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We present omplete analytial O("

2

) results on the one-loop amplitudes relevant for the next-

to-next-to-leading order (NNLO) quark-parton model desription of the hadroprodution of heavy

quarks as given by the so{alled loop-by-loop ontributions. All results of the perturbative al-

ulation are given in the dimensional regularization sheme. These one-loop amplitudes an also

be used as input in the determination of the orresponding NNLO ross setions for heavy avor

photoprodution, and in photon-photon reations.

PACS numbers: 12.38.Bx, 13.85.-t, 13.85.Fb, 13.88.+e

I. INTRODUCTION

At the leading order (LO) Born term level, heavy quark

hadroprodution has been studied some time ago [1℄.

The next-to-leading order (NLO) orretions to unpolar-

ized heavy quark hadroprodution were �rst presented in

[2, 3℄, and in [4, 5℄ for photoprodution. Corresponding

results with initial partiles being longitudinally polar-

ized were alulated in [6℄ and [7, 8, 9, 10℄. A alula-

tion of the NLO orretions to top-quark hadroprodu-

tion with spin orrelations of the �nal top quarks was

performed in [11℄. Analytial results for the so alled

\virtual plus soft" terms were presented in [3, 5, 8℄ for

the photoprodution and unpolarized hadroprodution

of heavy quarks. Complete analyti results for the po-

larized and unpolarized photoprodution, inluding real

bremsstrahlung, an be found in [10℄.

It is well known that the NLO QCD preditions for the

heavy quark prodution ross setions su�er from theo-

retial errors beause of the large unertainty in hoos-

ing the renormalization and fatorization sales. In spite

of onsiderable progress due to reent work in bringing

loser theory and experiment (see e.g. [12, 13℄), the

need for next-to-next-to-leading order (NNLO) results

for heavy quark prodution in QCD is by now learly

understood. The NNLO orretions are expeted to sig-

ni�antly redue the renormalization and fatorization

sale dependene inherent to the NLO parton model pre-

ditions.

During the last several years muh progress has been

ahieved in developing and applying various tehniques

for an all order resummation of heavy quark prodution

ross setions in di�erent reations. This onerns the

resummation of the divergent terms in some spei� re-

�
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gions of phase spae (so alled large logarithms) to NLO

(NLL logs) and NNLO (NNLL logs) leading logarithmi

auray. We may mention the work on the threshold

and reoil resummations [14℄ of NLL logs in hadroni

ollisions. Muh ativity was also devoted to the resum-

mation of NNLL threshold logs for heavy quark produ-

tion in e

+

e

�

(see e.g. the informative review [15℄ and

referenes therein) and  [16℄ reations. However, this

annot replae the need of having the exat NNLO re-

sults for obvious reasons. In fat, these resummed results

ould be better understood when the exat NNLO results

are available.

The full alulation of the NNLO orretions to heavy

hadron prodution at hadron olliders will be a very diÆ-

ult task to omplete. It involves the alulation of many

Feynman diagrams of many di�erent topologies. It is

lear that an undertaking of this dimension will have to

involve the e�orts of many theorists. As one example,

take the reent two-loop alulation of the heavy quark

vertex form fator [17℄ whih an be taken as one of the

building bloks of the NNLO alulation. Another build-

ing blok are the so{alled NNLO loop-by-loop ontribu-

tions whih we have begun to alulate. The neessary

O("

2

) one-loop salar master integrals that enter the al-

ulation have been determined by us in [18℄. The present

paper is devoted to the determination of the orrespond-

ingO("

2

) gluon{ and quark{indued one-loop amplitudes

inluding the full spin and olor ontent of the problem.

In a sequel to this paper we shall present results on the

square of the one-loop amplitudes thereby ompleting the

alulation of the loop-by-loop part needed for the de-

sription of NNLO heavy hadron prodution.

In Fig. 1 we show one generi diagram eah for the four

lasses of ontributions that need to be alulated for the

NNLO orretions to the gluon{initiated hadroprodu-

tion of heavy avors. They involve the two-loop ontri-

bution (1a), the loop-by-loop ontribution (1b), the one-

loop gluon emission ontribution (1) and, �nally, the

two gluon emission ontribution (1d). The orrespond-

ing graphs for the quark{initiated proesses are not dis-

played.
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FIG. 1: Exemplary gluon fusion diagrams for the NNLO alulation of heavy hadron prodution.

In this paper we onentrate on the loop-by-loop on-

tributions exempli�ed by Fig. 1b. Spei�ally, working in

the framework of the dimensional regularization sheme

[19℄, we shall present O("

2

) results on the one-loop am-

plitudes. The expansion of the one{loop amplitudes up

to "

2

is needed beause the one-loop integrals exhibit ul-

traviolet (UV) and infrared (IR)/ollinear (or mass(M))

singularities up to O("

�2

). When squaring the one-loop

amplitudes to obtain the singular and �nite parts of the

loop-by-loop ontributions one must thus know the one-

loop amplitudes up to "

2

.

In dimensional regularization there are three di�erent

soures that an ontribute positive "{powers to the Lau-

rent series of the one{loop amplitudes. First, one has

the Laurent series expansion of the salar one{loop in-

tegrals whih have been alulated up to O("

2

) in [18℄.

Seond, the evaluation of the spin algebra of the loop am-

plitudes brings in the n{dimensional metri ontration

g

��

g

��

= n = 4 � 2". Third and last, the Passarino-

Veltman deomposition of tensor integrals will again

bring in the metri ontration g

��

g

��

= n = 4 � 2".

The latter two points will be treated in this paper. It

is lear that through the interplay of the three di�er-

ent soures of positive "{powers the Laurent series of the

one{loop amplitude itself will, order by order, ontain

di�erent orders of the Laurent series oeÆient of the

salar integrals.

We have on�rmed the results on the Laurent expan-

sion of the one{loop amplitude up to O("

0

) presented in

[20℄. These results will not be listed again in this paper.

In this paper we present analytial results for the oeÆ-

ients of the "{ and "

2

{terms of the "-expansion inlud-

ing also their imaginary parts. When presenting our re-

sults, we shall make use of our notation for the oeÆient

funtions of the relevant salar integrals alulated up to

O("

2

) in [18℄. For the alulation of the one{loop dia-

grams with two external massive quarks and two external

massless partons one needs one salar one{point funtion

A, �ve salar two{point funtions B

i

, six salar three{

point funtions C

i

, and three salar four-point funtions

D

i

. For example, for the salar four-point funtions D

i

we de�ned suessive oeÆient funtions D

(j)

i

aording

to the expansion

D

i

= iC

"

(m

2

)

n

1

"

2

D

(�2)

i

+

1

"

D

(�1)

i

+D

(0)

i

+ "D

(1)

i

+"

2

D

(2)

i

+ O("

3

)

o

; (1.1)

where C

"

(m

2

) is de�ned by

C

"

(m

2

) �

�(1 + ")

(4�)

2

�

4��

2

m

2

�

"

: (1.2)

Similar expansions hold for the salar one{point funtion

A, the salar two{point funtions B

i

and the salar three{

point funtions C

i

. For the onveniene of the reader we

have inluded a table from [18℄ where all the neessary

one-loop master salar integrals are listed. We note that

for the one-loop salar integrals the UV and IR/M sin-

gularities never overlap, i.e. do not multiply eah other.

Singularities of order "

�2

appear only when both IR and

M poles are present simultaneously. This last ase is real-

ized when the massless gluon is attahed to either mass-

less fermion or a gluon line in the Feynman diagrams.

Consequently, graphs (3a1), (31), (4f1) and (4f2) shown

in the next setion have only "

�1

poles, while graphs

(3a2), (3a3), (33) and (4g2) have "

�2

poles. The details

of the pole struture of the various Feynman diagrams

an be found in [20℄.

As remarked on before we have endeavoured to alu-

late the loop-by-loop ontributions in three steps starting

with the salar one{loop integrals, then alulating the

one{loop amplitudes and �nally squaring the one{loop

amplitudes. If one's interest is only in the unpolarized

rate one an diretly move from step 1 to step 3 with-

out the interim step of having to evaluate the one{loop

amplitudes. However, in the latter ase one loses the

information on the spin ontent of the one-loop ontri-

butions whih annot be reonstruted from the rate ex-

pressions. On the other hand, having expressions for the

one{loop amplitudes allows one to easily derive the one-

loop ontributions to partoni ross setion inluding any

polarization of the inoming or outgoing partiles. Our

results on the one{loop amplitudes are given separately

for every Feynman diagram in order to failitate the use

of the results for other relevant proesses that di�er by

olor fators.
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TABLE I: List of one-, two-, three- and four-point massive one-loop funtions alulated in our previous paper [18℄ up to O("

2

).

Nomenlature of [3℄ Our nomenlature Novelty Comments

1-point A(m) A { Re

2-point B(p

4

� p

2

; 0;m) B

1

{ Re

B(p

3

+ p

4

;m;m) B

2

{ Re, Im

B(p

4

; 0; m) B

3

{ Re

B(p

2

;m;m) B

4

{ Re

B(p

3

+ p

4

; 0; 0) B

5

{ Re, Im

3-point C(p

4

; p

3

; 0;m; 0) C

1

new Re, Im

C(p

4

;�p

2

; 0;m;m) C

2

new Re

C(�p

2

; p

4

; 0; 0; m) C

3

{ Re

C(�p

2

;�p

1

; 0; 0; 0) C

4

{ Re, Im

C(�p

2

;�p

1

;m;m;m) C

5

{ Re, Im

C(p

3

; p

4

;m; 0;m) C

6

{ Re, Im

4-point D(p

4

;�p

2

;�p

1

; 0;m;m;m) D

1

new Re, Im

D(�p

2

; p

4

; p

3

; 0; 0;m; 0) D

2

new Re, Im

D(�p

2

; p

4

;�p

1

; 0; 0; m;m) D

3

new Re

The hadroprodution of heavy avors proeeds

through the following two partoni hannels:

g + g ! Q+ Q; (1.3)

where g denotes a gluon and Q(Q) denotes a heavy quark

(antiquark), and

q + �q ! Q+Q; (1.4)

where q(�q) is a light massless quark (antiquark).

Note that the Abelian part of the NLO result for (1.3)

provides the NLO orretions to heavy avor prodution

by two on-shell photons

 +  ! Q+Q; (1.5)

with the appropriate olor fator substitutions. The re-

sults for (1.3) an also be used to determine the orre-

sponding amplitudes for heavy avor photoprodution

 + g ! Q+Q: (1.6)

We mention that the partoni proesses (1.3) and (1.4)

are needed for the alulation of the ontributions of

single- and double-resolved photons in the photoni pro-

esses (1.5) and (1.6).

NLO ross setions for the proess (1.5) have been de-

termined in [21, 22, 23℄ for unpolarized and in [23, 24℄

for polarized initial photons. Note that the authors of

[24℄ used a nondimensional regularization sheme to reg-

ularize the poles of divergent integrals. In the papers

[21, 24℄ analyti results were presented for \virtual plus

soft" ontributions alone. We also note that omplete an-

alytial results inluding hard gluon ontributions an be

found only in [23℄. The two{photon reation (1.5) will be

investigated at future linear olliders. NLO orretions

for the heavy quark prodution ross setion (1.5) with

inident on-shell photons in de�nite heliity states are

of interest in themselves as they represent an irreduible

bakground to the intermediate Higgs boson searhes for

Higgs masses in the range of 90 to 160 GeV (see e.g.

[23, 24℄ and referenes therein).

The paper is organized as follows. Setion II ontains

an outline of our general approah as well as one{loop

amplitudes for the gluon fusion subproess for the self-

energy and vertex ontributions inluding their renormal-

ization. In Setion III we disuss the one-loop ontribu-

tions to the four box diagrams in the same gluon-gluon

subproess and give a detailed desription of our global

heks on gauge invariane for our results. Setion IV

presents analyti results on the quark-antiquark subpro-

ess (1.4). Our main results are summarized in Setion V.

Finally, in two appendies we present results for the var-

ious oeÆient funtions that appear in the main text.

II. CONTRIBUTIONS OF THE TWO- AND

THREE-POINT FUNCTIONS TO GLUON

FUSION

The Born and the one-loop ontributions to the par-

toni gluon fusion reation g(p

1

)+g(p

2

)! Q(p

3

)+Q(p

4

)

are shown in Figs. 2{4. In this setion we disuss our

evaluation of the self-energy and vertex graphs that on-

tribute to the above subproess. With the 4-momenta

p

i

(i = 1; :::; 4) as shown in Fig. 2 and with m the heavy

quark mass we de�ne:

s � (p

1

+ p

2

)

2

; t � T �m

2

� (p

1

� p

3

)

2

�m

2

;

u � U �m

2

� (p

2

� p

3

)

2

�m

2

: (2.1)

In order to isolate ultraviolet (UV) and in-

frared/ollinear (IR/M) divergenes we have arried out
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p1 µ

b

p2 ν

a

p3

p4

Q

Q

p1

p2

p1

p2

FIG. 2: The t-, u- and s-shannel leading order (Born) graphs ontributing to the gluon (urly lines) fusion amplitude. The

thik solid lines orrespond to the heavy quarks.

all our alulations in the dimensional regularization

sheme (DREG) [19℄ with the dimension of spae-time

being formally n = 4� 2".

First of all we note that in general the amplitudes for

all the Feynman diagrams in the gluon fusion subproess

an be written in the form

M = �

�

(p

1

)�

�

(p

2

)�u(p

3

)M

��

v(p

4

); (2.2)

For purposes of brevity, we will present our results in

terms of trunated amplitudes M

��

where the polariza-

tion vetors and Dira spinors are omitted. For reasons

of brevity we shall also refer to the trunated amplitudes

as amplitudes. Of ourse, the presene of the polariza-

tion vetors and Dira spinors is impliitly understood

throughout this paper in that the mass shell onditions

p

�

1

�

�

(p

1

) = 0 and 6p

3

u(p

3

) = mu(p

3

) et. are being used

to simplify M

��

[29℄. Furthermore, M

��

ontains the

ommon fator C

"

(m

2

) de�ned in Eq. (1.2) whih arises

from the salar one-loop integrations desribed in [18℄.

Throughout the paper we will omit from all our one-loop

M

��

amplitudes the ommon fator

C = g

4

C

"

(m

2

); (2.3)

where g is the renormalized oupling onstant.

