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fermions in the quenched approximation. This is the first computation carried out for valence

quark masses small enough so as to permit a matching to Quenched Chiral Perturbation Theory

in theε-regime. The commonly observed large statistical fluctuations are tamed by means of low-

mode averaging techniques, combined with restrictions to individual topological sectors. We also

discuss the matching of the resulting hadronic matrix elements to the effective low-energy con-

stants for∆S = 1 transitions. This involves (a) finite-volume correctionswhich can be evaluated

at NLO in Quenched Chiral Perturbation Theory, and (b) the short-distance renormalization of the

relevant four-quark operators in discretizations based onthe overlap operator. We discuss pertur-

bative estimates for the renormalization factors and possible strategies for their non-perturbative
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coming from physics effects around the intrinsic QCD scale.
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On the determination of low-energy constants for ∆S = 1 transitions Carlos Pena andHartmut Wittig

1. Introduction

A satisfactory understanding of long-standing problems inkaon physics, such as the well
known∆I = 1=2 rule, has so far been elusive. In addition to final-state interactions between the
two pions, the other possible origins of the∆I = 1=2 rule are “intrinsic” long-distance QCD effects
at typical energy scales of a few hundred MeV, as well as the decoupling of the charm quark from
the light quark sector, owing to its large mass of around 1.3 GeV. In refs. [1, 2] we outlined a
strategy to identify a mechanism for the∆I = 1=2 rule, by separately quantifying each of the above
contributions. Leaving aside final-state interactions, our strategy is implemented by computing
appropriate hadronic correlation functions allowing to determine the weak low-energy constants
(LECs) appearing in the effective chiral theory. Our approach is characterized by the following
features:

� The use of overlap fermions [3] in computations of hadronic matrix elements of 4-quark
operators mediating∆S = 1 transitions. As described in [4] the mixing with operatorsof
lower dimensions usually encountered with Wilson fermionsis completely avoided.

� Matching to ChPT in the so-calledε-regime of QCD, where the chiral counting rules imply
that this step can be performed at NLO without the appearanceof unknown LECs. Since
overlap fermions preserve chiral symmetry the matching canbe performed in a conceptually
easy and clean manner at non-zero lattice spacing.

� Investigation of the rôle of the charm quark, keeping it as anactive quark in the formulation
of the effective∆S = 1 interaction. This allows to isolate the contributions dueto a large
mass splitting betweenmc, mu. To this end we start with the (unphysical) situation of a
mass-degenerate charm quark,mc = mu and compute LECs as a function ofmc.

In this note we demonstrate the feasibility of our strategy in the mass-degenerate case,mc = mu =

md = ms, where QCD possesses an SU(4)L�SU(4)R chiral symmetry. Since simulations in the
ε-regime are plagued by large statistical fluctuations [5, 6], we describe in detail how a reliable
signal can be obtained for 3-point correlation functions using “low-mode averaging” (LMA) [6, 7].
Furthermore, we discuss the relations between the computedcorrelation functions and transition
amplitudes forK ! ππ decays. This requires knowledge of the short-distance renormalization
factors of 4-quark operators, as well as finite-volume corrections that are computed in ChPT.

2. ∆S= 1 transitions with an active charm quark

In order to make this note self-contained, we report the basic features of our approach. Ref. [1]
can be consulted for full details. The decay of a neutral kaoninto a pair of pions in a state with
isospinα is described by the transition amplitude

T (K0
! ππ

�

�

α) = iAαeiδα
; α = 0; 2; (2.1)

whereδα is the scattering phase shift. The experimental observation that the amplitudeA0 is sig-
nificantly larger thanA2, i.e. A0=A2 = 22:1, is called the∆I = 1=2 rule. Our task is the computation
of correlation functions involving local operators, whichcan be linked to the amplitudesA0 andA2.
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The relevant local operators are obtained via the operator product expansion of the∆S = 1
effective weak interaction. For two generations, the effective weak Hamiltonian with an active
charm quark reads

Hw =

g2
w

4M2
W

(Vus)
�Vud ∑

σ=�
fkσ

1 Qσ
1 +kσ

2 Qσ
2g ; (2.2)

Q�

1 =

n

(sγµP
�

u)(uγµP
�

d)� (sγµP
�

d)(uγµP
�

u)
o

� (u!c); (2.3)

Q�

2 = (m2
u�m2

c)

n

md(sP
+

d)+ms(sP
�

d)
o

; P
�

=

1
2(1� γ5): (2.4)

SinceQ�

2 does not contribute to the physicalK ! ππ transition we drop it from now on. Note
that the operatorsQ+

1 and Q�

1 transform according to irreducible representations of SU(4)L of
dimensions 84 and 20, respectively.

