

1

and resp. !

2

at x, w.r.t. �

1

x

resp. �

2

x

such that f0g =2 (�

1

x

+ �

2

x

), the

wave front sets of f

1;�

and f

2;�

for su�ciently small � satisfy the condition

(WF(f

1;�

)�WF(f

2;�

)) \ f0g = ;, hence their product exists [11] and, because

of the sequential continuity of the products in the H�ormander pseudotopology,

have �sd ! � !

1

+ !

2

w.r.t. �

x

= �

1

x

[ �

2

x

[ (�

1

x

+ �

2

x

).

We now want to show how to extend the distribution f 2 D

0

(U n fxg) to all

space. We �rst deal with the extension problem using the scaling degree. The

next section contains the proof of the extension problem w.r.t. the �sd. There

are two possible cases: when the scaling degree ! � d or otherwise ! < d. We

�rst study the second case.

2. Theorem. If f

0

2 D

0

(U n fxg) has scaling degree ! < d at x then there

exists a unique f 2 D

0

(U ) with f(�) = f

0

(�), � 2 D(U n fxg) and the same

scaling degree.

Proof. Let # 2 D(U ) with # � 1 on a neighbourhood of x. We de�ne for

0 < � < 1

#

�

�1
(x) =

�

#(�(�

�1

�

�1

(x))); x 2 �(�V )

0; else:

Then 1� #

�

�1
2 C

1

(U ) with x =2 supp(1� #

�

�1
). We want to de�ne f as the

limit

f � lim

n!1

f

0

(1 � #

2

n

):
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Let � 2 D(U ). Then f

0

(1 � #

2

n

)(�) is a Cauchy sequence. Namely, for n > m

f

0

(1� #

2

n

)(�) � f

0

(1� #

2

m

)(�) = f

0

(#

2

m

� #

2

n

)(�)

=

n�1

X

j=m

(�f

0

)(#

2

j � #

2

(j+1)
)

=

n�1

X

j=m

(�f

0

)

2

�j (#� #

2

)2

�jd

where we used the de�nition of the scaled distribution as well as an identi�cation

of densities and functions by the use of a measure d� with �

�

d� = d�, the latter

denoting the Lebesgue measure on T

x

M.

As a smooth function � has scaling degree equal to 0. Hence 8!

0

> ! there

is a constant c such that

j(�f

0

)

2

�j
(#� #

2

)j � c 2

j!

0

:

We insert this estimate for ! < !

0

< d and obtain the desired result.

It remains to prove that f has the same scaling degree as f

0

. Let ! < !

0

< d.

Let � 2 D(U ). Then

(1� #

2

n

)�

�

�1
= 0

if n < n

�

for some n

�

2 N with 2

�n

�

�

�1

!

�!0

const. 6= 0. Hence

�

!

0

f

�

(�) = �

(!

0

�d)

f(�

�

�1 )

= lim

n!1

�

(!

0

�d)

(f

0

(1� #

2

n

))(�

�

�1
)

=

X

n�n

�

�

(!

0

�d)

f

0

((#

2

n

� #

2

(

n+1)

)�

�

�1)

=

X

n�n

�

�

(!

0

�d)

2

�nd

(f

0

)

2

�n ((#� #

2

)�

�

�1

2

�n):

The test-function has all Schwartz norms uniformly bounded in � and n � n

�

.

Hence

j(f

0

)

2

�n ((#� #

2

)�

�

�1

2

�n)j � c 2

n!

00

for some ! < !

00

< !

0

. But then

j�

!

0

f

�

(�)j �

X

n�n

�

�

(!

0

�d)

2

�n(d�!

00

)

� �

(!

0

�d)

2

�n(d�!

00

)

1� 2

�(d�!

00

)

� �

(!

0

�!

00

)

(�

�1

2

�n

�

)

(d�!

00

)

1� 2

�(d�!

00

)

! 0:

The uniqueness is obvious since any other extension di�ers by a derivative of

the delta function based at the point x which has scaling degree � d. �

For the case when f

0

has scaling degree ! � d we deal here only with the

preliminary step of extension on a subspace of test-functions D

�

(U ) � D(U )

whose derivatives at the point x vanish up to order � = [!]� d.
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3. Theorem. Let f

0

2 D

0

(U n fxg) have scaling degree ! � d. Then the

sequence f

0

((1 � #

2

n

)�) with � 2 D

�

(U ), � = [!] � d, converges and the limit

de�nes a unique distribution f (�) � lim

n!1

f

0

((1 � #

2

n

)�) over D

�

(U ).