There are three sets of ontributing graphs: The t{

hannel, u{hannel and the s{hannel graphs as exempli-

�ed in Fig. 2 for the LO Born term ontributions. Sine

the u{hannel amplitudesM

u

an be obtained from the

t{hannel amplitudesM

t

by the relation

M

t

$M

u

� fa$ b; p

1

$ p

2

; �$ �g; (2.4)

we shall not list results of the u{hannel ontributions.

In (2.4) a; b are the olor indies of the two gluons. We

make it lear from the outset that additional u-hannel

graphs are obtained from the relevant t-hannel graphs

by the interhange of the two external bosoni lines (not

only momenta). In exeption are the two vertex inser-

tion diagrams (33) and (34) whih will be disussed

later on. All three interhanges (olor, Lorentz indies

and bosoni momenta) have to be done simultaneously.

Note that the seond interhange in (2.4) implies also the

interhange t$ u. In general, when speaking about the

t-u symmetry of a given subset of amplitudes, we will

imply invariane of those amplitudes under the transfor-

mations (2.4).

We start by writing down amplitudes for the leading

order Born terms. For the t-hannel gluon fusion subpro-

ess (�rst graph in Fig. 2) we have:

B

��

t

= �iT

b

T

a



�

(6 p

3

�6 p

1

+m)

�

=t;

where T

b

and T

a

are generators (T

a

= �

a

=2, a = 1; :::; 8

and the �

a

are the usual Gell-Mann matries) that de-

�ne the fundamental representation of the Lie algebra of

the olor SU(3) group. Analogously, for the u- and s-

hannels depited in the seond and third graph of Fig. 2

we have, respetively,

B

��

u

= �iT

a

T

b



�

(6 p

3

�6 p

2

+m)

�

=u;

B

��

s

= i(T

a

T

b

� T

b

T

a

)C

���

3



�

=s;

where the tensor C

���

3

is obtained from the Feynman

rules for the three-gluon oupling and is given by

C

���

3

= g

��

(p

1

� p

2

)

�

+ g

��

(p

1

+2p

2

)

�

� g

��

(2p

1

+ p

2

)

�

:

(2.5)

We have omitted a ommon fator g

2

in the Born am-

plitudes. Ating with Dira spinors �u(p

3

) and v(p

4

) on

the above trunated Born amplitudes from the left and

the right, respetively, and using the e�etive relations

p

�

1

= p

�

2

= 0, as remarked on before, we arrive at the

following expressions for the leading order amplitudes:

B

��

t

= iT

b

T

a

(

�

6 p

1



�

� 2p

�

3



�

)=t;

B

��

u

= iT

a

T

b

(

�

6 p

2



�

� 2p

�

3



�

)=u;

B

��

s

= 2i(T

a

T

b

� T

b

T

a

)(g

��

6 p

1

+ p

�

2



�

� p

�

1



�

)=s:

Next we proeed with the desription of the two-point

insertions to the amplitudes of the subproess (1.3). But

before we turn to the two-point funtions one should

mention that our hoie of renormalization sheme will be

a �xed avor sheme throughout this paper. This implies

that we have a total number of avors n

f

= n

lf

+1, where

n

lf

is the number of light (i.e. massless) avors and the

\1" stands for the produed heavy avor. Thus there will

only be n

lf

light avors involved/ative in the � funtion

for the running a QCD oupling �

s

, and in the splitting

funtions that determine the evolution of the struture

funtions. When having massless partiles in the loops

we are using the standard MS sheme, while the on-

tribution of a heavy quark loop in the gluon self-energy

with on-shell external legs is subtrated out entirely.
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a1 a2 a3

a4 b c1

c2 c3 c4

d1 d2 d3

e1 e2

FIG. 3: The t-hannel one-loop graphs ontributing to the gluon fusion amplitude. Loops with dotted lines represent gluon,

ghost and light and heavy quarks.

Consider �rst the two t-hannel self-energy insertion

graphs (3d2) and (3d3) in Fig. 3 with external legs on-

shell. These graphs are very important as they deter-

mine the renormalization parameters in the quark se-

tor. Throughout this paper we use the so alled on-shell

presription for the renormalization of heavy quarks, the

essential ingredients of whih we desribe in the follow-

ing. When dealing with massive quarks one has to hoose

a parameter to whih one renormalizes the heavy quark

mass. It is natural to hoose a quark pole mass for

suh a parameter { the only \stable" mass parameter

in QCD. The ondition on the renormalized heavy quark

self-energy �

r

(6 p) is

�

r

(6 p)j

6p=m

= 0; (2.6)

whih removes the singular internal propagator in these

self-energy insertion diagrams. This an be seen from the
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f1 f2 g1

g2 h i1

i2 j1 j2

FIG. 4: The s-hannel one-loop graphs ontributing to the gluon fusion amplitude. Loops with dotted lines as in g1,h,j1 and

j2 represent gluon, ghost and light and heavy quarks. The four-gluon oupling ontribution appears in g2.

expliit result for the renormalized heavy quark exter-

nal self-energy �

r

(6 p) e.g. in dimensional regularization

sheme:

�

r

(6 p) = ig

2

C

F

C

"

(m

2

)

"(1 � 2")

�

6 p�m+ 6 p

m

2

� p

2

p

2

�

�

1 +

m

2

� p

2

2p

2

(1 � ")

�

�m

m

2

� p

2

p

2

(2� ")

�

: (2.7)

The above ondition (2.6) determines the mass renormal-

ization onstant Z

m

. For the wave funtion renormaliza-

tion we have used the usual ondition (see e.g. Ref. [4℄)

�

�6 p

�

r

(6 p)j

6p=m

= 0; (2.8)

whih fully determines the wave funtion renormalization

onstant Z

2

. Sine the ondition (2.8) is not mandatory

in general, there is a freedom in determining the onstant

Z

2

. Note that the ondition (2.8) sets all external heavy

quark self-energy insertion diagrams to zero, thus making

the heavy quark ase similar to the massless one in this

regard. Below we list our expressions for the mass and

wave funtion renormalization onstants.

In the DREG sheme we arrive at the result

Z

m

= 1� g

2

C

F

C

"

(m

2

)

3� 2"

"(1 � 2")

(2.9)

whih an be expanded in " to give

Z

m

= 1� g

2

C

F

C

"

(m

2

)

�

3

"

+ 4 + 8"+ 16"

2

+ O("

3

)

�

;

Z

2

= Z

m

; (2.10)

where C

F

=4/3 and we do not make a distintion whih

poles are of ultraviolet or IR/M origin as we did in [20℄.

After the mass renormalization proedure is applied we

obtain the �nal results for the two self-energy insertion

graphs in the DREG sheme

M

��

(3d2)

= M

��

(3d3)

= �C

F

B

��

t

3� 2"

"(1� 2")

(2.11)

= �C

F

B

��

t

�

3

"

+ 4 + 8" + 16"

2

+O("

3

)

�

:

From here on we will present only results for the " and

"

2

order ontributions to the amplitudes.

After addition of the mass renormalization ountert-

erm the ontribution of the quark self-energy insertion

graph (3d1) with external legs o�-shell reads:

M

��

(3d1)

= C

F

B

��

t

2

X

k=1

"

k

�

�B

(k)

1

t=T + 4B

(k)

1

m

2

=t

+B

(k�1)

1

t=T � k16m

2

=t

�
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� iC

F

T

b

T

a

m

�



�

2

X

k=1

"

k

�

B

(k)

1

=T + 2B

(k)

1

=t

�B

(k�1)

1

=T � k8=t

�

: (2.12)

The oeÆients B

(k)

1

and B

(k�1)

1

ome from the Laurent

series expansion of the salar two-point funtion B

1

(see

Table 1) quite similar to the orresponding Laurent se-

ries expansion of the four-point funtions D

i

shown in

Eq. (1.1).

The remaining quark self-energy insertion graphs (4i1)

and (4i2) with external on-shell legs are derived in anal-

ogy to the ones onsidered above:

M

��

(4i1)

= M

��

(4i2)

= �C

F

B

��

s

�

8" + 16"

2

�

; (2.13)

Conerning the gluon self-energy insertion graphs (3e1)

and (3e2) with external legs on-shell, the only nonvanish-

ing ontributions are those from heavy quark loops. They

are given by

M

��

(3e1)

= M

��

(3e2)

= �B

��

t

1

"

2

3

: (2.14)

However, these ontributions are expliitly subtrated

(together with the ommon fator C

"

(m

2

), see Eqs. (1.2)

and (2.3)) in the on-shell renormalization presription.

Therefore, due to the UV ounterterm that subtrats

this loop with heavy quarks, there are no �nite ontribu-

tions to the amplitudes from these self-energy diagrams.

However, at the same time this ounterterm introdues

the pole terms from the light quark loop setor that are

needed to anel soft and ollinear poles from the other

parts of the amplitude, e.g. from the real bremsstrahlung

part. This indiates that in pratie it is very hard to

ompletely disentangle UV and IR/M poles in heavy a-

vor prodution and in most ases one obtains a mixture

of both instead.

For the reasons spei�ed above we present the gauge

�eld renormalization onstant Z

3

, used for the gluon self-

energy subtration:

Z

3

= 1 +

g

2

"

�

(

5

3

N

C

�

2

3

n

lf

)C

"

(�

2

) �

2

3

C

"

(m

2

)

�

= 1 +

g

2

"

�

(�

0

� 2N

C

)C

"

(�

2

) �

2

3

C

"

(m

2

)

�

; (2.15)

where the QCD beta{funtion �

0

= (11N

C

�2n

lf

)=3 on-

tains only light quarks. N

C

= 3 is the number of olors.

Aordingly, for the oupling ontant renormalization we

obtain

Z

g

= 1�

g

2

"

�

�

0

2

C

"

(�

2

) �

1

3

C

"

(m

2

)

�

: (2.16)

As was the ase for the diagrams (3e1) and (3e2), di-

agrams (4j1) and (4j2) also vanish altogether due to the

expliit deoupling of the heavy quarks in our subtra-

tion presription. However, instead of renormalizing sep-

arately eah Feynman diagram, one an hose to employ

the renormalization group invariane of the ross setion

and do only a mass and oupling onstant renormaliza-

tion. In this ase, knowing the results for the gluon self-

energy diagrams turns out to be useful in heking the

omplete anellation of UV poles by just resaling the

oupling onstant in the LO terms g

bare

! Z

g

g. One has

M

��

(4j1)

= M

��

(4j2)

= �B

��

s

1

"

2

3

: (2.17)

Finally we arrive at the gluon self-energy insertion

graph (4h), whih ontains the o�-shell gluon self-energy

loop that is used for the derivation of the renormalization

onstant Z

3

. We have evaluated the internal loop in the

Feynman gauge. In our result we show separately the

gauge invariant piees for gluon plus ghost, light quarks

and one heavy quark ow inside the loop:

M

��

(4h)

= B

��

s

n

B

5

iC

"

(m

2

)

h

�N

C

n�14+8"

2(3�2")

� n

lf

2(1�")

3�2"

i

�

1

"

2

3

I

	

; (2.18)

with n = 4�2" in the DREG sheme. B

5

is the two-point

integral whose expliit form is given in [18℄. We expand

the �rst line of (2.18) in powers of " and �nd

M

��

(4h)

= B

��

s

��

N

C

�

1

"

5

3

+

31

9

+ "

�

188

27

�

5

3

�(2)

�

+"

2

�

1132

81

�

31

9

�(2) �

10

3

�(3)

��

�n

lf

�

1

"

2

3

+

10

9

+ "

�

56

27

�

2

3

�(2)

�

+"

2

�

328

81

�

10

9

�(2) �

4

3

�(3)

����

�s

m

2

�

�"

�

1

"

2

3

I

�

; (2.19)

with

I = 1 + "

�

�

1

3

+ B

(0)

2

3� �

2

2

�

(2.20)

+"

2

�

�

2

9

�

1

3

B

(0)

2

�

2

+B

(1)

2

3� �

2

2

�

+"

3

�

�

4

27

�

2

9

B

(0)

2

�

2

�

1

3

B

(1)

2

�

2

+ B

(2)

2

3� �

2

2

�

:

In (2.20) we have made use of the de�nition

� �

p

1� 4m

2

=s: (2.21)

Conluding our disussion on the 2-point insertions

we remark that the amplitudes for the relevant u-

hannel 2-point insertion diagrams an be obtained from

Eqs. (2.11), (2.12) and (2.14) by the transformation (2.4).

Next we disuss the t{ and u{hannel vertex insertions.

In this paper we write down only the "{ and "

2

{terms of

the Laurent expansion. The terms proportional to "

�2

,

"

�1

and "

0

an be found in [20℄. We begin with the purely

nonabelian graph (3b) with the four{gluon vertex. The

amplitude takes the following form
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M

��

(3b)

= iN

C

(T

b

T

a

2

X

k=1

"

k

f(2p

�

3



�

+ p

�

4



�

� p

�

3



�

� 2p

�

4



�

)(B

(k)

5

+ 2C

(k)

1

m

2

� 4k)�mg

��

(2B

(k)

5

+ 2B

(k�1)

5

+4C

(k)

1

m

2

+C

(k�1)

1

s� 12k) + 3m

�



�

(2B

(k)

5

+C

(k)

1

s � 8k)=2g=(s�

2

) + (a$ b; �$ �))

+ iÆ

ab

2

X

k=1

"

k

f(p

�

3



�

� p

�

4



�

+ p

�

3



�

� p

�

4



�

)(B

(k)

5

+ 2C

(k)

1

m

2

� 4k)=2

+mg

��

(B

(k)

5

� 2B

(k�1)

5

� 4C

(k)

1

m

2

+ 3C

(k)

1

s=2� C

(k�1)

1

s)g=(s�

2

): (2.22)

It is easily seen from Eq. (2.22) that the amplitude for

the graph (3b) is expliitly t-u symmetri, as it follows

from the geometri topology of this graph. It is thus

important to state that there is no u{hannel equivalent

of graph (3b).