The renormalization and mixing patterns ofQ�

1 ;Q
�

2 derived formally in the continuum theory
are preserved on the lattice, provided that the lattice Dirac operatorD satisfies the Ginsparg-Wilson
relation [8], and therefore an exact chiral symmetry at finite lattice spacing exists [9]. If one
furthermore replacesψ by ψ̃ = (1� 1

2aD)ψ , the resulting local operators in the lattice theory
have simple transformation properties under the chiral symmetry. Thus, no mixing with lower-
dimensional operators can occur [4].

The amplitudesA0 andA2 can be related to low-energy constants in an effective low-energy
description of∆S = 1 weak decays. To this end we consider the leading order effective chiral
Lagrangian

LE =

1
4F2 Tr

�

(∂µU)∂µU†�
�

1
2ΣTr

h

UM†eiθ=Nf
+MU†e�iθ=Nf

i

; (2.5)

whereU 2 SU(4) denotes the Goldstone bosons,θ is the vacuum angle, andM is the quark mass
matrix. The LECsF andΣ denote the pion decay constant and the chiral condensate in the chiral
limit. The low-energy counterpart of the∆S = 1 effective weak Hamiltonian is obtained at lowest
order in the chiral expansion as

H

ChPT
w =

g2
w

2M2
W

(Vus)
�Vud ∑

σ=�
gσ

1

n

[

b

O

σ
1 ℄suud� [

b

O

σ
1 ℄sccd

o

; (2.6)

where operators containingM have been neglected, and

[

b

O

�

1 ℄αβγδ =

1
4F4�U∂µU†�

γα
�

U∂µU†�

δβ + projections onto irreps. of dim. 84, 20: (2.7)

The expression which links the LECSg+1 andg�1 to the ratio of amplitudesA0=A2 at leading order
in ChPT then reads

A0

A2
=

1
p

2

�

1
2
+

3
2

g�1

g+1

�

: (2.8)

Finally, the LECsg�1 can be determined by matching suitable correlation functions in ChPT and
QCD. This leads to

g�1
g+1

H =

k�1 (MW=Λ)

k+1 (MW=Λ)

�

bZ�(g0)

bZ+(g0)
�

C�

1

C+

1

: (2.9)

Here, the chiral correction factorH is obtained as a ratio of correlation functions of[

b

O

�

1 ℄ computed
in ChPT, andC�

1 are specified in eq. (3.2) below. On the RHS the short-distance corrections include
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the Wilson coefficientsk�1 and the renormalization factorsbZ�, which relate the unrenormalized
operator(Q�

1 )bare, considered at bare couplingg0, to the renormalization group invariant operator
via

(Q�

1 )RGI = bZ�(g0)(Q
�

1 )bare: (2.10)

In the following sections we describe the evaluation of the correlation functions, the chiral correc-
tion and renormalization factors.

3. Lattice set-up in the SU(4)-symmetric case

Since preserving chiral symmetry is an essential feature ofour setup, the computation of the
correlation functions in Eqs. (3.1,3.2) is performed in an overlap lattice regularization. In order
to match QCD to its effective low-energy description in the SU(4)-symmetric case, we start by
defining suitable two- and three-point correlation functions of left-handed currents and four-quark
operators in QCD, namely1

C(x0) = ∑
x




[J0(x)℄αβ [J0(0)℄βα
�

; (3.1)

C�

1 (x0;y0) = ∑
x;y




[J0(x)℄du Q�

1 (0) [J0(y)℄us

�

; (3.2)

where the non-singlet left-handed currentJµ is defined through

[Jµ(x)℄αβ = (ψ̄α γµP
�

ψ̃β )(x) ; (3.3)

α ;β are generic flavour indices, and the replacementψ ! ψ̃ has been performed in the four-
quark operators of Eq. (2.3). Recall that in the SU(4)-symmetric limit the three-point functionsC�

1

receive contributions from "figure-8" diagrams only, since"eye" diagrams exactly cancel due to
the antisymmetrization under(u$ c). It is also useful to define the following ratios of correlation
functions, which will enter the determination of low-energy constants:

R84(x0;y0) =
C+

1 (x0;y0)

C(x0)C(y0)
; R20(x0;y0) =

C�

1 (x0;y0)

C(x0)C(y0)
; (3.4)

R84=20(x0;y0) =
C+

1 (x0;y0)

C�

1 (x0;y0)
: (3.5)

Far enough from the location of the source operators, all these ratios are expected to exhibit
plateaux that can be fitted to a constant, which can then be used as input in the matching procedure
to Chiral Perturbation Theory.