Proof. (Sketch) The proof goes similar to the one of Theorem 2. The only

change is that now � has scaling degree � �� � 1 and the estimate would

change as follows

j(f

0

�)(#

2

m

� #

2

n

)j � c

n�1

X

j=m

2

j(!

0

���1�d)

hence, choosing !

0

such that the exponent is negative we get the convergence.

That f is a distribution follows from the Banach-Steinhaus Theorem applied to

D

�

(U ) which is a closed subset of D(U ). �

In the application of this procedure to the n-th order of perturbation theory

we want to scale only in the di�erence variables. On a curved space-time this

might be done in the following way. We choose a map � : TM!M such that

�(x; 0) = x and d�(x; � )�

0

= id (for instance, the exponential map). We then

de�ne �

n

: TM

n

�

�

!M

n

by

�

n

(x; �

1

; : : : ; �

n

) = (�(x; �

1

); : : : ; �(x; �

n

)):

We restrict �

n

to the following sub-bundle which is isomorphic to the normal

bundle of �

n

N�

n

= f(x; �

1

; : : : ; �

n

) 2 TM

n

�

�

n

;

X

�

i

= 0g:

For a su�ciently small neighbourhood of the zero section in N�

n

�

n

re-

stricted to it is a di�eomorphism onto some neighbourhood of �

n

. We now

express our time-ordered function as a distribution on N�

n

and do the scaling

w.r.t. the variables �. There is however a complication with this procedure;

namely, in the inductive construction, the coordinates so obtained do not fac-

torize, hence it is not obvious how the microlocal scaling degree of lower order

terms determines the microlocal scaling degree at higher order. Much easier is

the behaviour of the total scaling degree, w.r.t. all variables. Here it is easy

to see that the scaling degree of the factors determines the scaling degree for

tensor and pointwise products. We therefore prove a Lemma which states that

the condition on the wave front set of time-ordered distributions implies that

they can be restricted to the submanifolds

M

x

= f�

n

(x; �

1

; : : : ; �

n

);

X

�

i

= 0g:

Again the result on the continuity of restrictions in the H�ormander pseudo-

topology gives us the desired information on the microlocal scaling degree.

4. Lemma. Let WF(

0

t

n

) � �

to

n

. Then 8x 2 M there exists � 2 D(M

n

) with

�(x; : : : ; x) 6= 0, such that �

0

t

n

can be restricted to M

x

.

Proof. It su�ces to show that the wavefront set of

0

t

n

in a neighbourhood of

(x; : : : ; x) does not intersect the conormal bundle of the submanifold M

x

�
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M

n

. But at the point (x; : : : ; x) the elements (x; k

1

; : : : ; k

n

) of the wavefront

set, with (k

1

; : : : ; k

n

) 6= 0, satisfy

P

k

i

= 0, hence the equation

X

hk

i

; �

i

i = 0

which characterizes a point in the conormal bundle of M

x

, cannot hold for all

(�

1

; : : : ; �

n

) with

P

�

i

= 0.

Now the wavefront set intersected with the conormal bundle ofM

x

is a closed

conic subset of T

�

M

n

which does not contain T

�

(x;:::;x)

M

n

, hence does not

contain also a conic neighbourhood of T

�

(x;:::;x)

M

n

, but such a neighbourhood

always contains a set T

�

U where U is a neighbourhood of (x; : : : ; x). If we

choose � with support in U we arrive at the desired conclusion. �

We now want to impose some condition on the smoothness of the above

construction w.r.t. x which serves as a substitute for translation invariance.

Let t be a distribution from D

0

(M

n

) whose wave front set is orthogonal to the

tangent bundle of the diagonal, i.e.,

h�; ki = 0; x 2 �

n

; � 2 T

x

�

n

; (x; k) 2WF(t):

We set

~

t

�

(x; �

n

(x; �)) = t(�

n

(x; ��)) (x; �) 2 TM

n

�

�

n

:

~

t

�

� (1 
 t)

�

is a distribution on a neighbourhood

~

U of the diagonal �

n+1

in

M

n+1

. We say that t has �sd ! at �

n

if there is a closed conic set

~

� � T

�

~

U

with

h�; ki = 0; 8� 2 T

x

�

n+1

; (x; k) 2

~

�

such that

(i) WF(

~

t

�

) �

~

�, for all su�ciently small �,

(ii) ! is the smallest number such that for all !

