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We summarize our reent results on the resummation of hard-sattering o-

eÆient funtions and on-shell form fators in massless perturbative QCD.

The threshold resummation has been extended to the fourth logarithmi

order for deep-inelasti sattering, Drell-Yan lepton pair prodution and

Higgs prodution via gluon-gluon fusion. The leading six infrared pole

terms have been derived to all orders in the strong oupling onstant for

the photon-quark-quark and the (heavy-top) Higgs-gluon-gluon form fa-

tors. These results have many impliations, most notably they lead to a

new best estimate for the Higgs prodution ross setion at the LHC.

1. Introdution

CoeÆient funtions, or partoni ross setions, form the bakbone of

perturbative QCD. These quantities are alulable as a power series in the

strong oupling onstant �

s

, but exhibit large logarithmi orretions lose

to threshold. The all-order resummation of the dominant soft-gluon ontri-

butions takes the form of an exponentiation in Mellin-N spae [1{4℄, where

the moments N are de�ned with respet to the appropriate saling variable,

like Bjorken-x in deep-inelasti sattering (DIS) and x =M

2

l

+

l

�

; H

=s for the

Drell-Yan (DY) proess and Higgs prodution via gluon-gluon fusion.

The purpose of the exponentiation is (at least) two-fold. On the one

hand, it an diretly lead to improved phenomenologial preditions lose

to exeptional kinemati points, for instane to an improved stability un-

der sale variations. On the other hand, it an be viewed as a generating

�
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funtional of �xed-order perturbation theory lose to the partoni thresh-

olds. Hene progress in the soft-gluon resummation also failitates improved

�xed-order preditions whih, depending on the spei� observable, an be

relevant even very far from the hadroni threshold.

In this ontribution we disuss reent results for the threshold resumma-

tion up to the fourth logarithmi (N

3

LL) order [5, 6℄, and briey illustrate

their impliations. We also summarize our reent results [7, 8℄ for the on-

shell quark and gluon form fators and their exponentiation [9{12℄, whih

were instrumental in extending the soft-gluon resummation to N

3

LL au-

ray for lepton-pair and Higgs boson prodution. Moreover the form-fator

results are interesting also in a wider ontext, e.g., they provide another link

to reent alulations performed in N =4 Super-Yang-Mills theory [13℄.

2. General struture of the threshold resummation

As mentioned in the introdution, the oeÆient funtions for inlusive

DIS, Drell-Yan lepton-pair prodution and Higgs boson prodution expo-

nentiate after transformation to Mellin N -spae [1, 2℄,

C

N

= (1 + a

s

g

01

+ a

2

s

g

02

+ : : :) � exp (G

N

) + O(N

�1

ln

n

N) : (1)

Here g

0k

ollets theN -independent ontributions at k-th order in the strong

oupling onstant �

s

. The resummation exponent G

N

ontains terms of the

form ln

k

N to all orders in �

s

and takes the form

G

N

= lnN � g

1

(�) + g

2

(�) + a

s

g

3

(�) + a

2

s

g

4

(�) + : : : (2)

with � = �

0

a

s

lnN . The funtions g

k

represents the ontributions of the

k-th logarithmi (N

k�1

LL) order. All our relations refer to the MS sheme.

The exponential in Eq. (1) is build up from universal radiative fators

�

p

and J

p

due to radiation ollinear to the initial- and �nal-state partons,

and a proess-dependent ontribution �

int

from large-angle soft gluons. For

example, the resummation exponents for the proesses onsidered here read

G

N

DIS

= ln�

q

+ ln J

q

+ ln�

int

DIS

;

G

N

fDY;Hg

= 2 ln�

fq;gg

+ ln�

int

fDY;Hg

: (3)

�

p

, the so-alled jet funtion J

p

and �

int

are given by ertain integrals over

funtions of the running oupling, A

p

, B

p

andD. Spei�ally, the funtional

dependenes are �

p

(A

p

), J

p

(A

p

; B

p

) and �

int

(D). The funtions A

p

, B

p

and D, in turn, are de�ned in terms of power expansions in �

s

, for whih

we generally employ the onvention

f(�

s

) =

1

X

k=1

f

k

�

�

s

4�

�

k

�

1

X

k=1

f

k

a

k

s

: (4)
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The extent to whih these funtions are known sets the auray to whih

the threshold logarithms an be resummed. It is worth noting that the

funtion D

DIS

is found to vanish to all orders [14,15℄, hene �

int

DIS

= 1.

