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On the determination of low-energy constants for AS = 1 transitions Carlos Pena andartmut Wittig

1. Introduction

A satisfactory understanding of long-standing problem&ann physics, such as the well
knownAl = 1/2 rule, has so far been elusive. In addition to final-staterattions between the
two pions, the other possible origins of theé= 1/2 rule are “intrinsic” long-distance QCD effects
at typical energy scales of a few hundred MeV, as well as teeuaing of the charm quark from
the light quark sector, owing to its large mass of around £9Qn refs. [1,72] we outlined a
strategy to identify a mechanism for thé= 1/2 rule, by separately quantifying each of the above
contributions. Leaving aside final-state interactions, stuategy is implemented by computing
appropriate hadronic correlation functions allowing téedmine the weak low-energy constants
(LECs) appearing in the effective chiral theory. Our applo&s characterized by the following
features:

e The use of overlap fermions;[3] in computations of hadronatnr elements of 4-quark
operators mediatind$S = 1 transitions. As described i [4] the mixing with operatofs
lower dimensions usually encountered with Wilson fermimnsompletely avoided.

e Matching to ChPT in the so-calledregime of QCD, where the chiral counting rules imply
that this step can be performed at NLO without the appearahoeknown LECs. Since
overlap fermions preserve chiral symmetry the matchingoeaperformed in a conceptually
easy and clean manner at non-zero lattice spacing.

e Investigation of the réle of the charm quark, keeping it agetive quark in the formulation
of the effectiveAS = 1 interaction. This allows to isolate the contributions doe large
mass splitting betweem,, m,. To this end we start with the (unphysical) situation of a
mass-degenerate charm quark,= m, and compute LECs as a functionsaf.

In this note we demonstrate the feasibility of our strategthe mass-degenerate casg= m, =
mg = my, Where QCD possesses an @) x SU(4)r chiral symmetry. Since simulations in the
e-regime are plagued by large statistical fluctuations [5w& describe in detail how a reliable
signal can be obtained for 3-point correlation functiorisgélow-mode averaging” (LMA)[p: 7].
Furthermore, we discuss the relations between the compuoteelation functions and transition
amplitudes forK — it decays. This requires knowledge of the short-distancerneg@ation
factors of 4-quark operators, as well as finite-volume attiv@s that are computed in ChPT.

2. AS =1 transitions with an active charm quark

In order to make this note self-contained, we report thedfasitures of our approach. Ref. [1]
can be consulted for full details. The decay of a neutral katma pair of pions in a state with
isospina is described by the transition amplitude

T(K®— ) =iA€®, a=0,2 (2.1)

wheredy is the scattering phase shift. The experimental observ#tiat the amplitudd is sig-
nificantly larger tham,, i.e. Ag/A> = 22.1, is called thé\l = 1/2 rule. Our task is the computation
of correlation functions involving local operators, whicdin be linked to the amplituddg andA».
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The relevant local operators are obtained via the operatmtyct expansion of thAS =1
effective weak interaction. For two generations, the e¢iffecweak Hamiltonian with an active
charm quark reads

2
R ACROP RECELL AR 2.2)
0f = { (VP u) (@yuP_d) & (yuP-d) (@yuP-u) | — (u—c), (2.3)
05 = (m2—m?) {ma(sPed) +my(5P-d) },  Pu=3(1% ). (2.4)

SinceQ% does not contribute to the physidgl— 77t transition we drop it from now on. Note
that the operator®; and Q; transform according to irreducible representations of 8l of
dimensions 84 and 20, respectively.

The renormalization and mixing patterns@j‘7 Q% derived formally in the continuum theory
are preserved on the lattice, provided that the latticedigeratoD satisfies the Ginsparg-Wilson
relation [8], and therefore an exact chiral symmetry at dinéttice spacing exists;[9]. If one
furthermore replaceg by ¢ = (1 - %aD)w, the resulting local operators in the lattice theory
have simple transformation properties under the chiralmgtry. Thus, no mixing with lower-
dimensional operators can occur [4].

