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We summarize our re
ent results on the resummation of hard-s
attering 
o-

eÆ
ient fun
tions and on-shell form fa
tors in massless perturbative QCD.

The threshold resummation has been extended to the fourth logarithmi


order for deep-inelasti
 s
attering, Drell-Yan lepton pair produ
tion and

Higgs produ
tion via gluon-gluon fusion. The leading six infrared pole

terms have been derived to all orders in the strong 
oupling 
onstant for

the photon-quark-quark and the (heavy-top) Higgs-gluon-gluon form fa
-

tors. These results have many impli
ations, most notably they lead to a

new best estimate for the Higgs produ
tion 
ross se
tion at the LHC.

1. Introdu
tion

CoeÆ
ient fun
tions, or partoni
 
ross se
tions, form the ba
kbone of

perturbative QCD. These quantities are 
al
ulable as a power series in the

strong 
oupling 
onstant �

s

, but exhibit large logarithmi
 
orre
tions 
lose

to threshold. The all-order resummation of the dominant soft-gluon 
ontri-

butions takes the form of an exponentiation in Mellin-N spa
e [1{4℄, where

the moments N are de�ned with respe
t to the appropriate s
aling variable,

like Bjorken-x in deep-inelasti
 s
attering (DIS) and x =M

2

l

+

l

�

; H

=s for the

Drell-Yan (DY) pro
ess and Higgs produ
tion via gluon-gluon fusion.

The purpose of the exponentiation is (at least) two-fold. On the one

hand, it 
an dire
tly lead to improved phenomenologi
al predi
tions 
lose

to ex
eptional kinemati
 points, for instan
e to an improved stability un-

der s
ale variations. On the other hand, it 
an be viewed as a generating

�
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fun
tional of �xed-order perturbation theory 
lose to the partoni
 thresh-

olds. Hen
e progress in the soft-gluon resummation also fa
ilitates improved

�xed-order predi
tions whi
h, depending on the spe
i�
 observable, 
an be

relevant even very far from the hadroni
 threshold.

In this 
ontribution we dis
uss re
ent results for the threshold resumma-

tion up to the fourth logarithmi
 (N

3

LL) order [5, 6℄, and brie
y illustrate

their impli
ations. We also summarize our re
ent results [7, 8℄ for the on-

shell quark and gluon form fa
tors and their exponentiation [9{12℄, whi
h

were instrumental in extending the soft-gluon resummation to N

3

LL a

u-

ra
y for lepton-pair and Higgs boson produ
tion. Moreover the form-fa
tor

results are interesting also in a wider 
ontext, e.g., they provide another link

to re
ent 
al
ulations performed in N =4 Super-Yang-Mills theory [13℄.

2. General stru
ture of the threshold resummation

As mentioned in the introdu
tion, the 
oeÆ
ient fun
tions for in
lusive

DIS, Drell-Yan lepton-pair produ
tion and Higgs boson produ
tion expo-

nentiate after transformation to Mellin N -spa
e [1, 2℄,

C

N

= (1 + a

s

g

01

+ a

2

s

g

02

+ : : :) � exp (G

N

) + O(N

�1

ln

n

N) : (1)

Here g

0k


olle
ts theN -independent 
ontributions at k-th order in the strong


oupling 
onstant �

s

. The resummation exponent G

N


ontains terms of the

form ln

k

N to all orders in �

s

and takes the form

G

N

= lnN � g

1

(�) + g

2

(�) + a

s

g

3

(�) + a

2

s

g

4

(�) + : : : (2)

with � = �

0

a

s

lnN . The fun
tions g

k

represents the 
ontributions of the

k-th logarithmi
 (N

k�1

LL) order. All our relations refer to the MS s
heme.