At low quark masses the numerical computation of correlation functions is usually hampered
by the presence of large statistical fluctuations. The latter can be understood by considering the
expression of the quark propagator in terms of eigenmodes ofthe Neuberger-Dirac operatorD, viz

S(x;y) =
1
V

∑
k

ηk(x)
ηk(y)
†

λ̄k +m
; (3.6)

1The use of left-handed currents, as explained in [10, 1], is particularly convenient for technical reasons.
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with λ̄k = (1� 1
2 ām)λk andDηk = λkηk. In the regimem . (ΣV)

�1, which allows a matching to
Chiral Perturbation Theory in theε-regime, the low-lying spectrum ofDm = (1� 1

2ām)D+m is
discrete with∆λ � 1=ΣV , and sizeable contributions to correlation functions comefrom a few low
modes. Large statistical fluctuations can be traced back to “bumpy” structures in the wavefunctions
of these modes [12, 6].

In order to treat this problem we use low-mode averaging (LMA) introduced in [6]. The
technique proceeds by treating explicitly the contribution to left-handed quark propagators coming
from a few lowest-lying modes ofD. To be specific, we split propagators as

S(x;y) =

nlow

∑
k=1

ek(x)
ek(y)
†

αk

+Sh
(x;y) ; (3.7)

whereSh is the propagator in the orthogonal complement of the subspace spanned by thenlow

lowest modes,ek = Pσ uk +P
�σ DPσ uk, �σ being the chirality whereD possesses zero modes (if

any), anduk is an approximate eigenmode ofD†
mDm:

Pσ D†
mDmPσ uk = αkuk + rk ; (uk;rl) = 0 8k; l : (3.8)

After inserting the RHS of Eq. (3.7) in the expressions for the correlation functionsC andC�

1 , they
can be split as

C = Cll
+Chl

+Chh
; (3.9)

C�

1 = C�;llll
1 +C�;lllh

1 +C�;llhh
1 +C�;lhhh

1 +C�;hhhh
1 ; (3.10)

wherel andh denote the number of “light” and “heavy” parts of the quark propagator, respectively.
Since the “light” part ofS(x;y) is available by construction8x;y, it is possible to exploit transla-
tional invariance to sample the all-l contributions over many different source points. Furthermore,
as explained in [6], by performingnlow additional inversions of the Dirac operator it is also possible
to extend this to the mixed contributionChl. It is easy to check that the same applies to thehlll con-
tribution toC�

1 , as well as to part of thehhll one. As already shown by the exploratory study in [11],
the application of this technique withnlow � 20 suffices to obtain a signal for three-point functions
at values of the quark mass of interest in view of matching toε-regime Chiral Perturbation Theory
results.

4. Correlation functions in the ε and p-regimes

Our simulation parameters are summarized in Table 1. The simulations for lattice A are those
reported in [1], while lattices B and C are new results. The statistics of lattice C is currently being
increased. The results quoted for lattices B and C have to be considered preliminary.

Our main aim is to fit to constants the plateaux in the ratios ofcorrelation functions in Eqs.
(3.4,3.5). For quark masses in thep-regime the procedure is straightforward, and our statistics
allows quite precise results for the different ratios. An example forR84=20 in thep-regime is shown
in Fig. 1. It also shows the effect of LMA on correlation functions at typicalp-regime masses.

In theε-regime topology plays a special rôle [13], and correlationfunctions are given within
fixed topological sectors. Therefore we proceed by computing the quantities of interest at fixed
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Lattice β L=a T=a nlow L[fm℄ am # cfgs

A 5.8485 12 30 5 1.49 0.040,0.053,0.066,0.078,0.092 638
B 5.8485 12 32 20 1.49 0.003,0.005,0.007,0.040 681
C 5.8485 16 32 20 1.99 0.002,0.003,0.020,0.030,0.040,0.060� 350

Table 1: Simulation parameters for the runs discussed in the text. The mass values in italics are those
corresponding to theε-regime. The statistics indicated for lattice C refers to the number of configurations
for masses in theε-regime; forp-regime masses the statistics is roughly half of the indicated figure.