Next we turn to graphs (31) and (32). As mentioned

before, these diagrams our also in other proesses suh

as photoprodution and  prodution of heavy avors

when one or two of the gluons are replaed by pho-

tons. For this reason we also present the orrespond-

ing t-hannel olor fators for these graphs. Then it is

straightforward to separate our Dira struture from the

olor oeÆients and one an easily dedue the orre-

sponding results for the other proesses involving pho-

tons. In order to failitate this transsription we list the

olor fator for both diagrams (31) and (32) whih turn

out to be the same:

T

(31)

ol

= T

(32)

ol

= (C

F

�

N

C

2

)T

b

T

a

= �

1

6

T

b

T

a

: (2.23)

The omplete amplitudes are:

M

��

(31)

= B

��

t

2

X

k=1

"

k

fB

(k)

1

(6m

2

=t+ 1) + 2B

(k�1)

1

z

t

=t+ 2C

(k)

2

m

2

+ 4C

(k�1)

2

m

2

� k8(4m

2

=t+ 1)g=6

+ iT

b

T

a

(p

�

3



�

2

X

k=1

"

k

fB

(k)

1

(z

t

=t+ t=T ) +B

(k�1)

1

(2z

t

=t� t=T ) + 2(C

(k)

2

+ 2C

(k�1)

2

)m

2

� k8z

t

=tg

+ mp

�

3

6 p

1



�

2

X

k=1

"

k

fB

(k)

1

=T �B

(k�1)

1

(2=t+ 1=T )� 2C

(k�1)

2

+ k4=tg

� m

�



�

2

X

k=1

"

k

fB

(k)

1

+B

(k�1)

1

+C

(k�1)

2

t� 6kg)=(3t); (2.24)

where we have introdued the abbreviation z

t

� 2m

2

+ t. For the graph (32) we obtain:

M

��

(32)

= B

��

t

2

X

k=1

"

k

fB

(k)

1

(6m

2

=t+ 1) + 2B

(k�1)

1

z

t

=t+ 2C

(k)

2

m

2

+ 4C

(k�1)

2

m

2

� k8(4m

2

=t+ 1)g=6

+ iT

b

T

a

(p

�

4



�

2

X

k=1

"

k

fB

(k)

1

(�2m

2

=t� 3 + t=T )�B

(k�1)

1

t=T � 2C

(k)

2

m

2

+ k8T=tg

+ mp

�

4

(2p

�

3

� 

�

6 p

1

)

2

X

k=1

"

k

fB

(k)

1

=T � B

(k�1)

1

(2=t+ 1=T )� 2C

(k�1)

2

+ k4=tg

� m

�



�

2

X

k=1

"

k

fB

(k)

1

+B

(k�1)

1

+C

(k�1)

2

t� 6kg)=(3t): (2.25)
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Next we write down the results for graphs (33) and

(34). The olor fators for both diagrams are the same:

T

(33)

ol

= T

(34)

ol

= �

N

C

2

T

b

T

a

= �

3

2

T

b

T

a

: (2.26)

We have

M

��

(33)

= 3B

��

t

2

X

k=1

"

k

f�3B

(k)

1

m

2

=t� C

(k)

3

t

+k4(3m

2

=t+ 1)g

+3iT

b

T

a

(p

�

3



�

2

X

k=1

"

k

fB

(k)

1

m

2

(1=T � 2=t)

+B

(k�1)

1

t=T � C

(k)

3

t+ k4z

t

=tg

+3m

�



�

2

X

k=1

"

k

fB

(k)

1

=2� 2kg

+mp

�

3

6 p

1



�

2

X

k=1

"

k

fB

(k)

1

(2=t� 1=T )

+B

(k�1)

1

=T � k8=tg)=t: (2.27)

And

M

��

(34)

= 3B

��

t

2

X

k=1

"

k

f�3B

(k)

1

m

2

=t�C

(k)

3

t

+k4(3m

2

=t+ 1)g

+3iT

b

T

a

(p

�

4



�

2

X

k=1

"

k

fB

(k)

1

m

2

(1=T � 2=t)

+B

(k�1)

1

(t=T � 2) + C

(k)

3

t+ k4(2m

2

=t� 1)g

+3m

�



�

2

X

k=1

"

k

fB

(k)

1

=2� 2kg

+mp

�

4

(2p

�

3

� 

�

6 p

1

)

2

X

k=1

"

k

fB

(k)

1

(2=t� 1=T )

+B

(k�1)

1

=T � k8=tg)=t: (2.28)

The results for the amplitudes of the relevant u-hannel

vertex insertion diagrams are obtained from Eqs. (2.24),

(2.25), (2.27) and (2.28) by the transformation (2.4).

However, there is a subtle point involved here: we stress

that for the graphs (33) and (34) the M

t

$M

u

trans-

formation (2.4) transforms the t-hannel result of the

graph (33) to the u-hannel result for the graph (34),

while the t-hannel result of (34) goes to the u-hannel

result for (33). This is important to keep in mind when

dealing with reations whih involve asymmetri set of

graphs as e.g. in the photoprodution of heavy avors.

The reason for this is that when doing transformation

(2.4) the three-gluon vertex attahed to one of the initial

bosoni lines does not stay attahed to the same bosoni

line. However, we note that transformation p

3

$ p

4

does

uniquely relate all the t- and u-hannel diagrams for the

subproess under onsideration.

Next we turn to the remaining s-hannel graphs shown

in Fig. 4. For all the gluon propagators we work in Feyn-

man gauge. This set of graphs is purely nonabelian for

the QCD type one-loop orretions. In the ase that one

wants to replae the gluoni vertex orretion in graph

(4f1) by a photoni vertex orretion one needs the ex-

pliit form of the olor fator for graph (4f1):

T

(4f1)

ol

= (C

F

�

N

C

2

)(T

a

T

b

�T

b

T

a

) = �

1

6

(T

a

T

b

�T

b

T

a

):

(2.29)

The amplitude inluding the olor fator is

M

��

(4f1)

= B

��

s

2

X

k=1

"

k

f3B

(k)

2

+ 2B

(k�1)

2

+C

(k)

6

s(1 + �

2

)

�16kg=6 + 2i(T

a

T

b

� T

b

T

a

)m[�g

��

(s + 2t)

�4p

�

3

p

�

4

+ 4p

�

4

p

�

3

℄

2

X

k=1

"

k

fB

(k)

2

+ 2B

(k�1)

2

� 8kg

=(6s

2

�

2

): (2.30)

Graph (4f2) ontributes as:

M

��

(4f2)

= N

C

B

��

s

2

X

k=1

"

k

fB

(k)

5

(8m

2

� s) + 2C

(k)

1

m

2

s

�k16(5m

2

� s)g=(2s�

2

)

+2iN

C

(T

a

T

b

� T

b

T

a

)m[�g

��

(s + 2t) �

4p

�

3

p

�

4

+ 4p

�

4

p

�

3

℄

2

X

k=1

"

k

fB

(k)

5

(8m

2

+ s)

�2B

(k�1)

5

s + 6C

(k)

1

m

2

s �C

(k�1)

1

s

2

�

k4(12m

2

� s)g=2s

3

�

4

: (2.31)

We end our onsideration of the vertex insertions for

gluoni fusion with the sum of the two graphs (4g1) and

(4g2) whih we refer to as the triangle graph ontribution

(tri)�(4g1)+(4g2). For the ase when one has gluons and

ghosts inside the triangle loop we obtain:

M

��

(tri)

(g) = �3N

C

(B

��

s

2

X

k=1

"

k

f207B

(k)

5

+ 12B

(k�1)

5

+54C

(k)

4

s + 8k + (k � 1)8

~

B

(0)

5

g

+6i(T

a

T

b

� T

b

T

a

)6 p

1

2

X

k=1

"

k

fg

��

[9B

(k)

5

�12B

(k�1)

5

+ 9C

(k)

4

s � 8k � (k � 1)8

~

B

(0)

5

℄=s

+8p

�

2

p

�

1

[3B

(k�1)

5

+ 2k + (k � 1)2

~

B

(0)

5

℄=s

2

g

)=324; (2.32)

where

~

B

(0)

5

= B

(0)

5

� 4=3. When one has light and heavy

quarks inside the loop one has

M

��

(tri)

(q) = 6n

lf

(B

��

s

2

X

k=1

"

k

f9B

(k)

5

� 3B

(k�1)

5

� 2k
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�(k � 1)2B

(0)

5

g � 3i(T

a

T

b

� T

b

T

a

)6 p

1

�

[g

��

=s� 2p

�

2

p

�

1

=s

2

℄

2

X

k=1

"

k

f3B

(k�1)

5

+ 5k

+(k � 1)(5

~

B

(0)

5

+ 3)g)=81 (2.33)

where n

lf

is the number of light avors in the triangle

loop. For the heavy avor ase one has

M

��

(tri)

(Q) = 6(B

��

s

2

X

k=1

"

k

f6(3B

(k)

2

+ 2B

(k�1)

2

+ (k � 1)4B

(0)

2

=3)m

2

=s+ 9B

(k)

2

� 3B

(k�1)

2

� 2k � 2(k � 1)

~

B

(0)

2

g

�i(T

a

T

b

� T

b

T

a

)6 p

1

[g

��

=s� 2p

�

2

p

�

1

=s

2

℄

2

X

k=1

"

k

f12(3B

(k)

2

+ 2B

(k�1)

2

+ (k � 1)4B

(0)

2

=3)m

2

=s

+18(C

(k)

5

+ C

(k�1)

5

+ (k � 1)C

(0)

5

)m

2

+ 3B

(k�1)

2

+ 5k + (k � 1)(5

~

B

(0)

2

+ 3)g)=81; (2.34)

where

~

B

(0)

2

= B

(0)

2

� 4=3. The omplete amplitude for

the triangle (tri)�(4g1)+(4g2) is the sum of the above

three expressions (2.32), (2.33) and (2.34):

M

��

(tri)

= M

��

(tri)

(g) +M

��

(tri)

(q) +M

��

(tri)

(Q): (2.35)

In Ref. [26℄ one an �nd general results for the gluon

triangle in any gauge and dimension. We have ompared

the �rst two terms in (2.35) with the orresponding ex-

pressions in Ref. [26℄ and found omplete agreement.

III. RESULTS FOR THE BOX DIAGRAMS IN

GLUON FUSION

In this setion we desribe the tehnially most in-

volved derivation of the 4-point massive box diagrams.

The four box graphs (3a1){(3a4) ontributing to the sub-

proess g + g ! Q + Q are depited in Fig. 3. We have

used Passarino-Veltman tehniques [27℄ to redue tensor

integrals to salar ones where the salar master integrals

are taken from our previous publiation [18℄.

For eah of the gluon fusion box diagrams we expand

the trunated amplitude M

��

in terms of a set of 20

Lorentz-Dira ovariants multiplied by the same number

of invariant funtions. In the redution of the Lorentz-

Dira struture to this basi set of 20 ovariants we have

been making use of the mass shell onditions desribed

in Se. II. The 20 Lorentz-Dira ovariants are subdi-

vided into eight subsets aording to their Dira stru-

ture. The 20 invariant funtions multiplying the ovari-

ants are sorted aording to the ontributions of a basi

set of funtions f

(k)

i

(alled basis funtions) related to

the salar master integrals of [18℄. The index i runs over

the members of the set of basis funtions ouring in a

partiular graph. The index k denotes the power of "

whih the basis funtion multiplies. The basis funtions

f

(k)

i

are multiplied by oeÆient funtions b

(j)

in

where the

index pair (n; j) identi�es the ovariant whih the oef-

�ient funtion multiplies. Note that the basis funtions

f

(k)

i

have been de�ned suh that the oeÆient funtions

b

(j)

in

do not depend on the index k. We thus ast the box

amplitude into the following universal form:

M

��

= iT

ol

2

X

k=1

"

k

fM

��

Bt

X

f

(k)

i

b

(0)

i1

(3.1)

+ 6 p

1

[g

��

X

f

(k)

i

b

(1)

i1

+ p

�

3

p

�

3

X

f

(k)

i

b

(1)

i2

+ p

�

3

p

�

4

X

f

(k)

i

b

(1)

i3

+ p

�

4

p

�

3

X

f

(k)

i

b

(1)

i4

+ p

�

4

p

�

4

X

f

(k)

i

b

(1)

i5

℄

+ 

�

[p

�

3

X

f

(k)

i

b

(2)

i1

+ p

�

4

X

f

(k)

i

b

(2)

i2

℄ + 

�

[p

�

3

X

f

(k)

i

b

(3)

i1

+ p

�

4

X

f

(k)

i

b

(3)

i2

℄ +m

�



�

X

f

(k)

i

b

(4)

i1

+ m

�

6 p

1

[p

�

3

X

f

(k)

i

b

(5)

i1

+ p

�

4

X

f

(k)

i

b

(5)

i2

℄ +m

�

6 p

1

[p

�

3

X

f

(k)

i

b

(6)

i1

+ p

�

4

X

f

(k)

i

b

(6)

i2

℄

+ m[g

��

X

f

(k)

i

b

(7)

i1

+ p

�

3

p

�

3

X

f

(k)

i

b

(7)

i2

+ p

�

3

p

�

4

X

f

(k)

i

b

(7)

i3

+ p

�

4

p

�

3

X

f

(k)

i

b

(7)

i4

+ p

�

4

p

�

4

X

f

(k)

i

b

(7)

i5

℄g

+ fM

t

$M

u

g:

The symbol fM

t

$ M

u

g at the end of Eq.(3.1) needs to be explained. It has the same meaning as the sym-
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bol M

t

$ M

u

de�ned in Eq.(2.4) exept that dia-

grams (3a3) and (3a4) are exempted from the sum. The

rossed boxes (3a3) and (3a4) go into eah other under

theM

t

$M

u

operation. More exatly, for eah of these

diagrams, when one symmetrially interhanges the two

bosoni lines (together with the appended three-gluon

vertex) one arrives at the original box graph topology

sine these boxes represent diagrams of the so alled non-

planar topology. This beomes even more lear when one

interhanges p

3

$ p

4

: In this ase eah of the two rossed

box graphs is reeted into itself.

Taking parity into aount one has altogether 2 � 2 �

2 � 2=2 = 8 independent amplitudes and thus eight in-

dependent ovariants for the proess g + g ! Q + Q in

n = 4{dimensions. We have made no attempt to redue

the 20 (plus 3 from the u{hannel ontributions) ovari-

ants in (3.1) to a basi set of independent gauge invariant

ovariants. In fat, gauge invariane will be heked later

on in terms of the expansion (3.1). At any rate, the num-

ber of independent gauge invariant ovariants will very

likely hange going from n = 4 to a general n 6= 4.

Depending on the type of the box graph one has a

di�erent number of terms in the (i) summation in (3.1).

These numbers as well as the set of basis funtions f

(k)

i

related to the salar master integrals are spei�ed below.

The oeÆient funtions b

(j)

in

are given in Appendix A of

this paper.