0

> !

�

!

0

~

t

�

! 0

in the sense of D

0

~

�

(

~

U ).

We then restrict

~

t

�

to the submanifold [

x2M

(fxg �M

x

) � M

n+1

. This is

possible by the argument in the proof of Lemma 4. Note that the submanifold

[

x2M

(fxg�M

x

) might be identi�ed with the open set U � [

x2M

M

x

�M

n

.

Let t

�

denote the restriction of

~

t

�

to D(U ). By the sequential continuity of

the restriction operator we �nd that

�

!

0

t

�

! 0 !

0

> !

in the sense of D

0

�

(U ) as �! 0.

We can now calculate the microlocal scaling degree of time-ordered distribu-

tions, given by pointwise and/or tensor products ot lower order time-ordered

distributions.



RENORMALIZABILITY OF '

4

13

For the Feynman propagator we �nd that the �sd is d� 2 at every point of

the diagonal, w.r.t. the WF(�

F

) on 
at space.

If we assume that t

l

n

has �sd !

l

n

at the diagonal in M

n

w.r.t. �

to

n

then

t

l

1

;l

2

I;L

= (t

l

1

jIj


 t

l

2

jI

c

j

)

Y

L

�

F

(x

i

; x

j

)

has �sd at the diagonal equal to !

l

1

jIj

+ !

l

2

jI

c

j

+ (d� 2)jLj w.r.t. �

to

n

. Hence the

�sd of

0

t

l

n

is determined by the �sd at lower orders. We now have to study

whether

0

t

l

n

can be extended to all D(M

n

) such that the �sd is conserved.

7. Extension to the Diagonal

In the last Section we saw that the time-ordered functions

0

t

n

�

0

t, originally

de�ned only on D(M

n

n�

n

), can be extended to D(M

n

) or D

�

(M

n

), where

� = [!] � (n � 1)d, whenever the �sd !, which is computed in terms of the

�sd of the time-ordered functions at lower orders, satis�es either ! < (n � 1)d

or ! � (n � 1)d. Note that the presence of the term (n � 1)d is related to

our choice of the relative coordinates. We now want to remove the restriction

in the second case by simply projecting arbitrary test-functions onto D

�

(M

n

).

It is this last step which corresponds in other renormalization schemes to the

subtraction of in�nite counterterms.

Here we do the projection in the following way. We choose a function w

which is equal to 1 on a neighbourhood of �

n

and with support in range(�

n

),

where the map �

n

of the last Section is used in order to introduce relative

coordinates. We set

(W�)(x

1

; : : : ; x

n

) = �(x

1

; : : : ; x

n

)� w(x

1

; : : : ; x

n

)

X

j�j��

�

�

�!

@

�

�

(� � �

n

)(x; � = 0)

with �

n

(x; �) = (�(x; �

1

); : : : ; �(x; �

n

)), � = (�

1

; : : : ; �

n

) and the usual multi-

index notations for �

�

and @

�

�

and de�ne, following the Theorems 2 and 3,

t(�) �

0

t(W�).

If we would apply

0

t to the single terms in the de�nition ofW� the �rst term

would correspond to the divergence and the second one to the counterterm.

This can be made explicit by choosing a sequence of smooth functions

k

t on

M

n

which converges to t in the sense of distributions. Then

t = lim

k!1

0

@

k

t�

X

�

h

k

t; w

�

�

�!

i �

(�)

(�)

1

A

:

Let us now reconsider the extension problem. If

0

t 2 D

0

(M

n

n�

n

) we say that

it has at �

n

�sd ! w.r.t. �

to

n

if, for all � 2 C

1

(M

n+1

) with (M��

n

)\supp � =

;, the two following properties hold true

(i) WF(�(1


0

t)

�

) �

~

�

to

n

= f(x; 0; y; k); x 2M; (y; k) 2 �

to

n

g,

(ii) �

!

0

�(1 


0

t)

�

! 0 in D

0

~

�

to

n

.
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Choosing # 2 C

1

(M

n

), # � 1 on a neighbourhood of �

n

with supp#\M

x

a

compact set for any x 2 �

n

, we recall that the extensions of

0

t are obtained by

t � lim

n!1

(1�#

2

n

)

0

t whenever ! < (n�1)d or by t � lim

n!1

(1�#

2

n

)

0

t�W

whenever ! � (n�1)d, where #

2

n

(�

n

(x; �)) = #(�

n

(x; 2

n

�)) with (x; �) 2 N�

n

.