Figure 1: Left: The ratioR84 for am= 0:020, lattice C. The points indicated by circles (triangles)have been
obtained with(out) LMA. Right: Weighted average overjνj (solid band) of the ratioR84=20 for am= 0:003,
lattice C.

valuejν j of the (absolute value of the) topological charge, and then perform a weighted average
over jν j. In order to have large enough statistics within each sector, and taking into account the
expected distribution of topological charges, we impose a bound on the largest value ofjν j entering
the average (jν j � 8 on lattice B andjν j � 10 on lattice C). Furthermore, following the observation
that the signal-to-noise ratio in the sectors with lowestjν j is poor,2 for the largest volume (lattice
C) we also impose a lower boundjν j � 2. This procedure is illustrated in Fig. 1. In theε-regime
we find no signal at all for the relevant observables if LMA is not implemented. Indeed, to our
knowledge, these are the first results for three-point functions obtained at quark masses in the
ε-regime.

Our most interesting results are those for the mass dependence of the different ratios. They
are summarized in Fig. 2, where we put together thep-regime results for our three lattices and
theε-regime results in our larger volume. Three features worth mentioning are: Firstly, the mass
dependence is remarkably smooth. In particular, there is nostrong mass dependence ofR84 for
very small quark masses. Notice, however, that finite volumecorrections have to be taken into
account for theε-regime points (see below). Secondly, our results point towards a moderate volume
dependence at quark masses corresponding to pseudoscalar meson masses around or below the

2This can be interpreted as a consequence of the presence of very small eigenvalues ofD, which in turn induce large
statistical fluctuations even after LMA.
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Figure 2: Mass dependence of the ratiosR84, R20 andR84=20 for lattices A (crosses), B (empty circles) and
C (full circles). Results for lattice C are preliminary. Thepoints atam= 0:040 have been slightly displaced
to improve visibility.

kaon mass. As far asR84 is concerned, this was already observed in [14]. Thirdly, the direct
comparison of the different results atam = 0:040 shows that the effect of LMA with an adequate
number of low modes is far from negligible even at moderatelylarge values of the pseudoscalar
meson mass.

5. Renormalization factors for 4-quark operators

The renormalization factorsbZ�(g0) of eq. (2.10) are scale and scheme independent. For a
particular renormalization schemeX they can be decomposed according to

bZ�(g0) = c�X (µ=Λ)Z�X (g0;aµ); (5.1)

whereµ denotes the renormalization scale, and the coefficientsc�X are given by

c�X (µ=Λ) = (2b0ḡ2
(µ))γ

�;0=(2b0) exp

�

�

Z ḡ(µ)

0
dg

�

γX
�

(g)

β (g)
+

γ
�;0

b0g

��

: (5.2)

The anomalous dimensionsγX
�

are known in perturbation theory to two loops for several schemes.
For discretizations based on the Neuberger-Dirac operator, the renormalization factorsbZX (g0;aµ)
have been computed forX = RI=MOM in perturbation theory at one loop in ref. [4]. Thus, the
perturbative renormalization of suitable ratios of 4-quark operators defined for overlap fermions
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and the RI/MOM scheme is

Z�RI(g0;aµ)
Z+RI(g0;aµ)

= 1+
g2

0

16π2 f12ln(4µa)�2(BS�BV)g+O(g4
0) (5.3)

Z+RI(g0;aµ)
Z2

A;RI(g0)
= 1�

g2
0

16π2

�

4ln(4µa)�
2
3
(BS�BV)

�

+O(g4
0) (5.4)

Z�RI(g0;aµ)
Z2

A;RI(g0)
= 1+

g2
0

16π2

�

8ln(4µa)�
4
3
(BS�BV)

�

+O(g4
0): (5.5)

The coefficientsBS andBV are listed in Table 1 of [4]. In addition to 4-quark operators, we have also
considered the renormalization of the axial current. Eqs. (5.4) and (5.5) then serve to renormalize
the correspondingB-parameters of the operatorsQ�

1 . The RGI matrix elements are obtained by
combining the above renormalization factors with the coefficientsc�RI.

Perturbation theory in the bare couplingg2
0 is known to have bad convergence properties.