The amplitudesig andA, can be related to low-energy constants in an effective loergy
description ofAS = 1 weak decays. To this end we consider the leading ordertiwtechiral
Lagrangian

Le=1F?Tr[(0,U)0,U"] — 1 Tr {UMTeiG/Nf +MUTe 0N (2.5)
whereU € SU(4) denotes the Goldstone bosofiSs the vacuum angle, ard is the quark mass
matrix. The LECsF andX denote the pion decay constant and the chiral condensdte hiral

limit. The low-energy counterpart of th&S = 1 effective weak Hamiltonian is obtained at lowest
order in the chiral expansion as

2
%ChPT: g—w(vus)*vud gf [é)\f]suud - [é)\f]sccd ) (26)
= g (Ve Ve 381 )
where operators containimg have been neglected, and
[0F apys = 1F* (UOHUT)W (UOHUT)(SI3 + projections onto irreps. of dim. 84,20 (2.7)
The expression which links the LEGS andg; to the ratio of amplitudedo/A; at leading order

in ChPT then reads
Ao 1 (l 3 gI )
S [z 28l 2.8
Az V2\2 247 28)
Finally, the LECsgF can be determined by matching suitable correlation funetia ChPT and
QCD. This leads to R
81 ,,_ ki (Mw/N) Z"(g0) Cp
TH=73 5 ot
81 ki (Mw/N) Z+(go) Ci
Here, the chiral correction factéf is obtained as a ratio of correlation functions{&ﬁ computed
in ChPT, ands are specified in eq; (3.2) below. On the RHS the short-distaamrections include

(2.9)
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the Wilson coefficient&i and the renormalization factogs®, which relate the unrenormalized
operator(QiE)bare considered at bare coupligg, to the renormalization group invariant operator
via

(07)rel = th(é’O)(QiE)bare (2.10)

In the following sections we describe the evaluation of theelation functions, the chiral correc-
tion and renormalization factors.

3. Lattice set-up in the SU(4)-symmetric case

Since preserving chiral symmetry is an essential featumiotetup, the computation of the

to match QCD to its effective low-energy description in tHe(&)-symmetric case, we start by
defining suitable two- and three-point correlation funetof left-handed currents and four-quark
operators in QCD, namely

C(x0) = Y ([Jo(x)]apl/o(0)]pa) , 3.1)

CT (x0,50) = Yy {[Jo(x)]au 05 (0) [Jo(¥)]us) (3.2)

]

<

where the non-singlet left-handed curréptis defined through

[Ju(®)]ap = (Yo YuP- Jp) (%), (3.3)

a,B are generic flavour indices, and the replacemgnt> ( has been performed in the four-
quark operators of Eq; (2.3). Recall that in the SU(4)-symimémit the three-point functioné’f
receive contributions from "figure-8" diagrams only, sifiege" diagrams exactly cancel due to
the antisymmetrization undés «+ ¢). Itis also useful to define the following ratios of corretati
functions, which will enter the determination of low-engpnstants:

_ Cf(x0,y0) _ C{ (x0,)0)
Rga(x0,y0) = m7 R2o(x0,y0) = m7 (3.4)
+
Rgay20(x0,Y0) = %- (3.5)

Far enough from the location of the source operators, alighatios are expected to exhibit
plateaux that can be fitted to a constant, which can then lmkassimput in the matching procedure
to Chiral Perturbation Theory.

At low quark masses the numerical computation of correfeimctions is usually hampered
by the presence of large statistical fluctuations. Therda@e be understood by considering the
expression of the quark propagator in terms of eigenmodt#®sedfieuberger-Dirac operatby, viz

S(x,y) = 1 5 M (x) @ ()"

3.6)

IThe use of left-handed currents, as explaineg-_i 1'.10, 1larsiqularly convenient for technical reasons.
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with Ay = (1— %a_m)}\k andDny = M. In the regimen < (2V)~1, which allows a matching to
Chiral Perturbation Theory in the-regime, the low-lying spectrum db,, = (1 - %a_m)D—l—m is
discrete witlAA =~ 1/2V, and sizeable contributions to correlation functions cémom a few low
modes. Large statistical fluctuations can be traced badbumpy” structures in the wavefunctions
of these modes [12, 6].

In order to treat this problem we use low-mode averaging ()NWroduced in [g]. The
technique proceeds by treating explicitly the contribatioleft-handed quark propagators coming
from a few lowest-lying modes db. To be specific, we split propagators as

S(x,y) = ’?Miﬁh(w% (3.7)
k=1 k

where §" is the propagator in the orthogonal complement of the sutessppanned by they,
lowest modese, = Pyuy + P_gDPguy, —0 being the chirality wher® possesses zero modes (if
any), andy is an approximate eigenmode} D,,.:

PyD} D, Pouy = Qg+ ry (ug,r)) =0 Vk,I. (3.8)

After inserting the RHS of Eq; {3.7) in the expressions fer torrelation function€ andCy, they
can be split as

C= Cll T Chl T Chh 7 (39)
C]:f: — C]:f:,llll _I_C]:f:,lllh _I_C]:f:,llhh —I_C]:f:;lhhh ‘I’C]:f:;hhhh7 (310)

wherel andh denote the number of “light” and “heavy” parts of the quarggagator, respectively.
Since the “light” part ofS(x,y) is available by constructiovix, y, it is possible to exploit transla-
tional invariance to sample the dltontributions over many different source points. Furthaen

as explained in[6], by performing,, additional inversions of the Dirac operator it is also pbkesi

to extend this to the mixed contributiéi’. It is easy to check that the same applies ta/tiecon-
tributiontoC, as well as to part of thigh/l one. As already shown by the exploratory study i1} [11],
the application of this technique with,,, ~ 20 suffices to obtain a signal for three-point functions
at values of the quark mass of interest in view of matching-tegime Chiral Perturbation Theory
results.