The expliit expressions for the funtions g

i

(�) in Eq. (2) are obtained by

performing the above-mentioned integrations, for instane using properties

of harmoni sums and algorithms for the evaluation of nested sums [16{19℄.

Spei�ally, g

3

and g

4

have been determined in Refs. [20,21℄ and [5℄, to whih

the reader is referred for details. While the leading-log (LL) funtion g

1

depends only on A

1

, the N

k�1

LL funtions g

k+1

inlude all parameters up to

A

k+1

, B

k

and D

k

. We now turn to the present status of their determination.

3. The known resummation oeÆients

The funtions A

p

are given by the leading large-N (or large-x) oeÆ-

ients of the diagonal splitting funtions for the parton evolution,

P

pp

(�

s

) = A

p

(�

s

) (1� x)

�1

+

+ P

Æ

p

(�

s

) Æ(1� x) + O (ln(1� x)) ; (5)

whih in turn are idential to the anomalous dimension of a Wilson line with

a usp [22℄. The known expansion oeÆients for the quark ase read [23,24℄

A

q;1

= 4C

F

;

A

q;2

= 8C

F

��

67

18

� �

2

�

C

A

�

5

9

n

f

�

;

A

q;3

= 16C

F

�

C

2

A

�

245

24

�

67

9

�

2

+

11

6

�

3

+

11

5

�

2

2

�

� C

F

n

f

�

55

24

� 2 �

3

�

+ C

A

n

f

�

�

209

108

+

10

9

�

2

�

7

3

�

3

�

+ n

2

f

�

�

1

27

��

(6)

for n

f

e�etively massless quark avours. Here C

F

and C

A

are the usual

olour fators (C

F

= 4=3, C

A

= 3 in QCD), and Riemann's zeta funtion is

denoted by �

n

. The gluoni oeÆients are related to Eqs. (6) by [22,25℄

A

g;i

= C

A

=C

F

A

q;i

: (7)

It is worthwhile to note that the �

2

2

terms in A

p;3

have been on�rmed by

the reent N =4 Super-Yang-Mills (SYM) alulation of Ref. [13℄.

The perturbative expansion of the funtions A

p

(�

s

) is very benign. In

fat, already A

3

has a very small e�et on the resummed oeÆient funtions

[20,21℄. Therefore it is suÆient to estimate the presently unknown fourth-

order oeÆients A

4

entering g

4

by their [1/1℄ Pad�e approximants,

A

q;4

� 7849 ; 4313 ; 1553 for n

f

= 3 ; 4 ; 5 ; (8)
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to whih we assign a onservative 50% unertainty in numerial appliations.

Eqs. (6) and (8) lead to the numerial four-avour expansion

A

q

(�

s

; n

f

=4)

�

=

0:4244�

s

(1+0:6381�

s

+0:5100�

2

s

+0:4

[1=1℄

�

3

s

+ : : :) : (9)

We now turn to the oeÆients B

p

entering the jet funtions J

p

. These

quantities an be determined by omparing the �

s

-expansion of Eqs. (1)

and (2) with the results of �xed-order alulations of the DIS oeÆient

funtions, whih we have reently extended to the third order in �

s

[26℄:

B

q;1

= �3 C

F

;

B

q;2

= C

2

F

�

�

3

2

+ 12 �

2

� 24 �

3

�

+ C

F

C

A

�

�

3155

54

+

44

3

�

2

+ 40 �

3

�

+ C

F

n

f

�

247

27

�

8

3

�

2

�

;

B

q;3

= C

3

F

�

�

29

2

� 18 �

2

� 68 �

3

�

288

5

�

2

2

+ 32 �

2

�

3

+ 240 �

5

�

+ C

A

C

2

F

�

�46 + 287 �

2

�

712

3

�

3

�

272

5

�

2

2

� 16 �

2

�

3

� 120 �

5

�

� C

2

A

C

F

�

599375

729

�

32126

81

�

2

�

21032

27

�

3

+

652

15

�

2

2

+

176

3

�

2

�

3

+ 232�

5

�

+ C

2

F

n

f

�

5501

54

� 50 �

2

+

32

9

�

3

�

+ C

F

n

2

f

�

�

8714

729

+

232

27

�

2

�

32

27

�

3

�

+ C

A

C

F

n

f

�

160906

729

�

9920

81

�

2

�

776

9

�

3

+

208

15

�

2

2

�

: (10)

The result for B

q;1

is, of ourse, well-known [1,2℄, and B

q;2

has been derived

by us before in Ref. [27℄ where we expliitly established also D

DIS

2

= 0.