The aim of “mean-field improvement” [15] is to factor out unphysical tadpole contributions in the
perturbative expansion, by a rescaling of the link variable, Uµ(x)!Uµ(x)=u0. For the Neuberger-
Dirac operator defined by

DN =

ρ
a

�

1�A(A†A)�1=2
�

; ρ = 1+ s; jsj< 1; A = 1+ s�aDw; (5.6)

the corresponding rescaling of the quark field is given byψ !

p

(ρ=ρ̃)ψ; ρ̃ = (ρ � 4)u0+ 4.

For the renormalization factorZ
On

= 1+ g2
0z
(1)
On

+O(g4
0) of ann-quark operatorOn, the mean-field

improved version reads

Zmfi
On

=

�ρ
ρ̃

�n=2
�

1+ g̃2
�

z
(1)
On
�

n

2
ρ�4

ρ
u
(1)
0

��

; g̃2
�

g2
0

hu4
0i
; (5.7)

whereu0 = 1+ u
(1)
0 g2

0+ : : :. When applied to our set of operators, it is immediately clear that the

contributions from the prefactor(ρ=ρ̃) as well as those proportional tou(1)0 drop out in ratios like
Z�=Z+ andZ�=Z2

A . Mean-field improvement of the expressions in eqs. (5.3)–(5.5) is thus simply
accomplished by replacing the bare couplingg2

0 by the “continuum-like” coupling ˜g2.
For a reliable determination of operator matrix elements, the use of non-perturbative estimates

for renormalization factors is to be preferred. The Schrödinger functional (SF) offers a general
framework for non-perturbative renormalization of QCD at all scales [16]. However, the con-
struction of SF boundary conditions consistent with the Ginsparg-Wilson relation is quite involved
[17]. In ref. [18] it was therefore proposed to introduce an intermediate Wilson-type regulariza-
tion which drops out in the final result. As an example we now discuss the renormalization factor
Z+=Z2

A , which is required for theB-parameterBK . The desired factor relates theB-parameter
Bov

K (g0) computed using overlap fermions, to its RGI counterpartbBK . After introducing an inter-
mediate regularization based, for instance, on twisted mass QCD [19], it can be written as

bZ+ov

Z2
A;ov

(g0)�
bBK

Bov
K (g0)

=

bBK

Btm
K (g00)

�

Btm
K (g00)

Bov
K (g0)

=

"

lim
g00!0

bZ+tm(g
0

0)

Z2
A;tm(g00)

�Btm
K (g00)

#

�

1
Bov

K (g0)
; (5.8)

where the superscripts “ov” and “tm” on the unrenormalizedB-parameters refer to overlap and
twisted mass fermions, respectively. The key observation is that the expression in square brackets
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is nothing butBK in the continuum limit, which, for instance, has been computed by the ALPHA
Collaboration in quenched QCD [14]. Denoting the result bybBALPHA

K , the renormalization factor
in eq. (5.8) isbBALPHA

K =Bov
K (g0). Of course, in this way one cannot predictBK any more, since its

value is used to formulate the renormalization condition. However, the procedure can be used to
determine the value ofBK in the chiral limit,bBχ

K, in units of bBALPHA
K :

bB
χ
K =

bZ+ov

Z2
A;ov

(g0)�B
χ ;ov
K (g0)+O(a2

) =

bBALPHA
K �

B
χ ;ov
K (g0)

Bov
K (g0)

+O(a2
): (5.9)

Note thatBχ ;ov
K (g0) can be obtained from a suitable ratio of correlators computed in theε-regime,

in conjunction with the appropriate chiral correction factor.

We now discuss some numerical examples
bare P.T. MFI P.T. non-pert.

bZ�=bZ+ 0.525 0.582 0.58(8)
bZ+=Z2

A 1.242 1.193 1.20(8)
bZ�=Z2

A 0.657 0.705 0.73(8)

Table 2: Perturbative and non-perturbative estimates
for RGI renormalization factors atβ = 5:8485.

for perturbative and non-perturbative estimates
of renormalization factors. In our simulations
we useβ = 6=g2

0 = 5:8485. Forµ = 2GeV and
Λ = 238MeV [20], the perturbative expressions
for the coefficientsc�RI yield c�RI(µ=Λ) = 0:6259
and c+RI(µ=Λ) = 1:2735. Non-perturbative es-
timates for theB-parameters computed at the
physical kaon mass in the continuum limit of quenched QCD areprovided by the ALPHA col-
laboration [14]. The results for ratios of renormalizationfactors are listed in Table 2.