In the expansion (3.1) it is onvenient to hoose one

ovariant as the t-hannel Born term amplitude stru-

ture M

��

Bt

(and orrespondingly a u{hannel Born term

amplitude struture). We de�ne it as

M

��

Bt

� 

�

(6 p

3

� 6 p

1

+m)

�

; (3.2)

whih, when taken between the spin wave funtions im-

plying the e�etive relations p

�

1

= 0; p

�

2

= 0, an be

written as

M

��

Bt

= 2p

�

3



�

� 

�

6 p

1



�

: (3.3)

For eah of the box diagrams (3a1) and (3a2) we found

the following empirial relations between the b

(5)

in

and b

(6)

in

oeÆient funtions:

b

(6)

i1

= b

(5)

i2

; b

(6)

i2

= b

(5)

i1

: (3.4)

Beause of the relations (3.4) we will not write down the

results for the b

(6)

in

oeÆients in the Appendix A.

Next we present the olor fators and basis funtions

for the abelian type box diagram (3a1). For this graph

the sums over i in (3.1) run from 1 to 17 for eah of the

20 terms. One has:

T

ol

=

1

4

Æ

ab

+ (C

F

�

N

C

2

)T

b

T

a

: (3.5)

f

(k)

1

= B

(k�1)

1

; f

(k)

2

= B

(k)

1

; f

(k)

3

= B

(k�1)

2

;

f

(k)

4

= B

(k)

2

; f

(k)

5

= C

(k�1)

2

; f

(k)

6

= C

(k)

2

;

f

(k)

7

= C

(k�1)

5

; f

(k)

8

= C

(k)

5

; f

(k)

9

= C

(k�1)

6

;

f

(k)

10

= C

(k)

6

; f

(k)

11

= D

(k�1)

1

; f

(k)

12

= D

(k)

1

;

f

(k)

13

= k; (3.6)

f

(k)

14

= (k � 1)C

(k�2)

2

; f

(k)

15

= (k � 1)C

(k�2)

5

;

f

(k)

16

= (k � 1)C

(k�2)

6

; f

(k)

17

= (k � 1)D

(k�2)

1

:

The orresponding oeÆient funtions b

(j)

in

are listed

in Appendix A. Many of the oeÆient funtions are in

fat related to eah other. One has

b

(j)

12n

= �tb

(j)

10n

; j 6= 0: (3.7)

And for any given values of n and j one has

b

(j)

11n

= �tb

(j)

9n

; b

(j)

15n

= s=(2t)b

(j)

14n

; (3.8)

b

(j)

16n

= s�

2

=(2z

t

)b

(j)

14n

; b

(j)

17n

= �st�

2

=(2z

t

)b

(j)

14n

:

Further relations are valid for partiular sets of the

parameters n; j:

b

(j)

7n

= s=(2t)b

(j)

5n

; j = 0; 1; 2; 4;

b

(7)

7n

= s=(2t)b

(7)

5n

; n = 1; 3; 5; (3.9)

b

(j)

8n

= s=(2t)b

(j)

6n

; j = 4; 5; 6; 7:

Beause of these relations among the oeÆient fun-

tions we will write down only the independent oeÆients

b

(j)

in

in Appendix A.

For the nonabelian box diagram (3a2) the sums over i

in (3.1) again run from 1 to 17 for eah of the 20 terms

in (3.1) . For the olor fator we obtain:

T

ol

=

1

4

Æ

ab

+

N

C

2

T

b

T

a

: (3.10)

The relevant seventeen basis funtions that desribe the

result of evaluating the box diagram (3a2) are given by

f

(k)

1

= B

(k�1)

1

; f

(k)

2

= B

(k)

1

; f

(k)

3

= B

(k�1)

5

;

f

(k)

4

= B

(k)

5

; f

(k)

5

= C

(k�1)

1

; f

(k)

6

= C

(k)

1

;

f

(k)

7

= C

(k�1)

3

; f

(k)

8

= C

(k)

3

; f

(k)

9

= C

(k�1)

4

;

f

(k)

10

= C

(k)

4

; f

(k)

11

= D

(k�1)

2

; f

(k)

12

= D

(k)

2

;

f

(k)

13

= k; (3.11)

f

(k)

14

= (k � 1)C

(k�2)

1

; f

(k)

15

= (k � 1)C

(k�2)

3

;

f

(k)

16

= (k � 1)C

(k�2)

4

; f

(k)

17

= (k � 1)D

(k�2)

2

:

There are �ve relations between partiular oeÆients

for the box diagram (3a2), valid for any values of n and

j:

b

(j)

9n

= s=(2t)b

(j)

7n

; b

(j)

11n

= �(s=2)b

(j)

7n

; (3.12)

and

b

(j)

14n

= sz

t

=(2t

2

)b

(j)

15n

; b

(j)

16n

= s=(2t)b

(j)

15n

;

b

(j)

17n

= �(s=2)b

(j)

15n

: (3.13)
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In addition, one has two sets of relations that are valid

for the orresponding parts of the expression (3.1) for the

box (3a2). The �rst set of relations is

b

(j)

5n

= sz

t

=(2t

2

)b

(j)

7n

; (3.14)

b

(j)

14n

= 2b

(j)

5n

; b

(j)

15n

= 2b

(j)

7n

; (3.15)

b

(j)

16n

= 2b

(j)

9n

; b

(j)

17n

= 2b

(j)

11n

;

The above equalities are valid for j = 0; 2; 3; 4; 5; 6 and

for j = 1; 7 and n = 1. Note that in the presene of

the set (3.13) not all of the relations in (3.14), (3.15) are

independent. Therefore, we an hoose Eq. (3.14) and

only one relation (e.g. the seond one) out of the four

relations in (3.15) as a set of independent relations.

The seond set of relations is represented by the two

equalities that are idential to the ones of (3.12), but are

valid only for j = 4; 5; 6; 7 or for j = 1 and n = 2; 3; 4; 5:

b

(j)

10n

= s=(2t)b

(j)

8n

; b

(j)

12n

= �(s=2)b

(j)

8n

; (3.16)

In the ase of the rossed box (3a4) one has twenty

basis funtions for eah of the terms in (3.1). The olor

fator for this graph takes the simple form

T

ol

=

1

4

Æ

ab

: (3.17)

The funtions f

k

i

are de�ned as follows:

f

(k)

1

= B

(k�1)

1

; f

(k)

2

= B

(k)

1

;

f

(k)

3

= B

(k�1)

1u

; f

(k)

4

= B

(k)

1u

;

f

(k)

5

= C

(k�1)

2

; f

(k)

6

= C

(k)

2

;

f

(k)

7

= C

(k�1)

2u

; f

(k)

8

= C

(k)

2u

;

f

(k)

9

= C

(k�1)

3

; f

(k)

10

= C

(k)

3

;

f

(k)

11

= C

(k�1)

3u

; f

(k)

12

= C

(k)

3u

;

f

(k)

13

= D

(k�1)

3

; f

(k)

14

= D

(k)

3

;

f

(k)

15

= k; (3.18)

f

(k)

16

= (k � 1)C

(k�2)

2

; f

(k)

17

= (k � 1)C

(k�2)

2u

;

f

(k)

18

= (k � 1)C

(k�2)

3

; f

(k)

19

= (k � 1)C

(k�2)

3u

;

f

(k)

20

= (k � 1)D

(k�2)

3

;

where the subsript \u" is an operational de�nition pre-

sribing a (t $ u) interhange in the argument of that

funtion, i.e. B

(k)

1u

= B

(k)

1

(t$ u).

There are numerous relations between the b

(j)

in

oeÆ-

ient funtions for this diagram. These relations read:

For any value of n and j

b

(j)

11n

= b

(j)

9n

u=t; b

(j)

13n

= �b

(j)

9n

u; (3.19)

as well as

b

(j)

7n

= b

(j)

5n

u=t; j 6= 5; (3.20)

b

(j)

8n

= b

(j)

6n

u=t; j 6= 1; 2;

b

(j)

12n

= b

(j)

10n

u=t; j = 4; 5; 6; 7;

b

(1)

12n

= b

(1)

10n

u=t; n 6= 1;

b

(1)

14n

= �b

(1)

12n

t; n 6= 0; 2;

b

(2)

14;2

= �b

(2)

12;2

t:

Further one has a less general but still very useful relation

for any n

b

(j)

9n

= �b

(j)

5n

tu=(2D + tu); j = 0; 3; 6; (3.21)

with D = m

2

s � tu. Equation (3.21) above is also valid

for j = 1; 7 and n = 1.

For the oeÆient funtions that e�etively only mul-

tiply the "

2

{terms we have two sets of relations. One set

is

b

(j)

16n

= 2b

(j)

5n

; (3.22)

b

(j)

17n

= 2b

(j)

7n

; b

(j)

18n

= 2b

(j)

9n

;

b

(j)

19n

= 2b

(j)

11n

; b

(j)

20n

= 2b

(j)

13n

whih are valid for the same values of j; n as spei�ed in

and after (3.21). The other set reads

b

(j)

17n

= b

(j)

16n

u=t; (3.23)

b

(j)

18n

= �b

(j)

16n

tu=(2D + tu);

b

(j)

19n

= �b

(j)

16n

u

2

=(2D + tu);

b

(j)

20n

= b

(j)

16n

tu

2

=(2D + tu):

The relations (3.23) are global for the rossed box (3a4),

i.e. valid for any set of index values. Beause the re-

lations (3.22) always our together with the relations

(3.21), only the �rst relation of (3.22) is important. The

other four relations in (3.22) are redundant sine they

an be derived from (3.19), the �rst relation in (3.20),

(3.21) and (3.23).

In addition to the relations listed above, various oeÆ-

ient funtions of the rossed box are related by (t$ u)

exhange. For instane, the oeÆient funtions mul-

tiplying the Born term struture M

��

Bt

(or j = 0) are

related by

b

(0)

i;1

= b

(0)

i+2;1

(t$ u); i = 1; 2; 5; 6; 9;10;

b

(0)

i;1

= b

(0)

i+1;1

(t$ u); i = 16; 18; (3.24)

The remaining (j = 0) oeÆient funtions turn into

themselves under (t$ u).

Other oeÆient funtions are negatively related by

(t$ u){exhange:

b

(1)

i;4

= �b

(1)

i+2;3

(t$ u); i = 1; 2; 5; 6;9; 10;

b

(1)

i;4

= �b

(1)

i;3

(t$ u); i = 13; 14; 15;20;

b

(1)

i;4

= �b

(1)

i+1;3

(t$ u); i = 16; 18:
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p1

µ

a

p2

p3

p4

q

q

Q

Q

FIG. 5: The lowest order Feynman diagram ontributing to the subproess q�q ! QQ. The thik lines orrespond to the heavy

quarks.

(3.25)

b

(1)

i;5

= �b

(1)

i+2;2

(t$ u); i = 1; 2; 5; 6; 9; 10;

b

(1)

i;5

= �b

(1)

i;2

(t$ u); i = 13; 14; 15; 20;

b

(1)

i;5

= �b

(1)

i+1;2

(t$ u); i = 16; 18:

Furthermore, the whole term orresponding to j = 4 in

(3.1) is antisymmetri under (t $ u). The following

pairs of oeÆient funtions are negatively related in the

sense of (3.25): the b

(5)

i2

are related to b

(5)

l1

, and the b

(6)

i2

are related to b

(6)

l1

, where l an take any of the values

l = i; i+1; i+2 depending on the value of i. The number

of independent oeÆient funtions is greatly redued for

this box beause of all these relations. We took advantage

of this fat when writing down the relevant oeÆient

funtions in Appendix A.

As explained after Eq. (3.1) the rossed box (3a4) is

obtained from (3a3) with the help of the M

t

$ M

u

operation. For this reason we write down expliit results

only for one of the box (3a3) in Appendix. A.

A neessary hek on the orretness of our one{loop

results is gauge invariane. For example, for gluon 1 this

implies that one must have

p

1�

�

�

(p

2

)�u(p

3

)M

��

(one � loop)v(p

4

) = 0; (3.26)

for eah of the remaining independent amplitude stru-

tures that multiply e.g. p

1�

, p

3�

and 

�

. Similarly one

must have

p

2�

�

�

(p

1

)�u(p

3

)M

��

(one� loop)v(p

4

) = 0 (3.27)

again, for eah of the remaining independent amplitude

strutures that multiply e.g. p

2�

, p

3�

and 

�

. We have

veri�ed gauge invariane for the following gauge-invariant

subsets of diagrams: (i) When the inoming gauge bosons

are photons, i.e. inluding graphs (3a1), (31), (32),

(3d1), (3d2), (3d3) plus their u-hannel ounterparts

with their orresponding olor weights; (ii) For the photo-

prodution of heavy avors, i.e. inluding all the above

diagrams plus graphs (3a4), (34), (3e1) plus their u-

hannel ounterparts, with orresponding olor weights;

(iii) For the hadroprodution of heavy avors, whih ul-

timately inludes all the graphs from Figs. 3 and 4 plus

their relevant u-hannel ounterparts. We emphasize

that the above gauge invariane heks were made sepa-

rately for both olor strutures C

F

and N

C

, and for every

existing ombination of olor matries T

a

, T

b

and Æ

ab

,

whenever they arise. When heking on gauge invariane

all the relevant s-, t- and u-hannel graphs have to be

added. Gauge invariane must of ourse be heked for

eah power of " and for eah of the oeÆient funtions

of the Laurent series expansion of the salar master in-

tegrals separately, independent of their atual numerial

values.

Finally we note that the original omputer output for

the box diagrams was extremely long. The �nal results

were ast into the above shorter form with the help of

the REDUCE Computer Algebra System [28℄.

IV. ANNIHILATION OF THE

QUARK-ANTIQUARK PAIR

The LO Born graphs ontributing to this subproess

are shown in Fig. 5. In Fig. 6 we show the graphs on-

tributing at one-loop order.

The leading order ontribution proeeds only through

the s-hannel graph. One has:

B

q�q

= iT

a

ij

T

a

kl

�v(p

2

)

�

u(p

1

)�u(p

3

)

�

v(p

4

)=s: (4.1)

Here the olor matries T

a

belong to di�erent fermion

lines whih are onneted by the gluon having olor in-

dex a. We have again left out the fator g

2

in the Born

term ontribution (4.1). In the Passarino-Veltman re-

dution for tensor integrals we an make use of the same

salar integrals of [18℄ as those appearing in the gluon

fusion subproess, with relevant shifts and interhanges

of momenta when needed.

