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Abstrat

We present a omplete solution of the WZW model on the supergroup GL(1j1).

Our analysis begins with a areful study of its minisuperspae limit (\harmoni

analysis on the supergroup"). Its spetrum is shown to ontain indeomposable

representations. This is interpreted as a geometri signal for the appearane of log-

arithms in the orrelators of the full �eld theory. We then disuss the representation

theory of the gl(1j1) urrent algebra and propose an Ansatz for the state spae of

the WZW model. The latter is established through an expliit omputation of the

orrelation funtion. We show in partiular, that the 4-point funtions of the theory

fatorize on the proposed set of states and that the model possesses an interesting

spetral ow symmetry. The note onludes with some remarks on generalizations

to other supergroups.
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1 Introdution

Throughout the last two deades, non-linear sigma models with super-manifold target

spaes have emerged in a wide variety of systems and their study has beome inreasingly

relevant for some of the hallenging problems of modern physis, ranging from e.g. the

quantum Hall e�et to the famous AdS/CFT orrespondene in string theory.

In ondensed matter, super-manifold target spaes arise mostly in the study of geo-

metrial problems suh as perolation and polymers [1℄, or in non-interating disordered

systems [2, 3℄, where ill de�ned n ! 0 \replia" limits are handled instead by the intro-

dution of fermioni degrees of freedom to, typially, anel bosoni loops. The transition

between plateaux in the integer quantum Hall e�et is thus believed to be related to

the sigma model U(1,1j2)=U(1j1) � U(1j1) at � = �, a onformal �eld theory whih

has not yet been understood, despite deades of work (for a reent attempt, see [4℄).

Slightly more progress has been made for geometrial loop models, leading to partial so-

lutions of sigma models on U(n+mjn)=U(1)� U(n+m-1jn) (super projetive spaes) and

Osp(2n+mj2n)=Osp(2n+m-1j2n) (superspheres) [5℄.

In string theory, super-manifold target spaes reeived brief attention about then years

ago when they were argued to arise as mirrors of rigid Calabi-Yau (CY) manifolds, i.e.

of CY spaes without omplex moduli. Aording to the usual rules, the mirror image

of suh spaes has no K�ahler moduli and hene it annot be a usual CY manifold. In

[6℄ Sethi argued that the dual of a rigid CY is instead given by a CY super-manifold.

The proposal was further investigated in a small number of subsequent publiations (see

e.g. [7, 8℄ and referenes therein), but it did not trigger muh interest in sigma models

with super-target spaes. Mirror symmetry (or T-duality) involving non-ommutative

geometries, of whih super-manifolds are the simplest examples, has also been disussed

reently in [9, 10, 11℄.

Presumably more important, however, is the role that super-group and super-oset

targets play for the desription of strings in Anti-deSitter spaes. Using the Green-

Shwarz formalism, a link was �rst established by Metsaev and Tseytlin [12℄. Shortly

after, Berkovits, Vafa and Witten explained [13℄ how string theory on AdS

3

�S

3

ould be

quantized if it was possible to onstrut onformal quantum �eld theories with a PSL(2j2)

target spae. Suh models were investigated in an interesting paper by Bershadsky [14℄

in whih some of the peuliar features of super-target spaes surfaed. For further string
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motivated researh in this diretion see e.g. [15, 16, 17℄, and for more ondensed matter

oriented work see [19, 20, 21, 22℄).

In most irumstanes, the models of interest are believed to be more ompliated

than WZW models on supergroups. In the ase of the integer quantum Hall e�et for

instane, it has beome lear over the years that the sigma model at � = � ows to a

theory whih does not exhibit the full urrent algebra symmetry [5℄ (presumably beause

of the appearane of logarithmi terms in the OPEs of the urrents). Nevertheless, even

the WZW models on supergroups are far from being understood. This is largely due to

tehnial reasons (indeomposability of operator produts and appearane of logarithms in

orrelation funtions, ontinuous modular transforms of the irreduible haraters [23℄. . . ),

ombined with a lak of \physial intuition".