The exponential in Eq. (1) is build up from universal radiative fa
tors

�

p

and J

p

due to radiation 
ollinear to the initial- and �nal-state partons,

and a pro
ess-dependent 
ontribution �

int

from large-angle soft gluons. For

example, the resummation exponents for the pro
esses 
onsidered here read

G

N

DIS

= ln�

q

+ ln J

q

+ ln�

int

DIS

;

G

N

fDY;Hg

= 2 ln�

fq;gg

+ ln�

int

fDY;Hg

: (3)

�

p

, the so-
alled jet fun
tion J

p

and �

int

are given by 
ertain integrals over

fun
tions of the running 
oupling, A

p

, B

p

andD. Spe
i�
ally, the fun
tional

dependen
es are �

p

(A

p

), J

p

(A

p

; B

p

) and �

int

(D). The fun
tions A

p

, B

p

and D, in turn, are de�ned in terms of power expansions in �

s

, for whi
h

we generally employ the 
onvention

f(�

s

) =

1

X

k=1

f

k

�

�

s

4�

�

k

�

1

X

k=1

f

k

a

k

s

: (4)
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The extent to whi
h these fun
tions are known sets the a

ura
y to whi
h

the threshold logarithms 
an be resummed. It is worth noting that the

fun
tion D

DIS

is found to vanish to all orders [14,15℄, hen
e �

int

DIS

= 1.

The expli
it expressions for the fun
tions g

i

(�) in Eq. (2) are obtained by

performing the above-mentioned integrations, for instan
e using properties

of harmoni
 sums and algorithms for the evaluation of nested sums [16{19℄.

Spe
i�
ally, g

3

and g

4

have been determined in Refs. [20,21℄ and [5℄, to whi
h

the reader is referred for details. While the leading-log (LL) fun
tion g

1

depends only on A

1

, the N

k�1

LL fun
tions g

k+1

in
lude all parameters up to

A

k+1

, B

k

and D

k

. We now turn to the present status of their determination.

3. The known resummation 
oeÆ
ients

The fun
tions A

p

are given by the leading large-N (or large-x) 
oeÆ-


ients of the diagonal splitting fun
tions for the parton evolution,

P

pp

(�

s

) = A

p

(�

s

) (1� x)

�1

+

+ P

Æ

p

(�

s

) Æ(1� x) + O (ln(1� x)) ; (5)

whi
h in turn are identi
al to the anomalous dimension of a Wilson line with

a 
usp [22℄. The known expansion 
oeÆ
ients for the quark 
ase read [23,24℄

A

q;1

= 4C

F

;

A

q;2

= 8C

F

��

67

18

� �

2

�

C

A

�

5

9

n

f

�

;

A

q;3

= 16C

F

�

C

2

A

�

245

24

�

67

9

�

2

+

11

6

�

3

+

11

5

�

2

2

�

� C

F

n

f

�

55

24

� 2 �

3

�

+ C

A

n

f

�

�

209

108

+

10

9

�

2

�

7

3

�

3

�

+ n

2

f

�

�

1

27

��

(6)

for n

f

e�e
tively massless quark 
avours. Here C

F

and C

A

are the usual


olour fa
tors (C

F

= 4=3, C

A

= 3 in QCD), and Riemann's zeta fun
tion is

denoted by �

n

. The gluoni
 
oeÆ
ients are related to Eqs. (6) by [22,25℄

A

g;i

= C

A

=C

F

A

q;i

: (7)

It is worthwhile to note that the �

2

2

terms in A

p;3

have been 
on�rmed by

the re
ent N =4 Super-Yang-Mills (SYM) 
al
ulation of Ref. [13℄.

The perturbative expansion of the fun
tions A

p

(�

s

) is very benign. In

fa
t, already A

3

has a very small e�e
t on the resummed 
oeÆ
ient fun
tions

[20,21℄. Therefore it is suÆ
ient to estimate the presently unknown fourth-

order 
oeÆ
ients A

4

entering g

4

by their [1/1℄ Pad�e approximants,

A

q;4

� 7849 ; 4313 ; 1553 for n

f

= 3 ; 4 ; 5 ; (8)
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to whi
h we assign a 
onservative 50% un
ertainty in numeri
al appli
ations.