We can prove that the sequences converge in D

0

�

to

n

(U ) and keep the same �sd

at �

n

of their respective

0

t's. We recall that U � [

x2M

M

x

. The convergence

in the sense of distributions is given by Theorems 2 and 3, the one in the smooth

sense, after application of a suitable pseudodi�erential operator, will be done

in the following way. Note that we consider the proof only in the case when

! � (n�1)d the proof of the other trivially follows by simply choosing W equal

to the identity operator.

5. Theorem. If W : D(U ) ! D

�

(U ) is the restriction to U of the map W

de�ned above, and � = [!]� (n � 1)d, the expression

0

t(1� #

2

m

) �W

converges to t as m!1 in the H�ormander pseudotopology for D

0

�

to

n

(M

n

).

Proof. Since in Section 6 we already proved the convergence in the sense of

distributions we need only to check convergence in the smooth sense of the

sequence of smooth functions AW

t 0

t(1 � #

2

m

) for the appropriate pseudo-

di�erential operators A (see remark after De�nition 1.). Note that the functions

1 � #

2

m

are such that their product with

0

t gives a distribution in M

n

. The

argument for proving the convergence in the smooth sense goes similar to the

proof of the convergence in distribution sense.

For a pseudodi�erential operator with smooth kernel the result follows from

the convergence in the sense of distributions. By subtracting fromA an operator

with smooth kernel, if necessary, we may assume that the kernel of A has

support in a su�ciently small neighbourhood of the diagonal in M

n

�M

n

.

Since for � 2 D(M

n

n�

n

) we have

0

t(1� #

2

m

)(W�) =

0

t(�)

we may restrict the consideration to a su�ciently small neighbourhood of �

n

.

In terms of local coordinates onM

n

, Amaybe described, in a neighbourhood

of a point on the diagonal, in terms of its symbol

(Au)(x; �) =

Z Z

�

A

(x; �; p; k)û(p; k)dpdk

where �

A

is fast decreasing in a conical neighbourhood of �

to

n

\ T

�

U . Since

�

to

n

contains the conormal bundle of �

n

, the symbol �

A

decays fast in a cone

around the point p = 0,

j�

A

(x; �; p; k)j � c

N

(1 + jpj+ jkj)

�N

where the constants c

N

are independent of (x; �) 2 U .
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We now want to apply A to the distribution

0

t(1 � #

2

m

) �W . Using the

Lagrange formula for the rest term in the Taylor expansion, we �nd for the

action u! u �W the expression

u �W = u(1� w) + Pu

where the �rst term vanishes near the diagonal and may therefore be ignored,

and where in local coordinates (x; �), the Fourier transformation of the second

term is

c

Pu(p; k) =

Z

1

0

dt

X

j�j=�+1

\

uw�

�

(p; tk)k

�

(1� t)

�

�!

:

Therefore we obtain for su�ciently large m

j(A

0

t(#

2

m

� #

2

m+1
) �W )(x; �)j � const. 2

�m(n�1)d

X

�

Z

j�

A

(x; �; p; k)j

� j

\

(

0

tw�

�

)

2

�m
(#� #

2

)(p; 2

�m

tk)jjkj

�

dp dk dt:

Because of the assumption on the �sd of

0

t we have the estimate

j

\

(

0

tw�

�

)

2

�m(#� #

2

)(p; 2

�m

tk)j � c

N

(1 + jpj+ j2

�m

tkj)

�N

2

m(!

0

���1)

for every closed cone which does not contain p = 0.

Since �

A

and

\

(

0

tw�

�

)

2

�m
(#� #

2

) are polynomially bounded we conclude

that the integrand is fast decreasing and we get

j(A

0

t

n

(#

2

m

� #

2

m+1) �W )(x; �)j � const. 2

m(!

0

���1�(n�1)d)

:

Since � = [!]� (n� 1)d then the exponent becomes equal to !

0

� [!]� 1 which

for a choice of a su�ciently small !

0

is negative, hence the thesis follows. �

It remains to compute the �sd of t

l

n

� t. We �rst check the scaling degree

de�nition and we get

~

t

�

(�) =

~

t(�

�

); where �

�

(�) = �

�(n�1)d

�(�

�1

�)

=

0

~

t

�

�

�

�w

X

�

�

�!