Our aim in this note is to initiate a systemati study of WZW models on supergroups

by relying more heavily on geometri onepts. We shall, in partiular, gain a better

understanding of logarithmi features by relating them to super-geometry. Logarithmi

onformal �eld theories have been studied for a bit more than a deade now (see [24, 25℄

for some early ontributions). Even though only a few examples have been onstruted

in full detail [26℄, their importane, in partiular for disordered ritial points, is widely

appreiated (see e.g. [27, 28, 5, 29℄ and referenes therein). By de�nition, the operator

produt expansions in a logarithmi onformal �eld theory ontain a logarithmi depen-

dene on the separation between the �elds. In the simplest ases, these may look e.g. as

follows,

�(x; �x)�(0; 0) �

1

jxj

2�

�

�2h

C

�

log jxj

2

C(0; 0) +D(0; 0)

�

+ : : : :

We onlude that the hiral generators L

0

and

�

L

0

of dilations in the world-sheet oordinate

x at aording to

L

0

jDi = h

C

jDi + jCi ; L

0

jCi = h

C

jCi :

Here, jCi; jDi denote the states that are assoiated with the �elds C;D and similar

relations hold for

�

L

0

. Consequently, L

0

and

�

L

0

ease to be diagonalizable. This feature

is ommon to all logarithmi onformal �eld theories and it is rather easy to diagnose.

Many more details and referenes may be found in reent review artiles [30, 31℄.

Our strategy here is to approah the analysis of the WZWmodel through the harmoni

analysis on the supergroup GL(1j1) and to show that the minisuperspae analogues of L

0
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and

�

L

0

, i.e. the quadrati Casimir elements in the left and right regular representations,

are non-diagonalizable. This leaves the full �eld theoreti model no other hane but to be

logarithmi. The harmoni analysis on the supergroup GL(1j1) is the main subjet of the

next setion. In setion 3 we will suggest an expression for the state spae of the full �eld

theory. Our proposal is motivated in parts by the experiene with the minisuperspae

theory ombined with some results from the representation theory of the gl(1j1) urrent

algebra. It is established later through a full onstrution of the theory, inluding all

its orrelators. Our solution is based on free �eld omputations involving a  = 2 linear

dilaton in the bosoni setor and an (anti-)hiral b-system with entral harge  = �2

for the fermioni part. All 3-point funtions of the model are onstruted and studied

in setion 5. There we shall also show that the theory possesses an interesting spetral

ow symmetry. In setion 6, �nally, we determine 4-point funtions of our model an show

that they fatorize on the proposed set of states. We onlude with a few remarks on

generalizations to other supergroups and with an outlook on further open problems.

2 The minisuperspae analysis

The following setion is devoted to the \partile limit" of the GL(1j1) WZW model . In

more physial terms, one an imagine putting the WZWmodel on a ylinder with periodi

spae and in�nite (imaginary) time, and restriting to zero modes, ie to �eld on�gurations

that are independent of the spae variable. Their dynamis is the one of a partile with

phase spae the target spae of the WZW model. Thus, in more mathematial terms we

shall be onerned with the harmoni analysis on GL(1j1). Suh harmoni analysis has

been quite suessful in the study of WZW models on non-ompat bosoni target spaes

suh as the SL(2,C)/SU(2) model (see e.g. [32℄).

We will require a bit of bakground from the representation theory of the Lie superal-

gebra gl(1j1). In partiular we shall introdue its typial representations (long multiplets)

and show how they generate ertain indeomposable omposites of atypial representa-

tions (short multiplets) through tensor produts. We then onstrut the spae of funtions

on the supergroup along with the left and right regular ation of gl(1j1). The regular

representation is expliitly deomposed into its building bloks and it is shown that in-

deomposable (but not irreduible) representations emerge in the spetrum. Part of the

results we disuss here were �rst derived in [33℄.

3



2.1 The Lie superalgebra gl(1j1) and its representations

The Lie superalgebra g = gl(1j1) is generated by two bosoni elements E;N and two

fermioni generators 	

�

suh that E is entral and the other generators obey

[N;	

�

℄ = �	

�

and f	

�

;	

+

g = E :

Let us also �x the following Casimir element C for gl(1j1)

C = (2N � 1)E + 2	

�

	

+

:

The hoie of C is not unique sine we ould add any funtion of the entral element E.

Our presription is motivated by the form of the Virasoro element in the �eld theory (see

[24℄ and below).