Eqs. (6) and (8) lead to the numeri
al four-
avour expansion

A

q

(�

s

; n

f

=4)

�

=

0:4244�

s

(1+0:6381�

s

+0:5100�

2

s

+0:4

[1=1℄

�

3

s

+ : : :) : (9)

We now turn to the 
oeÆ
ients B

p

entering the jet fun
tions J

p

. These

quantities 
an be determined by 
omparing the �

s

-expansion of Eqs. (1)

and (2) with the results of �xed-order 
al
ulations of the DIS 
oeÆ
ient

fun
tions, whi
h we have re
ently extended to the third order in �

s

[26℄:

B

q;1

= �3 C

F

;

B

q;2

= C

2

F

�

�

3

2

+ 12 �

2

� 24 �

3

�

+ C

F

C

A

�

�

3155

54

+

44

3

�

2

+ 40 �

3

�

+ C

F

n

f

�

247

27

�

8

3

�

2

�

;

B

q;3

= C

3

F

�

�

29

2

� 18 �

2

� 68 �

3

�

288

5

�

2

2

+ 32 �

2

�

3

+ 240 �

5

�

+ C

A

C

2

F

�

�46 + 287 �

2

�

712

3

�

3

�

272

5

�

2

2

� 16 �

2

�

3

� 120 �

5

�

� C

2

A

C

F

�

599375

729

�

32126

81

�

2

�

21032

27

�

3

+

652

15

�

2

2

+

176

3

�

2

�

3

+ 232�

5

�

+ C

2

F

n

f

�

5501

54

� 50 �

2

+

32

9

�

3

�

+ C

F

n

2

f

�

�

8714

729

+

232

27

�

2

�

32

27

�

3

�

+ C

A

C

F

n

f

�

160906

729

�

9920

81

�

2

�

776

9

�

3

+

208

15

�

2

2

�

: (10)

The result for B

q;1

is, of 
ourse, well-known [1,2℄, and B

q;2

has been derived

by us before in Ref. [27℄ where we expli
itly established also D

DIS

2

= 0.

For the extra
tion of B

q;3

[5℄, on the other hand, we rely on the all-order

proofs [14,15℄ of D

DIS

= 0 mentioned above.

The numeri
al expansion of B

q

in QCD is far less stable than Eq. (9),

B

q

(�

s

; n

f

=4)

�

=

�0:3183�

s

(1 � 1:227�

s

� 3:405�

2

s

+ : : :) : (11)

Note, however, that the large third-order 
ontribution to B

q

a
tually sta-

bilizes the expansion of G

N

shown in Fig 1: for B

q;3

= 0 and N = 40, for

example, the N

3

LL term would be about as large as the previous order.

The 
oeÆ
ients B

g;i

for the gluoni
 jet fun
tion J

g

are, for instan
e, rel-

evant in dire
t-photon produ
tion whi
h is dominated by the q�q! g
 and

qg ! q
 subpro
esses 
lose to threshold, see Ref. [28℄. These 
oeÆ
ients


an be obtained in the same manner as Eqs. (10), but from DIS by ex
hange
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Fig. 1. Left: su

essive approximations for the resummation exponent (2) of in
lu-

sive DIS. Right: minimal-pres
ription [3℄ 
onvolutions with a typi
al input shape.

of a s
alar � with a pointlike 
oupling to gluons, like the Higgs boson in

limit of a heavy top quark. We have derived the 
orresponding 
oeÆ
ient

fun
tion C

�;DIS

up to the third order in the 
ourse of 
al
ulating the lower

row of the 
avour-singlet splitting fun
tion matrix [25℄. Comparison of these

results to the expansion of Eq. (1) yields B

g;1

and the previously unknown

quantities B

g;2

and B

g;3

. The analyti
 results 
an be found in Ref. [5℄. Here

we 
on�ne ourselves to the numeri
al expansion in four-
avour QCD,

B

g

(�

s

; n

f

=4)

�

=

�0:6631�

s

(1 � 0:7651�

s

� 2:696�

2

s

+ : : :) ; (12)

whi
h shows a third-order enhan
ement similar to that in Eq. (11).