For the extration of B

q;3

[5℄, on the other hand, we rely on the all-order

proofs [14,15℄ of D

DIS

= 0 mentioned above.

The numerial expansion of B

q

in QCD is far less stable than Eq. (9),

B

q

(�

s

; n

f

=4)

�

=

�0:3183�

s

(1 � 1:227�

s

� 3:405�

2

s

+ : : :) : (11)

Note, however, that the large third-order ontribution to B

q

atually sta-

bilizes the expansion of G

N

shown in Fig 1: for B

q;3

= 0 and N = 40, for

example, the N

3

LL term would be about as large as the previous order.

The oeÆients B

g;i

for the gluoni jet funtion J

g

are, for instane, rel-

evant in diret-photon prodution whih is dominated by the q�q! g and

qg ! q subproesses lose to threshold, see Ref. [28℄. These oeÆients

an be obtained in the same manner as Eqs. (10), but from DIS by exhange
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Fig. 1. Left: suessive approximations for the resummation exponent (2) of inlu-

sive DIS. Right: minimal-presription [3℄ onvolutions with a typial input shape.

of a salar � with a pointlike oupling to gluons, like the Higgs boson in

limit of a heavy top quark. We have derived the orresponding oeÆient

funtion C

�;DIS

up to the third order in the ourse of alulating the lower

row of the avour-singlet splitting funtion matrix [25℄. Comparison of these

results to the expansion of Eq. (1) yields B

g;1

and the previously unknown

quantities B

g;2

and B

g;3

. The analyti results an be found in Ref. [5℄. Here

we on�ne ourselves to the numerial expansion in four-avour QCD,

B

g

(�

s

; n

f

=4)

�

=

�0:6631�

s

(1 � 0:7651�

s

� 2:696�

2

s

+ : : :) ; (12)

whih shows a third-order enhanement similar to that in Eq. (11).

Finally we address the proess-dependent oeÆientsD

i

due to the large-

angle emission of soft gluons. Up to now, the two-loop oeÆient funtions

for proton-proton proesses are known only for the Drell-Yan ross setion

and Higgs boson prodution in the heavy-top approximation [29{32℄. The

orresponding oeÆients D

fDY;Hg

2

have been extrated from these results in

Refs. [20, 21℄. Even for these proesses, the three-loop oeÆient funtions

have not been alulated so far. It is possible, however, to derive their third-

order oeÆientsD

3

frommass-fatorization onstraints [6℄, using our reent

results for the pole terms of the three-loop quark and gluon form fators [7,8℄

and the third-order splitting funtions [24,25℄. Postponing the disussion

of this derivation to setion 5, the results for DY ase read

D

DY

1

= 0 ;
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D

DY

2

= C

F

�

C

A

�

�

1616

27

+

176

3

�

2

+ 56 �

3

�

+ n

f

�

224

27

�

32

3

�

2

��

;

D

DY

3

= C

F

C

2

A

�

�

594058

729

+

98224

81

�

2

+

40144

27

�

3

�

2992

15

�

2

2

�

352

3

�

2

�

3

� 384 �

5

�

+ C

F

C

A

n

f

�

125252

729

�

29392

81

�

2

�

2480

9

�

3

+

736

15

�

2

2

�

+ C

2

F

n

f

�

3422

27

� 32 �

2

�

608

9

�

3

�

64

5

�

2

2

�

+ C

F

n

2

f

�

�

3712

729

+

640

27

�

2

+

320

27

�

3

�

: (13)

The orresponding oeÆients for Higgs boson prodution via gluon-gluon

fusion are found to be related to these results by a simple olour-fator

substitution,

D

H

i

= C

A

=C

F

D

DY

i

; (14)

whih is in omplete analogy to Eq. (7). It worth pointing out that both the

usp anomalous dimensions A

p

and the oeÆients D

DY

and D

H

exhibit a

maximally non-abelian olour struture, as antiipated for A

p

in Ref. [22℄.

The numerial expansion of D

DY

in four-avour QCD is given by

D

DY

(�

s

; n

f

=4)

�

=

2:3211�

s

(0 + �

s

+ 2:675 �

2

s

+ : : :) : (15)

The ratio of the third- and seond-order oeÆients is very similar to that

for the jet funtion in Eq. (11), underlining the numerial relevane of D

3

.