4. Correlation functions in the £ and p-regimes

Our simulation parameters are summarized in Table 1. Thelations for lattice A are those
reported in {iL], while lattices B and C are new results. Thaistics of lattice C is currently being
increased. The results quoted for lattices B and C have tomhsiaered preliminary.

Our main aim is to fit to constants the plateaux in the ratiosoofelation functions in Egs.
(8.4,3.5). For quark masses in tperegime the procedure is straightforward, and our stasisti
allows quite precise results for the different ratios. Aample forRgs 0 in the p-regime is shown
in Fig.2. It also shows the effect of LMA on correlation fuinets at typicalp-regime masses.

In the e-regime topology plays a special role [13], and correlafiorctions are given within
fixed topological sectors. Therefore we proceed by computile quantities of interest at fixed
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Lattice B L/a T/a now L[fm] am # cfgs
A 58485 12 30 5 1.49 0.040,0.053,0.066,0.078,0.092 638
B 58485 12 32 20  1.49 0.003,0.005,0.007,0.040 681
C 5.8485 32 20  1.99 0.002,0.003,0.020,0.030,0.040,0.060~ 350

Table 1: Simulation parameters for the runs discussed in the texe nmihss values in italics are those
corresponding to the-regime. The statistics indicated for lattice C refers t® ttumber of configurations
for masses in the-regime; forp-regime masses the statistics is roughly half of the indit&igure.
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Figure 1: Left: The ratioRg4 for am = 0.020, lattice C. The points indicated by circles (trianglesje been
obtained with(out) LMA. Right: Weighted average oyef (solid band) of the rati®g,;»q for am = 0.003,
lattice C.

value|v| of the (absolute value of the) topological charge, and threnfopm a weighted average
over |v|. In order to have large enough statistics within each seatat taking into account the
expected distribution of topological charges, we imposeuwnb on the largest value pf| entering
the average|¢| < 8 on lattice B andv| < 10 on lattice C). Furthermore, following the observation
that the signal-to-noise ratio in the sectors with lowlesis poor? for the largest volume (lattice
C) we also impose a lower boumd| > 2. This procedure is illustrated in Fig. 1. In taeegime
we find no signal at all for the relevant observables if LMA @ implemented. Indeed, to our
knowledge, these are the first results for three-point fonstobtained at quark masses in the
e-regime.

Our most interesting results are those for the mass depeedsdrthe different ratios. They
are summarized in Fig,; 2, where we put together gtregime results for our three lattices and
the e-regime results in our larger volume. Three features worthtioning are: Firstly, the mass
dependence is remarkably smooth. In particular, there istrtmg mass dependence Ry, for
very small quark masses. Notice, however, that finite voleoreections have to be taken into
account for the-regime points (see below). Secondly, our results poinatoea moderate volume
dependence at quark masses corresponding to pseudosealan masses around or below the

2This can be interpreted as a consequence of the presenag sfwall eigenvalues db, which in turn induce large
statistical fluctuations even after LMA.
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Figure 2: Mass dependence of the rati®g, R2o andRgy 20 for lattices A (crosses), B (empty circles) and
C (full circles). Results for lattice C are preliminary. Tpeints atarm = 0.040 have been slightly displaced
to improve visibility.

kaon mass. As far aBgs is concerned, this was already observediir [14]. Thirdlg, direct
comparison of the different resultsatz = 0.040 shows that the effect of LMA with an adequate
number of low modes is far from negligible even at moderalatge values of the pseudoscalar
meson mass.