Finally we address the pro
ess-dependent 
oeÆ
ientsD

i

due to the large-

angle emission of soft gluons. Up to now, the two-loop 
oeÆ
ient fun
tions

for proton-proton pro
esses are known only for the Drell-Yan 
ross se
tion

and Higgs boson produ
tion in the heavy-top approximation [29{32℄. The


orresponding 
oeÆ
ients D

fDY;Hg

2

have been extra
ted from these results in

Refs. [20, 21℄. Even for these pro
esses, the three-loop 
oeÆ
ient fun
tions

have not been 
al
ulated so far. It is possible, however, to derive their third-

order 
oeÆ
ientsD

3

frommass-fa
torization 
onstraints [6℄, using our re
ent

results for the pole terms of the three-loop quark and gluon form fa
tors [7,8℄

and the third-order splitting fun
tions [24,25℄. Postponing the dis
ussion

of this derivation to se
tion 5, the results for DY 
ase read

D

DY

1

= 0 ;
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D

DY

2

= C

F

�

C

A

�

�

1616

27

+

176

3

�

2

+ 56 �

3

�

+ n

f

�

224

27

�

32

3

�

2

��

;

D

DY

3

= C

F

C

2

A

�

�

594058

729

+

98224

81

�

2

+

40144

27

�

3

�

2992

15

�

2

2

�

352

3

�

2

�

3

� 384 �

5

�

+ C

F

C

A

n

f

�

125252

729

�

29392

81

�

2

�

2480

9

�

3

+

736

15

�

2

2

�

+ C

2

F

n

f

�

3422

27

� 32 �

2

�

608

9

�

3

�

64

5

�

2

2

�

+ C

F

n

2

f

�

�

3712

729

+

640

27

�

2

+

320

27

�

3

�

: (13)

The 
orresponding 
oeÆ
ients for Higgs boson produ
tion via gluon-gluon

fusion are found to be related to these results by a simple 
olour-fa
tor

substitution,

D

H

i

= C

A

=C

F

D

DY

i

; (14)

whi
h is in 
omplete analogy to Eq. (7). It worth pointing out that both the


usp anomalous dimensions A

p

and the 
oeÆ
ients D

DY

and D

H

exhibit a

maximally non-abelian 
olour stru
ture, as anti
ipated for A

p

in Ref. [22℄.

The numeri
al expansion of D

DY

in four-
avour QCD is given by

D

DY

(�

s

; n

f

=4)

�

=

2:3211�

s

(0 + �

s

+ 2:675 �

2

s

+ : : :) : (15)

The ratio of the third- and se
ond-order 
oeÆ
ients is very similar to that

for the jet fun
tion in Eq. (11), underlining the numeri
al relevan
e of D

3

.

4. On-shell form fa
tors and their exponentiation

The form fa
tors of quarks and gluons are gauge invariant (but infrared

divergent) parts of the perturbative 
orre
tions to in
lusive hard s
atter-

ing pro
esses. They summarize the QCD 
orre
tions to the qqX and ggX

verti
es with a 
olour-neutral parti
le X of either spa
e-like or time-like

momentum q. These quantities are also key ingredients in the infrared fa
-

torization of general higher-order amplitudes [33,34℄.

The relevant amplitude for the spa
e-like 


�

qq 
ase is

�

�

= ie

q

(�u 


�

u)F

q

(�

s

; Q

2

) ; (16)

where e

q

represents the quark 
harge and Q

2

= �q

2

the virtuality of the

photon. The gauge-invariant s
alar fun
tion F

q

is the spa
e-like quark form

fa
tor whi
h 
an be 
al
ulated order by order in the strong 
oupling in
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dimensional regularization with D = 4� 2�. The 
orresponding Hgg vertex

de�ning F

g

is an e�e
tive intera
tion in the limit of a heavy top quark,

L

e�

= �

1

4

C

H

HG

a

��

G

a;��

; (17)

where G

a

��

denotes the gluon �eld strength tensor, and the prefa
tor C

H

in
ludes all QCD 
orre
tions, known to N

3

LO [35℄, to the top-quark loop.

The well-known exponentiation of the form fa
tors F is a
hieved by

solving the evolution equations [9{11℄

Q

2

�

�Q

2

lnF

 

�

s

;

Q

2

�

2

; �

!

=

1

2

K(�

s

; �) +

1

2

G

 

Q

2

�

2

; �

s

; �

!

(18)

based on a fa
torization of the form fa
tor F into two fun
tions K and

G. The latter are subje
t to renormalization group equations [9℄ whi
h are

both governed by the same anomalous dimension A

p

of Eqs. (6) and (7)

be
ause, obviously, the sum of G and K in Eq. (18) is a renormalization-

group invariant. We follow the de
omposition of Refs. [11, 36℄, where the

fun
tion K is a pure 
ounter-term 
olle
ting the infrared 1=� poles, while

the infrared-�nite fun
tion G in
ludes all dependen
e on the s
ale Q

2

.