@

�

�

�

�

(0)

�

=

0

~

t

�

�

�

�w(�

�1

� )

X

(�

�1

�)

�

�!

@

�

�

�(0) �

�(n�1)d

�

+

X

0

~

t

�

(w(�

�1

� ) �w)(�

�1

�)

�

�
@

�

�

�(0)

�!

�

�(n�1)d

=

0

~

t

�

(W�) +

X

@

�

�

�(0)

�!

0

~

t

�

�

(w �w

�

)�

�

�

:

The �rst term scales as assumed. The term of the sum over � can be analyzed

in the following way. We write

w � w

�

=

Z

1

�

d

d�

w

�

d�:
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We convince ourselves that the integral can be commuted with the applica-

tion of the distribution. We �nd

0

~

t

�

�

(

d

d�

w

�

)�

�

�

=

0

~

t

�

�

(@

i

w)(��)�

i

�

�

�

=

0

~

t

�

�

(@

i

w)(��)(��)

i

(��)

�

�

�

�j�j�1

=

0

~

t

�=�

�

(@

i

w)(�)�

i

�

�

�

�

�j�j�1�d(n�1)

:

But by assumption

j

0

~

t

�=�

�

(@

i

w)�

i

�

�

�

j � const.

�

�

�

�

�!

0

8!

0

> !;

hence

j

0

~

t

�

�

(w �w

�

)�

�

�

j � const. �

�!

0

Z

1

�

d��

!

0

�j�j�1�(n�1)d

� const. �

�!

0

�

(

1��

!

0

�j�j�d(n�1)

!

0

�j�j�d(n�1)

; for !

0

� j�j � d(n� 1) > 0

j ln�j; for !

0

� j�j � d(n� 1) = 0:

We conclude that we obtain the same formula for the singularity degree as

in the well-known power counting rules. Indeed, we get that j�j � !� (n�1)d,

! being the in�mum over all !

0

. Now, ! can be computed since for t

k

1

;:::;k

n

n

we have ! =

P

i

k

i

(d� 2)=2 where (d � 2)=2 is the canonical dimension of the

scalar �eld as can be seen from its two point function on Minkowski space.

Collecting the formulas we get, taking k

i

= 4 for all i = 1; : : : ; n, that j�j �

2n(d� 2)� (n� 1)d hence j�j � n(d� 4) + d which for d = 4 does not depend

on n anymore. This implies that the renormalization prescription works well

since the number of counterterms does not grow up with the induction step.

It remains to check the convergence in the smooth sense after application

of a properly supported pseudodi�erential operator whose \wave front set" is

disjoint from �

to

n

. We get from the formula above an identity for distributions

as

�

!

0

A

~

t

�

= �

!

0

A(

0

~

t

�

�W ) + �

!

0

X

�

(�1)

j�j

A(

0

~

t

�

((w �w

�

)

�

�

�!

)�

(�)

(�)):

The �rst term has been already discussed and scales as �

!

0

���1�(n�1)d

. For the

second one, the above proof of the convergence in H�ormander pseudotopology

can be redone almost word by word since the application of A gives a smooth

function. One �nally �nds the same scaling behaviour as above by looking at

the behaviour of the term

0

~

t

�

((w�w

�

)�

�

) as �! 0. Hence we get convergence

also in the smooth sense, provided the same choice of !

0

is done consistently

with the discussion done until now.



RENORMALIZABILITY OF '

4

17

8. Conclusions

To summarize: The inductive procedure gives symmetric, renormalized time

ordered distributions which satisfy the causality condition. Moreover, we have

shown how these renormalized objects satisfy the microlocal requirements in

terms of wave front set and microlocal scaling degree. We found that the crite-

rion for renormalizability follows the same power counting rules as on Minkowski

space. All that by purely local methods.

It is now important to remove the remaining ambiguity by �xing the �nite

renormalization. We hope to report elsewhere on this last attempt [15]. At this

stage several questions arise:

(a) Do the interacting �elds satisfy the �SC of [13]?

(b) How can the renormalization group be treated? (see, e.g., [21])

(c) Is there a corresponding Euclidean formulation [22]?

(d) Can the construction be extended to gauge theories?

(e) What are the gravitational corrections to quantum �eld e�ects?

(f) How does the interaction modify the Hawking radiation?
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