The entries in the table show that non-perturbative estimates for renormalization factors are
remarkably close to perturbative ones. Indeed, even the differences between perturbative estimates
evaluated in “bare” or “mean-field improved” perturbation theory are small, presumably since ra-
tios of operators are considered here. This is in stark contrast to the situation encountered for sim-
ple quark bilinears, for which the deviations between perturbative and non-perturbative estimates
amount to about 30% at similar values of the bare coupling [21].

6. Chiral corrections

Our strategy of determining the LECs of the∆S = 1 weak interactions requires that the kine-
matical range where ChPT is applicable must be accessible tolattice simulations of QCD. The so-
calledε-expansion [22] represents a systematic low-energy description of QCD in a finite volume
for arbitrarily small quark masses. It is characterized kinematically by the conditionsmΣV �O(1),
FπL � 1, whereV = L4 is the four-volume, andm is the quark mass. These conditions lead to
different chiral counting rules compared with the more commonly knownp-regime. In particular,
since the inverse box size counts as one unit of momentumL�1

�O(ε), one infersm� O(ε4
) and

hencemπ � O(ε2
). For the effective HamiltonianH ChPT

w of eq. (2.6) this in turn implies that no
additional interaction terms are generated at O(ε2

). In other words, theε-regime allows for a NLO
matching of lattice data to ChPT without the appearance of additional, unknown LECs [23].

We can now work out the chiral correction factorH in eq. (2.9). To this end we define corre-
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lation functions of the left-handed axial current in complete analogy with the fundamental theory:

C

ab
(x0) =

Z

d3x
D

J

a
0 (x)J

b
0 (0)

E

; J

a
µ �

1
2F2

(Ta
)αβ

�

U∂µU†�

βα ; (6.1)

[

b

C

�

1 (x0;y0)℄
ab

αβγδ =

Z

d3x

Z

d3y

D

J

a
0 (x)[

b

O

�

1 (0)℄αβγδJ
b
0 (y):

E

; (6.2)

Choosing a diagonal quark mass matrix and flavour matricesT a
;Tb as in eq. (D.6) of [1], one

defines the chiral correction factorH by

H �

b

C

�

1 (x0;y0)

b

C

+

1 (x0;y0)
= 1�2R(x0;y0): (6.3)

For later use we also consider the chiral corrections forB-parameters, i.e.

K�

� 2
b

C

σ
1 (x0;y0)

b

C (x0)
b

C (y0)
= 1+σR(x0;y0); σ = �: (6.4)

Explicit expressions are listed in section 5.3 of ref. [1]. In Fig. 2 of [1] the quantityR is plotted as a
function of the box size for several lattice geometries. It clearly demonstrates that chiral corrections
are reasonably small for box sizesL� 1:5fm and lattice geometries withT=L� 2.

7. Synthesis, conclusions and outlook

We can now combine our results for ratios of correlation functions with the appropriate renor-
malization and NLO chiral correction factors. We expect that the latter are best controlled for our
dataset “C”, for whichT=L = 2 andL = 2fm. The link between the ratiog�1 =g+1 and the correlation
functions is given in eq. (2.9), while individual values forg+1 are obtained from

g+1 K+

= k+1 (MW=Λ)

bZ+(g0)

Z2
A(g0)

�

4
3

B
χ ;ov
K (g0); (7.1)

and similarly forg�1 . The LECsg�1 are then related to the amplitudesA0; A2 via LO ChPT.
Our preliminary results for these amplitudes in the SU(4)-symmetric theory indicate a severe

mismatch with experiment: roughly speaking, our value forA0 is too small by a factor 2, whileA2

comes out a factor 2 too large. This produces an estimate forA0=A2 which is four times smaller
than the one expected from the experimentally observed∆I = 1=2 rule. On the other hand, this is
a factor 4 larger than the naive large-Nc limit, and does thus move in the right direction compared
with this case.

However, it would be premature to conclude that the∆I = 1=2 rule is generated by the decou-
pling of the charm quark, since the amplitudeA2 is insensitive to the charm mass, yet its experimen-
tal value is not reproduced either in our calculation. Otherpossibilities for the observed mismatch
are uncontrolled finite-volume corrections, quenching effects, or even the breakdown of LO ChPT
when relating the LECs to the transition amplitudes. Our future work will thus concentrate on
corroborating our results in theε-regime, as well as incorporating the effects of a non-degenerate
charm quark mass. In this context we shall investigate alternative choices of correlators, which are
saturated with zero modes [24].