5. Renormalization factors for 4-quark operators

The renormalization factorg* (go) of eq. (2:10) are scale and scheme independent. For a
particular renormalization schemethey can be decomposed according to

Z*(g0) = £ (H/N) ZE (g0, al), (5.1)

whereu denotes the renormalization scale, and the coefficightse given by

(e M] } (5.2)

&)
Sk (/N) = (2bog?(p)) Y-/ 12 exp{— /0 } dg[ B(g) " bog

The anomalous dimensiog$ are known in perturbation theory to two loops for severaksebs.
For discretizations based on the Neuberger-Dirac opefa@renormalization factoéx(go,au)
have been computed féf = RI/MOM in perturbation theory at one loop in refi; [4]. Thus, the
perturbative renormalization of suitable ratios of 4-duaperators defined for overlap fermions
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and the RI/MOM scheme is

Zg (go,al) g5 ,
ot = 1t Japg (12I04pa) —2(Bs B} + (s} 53
Z (go,all) B g2 > \
m =1 1o {4'”(4“") - §<BS—BV)} +0(g¢) (5.4)
Zr (80761“) . gz 4 4
m _1+Fc7)12{8'”(4““)_§(BS—BV)}+O(go)- (5.5)

The coefficient®s andBy are listed in Table 1 of [4]. In addition to 4-quark operateve have also
considered the renormalization of the axial current. E§g)(and (5.5) then serve to renormalize
the corresponding-parameters of the operatogg. The RGI matrix elements are obtained by
combining the above renormalization factors with the coieffitscs,.

Perturbation theory in the bare coupligg is known to have bad convergence properties.
The aim of “mean-field improvement: TiL5] is to factor out uryskcal tadpole contributions in the
perturbative expansion, by a rescaling of the link variab|gx) — Uy (x)/ug. For the Neuberger-
Dirac operator defined by

Dy = g (1—A(ATA)—1/2) . p=1+s, |s|<l, A=1+s—aDy, (5.6)
the corresponding rescaling of the quark field is givenybys /(p/P)Y, P = (p — 4)uo+ 4.
For the renormalization factdf, =1+ g%z(ﬁln) + O(g$) of ann-quark operatot,, the mean-field
improved version reads

) n/2 _4 5
Z?:'Z(%) {1+§2[z(5}3—g—pp uél)]}7 &

86
)’

(5.7)

whereup = 1+ ugl)g%—|- .... When applied to our set of operators, it is immediately rctbat the
contributions from the prefactdp/p) as well as those proportional uél) drop out in ratios like
Z~/Z* andz* /Z%. Mean-field improvement of the expressions in egs: (5,3%)(5 thus simply
accomplished by replacing the bare coupliggdy the “continuum-like” coupling?.

For areliable determination of operator matrix elememis use of non-perturbative estimates
for renormalization factors is to be preferred. The Schigdr functional (SF) offers a general
framework for non-perturbative renormalization of QCD #tsaales [16]. However, the con-
struction of SF boundary conditions consistent with thesparg-Wilson relation is quite involved
[17]. Inref. [18] it was therefore proposed to introduce ateimediate Wilson-type regulariza-
tion which drops out in the final result. As an example we nogcdss the renormalization factor
Z* /7%, which is required for the8-parameteBx. The desired factor relates tteparameter
BY'(g0) computed using overlap fermions, to its RGI counterpart After introducing an inter-
mediate regularization based, for instance, on twistegr@&D [19], it can be written as

Zc—i)_v EK EK Bt[r<n (86) : Z\t—ir:n (86) tm, 1
(g0) = = : = | lim 2 BR(80) | movo: (B:8)
ZRov BY(g0) B (gh) BY(g0)  |eh-0Z%um(gh) ¢ BR'(g0)

where the superscripts “ov” and “tm” on the unrenormaliZzgarameters refer to overlap and
twisted mass fermions, respectively. The key observatidhat the expression in square brackets
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is nothing butBg in the continuum limit, which, for instance, has been coraduiy the ALPHA
Collaboration in quenched QCID[14]. Denoting the resulB§""*, the renormalization factor
in eq. {5.8) isBA-"HA /B (go). Of course, in this way one cannot predigt any more, since its
value is used to formulate the renormalization conditiolwiver, the procedure can be used to
determine the value dfx in the chiral limit, B, in units of BR-PHA:

o~

R 7+ ) =N BX;OV
B = 20 (go) x BY™'(50) + O(a?) = BpLPt B 180)

2
Zhov BY'(go) +ola). (5:9)

Note thatB}*(go) can be obtained from a suitable ratio of correlators compirt¢he e-regime,
in conjunction with the appropriate chiral correction fact

We now discuss some numerical examples
for perturbative and non-perturbative estimates bare P.T.  MFIP.T. non-pert.
of renormalization factors. In our simulations 2‘/2+ 0.525 0.582 0.58(8)
we useB = 6/g2 =5.8485. Foru =2GeVand  Zt/ZZ  1.242 1.193  1.20(8)
A = 238MeV [20], the perturbative expressions Z~/Z2  0.657 0.705 0.73(8)

for the coefficients?, yield cg, (/) = 0.6259 _ _ .
Table 2: Perturbative and non-perturbative estimates

andci (u/N) = 1.2735. Non-perturbative es-
. cr(K/N) P for RGI renormalization factors # = 5.8485.
timates for theB-parameters computed at the

physical kaon mass in the continuum limit of quenched QCDpaiozided by the ALPHA col-
laboration [1#]. The results for ratios of renormalizatfantors are listed in Table 2.