There are �ve di�erent lasses of representations that shall play some role in the

following. To begin with, we list the irreduible representations whih fall into the di�erent

series. There is one series of 2-dimensional representations he; ni whih is labeled by pairs

e; n with e 6= 0 and n 2 R. In these representations, the generators take the form E = e1

2

and

N =

�

n� 1 0

0 n

�

; 	

+

=

�

0 0

e 0

�

; 	

�

=

�

0 1

0 0

�

:

These representations are the typial representations (long multiplets) of g =gl(1j1). In

addition, there is one series of atypial representations hni (short multiplets). These are

1-dimensional and parametrized by the value n 2 R of N . All other generators vanish.

For the typial representations we assumed that the parameter e does not vanish. But

it is still interesting to explore what happens when we set e = 0. The above matries er-

tainly ontinue to provide a representation of gl(1j1) only that this is no longer irreduible.

In fat, we observe that the basis vetor j0i = (1; 0)

T

generates a 1-dimensional invariant

subspae of the orresponding 2-dimensional representation spae. But one should not

onlude that there exits an invariant omplement. In fat, it is impossible to deouple

the vetor j1i = (0; 1)

T

from the representation sine 	

�

j1i = j0i, independently of the

hoie of the parameter e. The representation h0; ni is therefore indeomposable but it is

not irreduible. We an think of h0; ni as being built up from two atypial onstituents,

namely from the representations hni and hn � 1i. To visualize the internal struture of

h0; ni, we may employ the following diagram,

h0; ni : hn� 1i  � hni :
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Later we shall see muh more ompliated omposites of atypial representations. It is

therefore useful to beome familiar with diagrammati presentations of indeomposables.

In the representations he; ni, the fermioni generators appear on a somewhat di�erent

footing sine 	

+

depends on the parameter e while 	

�

does not. There exists another

family of 2-dimensional representations he; ni, however, in whih the roles of 	

�

and 	

+

are interhanged,

N =

�

n 0

0 n� 1

�

; 	

+

=

�

0 1

0 0

�

; 	

�

=

�

0 0

e 0

�

:

As long as e 6= 0 the representations he; ni and he; ni are equivalent. In fat, the iso-

morphism between the two representations may be implemented by onjugation with the

matries W

e

= e�

+

+ �

�

where �

�

are the usual Pauli matries. This isomorphism does

not survive the limit e ! 0 and hene the representations h0; ni and h0; ni are inequiv-

alent. h0; ni is also an indeomposable representation that is built up from the same

atypial onstituents as h0; ni, but this time the non-vanishing generator 	

+

maps us

from hni to hn � 1i, i.e.

h0; ni : hn� 1i �! hni :

Below, the representations h0; ni and h0; ni will eventually enter as limits of typial rep-

resentations.

Having seen all the irreduible representations he; ni and hni of gl(1j1) along with

their limits as e goes to zero, our next task is to ompute tensor produts of typial

representations he

1

; n

2

i and he

2

; n

2

i. As long as e

1

+ e

2

6= 0, the tensor produt is easily

seen to deompose into a sum of two typials,

he

1

; n

2

i 
 he

2

; n

2

i = he

1

+ e

2

; n

1

+ n

2

� 1i � he

1

+ e

2

; n

1

+ n

2

i :

But when e

1

+e

2

= 0 we obtain a 4-dimensional representation that annot be deomposed

into a diret sum of smaller subrepresentations. The representation matries of these 4-

dimensional indeomposables P

n

read as follows

N =

0

B

B

�

n� 1 0 0 0

0 n 0 0

0 0 n 0

0 0 0 n+ 1

1

C

C

A

; 	

+

=

0

B

B

�

0 0 0 0

�1 0 0 0

1 0 0 0

0 1 1 0

1

C

C

A

; 	

�

=

0

B

B

�

0 1 1 0

0 0 0 1

0 0 0 �1

0 0 0 0

1

C

C

A

:

As we have seen before, it is useful to piture the struture of indeomposables. The form

of N tells us that P

n

is omposed from the atypial irreduibles hn� 1i; 2hni, hn + 1i.
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The ation of 	

�

relates these four representations as follows

P

n

: hn + 1i

$$IIIII
III

I

hni

;;wwwwwwwww

##GG
GG

GGG
GG

hni :

hn� 1i

::uuuuuuuuu

(2.1)

There are a few remarks we would like to make at this point. The �rst one onerns the

form of the Casimir element C in the representations P

n

. It is straightforward to see that

C maps the subspae hni on the left onto the hni on the right of the above diagram and

that it is zero otherwise. This means that C annot be diagonalized in P

n

. We shall

return to this observation later on.