Starting again with the 2-point insertions, we notie

that the result for graph (6g) an be obtained from the

one of (2.19) for graph (4h) in the gluon fusion subproess

by the simple replaement

M

(6g)

=M

��

(4h)

(B

��

s

! B

q�q

): (4.2)

The massless quark self-energy insertion graphs (6j)

and (6k) with external legs on-shell vanish identially:

M

(6j)

= M

(6k)

= 0: (4.3)

The massive quark self-energy insertion graphs (6h)

and (6i) with external legs on-shell are alulated in anal-
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a b c

d e f

g h i

j k

FIG. 6: The one-loop Feynman diagrams ontributing to the subproess q�q ! QQ. The loop with dotted line represents gluon,

ghost and light and heavy quarks.

ogy to the ones onsidered in the previous setion:

M

(6h)

=M

(6i)

= �C

F

B

q�q

3� 2"

"(1� 2")

: (4.4)

The results for the vertex insertions are relatively

short. Starting with graphs (6) and (6d) one �nds that

they are proportional to the LO Born term:

M

(6)

= B

q�q

2

X

k=1

"

k

f3B

(k)

5

+ 2B

(k�1)

5

+ 2C

(k)

4

sg=6 (4.5)

and

M

(6d)

= �3B

q�q

2

X

k=1

"

k

B

(k)

5

=2: (4.6)

For the other two vertex insertion diagrams we also

obtain simple expressions:

M

(6e)

= (B

q�q

2

X

k=1

"

k

f3B

(k)

2

+ 2B

(k�1)

2

+C

(k)

6

s(1 + �

2

)

�16kg+ 4iT

a

T

a

m�v(p

2

)6 p

3

u(p

1

)�u(p

3

)v(p

4

) �

2

X

k=1

"

k

fB

(k)

2

+ 2B

(k�1)

2

� 8kg=(s

2

�

2

))=6

(4.7)

and

M

(6f)

= 3(B

q�q

2

X

k=1

"

k

fB

(k)

5

(8m

2

=s� 1) + 2C

(k)

1

m

2

�k16(5m

2

=s� 1)g+ 4iT

a

T

a

m�v(p

2

)6 p

3

u(p

1

) �

�u(p

3

)v(p

4

)

2

X

k=1

"

k

fB

(k)

5

(8m

2

=s+ 1)� 2B

(k�1)

5
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+6C

(k)

1

m

2

�C

(k�1)

1

s� k4(12m

2

=s � 1)g

=(s

2

�

2

))=(2�

2

): (4.8)

Turning to the two box diagrams (6a) and (6b) we

note that extensive Dira algebra manipulations lead to

rather ompat expressions for the amplitudes. We have

expanded the box diagrams in terms of seven indepen-

dent Dira strutures, the same set for eah of the two

box graphs. Then every Dira struture is multiplied by

the sums of produts of a small set of basis funtions

and oeÆient funtions. Thus, we have the following

ompat expansion for the two box diagrams:

M = iT

ol

2

X

k=1

"

k

n

�v(p

2

)

�

u(p

1

)�u(p

3

)

�

v(p

4

)

X

f

(k)

i

h

(0)

i

+ �v(p

2

)6 p

3

u(p

1

)�u(p

3

)6 p

1

v(p

4

)

X

f

(k)

i

h

(1)

i

+ �v(p

2

)

�

6 p

3



�

u(p

1

)�u(p

3

)

�

6 p

1



�

v(p

4

)

X

f

(k)

i

h

(2)

i

+ �v(p

2

)

�



�



�

u(p

1

)�u(p

3

)

�



�



�

v(p

4

)

X

f

(k)

i

h

(3)

i

+ m�v(p

2

)6 p

3

u(p

1

)�u(p

3

)v(p

4

)

X

f

(k)

i

h

(4)

i

+ m�v(p

2

)

�

u(p

1

)�u(p

3

)

�

6 p

1

v(p

4

)

X

f

(k)

i

h

(5)

i

+ m�v(p

2

)

�

6 p

3



�

u(p

1

)�u(p

3

)

�



�

v(p

4

)

X

f

(k)

i

h

(6)

i

o

:

(4.9)

There are seven independent ovariants in (4.9) upon

using the four mass{shell onditions. We have not at-

tempted to further redue the set of seven ovariants us-

ing Fierz{type identities whih are anyway valid only in

n = 4{dimensions. Taking parity and the masslessness

of the initial quarks into aount the number of ampli-

tudes and thereby the number of independent ovariants

in n = 4 is 2 � 2 � 2 � 2=2 � 2 = 4. However, this ounting

may no longer be true in n 6= 4.

The sums over i in (4.9) run from 1 to 15 in the box

diagram (6a). Below we list the olor fators and analyti

funtions for the two 4-point funtions of (4.9). For the

graph (6a) we get:

T

ol

= (T

a

im

T

b

mj

)(T

b

kn

T

a

nl

); (4.10)

where the �rst parentheses in (4.10) orresponds to the

summation over olor indies of the massless fermion line.

The basis funtions read

f

(k)

1

= B

(k)

1

; f

(k)

2

= B

(k)

5

; (4.11)

f

(k)

3

= C

(k�1)

1

; f

(k)

4

= C

(k)

1

; f

(k)

5

= C

(k�1)

3

;

f

(k)

6

= C

(k)

3

; f

(k)

7

= C

(k�1)

4

; f

(k)

8

= C

(k)

4

;

f

(k)

9

= D

(k�1)

2

; f

(k)

10

= D

(k)

2

; f

(k)

11

= k;

f

(k)

12

= (k � 1)C

(k�2)

1

; f

(k)

13

= (k � 1)C

(k�2)

3

;

f

(k)

14

= (k � 1)C

(k�2)

4

; f

(k)

15

= (k � 1)D

(k�2)

2

:

As in the ase of the gluon fusion boxes there exist a

number of universal relations among the various oeÆ-

ient funtions h

(j)

i

valid for any value of j:

h

(j)

3

= z

t

h

(j)

7

=t; h

(j)

5

= 2th

(j)

7

=s; h

(j)

9

= �th

(j)

7

;

h

(j)

10

= �th

(j)

8

; h

(j)

12

= 2z

t

h

(j)

7

=t; h

(j)

13

= 4th

(j)

7

=s;

h

(j)

14

= 2h

(j)

7

; h

(j)

15

= �2th

(j)

7

(4.12)

The olor fator for the seond box graph (6b) is

T

ol

= (T

a

T

b

)(T

a

T

b

): (4.13)

All basis funtions are obtained from those in (4.11) by

the interhange (t $ u), exept for the two additional

funtions (with subsripts 16 and 17), e.g.:

f

(k)

1

= B

(k)

1

(t$ u); f

(k)

2

= B

(k)

5

; (4.14)

f

(k)

3

= C

(k�1)

1

; f

(k)

4

= C

(k)

1

;

f

(k)

5

= C

(k�1)

3

(t$ u); f

(k)

6

= C

(k)

3

(t$ u);

f

(k)

7

= C

(k�1)

4

; f

(k)

8

= C

(k)

4

;

f

(k)

9

= D

(k�1)

2

(t$ u); f

(k)

10

= D

(k)

2

(t$ u);

f

(k)

11

= k;

f

(k)

12

= (k � 1)C

(k�2)

1

; f

(k)

13

= (k � 1)C

(k�2)

3

(t$ u);

f

(k)

14

= (k � 1)C

(k�2)

4

; f

(k)

15

= (k � 1)D

(k�2)

2

(t$ u);

f

(k)

16

= B

(k�1)

1

(t$ u); f

(k)

17

= B

(k�1)

5

:

The last two funtions f

16

and f

17

appear in the ex-

pansion (4.9) only in two sums where h

(1)

i

and h

(4)

i

are

present and, onsequently, these sums run from 1 to 17.

One has further relations for the various oeÆient

funtions h

(j)

i

whih are similar to those in Eq. (4.12).

In this ase they are valid for any given value of j exept

for j = 1 and j = 4.

h

(j)

3

= z

u

h

(j)

7

=u; h

(j)

5

= 2uh

(j)

7

=s; h

(j)

9

= �uh

(j)

7

;

h

(j)

10

= �uh

(j)

8

; h

(j)

12

= 2z

u

h

(j)

7

=u; h

(j)

13

= 4uh

(j)

7

=s;

h

(j)

14

= 2h

(j)

7

; h

(j)

15

= �2uh

(j)

7

; (4.15)

where z

u

= 2m

2

+ u. In ase of j = 1 and j = 4 one has

h

(j)

5

= 2uh

(j)

7

=s; h

(j)

9

= �uh

(j)

7

; h

(j)

10

= �uh

(j)

8

;

h

(j)

12

= z

u

h

(j)

14

=u; h

(j)

13

= 2uh

(j)

14

=s;

h

(j)

15

= �uh

(j)

14

: (4.16)

The oeÆient funtions h

(j)

i

are given in Appendix B

of this paper. However, there exists a partial symmetry

for these box diagrams, whih allows one to express most

oeÆient funtions for the box graph (6b) through the

ones of the box graph (6a). In partiular, starting from

the oeÆients h

(j)

i

with supersript j � 2, we �nd the

following general relations:

h

(j)

i

[(6b)℄ = �h

(j)

i

[(6a)℄(t$ u); j = 2; (4.17)

h

(j)

i

[(6b)℄ = h

(j)

i

[(6a)℄(t$ u); j = 3; 5; 6:
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Consequently, for the graph (6b) only the oeÆients

h

(0)

i

, h

(1)

i

and h

(4)

i

are presented in Appendix B. We re-

iterate that all the one-loop amplitudes of this hapter

must be multiplied by the ommon fator (2.3).

V. CONCLUSIONS

We have presented analyti O("

2

) results on the one-

loop amplitudes for gluon{ and light quark{indued

heavy quark pair prodution inluding their absorptive

parts [30℄. These are needed for the alulation of the

loop-by-loop part of the parton model desription of

NNLO heavy hadron prodution in hadroni ollisions.

We have not inluded the �nite and divergent piees in

our presentation sine these were already obtained in an

earlier publiation [20℄. The advantage of having the re-

sults in amplitude form is that one retains the full spin

information of the partoni subproess whih would be

of later use when one wants to onsider polarization phe-

nomena in heavy hadron prodution. As an immediate

next step we plan to square the one{loop amplitudes and

to sum over the spins of the external partons. This will

provide the neessary input for the loop-by-loop part of

the NNLO parton model desription of unpolarized heavy

hadron or top quark pair prodution whih is presently

under study at the TEVATRON II and will be studied

at the upoming hadron ollider LHC.
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APPENDIX A

Here we present the oeÆients of the box ontri-

butions for the gluon fusion subproess appearing in

Eq. (3.1).

We de�ne a shorthand notation:

z

1

� m

2

s � t

2

; z

2

� s+ 2t;

z

t

� 2m

2

+ t; z

u

� 2m

2

+ u; (A1)

D � m

2

s� ut:

First we list oeÆients for the abelian type of box

diagram (3a1):

b

(0)

i;1

= 0; i = 1; 2; 3; 4; 13;

b

(0)

5;1

= �10tz

t

=D; b

(0)

6;1

= 2tz

u

=D;

b

(0)

8;1

= sz

u

=D; b

(0)

9;1

= �5st�

2

=D;

b

(0)

10;1

= �su

1

�

2

=D; b

(0)

12;1

= s(D +m

2

s�

2

)=D;

b

(0)

14;1

= �24tz

t

=D;

b

(1)

1;1

= 0; b

(1)

2;1

= �2z

2

t

=tD; b

(1)

3;1

= 0;

b

(1)

4;1

= 2z

t

=D; b

(1)

5;1

= 2tz

t

(6D + st�

2

)=D

2

;

b

(1)

6;1

= �2z

t

(2m

2

D � st

2

�

2

)=D

2

;

b

(1)

8;1

= (2m

2

z

2

D + s

2

tz

t

�

2

)=D

2

;

b

(1)

9;1

= s�

2

=(2z

t

)b

(1)

5;1

; b

(1)

10;1

= s

2

t

2

�

4

=D

2

;

b

(1)

13;1

= 16m

2

z

t

=tD; b

(1)

14;1

= 4tz

t

(6D + st�

2

)=D

2

;

b

(1)

1;2

= 4Tu�

2

=D

2

;

b

(1)

2;2

= �4m

2

(2D

2

+ 2t

2

D + st(D � 2t

2

)�

2

)=st

2

D

2

;

b

(1)

3;2

= 4tuz

t

=sD

2

; b

(1)

4;2

= 4m

2

(D � 2sz

t

)=sD

2

;

b

(1)

5;2

= 4tz

t

(2m

2

D � t(D +m

2

s)�

2

)=D

3

;

b

(1)

6;2

= �8m

2

(T (sT � 2m

2

t)D + st

3

z

t

�

2

)=tD

3

;

b

(1)

8;2

= 4m

2

t(uz

2

D � s

2

z

1

�

2

)=sD

3

;

b

(1)

9;2

= 2t

2

�

2

((2m

2

� s)D �m

2

s

2

�

2

)=D

3

;

b

(1)

10;2

= 4m

2

t�

2

((2s+ t)D � s

2

t�

2

)=D

3

;

b

(1)

13;2

= 16m

2

((2sT + tz

t

)D � 3m

2

stz

t

)=st

2

D

2

;

b

(1)

14;2

= 4tz

t

(4m

2

D � t(D + 3m

2

s)�

2

)=D

3

;

b

(1)

1;3

= �4(2D

2

� 2m

2

(3m

2

� s)D +m

4

st�

2

)=sTD

2

;

b

(1)

2;3

= �4z

t

(2m

2

D

2

� t(2m

4

D � (3s+ 2t)z

t

D

� 2m

2

t

2

z

u

))=st

2

TD

2

;

b

(1)

3;3

= 4(z

t

D � t(m

2

s � u(2m

2

� s))�

2

)=s�

2

D

2

;

b

(1)

4;3

= 4(s

2

(m

2

� t)�

4

+ (m

2

+ 4s)�

2

D

� tz

1

�

2

+ z

t

D)=s�

2

D

2

;

b

(1)

5;3

= �4t(2(2m

2

+ 2s� t)D

2

� t(6m

2

z

2

+ s

2

�

2

)D

+m

2

s(6sD + 2tD + stz

u

)�

2

)=sD

3

;

b

(1)

6;3

= �4(4m

2

TD

2

� t((2m

4

� t

2

)z

t

� 2m

2

tz

2

)D

+ 2m

4

st

2

z

2

�

2

)=tD

3

;

b

(1)