The resummed form fa
tor is given as a double integral with the bound-

ary 
ondition F(�

s

; 0; �) = 1 [11℄. After both integrations are performed,

lnF exhibits double logarithms of Q

2

=�

2

and double poles in �. The rela-

tion (18) 
an be then used for a �nite-order expansion and mat
hing of the

predi
tions to the results of expli
it higher-order 
al
ulations. The resulting

expressions for the bare expansion 
oeÆ
ients F

i

in terms of the quantities

A

i

and the (still �-dependent) �

s

-expansion 
oeÆ
ients G

i

of G(Q

2

=�

2

= 1)

in Eq. (18) are sket
hed below (see Ref. [7℄ for the 
omplete formulae):

F

1

= �

1

2�

2

A

1

�

1

2�

G

1

F

2

=

1

8�

4

A

2

1

+

1

8�

3

A

1

(2G

1

� �

0

) +

1

8�

2

(G

2

1

+ : : :� A

2

)�

1

4�

G

2

F

3

= �

1

48�

6

A

3

1

+ : : :+

1

72�

2

(9G

1

G

2

+ : : :� 4A

3

)�

1

6�

G

3

F

4

=

1

384�

8

A

4

1

+ : : :+

1

96�

2

(3G

2

2

+ 8G

1

G

3

+ : : :� 3A

4

)�

1

8�

G

4

: (19)

We have extra
ted all three-loop pole terms of the quark and gluon form

fa
tors F

q

and F

g

from the 
al
ulation of the third-order 
oeÆ
ient fun
tions

for DIS by the ex
hange of a photon (
oupling to quarks) and a s
alar �

(
oupling to gluons) [26℄, already mentioned above in the dis
ussion of the

jet fun
tion J

p

. The details will be reviewed in the next se
tion.
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Similar to the two-loop analysis of Ref. [12℄, we write the 
oeÆ
ients G

p

as

G

p;1

= 2

�

P

Æ

p;1

� Æ

pg

�

0

�

+ f

p

1

+ �

g

G

p;1

;

G

p;2

= 2

�

P

Æ

p;2

� 2Æ

pg

�

1

�

+ f

p

2

+ �

0

g

G

p;1

(�=0) + �

g

G

p;2

;

G

p;3

= 2

�

P

Æ

p;3

� 3Æ

pg

�

2

�

+ f

p

3

+ �

1

g

G

p;1

(�=0)

+ �

0

h

g

G

p;2

(�=0)� �

0

g

g

G

p;1

(�=0)

i

+ �

g

G

p;3

(20)

with

e

F = �

�1

[F � F (�=0) ℄. The quantities P

Æ

p

have been de�ned in

Eq. (5) above, and the terms with Æ

pg

are due to the renormalization of the

operator G

��

G

��

in Eq. (17). The 
ru
ial point of the de
omposition (20)

is that the fun
tions f

p

i

turn out to be universal and, like the A

p

in Eqs. (6)

and (7) maximally non-Abelian with (at least up to the third order)

f

g

i

= C

A

=C

F

f

q

i

: (21)

The expli
it results for the quark 
ase read

f

q

1

= 0 ; f

q

2

= 2C

F

�

��

0

�

2

�

56

27

n

f

+ C

A

�

404

27

� 14�

3

��

;

f

q

3

= C

F

C

2

A

�

136781

729

�

12650

81

�

2

�

1316

3

�

3

+

352

5

�

2

2

+

176

3

�

2

�

3

+ 192 �

5

�

+ C

A

C

F

n

f

�

�

11842

729

+

2828

81

�

2

+

728

27

�

3

�

96

5

�

2

2

�

+ C

2

F

n

f

�

�

1711

27

+ 4 �

2

+

304

9

�

3

+

32

5

�

2

2

�

+ C

F

n

2

f

�

�

2080

729

�

40

27

�

2

+

112

27

�

3

�

: (22)

Note that f

q

2

has been obtained already in Ref. [12℄, and that the 
oeÆ
ients

of the highest �-fun
tion weights, �

2

�

3

and �

5

at three loops, agree with the

results inferred from the re
ent N =4 SYM 
al
ulation in Ref. [13℄.