It is also obvious from the diagrammati representation that P

n

ontains the indeom-

posables h0; ni and h0; n + 1i as subrepresentations. In this sense, the latter are extendable

into a larger indeomposable. For the representation P

n

the situation is quite di�erent: it

may be shown (and is intuitively lear) that P

n

is maximal in the sense that it an never

appear as a subrepresentation of a larger indeomposable. In the mathematis literature,

suh representations are known as projetive. Sine the projetive representation P

n

on-

tains the irreduible hni as a true subrepresentation, one also alls P

n

the projetive over

of hni.

The typial representations he; ni; e 6= 0; along with the indeomposables P

n

exhaust

the set of �nite dimensional projetives of gl(1j1). What will be partiularly important

for us is the fat that projetive representations are known to lose under tensor produts.

In partiular, tensor produts of the representations P

n

do not generate any new types of

representations. This is not to say that there are not any others. In fat, there is a large

family of indeomposables (\zigzag modules") with arbitrarily large dimension (see e.g.

[34℄ for a omplete list and a omputation of their tensor produts). Our following analysis

will shortly on�rm the standard mathematial result that only projetives emerge from

the harmoni analysis on the supergroup and hene these are the only ones that will play

a major role below.
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2.2 Harmoni analysis on the supergroup GL(1j1)

Our aim now is to study the spae of funtions on the orresponding supergroup and

to analyse the various ations of the Lie superalgebra gl(1j1). Before we get into the

details, however, let us briey reall the situation in the ase of ompat groups whih

is overed by Peter-Weyl theory. The latter desribes how the spae L

2

(G) of square

integrable funtions on a ompat group deomposes under the right regular ation. It

asserts that the in�nite dimensional representation spae L

2

(G) deomposes into a diret

sum of irreduibles H

J

of G and that eah irreduible appears with a multipliity that is

given by the dimension d

J

of H

J

, i.e.

L

2

(G)

�

=

X

J

H

J


H

R

J

:

Here, the �rst fator H

J

in eah summand is the multipliity spae. The generators of

the right regular representation at exlusively in the seond tensor fator whih is why

we marked it with the supersript R.

We an atually be even more preise and onstrut eah summand in the above de-

omposition rather expliitly. To this end we note that the Hilbert spae L

2

(G) possesses

a basis whih is formed by matrix elements of irreduible representations of G. Any ir-

reduible representation H

J

ontributes d

2

J

matrix elements to the basis. These span the

subspaes H

J


H

R

J

in the above deomposition of L

2

(G).

Obviously, there exists a seond ation of G on L

2

(G) by left multipliation. It pro-

motes the multipliity spaes H

J

into representation spaes of G, i.e.

L

2

(G)

�

=

X

J

H

L

J


H

R

J

:

The struture of this deomposition under the ombined left and right ation is somewhat

reminisent of the famous holomorphi fatorization in WZW models.

In the following disussion of funtions on the supergroup, we would like to remain

very expliit. Therefore, we introdue the so-alled Gauss oordinates x; y; �

�

in whih

elements of the supergroup read

U = U(x; y; �

�

) = e

i�

+

	

+

e

ixE+iyN

e

i�

�

	

�

:

It is not hard to work out the form of the invariant measure in these oordinates. The

result is

d� = e

�iy

dx dy d�

�

d�

+

:
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Similarly, one an determine the form of the left and right invariant vetor �elds. Again

we only quote the results of a straightforward omputation. For the left invariant vetor

�elds one �nds

L

E

= i�

x

; L

N

= i�

y

� �

+

�

+

; L

+

= �i�

+

; L

�

= ie

iy

�

�

� �

+

�

x

: (2.2)

Here, the symbols �

�

stand for derivatives with respet to �

�

. Right invariant vetor

�elds possess the form

R

E

= �i�

x

; R

N

= �i�

y

+ �

�

�

�

; R

�

= �i�

�

; R

+

= ie

iy

�

+

+ �

�

�

x

: (2.3)

The reader is invited to hek that these two sets of generators satisfy the relations of the

Lie superalgebra gl(1j1) and that they (anti-)ommute among eah other.