8;3

= �2(2m

2

sD

2

� (2m

2

u

3

� s

2

t

2

�

2

� 2m

2

t

3

)D

� 2m

2

s

2

z

1

u�

2

)=sD

3

;

b

(1)

9;3

= �2t(D

2

+ (9m

2

s � 2m

2

t+ st� 3t

2

)D�

2
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+ s

2

(3D �m

2

u)�

4

)=D

3

;

b

(1)

10;3

= �2z

t

(tz

t

D + s

2

t

2

�

4

� (2m

2

s

2

z

2

�m

2

stu+ t

4

)�

2

)=D

3

;

b

(1)

13;3

= 16m

2

(s(4D + t(8m

2

+ 5s))D�

2

� 3t

2

(D +m

2

s�

2

)z

2

+ 3m

2

s

3

t�

4

)=s

2

t

2

�

2

D

2

;

b

(1)

14;3

= 4tz

t

(2(2sT � 3sz

2

� 3tu)D

+ su(D + 3m

2

s)�

2

)=sD

3

;

b

(1)

1;4

= 4Tz

t

z

2

=sD

2

;

b

(1)

2;4
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;
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;
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2

s(5s + 6t))�

2

)=D

2

;

b

(3)

10;1

= (2(s

2

T + 2m

2

t

2

)D � s

2

(2m

2

z

1

� t

2

u)�

2

)=sD

2

;

b

(3)

13;1

= 16((16m

4

� s
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;
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;
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�
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;
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;
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;

b

(7)

2;3
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�
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;
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;
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2

)�

2

)=sD

3

;

b

(7)

10;5

= �2(2(2m

2

� s)z

2

D

2

+ 2m

2

stz

t

D

� s

2

t

2

(D + 2m

2

z

2

)�

2

)=sD

3

;

b

(7)

13;5

= 16(2m

2

t

2

D + s(2D

2

� 3m

2

t

2

u)�

2

)=s

2

t�

2

D

2

;

b

(7)

14;5

= 4tz

t

(8D

2

� tz

2

D + 3m

2

stz

2

)=sD

3

:

Next we list the oeÆients for the nonabelian box

diagram (3a2):

b

(0)

1;1

= 0; b

(0)

2;1

= 2z

t

=t

2

; b

(0)

3;1

= 0;

b

(0)

4;1

= 0; b

(0)

6;1

= �s(4T + s)=D;

b

(0)

7;1

= �16t

2

=D; b

(0)

8;1

= �2(sz

t

+ 4t

2

)=D;

b

(0)

10;1

= s(s � 2t)=D; b

(0)

12;1

= s(sz

t

+ 4t

2

)=D;

b

(0)

13;1

= �16m

2

=t

2

;

b

(1)

1;1

= 0; b

(1)

2;1

= 2z

t

=D;

b

(1)

3;1

= 0; b

(1)

4;1

= 2(m

2

s + t

2

)=sD;

b

(1)

6;1

= (2(sT � 4m

2

t)D � t

2

z

2

2

)=D

2

;

b

(1)

7;1

= 2t

2

(8D � sz

t

)=D

2

;

b

(1)

8;1

= 2t(4TD + t

2

z

2

)=D

2

;

b

(1)

10;1

= (D

2

� 4t

2

D + st

2

z

2

)=D

2

;

b

(1)

12;1

= t

3

(4D � sz

2

)=D

2

; b

(1)

13;1

= �16m

2

=D;

b

(1)

1;2

= �4Tuz

t

=tD

2

;

b

(1)

2;2

= �4m

2

(D + 2tz

t

)=tD

2

; b

(1)

3;2

= �4t

2

u=sD

2

;

b

(1)

4;2

= 4m

2

(�D + 2st�

2

)=s�

2

D

2

;

b

(1)

5;2

= 2((4m

4

s� 2m

2

t

2

+ st

2

)D +m

2

s

2

t

2

�

2

)=D

3

;

b

(1)

6;2

= 4m

2

(�2m

2

D

2

� s

2

tD�

2

+ s

3

t

2

�

4

)=s�

2

D

3

;

b

(1)

7;2

= 4t

2

(2m

2

sT � t

2

u)=D

3

; b

(1)

8;2

= 8m

2

t

2

z

1

=D

3

;

b

(1)

13;2

= 16m

2

(D + 3m

2

s�

2

)=s�

2

D

2

;

b

(1)

15;2

= 4t

2

(TD + 3m

2

z

1

)=D

3

;

b

(1)

1;3

= 4m

2

z

t

(2D +m

2

t)=tTD

2

;

b

(1)

2;3

= �4((2T (5m

2

s + 4m

2

t� t

2

) + 3t

2

z

2

)D

� 2m

2

t

3

z

u

)=stTD

2

;

b

(1)

3;3

= 4tu

2

=sD

2

;

b

(1)

4;3

= 4((u(8m

2

� 3s) + sT )D � 2m

2

s

2

u�

2

)=s

2

�

2

D

2

;

b

(1)

5;3

= 2(4tD

2

+ ((10m

2

s + t

2

)(2m

2

� s) � 2s

2

t)D

� st

2

u

2

�

2

)=D

3

;

b

(1)

6;3

= 2(2m

2

(3z

t

+ s + t)D

2

� s

2

(2m

2

s � t

2

)D�

2

� 2m

4

s

4

�

4

)=s�

2

D

3

;

b

(1)

7;3

= 4t

2

((3s(2m

2

� s) + 2tz

2

)D

�m

2

s

3

�

2

+m

2

stz

2

)=sD

3

;

b

(1)

8;3

= 4tz

t

(tD � 2m

2

su)=D

3

;

b

(1)

13;3

= �16m

2

(4(t(5m

2

+ 2t)� s

2

�

2

)D

+ s(2m

2

su� s

2

z

t

+ t

3

)�

2

)=s

2

t�

2

D

2

;

b

(1)

15;3

= 4t

2

(8D

2

� s(7s + 5t)D

+ 3m

2

s(�s

2

�

2

+ tz

2

))=sD

3

;

b

(1)

1;4

= 4Tz

t

=D

2

; b

(1)

2;4

= 8tT z

2

=sD

2

;

b

(1)

3;4

= 4t

3

=sD

2

;

b

(1)

4;4

= �4((3m

2

+ 2t)D + 2t

3

�

2

)=s�

2

D

2

;

b

(1)

5;4

= �2(4(3m

2

+ 2t)D

2

+ t

2

(2m

2

� s � 4t)D + st

4

�

2

)=D

3

;

b

(1)

6;4

= 2(2(2m

4

� sz

t

)D

2

� s

2

(2m

2

T + tz

t

)D�

2

� 2st

2

(m

2

z

1

� t

2

z

t

)�

2

)=s�

2

D

3

;

b

(1)

7;4

= �4t

2

(6D

2

+ stD � t

3

z

2

)=sD

3

;

b

(1)

8;4

= �4t

2

((2T + t)D + 2t

2

z

t

)=D

3

;

b

(1)

13;4

= 16m

2

(2(2T + s+ 2t)D � 3st

2

�

2

)=s

2

�

2

D

2

;

b

(1)

15;4

= �4t

2

(12D

2

� 2tuD � 3t

3

z

2

)=sD

3

;
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b

(1)

i5

= b

(1)

i2

;

(A3)

b

(2)

1;1

= 0; b

(2)

2;1

= �2T (3s + 4t)=sD;

b

(2)

3;1

= 0; b

(2)

4;1

= �((D � 2t

2

)�

2

� 4m

2

z

t

)=s�

2

D;

b

(2)

6;1

= (�2(2m

2

� s)D

2

+ 2s(m

2

s+ tT )D�

2

� tz

t

(4m

2

D � s

2

(4m

2

+ t)�

2

))=s�

2

D

2

;

b

(2)

7;1

= 2t

3

(8m

2

s + 5st+ 4t

2

)=sD

2

;

b

(2)

8;1

= �2t(2sTz

t

+ t

3

)=D

2

;

b

(2)

10;1

= �(2m

2

s

2

T � 4t

2

D + t

3

z

2

)=D

2

;

b

(2)

12;1

= �t

2

(2sD + t(8m

2

s + 5st + 4t

2

))=D

2

;

b

(2)

13;1

= �16(sTu�

2

+ 2m

4

z

2

)=s

2

�

2

D;

b

(2)

1;2

= 0;

b

(2)

2;2

= 2(2(m

2

s � 2t

2

)D �m

2

t

2

(3s+ 4t))=st

2

D;

b

(2)

3;2

= 0;

b

(2)

4;2

= (tz

2

� (3m

2

s� 2st� t

2

)�

2

)=s�

2

D;

b

(2)

6;2

= (2m

2

tz

2

D � s(sz

t

� 4tT )D�

2

�m

2

s

2

tz

2

�

2

� 2m

2

s

3

t�

4

)=s�

2

D

2

;

b

(2)

7;2

= �2t

2

(8(s� t)D � tu(3s + 4t))=sD

2

;

b

(2)

8;2

= �2(D

2

+ 5t

2

D +m

2

st(4m

2

+ t))=D

2

;

b

(2)

10;2

= �(2m

2

s

2

T � 4t

2

D � t

2

u(3s+ 2t))=D

2

;

b

(2)

12;2

= �t

2

(2(s + 4t)D + tu(3s+ 4t))=D

2

;

b

(2)

13;2

= 8(�2sD

2

�

2

+ st(2m

2

t(3s+ 2t)� 3uD)�

2

� 2m

2

t

3

z

2

)=s

2

t

2

�

2

D;

b

(3)

1;1

= 0;

b

(3)

2;1

= �2(2(m

2

s � 2tz

t

)D +m

2

t

2

(5s + 4t))=st

2

D;

b

(3)

3;1

= 0;

b

(3)

4;1

= �(8m

2

D + s(7m

2

s + 3t

2

)�

2

+ 3s

2

z

t

)=s

2

�

2

D;

b

(3)

6;1

= �(D

2

+ 3m

2

z

2

D � (10m

2

s � 4m

2

t

+ 2st � 3t

2

)D�

2

+m

2

st(2s�

2

+ 3z

2

)�

2

)=�

2

D

2

;

b

(3)

7;1

= 2t

2

(16sD + tu(5s+ 4t))=sD

2

;

b

(3)

8;1

= 2(D

2

+ 5t

2

D +m

2

t

2

(5s + 4t))=D

2

;

b

(3)

10;1

= �(2D

2

� 10stD � 4m

2

st

2

� 5st

2

u)=D

2

;

b

(3)

12;1

= t(4D

2

� 5stD �m

2

st(5s + 4t))=D

2

;

b

(3)

13;1

= 8(t(16m

4

+ su)D +m

2

s

2

(2D � t(4m

2

� t))�

2

+m

2

t

2

(5s + 4t)z

2

)=s

2

t

2

�

2

D;

b

(3)

1;2

= 0; b

(3)

2;2

= 2T (8m

2

s + 3st + 4t

2

)=stD;

b

(3)

3;2

= 0;

b

(3)

4;2

= (�(D + s(4m

2

+ t))�

2

+ 3sz

t

)=s�

2

D;

b

(3)

6;2

= (12m

2

D

2

+ 2t(m

2

� s)z

2

D

+ st(4m

2

z

1

� stz

t

)�

2

)=s�

2

D

2

;

b

(3)

7;2

= �2t

4

(5s+ 4t)=sD

2

;

b

(3)

8;2

= 2t

2

(2D + 4m

2

t� t

2

)=D

2

;

b(

(3)

10;2

= �(2m

2

s

2

T + 3st

3

+ 2t

4

)=D

2

;

b

(3)

12;2

= t(2sz

t

D + t

3

(5s+ 4t))=D

2

;

b

(3)

13;2

= �16(s((4m

2

+ t)D +m

2

t

2

)�

2

+ 6m

4

tz

2

)=s

2

t�

2

D;

b

(4)

1;1

= 0; b

(4)

2;1

= 2=t; b

(4)

3;1

= 0;

b

(4)

4;1

= 2=s�

2

; b

(4)

6;1

= (D + sz

2

�

2

)=�

2

D;

b

(4)

7;1

= 0; b

(4)

8;1

= �2st=D;

b

(4)

13;1

= 8(4m

2

+ u)=st�

2

;

b

(5)

1;1

= 0; b

(5)

2;1

= 8T=tD; b

(5)

3;1

= 0;

b

(5)

4;1

= 8z

t

=s�

2

D; b

(5)

6;1

= 2(z

2

D + 2stz

t

�

2

)=�

2

D

2

;

b

(5)

7;1

= 8t

3

=D

2

; b

(5)

8;1

= �4t(D � 2t

2

)=D

2

;

b

(5)

13;1

= 32(�m

2

s�

2

+ tz

u

)=st�

2

D;

b

(5)

1;2

= 0; b

(5)

2;2

= 8m

2

=tD; b

(5)

3;2

= 0;

b

(5)

4;2

= 8z

u

=s�

2

D;

b

(5)

6;2

= �2z

2

(D � 2m

2

s�

2

)=�

2

D

2

;

b

(5)

7;2

= �8t

2

u=D

2

; b

(5)

8;2

= �4t(D + 2tu)=D

2

;

b

(5)

13;2

= �32(m

2

s�

2

+ tz

u

)=st�

2

D;

b

(7)

1;1

= 0; b

(7)

2;1

= 2t=D; b

(7)

3;1

= 0;

b

(7)

4;1

= �2z

t

=�

2

D;

b

(7)

6;1

= �(4�

2

D

2

+ sz

t

D + stz

1

�

2

)=�

2

D

2

;

b

(7)

7;1

= �2t

2

(4D + st)=D

2

;

b

(7)

8;1

= �2st

3

=D

2

; b

(7)

13;1

= 16m

2

z

2

=s�

2

D;

b

(7)

1;2

= �4Tu=D

2

;

b

(7)

2;2

= �4(6D

2

+ t(z

t

+ 3u)D + 2t

3

u)=stD

2

;

b

(7)

3;2

= 4(z

t

D +m

2

(2D + tz

2

)�

2

)=s�

4

D

2

;

b

(7)

4;2

= �4(3m

2

z

2

D + (4m

2

t� 3sz

t

� 4s

2

�

2

)D�

2

+ 2m

2

stz

2

�

2

)=s

2

�

4

D

2

;

b

(7)

5;2

= 2(z

t

D

2

+ sTz

t

D�

2

+ (8m

4

s� 8m

2

s

2
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+ 4m

2

t

2

� 4s

2

t� 3st

2

+ t

3

)D�

4

+ st(2m

4

s+ t

2

u)�

4

)=�

4

D

3

;

b

(7)