Going ba
k to Eq. (19), it is worth noting that the leading term of G

3

in Eq. (20), together with 
orresponding 
oeÆ
ients of G

1

and G

2

to higher

powers in � (see Refs. [7, 8℄ for the expli
it results) �x the six highest poles

of the form fa
tors at four loops and, in fa
t, at all higher orders. Moreover,

taking into a

ount that the numeri
al e�e
t of A

4

in Eq. (9) is small, our

present results are suÆ
ient for deriving the infrared �nite absolute ratio

jF

p

(q

2

)=F

p

(�q

2

)j

2

of the time-like and spa
e-like form fa
tors up to the

fourth order in �

s

. The 
orresponding numeri
al results for n

f

= 4; 5 read

q�q


�

: 1 + 2:094�

s

+ 5:613 �

2

s

+ 15:70�

3

s

+ (48:63� 0:43)�

4

s

;

ggH : 1 + 4:712�

s

+ 13:69�

2

s

+ 25:94�

3

s

+ (36:65� 0:35)�

4

s

; (23)

where the the un
ertainty of the last terms is due that of the fourth-order


usp anomalous dimensions A

p;4

, as estimated below Eq. (8) in se
tion 2.
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5. Partoni
 
ross se
tion and their infrared pole stru
ture

In this se
tion, we �nally dis
uss the extra
tion of the form fa
tors from

our 
al
ulation of the 
oeÆ
ient fun
tions for in
lusive DIS and the related

derivation of all soft-enhan
ed third-order terms for the Drell-Yan pro
ess

and Higgs produ
tion, and thus of D

3

given already in Eqs. (13) and (14),

from these form-fa
tor results and mass-fa
torization 
onstraints [6℄.

The starting points for the �rst step are the expli
it results for the

bare (unrenormalized and unfa
torized) partoni
 stru
ture fun
tions F

b

for




�

q! qX and �

�

g! gX in the limit x! 1 [26℄. At ea
h order �

n

s

keep-

ing only the singular pie
es proportional to Æ(1�x) and the +-distributions

D

l

=

"

ln

l

(1� x)

(1� x)

#

+

; l = 1; : : : 2n� 1 ; (24)

these results are 
ompared to the general stru
ture of the n-th order 
on-

tribution F

b

n

in terms of the l-loop form fa
tors F

l

and the 
orresponding

real-emission parts S

l

,

F

b

0

= Æ(1� x)

F

b

1

= 2F

1

Æ(1� x) + S

1

F

b

2

=

�

2F

2

+ F

2

1

�

Æ(1� x) + 2F

1

S

1

+ S

2

F

b

3

= (2F

3

+ 2F

1

F

2

) Æ(1� x) +

�

2F

2

+ F

2

1

�

S

1

+ 2F

1

S

2

+ S

3

: (25)

In DIS the x-dependen
e of the real emission fa
tors S

k

is of the form

S

k

(f

k;�

), with the D-dimensional +-distributions f

k;�

de�ned by

f

k;�

(x) = �[ (1� x)

�1�k�

℄

+

= �

1

k

Æ(1� x) +

X

i=0

(�k�)

i

i !

�D

i

: (26)

The dimensionally regularized (with D = 4 � 2�) bare stru
ture fun
tions

F

b

n

in Eq. (25) exhibit poles in � up to �

�2n

, with a stru
ture 
ompletely

determined by mass fa
torization. On the other hand, the individual real

and virtual 
ontributions F

k

and S

k

in Eq. (25) 
ontain poles up to order

�

�2k

, whi
h 
an
el due to the Kinoshita{Lee-Nauenberg theorem [37,38℄.

The determination of the form fa
tor now pro
eeds as follows. On
e the


ombinations of lower-order quantities in Eq. (25) have been subtra
ted from

F

b

n

, the n-loop form fa
tor F

n


an simply be extra
ted by the substitution

D

0

!

1

n�

Æ(1� x)�

X

i=1

(�n�)

i

i !