4. On-shell form fators and their exponentiation

The form fators of quarks and gluons are gauge invariant (but infrared

divergent) parts of the perturbative orretions to inlusive hard satter-

ing proesses. They summarize the QCD orretions to the qqX and ggX

verties with a olour-neutral partile X of either spae-like or time-like

momentum q. These quantities are also key ingredients in the infrared fa-

torization of general higher-order amplitudes [33,34℄.

The relevant amplitude for the spae-like 

�

qq ase is

�

�

= ie

q

(�u 

�

u)F

q

(�

s

; Q

2

) ; (16)

where e

q

represents the quark harge and Q

2

= �q

2

the virtuality of the

photon. The gauge-invariant salar funtion F

q

is the spae-like quark form

fator whih an be alulated order by order in the strong oupling in
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dimensional regularization with D = 4� 2�. The orresponding Hgg vertex

de�ning F

g

is an e�etive interation in the limit of a heavy top quark,

L

e�

= �

1

4

C

H

HG

a

��

G

a;��

; (17)

where G

a

��

denotes the gluon �eld strength tensor, and the prefator C

H

inludes all QCD orretions, known to N

3

LO [35℄, to the top-quark loop.

The well-known exponentiation of the form fators F is ahieved by

solving the evolution equations [9{11℄

Q

2

�

�Q

2

lnF

 

�

s

;

Q

2

�

2

; �

!

=

1

2

K(�

s

; �) +

1

2

G

 

Q

2

�

2

; �

s

; �

!

(18)

based on a fatorization of the form fator F into two funtions K and

G. The latter are subjet to renormalization group equations [9℄ whih are

both governed by the same anomalous dimension A

p

of Eqs. (6) and (7)

beause, obviously, the sum of G and K in Eq. (18) is a renormalization-

group invariant. We follow the deomposition of Refs. [11, 36℄, where the

funtion K is a pure ounter-term olleting the infrared 1=� poles, while

the infrared-�nite funtion G inludes all dependene on the sale Q

2

.

The resummed form fator is given as a double integral with the bound-

ary ondition F(�

s

; 0; �) = 1 [11℄. After both integrations are performed,

lnF exhibits double logarithms of Q

2

=�

2

and double poles in �. The rela-

tion (18) an be then used for a �nite-order expansion and mathing of the

preditions to the results of expliit higher-order alulations. The resulting

expressions for the bare expansion oeÆients F

i

in terms of the quantities

A

i

and the (still �-dependent) �

s

-expansion oeÆients G

i

of G(Q

2

=�

2

= 1)

in Eq. (18) are skethed below (see Ref. [7℄ for the omplete formulae):

F

1

= �

1

2�

2

A

1

�

1

2�

G

1

F

2

=

1

8�

4

A

2

1

+

1

8�

3

A

1

(2G

1

� �

0

) +

1

8�

2

(G

2

1

+ : : :� A

2

)�

1

4�

G

2

F

3

= �

1

48�

6

A

3

1

+ : : :+

1

72�

2

(9G

1

G

2

+ : : :� 4A

3

)�

1

6�

G

3

F

4

=

1

384�

8

A

4

1

+ : : :+

1

96�

2

(3G

2

2

+ 8G

1

G

3

+ : : :� 3A

4

)�

1

8�

G

4

: (19)

We have extrated all three-loop pole terms of the quark and gluon form

fators F

q

and F

g

from the alulation of the third-order oeÆient funtions

for DIS by the exhange of a photon (oupling to quarks) and a salar �

(oupling to gluons) [26℄, already mentioned above in the disussion of the

jet funtion J

p

. The details will be reviewed in the next setion.
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Similar to the two-loop analysis of Ref. [12℄, we write the oeÆients G

p

as

G

p;1

= 2

�

P

Æ

p;1

� Æ

pg

�

0

�

+ f

p

1

+ �

g

G

p;1

;

G

p;2

= 2

�

P

Æ

p;2

� 2Æ

pg

�

1

�

+ f

p

2

+ �

0

g

G

p;1

(�=0) + �

g

G

p;2

;

G

p;3

= 2

�

P

Æ

p;3

� 3Æ

pg

�

2

�

+ f

p

3

+ �

1

g

G

p;1

(�=0)