6;2

= 2(�12m

4

z

2

D

2

+ s

2

(2m

2

z

1

� 5m

2

sz

2

� st

2

)D�

4

+m

2

s(4tD + s

2

z

2

)D�

2

+ 2m

2

s

3

tz

1

�

4

)=s

2

�

4

D

3

;

b

(7)

7;2

= 4t

2

(4D

2

+ 2u(2s+ t)D +m

2

s

2

t)=sD

3

;

b

(7)

8;2

= 4t((4m

2

s + 2m

2

t+ t

2

)D + 2t

3

u)=D

3

;

b

(7)

13;2

= 16(16m

4

tz

t

D + 2m

2

s

3

(2D +m

2

s)�

4

� s

2

t(4m

4

s + 7m

2

tz

u

+ 2tu

2

)�

2

)=s

3

t�

4

D

2

;

b

(7)

15;2

= 4t

2

(2(�s

2

�

2

+ u(3s � 2t))D + 3st

2

u)=sD

3

;

b

(7)

1;3

= 4m

2

(2D +m

2

t)=TD

2

;

b

(7)

2;3

= �4(4TD

2

+ t(2m

2

T � 3st� 2t

2

)D

+ 2m

2

t

3

u)=stTD

2

;

b

(7)

3;3

= 4z

u

(4m

2

D + s(2D � tu)�

2

)=s

2

�

4

D

2

;

b

(7)

4;3

= 4(2m

2

(4m

2

z

2

+ sz

t

)D � 3s

2

(m

2

� s)D�

2

� 2s

2

(2m

2

t

2

+ tu(s + 3t))�

2

)=s

3

�

4

D

2

;

b

(7)

5;3

= 2(�2D

3

+ 2tz

t

D

2

� 2m

2

(3s + 2t)D

2

�

2

+ 2s(4m

2

� 3s)D

2

�

4

� st(s

2

+ 4m

2

t)D�

4

+ 2m

2

st(6m

2

� t)D�

2

�m

2

s

2

tz

2

2

�

2

�m

2

s

2

t

2

(3s + 2t)�

4

)=s�

4

D

3

;

b

(7)

6;3

= 2(3m

2

z

2

D

2

+m

2

(8m

2

+ 3s + 18t)D

2

�

2

+ s

2

t(10m

2

+ t)D�

2

+ 2m

2

s

2

(z

t

+ 2u)D�

4

� 2m

2

s

2

tz

2

2

�

2

� 2m

2

s

2

t

2

(3s + 2t)�

4

)=s�

4

D

3

;

b

(7)

7;3

= 4t

2

(2(2m

2

s � s

2

+ t

2

)D + s

2

tU )=sD

3

;

b

(7)

8;3

= 4t((4m

2

s + tz

t

)D � 2m

2

stu)=D

3

;

b

(7)

13;3

= 16(2t(8m

4

z

t

+ s

2

z

u

)D + 10m

2

s

2

tD�

2

+m

2

s

3

(4D + 3st)�

4

� 3m

2

s

2

t

2

z

t

�

2

)=s

3

t�

4

D

2

;

b

(7)

15;3

= 4t

2

(2(�s

2

�

2

+ u(s � 2t))D � 3stu

2

)=sD

3

;

b

(7)

1;4

= 4tT=D

2

;

b

(7)

2;4

= �8T ((2s + t)D + st

2

)=stD

2

;

b

(7)

3;4

= �4z

t

(4m

2

D � st

2

�

2

)=s

2

�

4

D

2

;

b

(7)

4;4

= b

(7)

4;3

� 4(3sD + 2tz

2

2

)�

2

)=s�

2

D

2

;

b

(7)

5;4

= b

(7)

5;3

� 2(4z

u

D

2

� 2s

2

(m

2

+ 2t)D�

2

+ s

3

t

2

�

4

)=�

2

D

3

;

b

(7)

6;4

= b

(7)

6;3

� 4(2(2m

2

z

2

+ sT )D

2

� s

2

(m

2

s� 3t

2

)D�

2

+ s

4

t

2

�

4

)=s�

2

D

3

;

b

(7)

7;4

= 4t

2

(2(2m

2

s + t

2

)D + s

2

tT )=sD

3

;

b

(7)

8;4

= 4t((2sT + tz

t

)D � 2t

4

)=D

3

;

b

(7)

13;4

= b

(7)

13;3

� 16((4m

2

� 3s)D + 3tz

2

z

u

)=s�

2

D

2

;

b

(7)

15;4

= 4t

2

(2(4m

2

s+ tz

2

)D � 3st

3

)=sD

3

;

b

(7)

1;5

= �4Tu=D

2

;

b

(7)

2;5

= �4(2D

2

+ t(2T + s)D + 2t

3

u)=stD

2

;

b

(7)

3;5

= 4(z

t

D �m

2

(sz

t

� 4D)�

2

)=s�

4

D

2

;

b

(7)

4;5

= 4(3(2m

2

t� sT )D � 2m

2

z

2

D�

2

� 2st

2

z

u

�

2

)=s

2

�

4

D

2

;

b

(7)

5;5

= 2(2(16m

6

� 8m

4

t+ s

2

t)D

2

+ 2m

2

s(3sD � 2m

2

tz

2

)D�

2

+ 2m

2

s

3

(3m

2

+ 4t)D�

4

�m

2

st

2

z

3

2

�

2

)=s

2

�

4

D

3

;

b

(7)

6;5

= 2(2(5m

2

z

t

� sz

2

)D

2

+ 2m

2

(6s + t)D

2

�

2

+ 4m

2

t

2

z

2

D�

2

+ st(4m

2

u� st)D�

4

+ 2m

2

s(D

2

� st

2

z

2

)�

4

)=s�

4

D

3

;

b

(7)

7;5

= 4t

2

(4D

2

� tz

2

D + st

2

u)=sD

3

;

b

(7)

8;5

= 4t(2D

2

+ tz

t

D + 2t

3

u)=D

3

;

b

(7)

13;5

= �16(tz

u

D +m

2

t(tz

t

+ sz

2

)�

2

+ u(2TD + t

2

u)�

4

)=st�

4

D

2

;

b

(7)

15;5

= 4t

2

(8D

2

� 2tz

2

D + 3st

2

u)=sD

3

:

Finally, the oeÆients for the rossed box (3a4) are:

b

(0)

1;1

= 0; b

(0)

2;1

= �z

t

=t

2

; b

(0)

3;1

= 0;

b

(0)

5;1

= 7t(2D + tu)=sD;

b

(0)

6;1

= t(2D + s

2

� tu)=sD;

b

(0)

10;1

= (2(t � u)D � t(s

2

� tu))=sD;

b

(0)

14;1

= (2(t

2

+ u

2

)D + tu(s

2

� tu))=sD;

b

(0)

15;1

= 8m

2

(t

2

+ u

2

)=t

2

u

2

;

b

(1)

1;1

= 0; b

(1)

2;1

= 2m

2

z

t

=tD;

b

(1)

3;1

= 0; b

(1)

4;1

= 2z

u

(D �m

2

u)=u

2

D;

b

(1)

5;1

= t(2D + tu)(tz

u

� 6D)=sD

2

;

b

(1)

6;1

= (2(2m

2

� t)D

2

+ 2st

2

D � t

2

u

2

z

t

)=sD

2

;

b

(1)

8;1

= �(2z

u

D

2

� 2stuD + tu

3

z

t

)=sD

2

;

b

(1)

10;1

= �t(4D

2

� 2t

2

D + t

2

uz

u

)=sD

2

;

b

(1)

12;1

= t(4D

2

+ 2tuD � tu

2

z

u

)=sD

2

;

b

(1)

15;1

= 16m

2

(�tD +m

2

u(t� u))=tu

2

D;

b

(1)

1;2

= 4Tuz

u

=sD

2

;

b

(1)

2;2

= 4m

2

(2D

2

+ t(s � 2T )D � 2t

2

uz

t

)=st

2

D

2

;

b

(1)

3;2

= 4t

2

Uz

u

=suD

2

;
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b

(1)

4;2

= 4m

2

((z

t

� u)D + 2m

2

u(t� u))=suD

2

;

b

(1)

5;2

= 2t(2m

2

(2m

2

t

2

� 2m

2

u

2

� t

2

u)D

+ t

2

u

3

z

t

)=s

2

D

3

;

b

(1)

6;2

= �4m

2

(2(2t+ u)D

3

+ t

3

u(2t� u)D

+ t

4

u

2

(t � u))=s

2

tD

3

;

b

(1)

8;2

= 4m

2

(2D

3

� tu

2

(2t� u)D � t

2

u

3

(t� u))=s

2

D

3

;

b

(1)

9;2

= �2t

2

u

2

(2m

2

D � t

2

z

u

)=s

2

D

3

;

b

(1)

10;2

= 4m

2

t

2

u(tD +m

2

s(t � u))=s

2

D

3

;

b

(1)

15;2

= �16m

2

(2(m

2

t

2

� uT (2t+ u))D

� 3t

2

u

2

z

t

)=st

2

uD

2

;

b

(1)

16;2

= �2t(2D + tu)(4m

4

s(t� u) + tu

2

z

t

)=s

2

D

3

;

b

(1)

1;3

= �4(m

2

t

2

D + u(m

4

u� t

2

U )z

t

)=stTD

2

;

b

(1)

2;3

= 4(2T (t+ T )D

2

+ t(2m

4

s�m

4

z

t

+ t

2

u)D

+ 2m

2

tTu

2

z

t

)=st

2

TD

2

;

b

(1)

3;3

= �4tUz

u

=sD

2

;

b

(1)

4;3

= 4U (z

u

D � 2u

2

z

t

)=suD

2

;

b

(1)

5;3

= 2t(�12D

3

+ 4u(2m

2

� t)D

2

� u

2

(5uz

t

+ st)D � tu

4

z

t

)=s

2

D

3

;

b

(1)

6;3

= 2(�2(4m

2

t+ 2m

2

u+ 3t

2

)D

3

� 2t

3

uD

2

+ t

2

u

2

(tz

t

� 4m

2

u)D + 2m

2

t

3

u

3

(t� u))=s

2

tD

3

;

b

(1)

8;3

= 2(2(2m

2

� 3u)D

3

� 2tu

2

D

2

+ u

3

(tz

t

� 4m

2

u)D + 2m

2

tu

4

(t� u))=s

2

D

3

;

b

(1)

9;3

= 2t

2

u(6D

2

� u(t+ 2U )D + u

3

z

t

)=s

2

D

3

;

b

(1)

10;3

= 2tu(2tD

2

� u(tz

t

� 4m

2

u)D

� 2m

2

tu

2

(t � u))=s

2

D

3

;

b

(1)

15;3

= �16m

2

(4uD

2

+ 2m

2

(t

2

+ u

2

)D

+ 3tu

3

z

t

)=st

2

uD

2

;

b

(1)

16;3

= �2t(2D + tu)(12D

2

� 2u(z

t

+ 2U )D

+ 3u

3

z

t

)=s

2

D

3

;

b

(2)

1;1

= �4Tu=sD; b

(2)

2;1

= 2T (2D � tu)=stD;

b

(2)

3;1

= 4(m

2

t�D)=sD;

b

(2)

4;1

= �2U (2D + t

2

)=suD;

b

(2)

5;1

= �t

2

(2D

2

+ 10m

2

sD + 3t

2

u

2

)=s

2

D

2

;

b

(2)

6;1

= ((sT +D)(2m

4

s

2

� t

2

u

2

)� 2t

4

D)=s

2

D

2

;

b

(2)

8;1

= (�2(2m

2

s + tu)D

2

+ 2su(2m

2

u� st)D � t

3

u

3

)=s

2

D

2

;

b

(2)

9;1

= t

3

u(8D + 3tu)=s

2

D

2

;

b

(2)

10;1

= t(4sD

2

+ 2t(s

2

� 2u

2

)D + t

3

u

2

)=s

2

D

2

;

b

(2)

12;1

= (�2(m

2

s

2

(t� u)� 2t

2

u

2

)D + t

3

u

3

)=s

2

D

2

;

b

(2)

14;1

= t

2

(2(2m

2

s

2

+ t

2

u+ u

3

)D � t

2

u

3

)=s

2

D

2

;

b

(2)

15;1

= �8(4m

2

t

2

u� (2m

2

(t� u) + st)D)=stuD;

b

(2)

16;1

= �4t

2

(2D +m

2

s)(D +m

2

s)=s

2

D

2

;

(A4)

b

(2)

1;2

= 4(D �m

2

u)=sD;

b

(2)

2;2

= 2(2(m

2

u+ 2tT )D + t

3

U )=st

2

D;

b

(2)

3;2

= 4tU=sD;

b

(2)

4;2

= 2((tz

u

� 2u

2

)D �m

2

u

3

)=su

2

D;

b

(2)

5;2

= �t(2(8m

2

su+ 7stz

u

+ tu

2

)D � 3t

2

u

3

)=s

2

D

2

;

b

(2)

6;2

= (2(2m

4

s

2

+ 4m

2

s

2

t +m

2

stu � st

2

u� t

4

)D

+ t

3

u

3

)=s

2

D

2

;

b

(2)

8;2

= (�2(2m

4

s

2

+ 2m

2

stu+ sTu

2

+ t

3

u)D

+ t

2

u

4

)=s

2

D

2

;

b

(2)

9;2

= t

2

u(2(7t+ 3u)D � 3tu

2

)=s

2

D

2

;

b

(2)

10;2

= (2s(t � u)D

2

� 2t

3

(s � 2u)D � t

3

u

3

)=s

2

D

2

;

b

(2)

12;2

= �t(2(2m

2

s

2

+ t

2

u� tu

2

)D + tu

4

)=s

2

D

2

;

b

(2)

15;2

= 8((2m

2

su

2

� 2m

2

t(t

2

+ u

2

)� stu

2

)D

+ 4m

2

t

2

u

3

)=st

2

u

2

D;

b

(2)

16;2

= �4t(2D + tu)((7t+ 4u)D � tu

2

)=s

2

D

2

;

b

(3)

1;1

= 0;

b

(3)

2;1

= �2((8m

2

+ t� 2u)D + 5m

2

tu)=stD;

b

(3)

3;1

= 0;

b

(3)

4;1

= �2((tz

u

� 2u(3m

2

+ u))D + 5m

2

u

3

)=su

2

D;

b

(3)