D

i

; (27)
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whi
h exploits the parti
ular analyti
al dependen
e of S

k

on x, i.e., Eq. (26).

As Æ(1 � x) enters with a fa
tor 1=�, this extra
tion loses one power in �.

Hen
e from the third-order 
al
ulation to order �

0

, as performed for the


oeÆ
ient fun
tion, we 
an only extra
t all pole terms of F

3

in this manner.

The se
ond step, the determination of the +-distribution 
ontributions

to 
oeÆ
ient fun
tions for lepton-pair and and Higgs boson produ
tion,

pro
eeds along similar lines, see Ref. [39℄ for an early two-loop appli
ation

to the Drell-Yan pro
ess. In analogy to Eq. (25), the soft limit of the bare

partoni
 
ross se
tions W

b

for q�q ! 


�

! l

+

l

�

and gg ! H reads

W

b

0

= Æ(1� x)

W

b

1

= 2ReF

1

Æ(1� x) + S

1

W

b

2

= (2ReF

2

+ jF

1

j

2

) Æ(1� x) + 2ReF

1

S

1

+ S

2

W

b

3

= (2ReF

3

+ 2 jF

1

F

2

j) Æ(1� x) + (2ReF

2

+ jF

1

j

2

)S

1

+ 2ReF

1

S

2

+ S

3

; (28)

where, of 
ourse, F now denotes the time-like quark or gluon form fa
tor,

known by analyti
 
ontinuation from q

2

= �Q

2

< 0 to q

2

> 0. The real-

emission 
ontributions S

k

depend on the s
aling variable x = M

2




�

; H

=s. In

this 
ase, the dependen
e of S

k

on x is of the form S

k

(f

2k;�

), i.e.,

S

k

= f

2k;�

1

X

l=�2k

2k s

k;l

�

l

: (29)

With the known time-like form fa
tors, the expansion 
oeÆ
ients s

k;l

of

the soft fun
tion S

k


an be derived re
ursively as far as they are subje
t

to the KLN 
an
ellations and the mass-fa
torization stru
ture relating the

remaining poles to the splitting fun
tions (5). Employing the results of

Refs. [7,8℄ and [24,25℄, the third-order terms s

3;�6

: : : s

3;�1


an be obtained.

Due to Eq. (26) this is suÆ
ient to derive all +-distribution 
ontributions to

the third-order 
oeÆ
ient fun
tions, in parti
ular also the 
oeÆ
ient of D

0

from whi
h D

fDY;Hg

3

in Eqs. (13) and (14), 
an be determined by mat
hing.

An important appli
ation on these new results is presented in Fig. 2.

The 
onne
tion between mass-fa
torization and resummation leads to a

simple relation between the 
oeÆ
ients D

n

and f

p

n

in Eqs. (21) and (22),

D

fDY;Hg

2

= �2f

2

+ 2�

0

s

1;0

D

fDY;Hg

3

= �2f

3

+ 2�

1

s

1;0

� 4�

2

0

s

1;1

+ 4�

0

�

s

2;0

�

36

5

�

2

2

C

2

fF;Ag

�

; (30)

whi
h has also been derived by extending the threshold resummation to the

N -independent 
ontributions [40, 41℄, see also Ref. [42℄. In our approa
h,

the s

n;l

terms 
an be tra
ed ba
k to the �

s

-renormalization of Eqs. (28).
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Fig. 2. The perturbative expansion of the total 
ross se
tion for Higgs produ
tion

at the LHC. Left: dependen
e on the Higgs massM

H

. Right: renormalization-s
ale

(in-)stability for M

H

= 120 GeV. See Ref. [6℄ for a detailed dis
ussion.

6. Summary

Building on our third-order 
omputation of the splitting fun
tions [24,25℄

and the 
oeÆ
ient fun
tions for in
lusive DIS [26℄, we have derived new

three-loop and all-order results for the threshold resummation [5, 6℄, the

on-shell quark and gluon form fa
tors [7, 8℄, and the 
oeÆ
ient fun
tions

for lepton-pair and Higgs boson produ
tion at proton 
olliders [6℄. These

results have important impli
ations within and beyond perturbative QCD.
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