The entries in the table show that non-perturbative esémfir renormalization factors are
remarkably close to perturbative ones. Indeed, even tifiereifces between perturbative estimates
evaluated in “bare” or “mean-field improved” perturbatitvedry are small, presumably since ra-
tios of operators are considered here. This is in stark aento the situation encountered for sim-
ple quark bilinears, for which the deviations between péstive and non-perturbative estimates
amount to about 30% at similar values of the bare coupling [21

6. Chiral corrections

Our strategy of determining the LECs of th8 = 1 weak interactions requires that the kine-
matical range where ChPT is applicable must be accessitdétite simulations of QCD. The so-
calleds-expansioni|22] represents a systematic low-energy gegmmiof QCD in a finite volume
for arbitrarily small quark masses. It is characterizecekmatically by the conditionaXV ~ O(1),

FnL > 1, whereV = L* is the four-volume, anah is the quark mass. These conditions lead to
different chiral counting rules compared with the more camniy knownp-regime. In particular,
since the inverse box size counts as one unit of momeditta- O(€), one infersn ~ O(&*) and
hencem; ~ O(g?). For the effective HamiltonianZ"PT of eq. {2.8) this in turn implies that no
additional interaction terms are generated 4D In other words, the-regime allows for a NLO
matching of lattice data to ChPT without the appearance ditiathal, unknown LECsi [23].

We can now work out the chiral correction factdrin eq. (2.9). To this end we define corre-
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lation functions of the left-handed axial current in contplanalogy with the fundamental theory:
T (x0) = / (50 IHO)), S = 3T ap (UG (6D)
~ ab ~
5 oy0)agys = [ & [ {800 O)apys 78 1).). 6.2)

Choosing a diagonal quark mass matrix and flavour matri¢eg® as in eq. (D.6) of 1], one
defines the chiral correction factér by

%1 (x0,Y0)
%" (x0,Y0)
For later use we also consider the chiral correction®Bfparameters, i.e.

H= = l—ZR()Co,yo). (63)

o~

(gO’
kt=p L0 OR(x0,0), O =+. (6.4)
% (x0)% (yo)
Explicit expressions are listed in section 5.3 of ref. [H Fig. 2 of [1] the quantityr is plotted as a
function of the box size for several lattice geometriesldady demonstrates that chiral corrections

are reasonably small for box size$> 1.5fm and lattice geometries with/L < 2.

7. Synthesis, conclusions and outlook

We can now combine our results for ratios of correlation fioms with the appropriate renor-
malization and NLO chiral correction factors. We expect tha latter are best controlled for our
dataset “C”, for whichl'/L = 2 andL = 2fm. The link between the ratig; /¢; and the correlation
functions is given in eq,(2.9), while individual values fgr are obtained from
zZt 4 .

(gO) FpXiov

1K= K5 (M /N 7 22 2B (), (7.0

and similarly forg;. The LECngE are then related to the amplitudég A, via LO ChPT.

Our preliminary results for these amplitudes in the SU{umetric theory indicate a severe
mismatch with experiment: roughly speaking, our valueAigis too small by a factor 2, whila,
comes out a factor 2 too large. This produces an estimatégfor, which is four times smaller
than the one expected from the experimentally obsefifed 1/2 rule. On the other hand, this is
a factor 4 larger than the naive largl-imit, and does thus move in the right direction compared
with this case.

However, it would be premature to conclude thatMtie= 1/2 rule is generated by the decou-
pling of the charm quark, since the amplitutieis insensitive to the charm mass, yet its experimen-
tal value is not reproduced either in our calculation. Otiessibilities for the observed mismatch
are uncontrolled finite-volume corrections, quenching&f, or even the breakdown of LO ChPT
when relating the LECs to the transition amplitudes. Ouuar@twork will thus concentrate on
corroborating our results in theregime, as well as incorporating the effects of a non-degen
charm quark mass. In this context we shall investigatersdtere choices of correlators, which are
saturated with zero modes [24].

Our calculations were performed on PC clusters at DESY Hagl@ILEA and the Univer-
sity of Valencia, as well as on the IBM Regatta at FZ Julich.tink all these institutions and
the University of Milano-Bicocca for their support.
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