5;1

= t(2D + tu)(2(7t+ 8u)D + 5tu

2

)=s

2

D

2

;

b

(3)

6;1

= t(2(stz

t

+ 3m

2

su+ 2t(t

2

+ u

2

))D

+ 5t

2

u

3

)=s

2

D

2

;

b

(3)

10;1

= t

2

(2(4m

2

s + 5su� t

2

)D � 5tu

3

)=s

2

D

2

;

b

(3)

12;1

= �(4(t

2

+ u

2

)D

2

� 2tu(st� 5u

2

)D

+ 5t

2

u

4

)=s

2

D

2

;

b

(3)

15;1

= �16((s(m

2

t� u

2

) + 4m

2

u(t� u))D

� 5m

2

tu

3

)=stu

2

D;

b

(3)

1;2

= 0; b

(3)

2;2

= �2T (8D + 5tu)=stD;

b

(3)

3;2

= 0;

b

(3)

4;2

= �2((2m

2

t� 6m

2

u+ 3tu)D � 5m

2

tu

2

)=su

2

D;
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b

(3)

5;2

= �t

2

(2D + tu)(2D + 5tu)=s

2

D

2

;

b

(3)

6;2

= �t

2

(2(m

2

s � s

2

+ 4tu)D + 5t

2

u

2

)=s

2

D

2

;

b

(3)

10;2

= t

2

(2(4m

2

s � s

2

+ tu)D + 5t

2

u

2

)=s

2

D

2

;

b

(3)

12;2

= �(2(2m

2

s(t

2

+ u

2

)� s

2

tu� t

2

u

2

)D

� 5t

3

u

3

)=s

2

D

2

;

b

(3)

15;2

= �16((4m

2

u(t � u) + stU )D

+ 5m

2

t

2

u

2

)=stu

2

D;

b

(4)

i;1

= 0; i = 1; 3; 5; 9; 16;

b

(4)

2;1

= �1=t; b

(4)

4;1

= 1=u; b

(4)

6;1

= t(u � t)=D;

b

(4)

10;1

= t(t� u)=D; b

(4)

15;1

= �4(t� u)=tu;

b

(5)

1;1

= �4T=tD; b

(5)

2;1

= �4T=tD;

b

(5)

3;1

= 4m

2

=uD; b

(5)

4;1

= 4m

2

=uD;

b

(5)

5;1

= �4(D

2

+m

2

st

2

)=sD

2

; b

(5)

6;1

= 2tTu=D

2

;

b

(5)

7;1

= 4(D

2

�m

2

stu)=sD

2

; b

(5)

9;1

= 4t

3

u=sD

2

;

b

(5)

10;1

= �2tTu=D

2

; b

(5)

15;1

= �24(2m

2

t+D)=tuD;

b

(5)

16;1

= �6t

2

(2D + tu)=sD

2

;

b

(6)

1;1

= 0; b

(6)

2;1

= �8m

2

=tD; b

(6)

3;1

= 0;

b

(6)

4;1

= 8U=uD; b

(6)

5;1

= 4tu(2D + tu)=sD

2

;

b

(6)

6;1

= 2t(2m

2

u+D)=D

2

; b

(6)

10;1

= �b

(6)

6;1

;

b

(6)

15;1

= 32(2m

2

u+D)=tuD;

b

(7)

1;1

= 0; b

(7)

2;1

= 2m

2

=D; b

(7)

3;1

= 0;

b

(7)

4;1

= 2(m

2

u�D)=uD;

b

(7)

5;1

= t(4D � tu)(2D + tu)=sD

2

;

b

(7)

6;1

= t(6D

2

� 2t

2

D � t

2

u

2

)=sD

2

;

b

(7)

10;1

= t

3

(2D + u

2

)=sD

2

;

b

(7)

15;1

= 8(D � 2m

2

u)=uD;

b

(7)

1;2

= �4Tu

2

=sD

2

;

b

(7)

2;2

= 4((5m

2

s � Tu)D + 2tTu

2

)=stD

2

;

b

(7)

3;2

= �4t

2

U=sD

2

;

b

(7)

4;2

= �4((2m

2

s � Tu� 4u

2

)D + 2m

2

tu

2

)=suD

2

;

b

(7)

5;2

= 2t(�8D

3

+ 4u(t+ 2u)D

2

+ tu

2

(7t+ 4u)D + t

3

u

3

)=s

2

D

3

;

b

(7)

6;2

= 2t(�6D

3

+ u

2

(4m

2

s + 5t

2

)D

+ 2t

3

u

3

)=s

2

D

3

;

b

(7)

9;2

= 2t

2

u(4D

2

� u(3t+ 4u)D � t

2

u

2

)=s

2

D

3

;

b

(7)

10;2

= �2tu

2

((4m

2

s + 5t

2

)D + 2t

3

u)=s

2

D

3

;

b

(7)

15;2

= 16(2(t� 2u)D

2

+ 2u

2

(m

2

� 3t)D

+ 3m

2

t

2

u

2

)=stuD

2

;

b

(7)

16;2

= �2t(2D + tu)(8D

2

+ 8suD � 3t

2

u

2

)=s

2

D

3

;

b

(7)

1;3

= �4(D

2

�m

2

uD +m

2

Tu

2

)=sTD

2

;

b

(7)

2;3

= 4(3TD

2

+m

2

(st� Tu)D + 2m

2

tTu

2

)=stTD

2

;

b

(7)

3;3

= 4tuU=sD

2

; b

(7)

4;3

= 4U (D � 2tu)=sD

2

;

b

(7)

5;3

= 2t(�8D

3

� 2u(t� u)D

2

+ tu

2

(t� u)D �m

2

stu

3

)=s

2

D

3

;

b

(7)

6;3

= 2t(�6D

3

� 2u(t� u)D

2

+ tu

2

(t+ 2u)D � 2m

2

stu

3

)=s

2

D

3

;

b

(7)

9;3

= 2t

2

u(4D

2

� u(t+ 2u)D + tu

3

)=s

2

D

3

;

b

(7)

10;3

= 2tu((2m

2

s(t � u) � 3t

2

u)D + 2m

2

stu

2

)=s

2

D

3

;

b

(7)

15;3

= 16m

2

(2(t+ 2u)D � 3tu

2

)=stD

2

;

b

(7)

16;3

= �2t(2D + tu)(8D

2

+ 2suD + 3tu

3

)=s

2

D

3

;

b

(7)

1;4

= 4tTu=sD

2

;

b

(7)

2;4

= 4T ((3s� u)D � 2t

2

u)=stD

2

;

b

(7)

3;4

= �4(D

2

�m

2

tD +m

2

t

2

U )=sUD

2

;

b

(7)

4;4

= 4((m

4

� 3tz

u

)D � 2m

4

tu)=sUD

2

;

b

(7)

5;4

= �2t((8m

4

s

2

+ 6m

2

st(t� u) + t

2

u

2

)D

+ t

4

u

2

)=s

2

D

3

;

b

(7)

6;4

= �2t(6D

3

+ 2u(t� u)D

2

+ t

2

u(4t+ 3u)D + 2t

4

u

2

)=s

2

D

3

;

b

(7)

9;4

= 2t

2

u(4D

2

+ t(2t+ 3u)D + t

3

u)=s

2

D

3

;

b

(7)

10;4

= 2tu(2(t� u)D

2

+ t

2

(4t+ 3u)D + 2t

4

u)=s

2

D

3

;

b

(7)

15;4

= �16(4D

2

+ 2t(m

2

� 2t)D + 3m

2

t

3

)=stD

2

;

b

(7)

16;4

= �2t(2D + tu)(8D

2

� 6stD + 3t

3

u)=s

2

D

3

;

b

(7)

1;5

= �4Tu

2

=sD

2

;

b

(7)

2;5

= 4(D

2

�m

2

uD + 2tTu

2

)=stD

2

;

b

(7)

3;5

= �4t

2

U=sD

2

;

b

(7)

4;5

= 4(D

2

�m

2

tD + 2t

2

uU )=suD

2

;

b

(7)

5;5

= �2t(8D

3

+ 4tuD

2

� 2t

2

u

2

D �m

2

st

2

u

2

)=s

2

D

3

;

b

(7)

6;5

= 2t(�6D

3

+ 2(t

2

+ u

2

)D

2

+ t

2

u

2

D

+ 2t

3

u

3

)=s

2

D

3

;

b

(7)

9;5

= 2t

2

u(4D

2

+ tuD � t

2

u

2

)=s

2

D

3

;
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b

(7)

10;5

= �2t(2(t

2

+ u

2

)D

2

+ t

2

u

2

D + 2t

3

u

3

)=s

2

D

3

;

b

(7)

15;5

= 16(2sD

2

� 2m

2

tuD + 3m

2

t

2

u

2

)=stuD

2

;

b

(7)

16;5

= �2t(2D + tu)(8D

2

� 3t

2

u

2

)=s

2

D

3

:

APPENDIX B

This Appendix ontains the oeÆients for the one-

loop orretions to the subproess q�q ! QQ. As regards

the box diagram Fig. 6a we obtain the following oeÆ-

ients h de�ned in Eq. (4.9):

h

(0)

1

= �2T (2=st � 1=D);

h

(0)

2

= 2(1 + tz

t

=�

2

D)=s;

h

(0)

4

= (tz

t

� sTz

1

=D + tz

t

=�

2

)=D;

h

(0)

6

= �2tT (1 + st=D)=D;

h

(0)

7

= �t(s

2

T=D � 2t)=D;

h

(0)

8

= (m

2

s+ 2t

2

+ st

3

=D)=D;

h

(0)

11

= 16m

2

(T=t� 2tz

t

=s

2

�

2

)=D;

h

(1)

1

= �8T=sD; h

(1)

2

= 8(t+m

2

z

2

=s�

2

)=sD;

h

(1)

4

= �4z

t

(t

2

=D � (1 + 1=�

2

)=2)=D;

h

(1)

6

= 8t

2

T=D

2

; h

(1)

7

= 4t(2� t

2

=D)=D;

h

(1)

8

= 4stT=D

2

; h

(1)

11

= �64m

2

z

t

=s

2

�

2

D;

h

(2)

1

= z

t

=tD; h

(2)

2

= �1=D;

h

(2)

4

= s(1 � st�

2

=D)=2D;

h

(2)

6

= �tz

1

=D

2

; h

(2)

7

= stz

2

=2D

2

;

h

(2)

8

= �sz

1

=2D

2

; h

(2)

11

= �8m

2

=tD;

(B1)

h

(3)

1

= 0; h

(3)

2

= 0;

h

(3)

4

= sz

t

=4D; h

(3)

6

= t

2

=2D;

h

(3)

7

= st=2D; h

(3)

8

= st=4D; h

(3)

11

= 0;

h

(4)

1

= 4T=tD; h

(4)

2

= 4z

t

=s�

2

D;

h

(4)

4

= 2(stz

t

=D + 2m

2

z

2

=s�

2

)=D;

h

(4)

6

= h

(4)

5

; h

(4)

7

= 2st

2

=D

2

;

h

(4)

8

= h

(4)

7

; h

(4)

11

= �16(m

2

=t� z

u

=s�

2

)=D;

h

(5)

1

= �2=D; h

(5)

2

= �2z

2

=s�

2

D;

h

(5)

4

= s(z

1

=D � z

2

=s�

2

)=D;

h

(5)

6

= h

(5)

5

; h

(5)

7

= s

2

t=D

2

;

h

(5)

8

= h

(5)

7

h

(5)

11

= �16z

u

=s�

2

D;

h

(6)

i

= h

(5)

i

=2:

The values for the other oeÆient funtions h

(j)

i

with

i = 3; 5; 9; 10;12�14 and arbitrary j are not written out.

They an be inferred from the relations presented in the

Eq. (4.12).

The nontrivial oeÆients for the seond box diagram

(6b) are:

h

(0)

1

= 2(T=D + 2(s+ U )=su);

h

(0)

2

= �2(s=D + 1=s+ (2� uz

u

=D)=s�

2

);

h

(0)

4

= 1� (8m

2

s + 2m

2

u� s

2

)=D + ut

2

(t � u)=D

2

�(2� uz

u

=D)=�

2

; (B2)

h

(0)

6

= 2u(m

2

st=D +m

2

� 2u)=D;

h

(0)

7

= �u(4s+ 2u� st

2

=D)=D;

h

(0)

8

= �2 + s(m

2

� 2u)=D +m

2

s

2

t=D

2

;

h

(0)

11

= �16m

2

(s + U + 2tuz

u

=s

2

�

2

)=uD;

The values for the other oeÆient funtions h

(0)

i

with

i = 3; 5; 9; 10;12�15 are not spelled out. Again they an

be inferred from the relations Eq. (4.15).

Next we write

h

(1)

1

= 4(2m

2

t=u� z

2u

)=sD;

h

(1)

2

= 2z

2u

(1 + 1=�

2

)=sD;

h

(1)

3

= �2(2m

2

s

2

�

2

+ 2utz

u

+ sD)=D

2

;

h

(1)

4

= 2(z

1u

(2m

2

� s)=D + 2m

2

z

2u

=s�

2

)=D;

h

(1)

6

= 4u(m

2

s + uz

u

)=D

2

;

h

(1)

7

= 2(�2ut

2

=D + s + 4u)=D;

h

(1)

8

= 2s(m

2

s + uz

u

)=D

2

;

h

(1)

11

= 16m

2

(3=u� 4z

u

=s

2

�

2

)=D;

h

(1)

14

= 2u(2uz

2u

� s

2

(1 + 2�

2

))=D

2

;

h

(1)

16

= �4z

u

=uD; h

(1)

17

= 4=D:

(B3)

h

(4)

1

= �4U=uD; h

(4)

2

= �4z

u

=s�

2

D;

h

(4)

3

= �2z

2u

(m

2

s=D � 1=�

2

)=D;

h

(4)

4

= �2(suz

u

=D + 2m

2

z

2u

=s�

2

)=D;

h

(4)

6

= �4u

3

=D

2

; h

(4)

7

= 2sut=D

2

;

h

(4)

8

= �2su

2

=D

2

; h

(4)

11

= 16m

2

=uD;

h

(4)

14

= �2suz

2u

=D

2

;

h

(4)

16

= 4=D; h

(4)

17

= 4z

2u

=s�

2

D:

The remaining oeÆient funtions h

(j)

i

; j = 1; 4 with

i = 5; 9; 10; 12;13;15 an be obtained from the relations

Eq. (4.16).
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