+ �

0

h

g

G

p;2

(�=0)� �

0

g

g

G

p;1

(�=0)

i

+ �

g

G

p;3

(20)

with

e

F = �

�1

[F � F (�=0) ℄. The quantities P

Æ

p

have been de�ned in

Eq. (5) above, and the terms with Æ

pg

are due to the renormalization of the

operator G

��

G

��

in Eq. (17). The ruial point of the deomposition (20)

is that the funtions f

p

i

turn out to be universal and, like the A

p

in Eqs. (6)

and (7) maximally non-Abelian with (at least up to the third order)

f

g

i

= C

A

=C

F

f

q

i

: (21)

The expliit results for the quark ase read

f

q

1

= 0 ; f

q

2

= 2C

F

�

��

0

�

2

�

56

27

n

f

+ C

A

�

404

27

� 14�

3

��

;

f

q

3

= C

F

C

2

A

�

136781

729

�

12650

81

�

2

�

1316

3

�

3

+

352

5

�

2

2

+

176

3

�

2

�

3

+ 192 �

5

�

+ C

A

C

F

n

f

�

�

11842

729

+

2828

81

�

2

+

728

27

�

3

�

96

5

�

2

2

�

+ C

2

F

n

f

�

�

1711

27

+ 4 �

2

+

304

9

�

3

+

32

5

�

2

2

�

+ C

F

n

2

f

�

�

2080

729

�

40

27

�

2

+

112

27

�

3

�

: (22)

Note that f

q

2

has been obtained already in Ref. [12℄, and that the oeÆients

of the highest �-funtion weights, �

2

�

3

and �

5

at three loops, agree with the

results inferred from the reent N =4 SYM alulation in Ref. [13℄.

Going bak to Eq. (19), it is worth noting that the leading term of G

3

in Eq. (20), together with orresponding oeÆients of G

1

and G

2

to higher

powers in � (see Refs. [7, 8℄ for the expliit results) �x the six highest poles

of the form fators at four loops and, in fat, at all higher orders. Moreover,

taking into aount that the numerial e�et of A

4

in Eq. (9) is small, our

present results are suÆient for deriving the infrared �nite absolute ratio

jF

p

(q

2

)=F

p

(�q

2

)j

2

of the time-like and spae-like form fators up to the

fourth order in �

s

. The orresponding numerial results for n

f

= 4; 5 read

q�q

�

: 1 + 2:094�

s

+ 5:613 �

2

s

+ 15:70�

3

s

+ (48:63� 0:43)�

4

s

;

ggH : 1 + 4:712�

s

+ 13:69�

2

s

+ 25:94�

3

s

+ (36:65� 0:35)�

4

s

; (23)

where the the unertainty of the last terms is due that of the fourth-order

usp anomalous dimensions A

p;4

, as estimated below Eq. (8) in setion 2.
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5. Partoni ross setion and their infrared pole struture

In this setion, we �nally disuss the extration of the form fators from

our alulation of the oeÆient funtions for inlusive DIS and the related

derivation of all soft-enhaned third-order terms for the Drell-Yan proess

and Higgs prodution, and thus of D

3

given already in Eqs. (13) and (14),

from these form-fator results and mass-fatorization onstraints [6℄.

The starting points for the �rst step are the expliit results for the

bare (unrenormalized and unfatorized) partoni struture funtions F

b

for



�

q! qX and �

�

g! gX in the limit x! 1 [26℄. At eah order �

n

s

keep-

ing only the singular piees proportional to Æ(1�x) and the +-distributions

D

l

=

"

ln

l

(1� x)

(1� x)

#

+

; l = 1; : : : 2n� 1 ; (24)

these results are ompared to the general struture of the n-th order on-

tribution F

b

n

in terms of the l-loop form fators F

l

and the orresponding

real-emission parts S

l

,

F

b

0

= Æ(1� x)

F

b

1

= 2F

1

Æ(1� x) + S

1

F

b

2

=

�

2F

2

+ F

2

1

�

Æ(1� x) + 2F

1

S

1

+ S

2

F

b

3

= (2F

3

+ 2F

1

F

2

) Æ(1� x) +

�

2F

2

+ F

2

1

�

S

1

+ 2F

1

S

2

+ S

3

: (25)

In DIS the x-dependene of the real emission fators S

k

is of the form

S

k

(f

k;�

), with the D-dimensional +-distributions f

k;�

de�ned by

f

k;�

(x) = �[ (1� x)

�1�k�

℄

+

= �

1

k

Æ(1� x) +

X

i=0

(�k�)

i

i !