Our calculations were performed on PC clusters at DESY Hamburg, CILEA and the Univer-
sity of Valencia, as well as on the IBM Regatta at FZ Jülich. Wethank all these institutions and
the University of Milano-Bicocca for their support.

P
o
S
(
L
A
T
2
0
0
5
)
3
4
4

344 / 10



On the determination of low-energy constants for ∆S = 1 transitions Carlos Pena andHartmut Wittig

References

[1] L. Giusti, P. Hernández, M. Laine, P. Weisz and H. Wittig,JHEP 11 (2004) 016
[hep-lat/0407007].

[2] P. Hernández and M. Laine,JHEP 09 (2004) 018[hep-ph/0407086].

[3] H. Neuberger,Phys. Lett. B417 (1998) 141[hep-lat/9707022]; ibid. B427 (1998) 353
[hep-lat/9801031].

[4] S. Capitani and L. Giusti,Phys. Rev. D64 (2001) 014506[hep-lat/0011070].

[5] W. Bietenholz, T. Chiarappa, K. Jansen, K.I. Nagai and S.Shcheredin,JHEP 02 (2004) 023
[hep-lat/0311012].

[6] L. Giusti, P. Hernández, M. Laine, P. Weisz and H. Wittig,JHEP 04 (2004) 013
[hep-lat/0402002].

[7] T. DeGrand and S. Schaefer,Comput. Phys. Commun. 159 (2004) 185[hep-lat/0401011].

[8] P. H. Ginsparg and K. G. Wilson,Phys. Rev. D25 (1982) 2649.

[9] M. Lüscher, Phys. Lett. B428 (1998) 342[hep-lat/9802011].

[10] L. Giusti, C. Hoelbling, M. Lüscher and H. Wittig, Comput. Phys. Commun.153 (2003) 31
[hep-lat/0212012].

[11] L. Giusti, P. Hernández, M. Laine, C. Pena, P. Weisz, J. Wennekers and H. Wittig,Nucl. Phys. B

(Proc. Suppl.) 140 (2005) 417[hep-lat/0409031].

[12] L. Giusti, M. Lüscher, P. Weisz and H. Wittig,JHEP11 (2003) 023[hep-lat/0309189].

[13] H. Leutwyler and A. Smilga,Phys. Rev. D 46 (1992) 5607.

[14] P. Dimopoulos, J. Heitger, C. Pena, S. Sint and A. Vladikas,Nucl. Phys. B (Proc. Suppl.) 140 (2005)
362[hep-lat/0409026]; P. Dimopoulos, J. Heitger, C. Pena, S. Sint and A. Vladikas,in
preparation; M. Guagnelli, J. Heitger, C. Pena, S. Sint and A. Vladikas,hep-lat/0505002;
F. Palombi, C. Pena and S. Sint,hep-lat/0505003.

[15] G.P. Lepage and P.B. Mackenzie,Phys. Rev. D48 (1993) 2250[hep-lat/9209022].

[16] K. Jansenet al., Phys. Lett. B372 (1996) 275[hep-lat/9512009].

[17] Y. Taniguchi,hep-lat/0412024.

[18] P. Hernández, K. Jansen, L. Lellouch and H. Wittig,JHEP 07 (2001) 018[hep-lat/0106011].

[19] R. Frezzotti, P.A. Grassi, S. Sint and P. Weisz,JHEP 08 (2001) 058[hep-lat/0101001].

[20] S. Capitani, M. Lüscher, R. Sommer and H. WittigNucl. Phys. B544 (1999) 669
[hep-lat/9810063].

[21] J. Wennekers and H. Wittig,JHEP 09 (2005) 059[hep-lat/0507026].

[22] J. Gasser and H. Leutwyler,Phys. Lett. B188 (1987) 477;Nucl. Phys. B307 (1988) 763.

[23] P. Hernández and M. Laine,JHEP01, 063 (2003)[hep-lat/0212014].

[24] L. Giusti, P. Hernández, M. Laine, P. Weisz and H. Wittig, JHEP 01 (2004) 003
[hep-lat/0312012].

P
o
S
(
L
A
T
2
0
0
5
)
3
4
4

344 / 11