�D

i

: (26)

The dimensionally regularized (with D = 4 � 2�) bare struture funtions

F

b

n

in Eq. (25) exhibit poles in � up to �

�2n

, with a struture ompletely

determined by mass fatorization. On the other hand, the individual real

and virtual ontributions F

k

and S

k

in Eq. (25) ontain poles up to order

�

�2k

, whih anel due to the Kinoshita{Lee-Nauenberg theorem [37,38℄.

The determination of the form fator now proeeds as follows. One the

ombinations of lower-order quantities in Eq. (25) have been subtrated from

F

b

n

, the n-loop form fator F

n

an simply be extrated by the substitution

D

0

!

1

n�

Æ(1� x)�

X

i=1

(�n�)

i

i !

D

i

; (27)
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whih exploits the partiular analytial dependene of S

k

on x, i.e., Eq. (26).

As Æ(1 � x) enters with a fator 1=�, this extration loses one power in �.

Hene from the third-order alulation to order �

0

, as performed for the

oeÆient funtion, we an only extrat all pole terms of F

3

in this manner.

The seond step, the determination of the +-distribution ontributions

to oeÆient funtions for lepton-pair and and Higgs boson prodution,

proeeds along similar lines, see Ref. [39℄ for an early two-loop appliation

to the Drell-Yan proess. In analogy to Eq. (25), the soft limit of the bare

partoni ross setions W

b

for q�q ! 

�

! l

+

l

�

and gg ! H reads

W

b

0

= Æ(1� x)

W

b

1

= 2ReF

1

Æ(1� x) + S

1

W

b

2

= (2ReF

2

+ jF

1

j

2

) Æ(1� x) + 2ReF

1

S

1

+ S

2

W

b

3

= (2ReF

3

+ 2 jF

1

F

2

j) Æ(1� x) + (2ReF

2

+ jF

1

j

2

)S

1

+ 2ReF

1

S

2

+ S

3

; (28)

where, of ourse, F now denotes the time-like quark or gluon form fator,

known by analyti ontinuation from q

2

= �Q

2

< 0 to q

2

> 0. The real-

emission ontributions S

k

depend on the saling variable x = M

2



�

; H

=s. In

this ase, the dependene of S

k

on x is of the form S

k

(f

2k;�

), i.e.,

S

k

= f

2k;�

1

X

l=�2k

2k s

k;l

�

l

: (29)

With the known time-like form fators, the expansion oeÆients s

k;l

of

the soft funtion S

k

an be derived reursively as far as they are subjet

to the KLN anellations and the mass-fatorization struture relating the

remaining poles to the splitting funtions (5). Employing the results of

Refs. [7,8℄ and [24,25℄, the third-order terms s

3;�6

: : : s

3;�1

an be obtained.

Due to Eq. (26) this is suÆient to derive all +-distribution ontributions to

the third-order oeÆient funtions, in partiular also the oeÆient of D

0

from whih D

fDY;Hg

3

in Eqs. (13) and (14), an be determined by mathing.

An important appliation on these new results is presented in Fig. 2.

The onnetion between mass-fatorization and resummation leads to a

simple relation between the oeÆients D

n

and f

p

n

in Eqs. (21) and (22),

D

fDY;Hg

2

= �2f

2

+ 2�

0

s

1;0

D

fDY;Hg

3

= �2f

3

+ 2�

1

s

1;0

� 4�

2

0

s

1;1

+ 4�

0

�

s

2;0

�

36

5

�

2

2

C

2

fF;Ag

�

; (30)

whih has also been derived by extending the threshold resummation to the

N -independent ontributions [40, 41℄, see also Ref. [42℄. In our approah,

the s

n;l

terms an be traed bak to the �

s

-renormalization of Eqs. (28).
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Fig. 2. The perturbative expansion of the total ross setion for Higgs prodution

at the LHC. Left: dependene on the Higgs massM

H

. Right: renormalization-sale

(in-)stability for M

H

= 120 GeV. See Ref. [6℄ for a detailed disussion.

6. Summary

Building on our third-order omputation of the splitting funtions [24,25℄

and the oeÆient funtions for inlusive DIS [26℄, we have derived new

three-loop and all-order results for the threshold resummation [5, 6℄, the

on-shell quark and gluon form fators [7, 8℄, and the oeÆient funtions

for lepton-pair and Higgs boson prodution at proton olliders [6℄. These

results have important impliations within and beyond perturbative QCD.
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