After this preparation, we would like to analyze the spae of square integrable funtions

on the supergroup. By de�nition, these are objets f of the form

f(x; y; �

�

) = f

0

(x; y) + f

+

(x; y)�

+

+ f

�

(x; y)�

�

+ f

2

(x; y)�

�

�

+

with any set of square integrable funtions f

�

on R

2

. This spae is spanned by the

following basis

1

e

0

(k; l) = e

ikx+ily

; e

�

(k; l) = e

0

(k; l)�

�

; e

2

(k; l) = e

0

(k; l)�

�

�

+

:

The spae of square integrable funtions arries two (anti-)ommuting ations of the Lie

superalgebra gl(1j1) whih are generated by the left- and right invariant vetor �elds. Our

aim is to understand in detail the struture of these representations.

Proposition 1: (Right regular ation) With respet to the right regular ation, the spae

of square integrable funtions on the supergroup deomposes aording to

L

2

(GL(1j1)) =

Z

e6=0

dedn

�

H

0

he;ni

�H

R

he;ni

�

�

Z

dn P

n

:

Here H

R

he;ni

denotes the graded representation spae of the typial representation he; ni and

H

0

he;ni

is the same vetor spae with shifted Z

2

grading.

Let us make a few remarks about this result before we explain its derivation. The two

integrals in our deomposition formula orrespond to an integration over the spae of typ-

ial and atypial representations, respetively. As in the ase of ordinary groups, typial

1

The elements of this basis are Æ-funtion normalizable sine we are dealing with a non-ompat group.
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representations appear with a multipliity given by their dimension, i.e. by d

he;ni

= 2 in

our speial ase. For atypial representations, the story is more ompliated. In general,

they do not appear themselves but are replaed by their projetive overs. Their multi-

pliity, on the other hand, is obtained from the dimension of the atypial representation,

i.e. by d

hni

= 1 in our speial ase.

2

Our deomposition formula is thus in full agreement

with the general result in [33℄. Note that the struture of the setor whih omes with the

atypial representations does not possess the usual form that is enoded in the Peter-Weyl

theorem (see above).

We also mention is passing that the Casimir element C is non-diagonalizable in the

right regular representation sine the latter ontains the projetive overs and, aording

to our earlier disussion, C annot be diagonalized in P

n

. In the full �eld theory, the

Casimir elements lifts to the Virasoro zero mode L

0

so that our simple orollary on the

struture of C in the right regular representation will eventually have diret and far

reahing impliations for the WZW model.

Our result on the deomposition of the right regular representation is rather easy to

obtain and we an even �nd expliit formulas for the basis vetors of all the summands.

In order to do so, we shall have a brief look at the spae of funtions that appear as

matrix elements of the supergroup in the typial representations he; ni,

'

he;ni

=

�

e

iex+i(n�1)y

i�

�

e

iex+i(n�1)y

ie�

+

e

iex+i(n�1)y

e�

�

�

+

e

iex+i(n�1)y

+ e

iex+iny

�

: (2.4)

The funtions in the �rst row form a basis of the summand H

he;ni

, whereas the funtions

in the seond row span the spae H

0

he;ni

,

H

he;ni

= span (e

0

(e; n� 1); e

�

(e; n� 1)) ;

H

0

he;ni

= span (e

+

(e; n� 1); ee

2

(e; n� 1) + e

0

(e; n)) :

It is obvious that the matrix elements of the typial representations provide a basis for

eigenfuntions of R

E

with eigenvalue e 6= 0.

What we are missing is an analysis of the spae of funtions with e = 0. The spae

of these funtions is spanned by e

�

(0; l) and it is easily seen to deompose into a sum of

4-dimensional indeomposables P

n

,

P

n

= span (e

0

(0; n); e

+

(0; n� 1); e

�

(0; n); e

2

(0; n� 1)) : (2.5)

2

For some Lie superalgebras, there an be representations for whih the multipliity is only half of

this value.
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One may hek by diret omputation that R

�

e

2

(0; n� 1) = �ie

�

(0; n� 1=2 � 1=2) and

similarly that R

�

e

�

(0; n � 1=2 � 1=2) = �ie

0

(0; n). Hene, we reover the struture of

the projetive over P

n

.

The funtions on our supergroup arry another (anti-)ommuting ation of the Lie

superalgebra g by left derivations. There is a orresponding deomposition whih is

ertainly idential to the deomposition in proposition 1. A more interesting problem is

to deompose the spae of funtions with respet to the graded produt g
g in whih the

�rst fators ats through the left regular ation while for the seond fator we use the right

regular ation. The assoiated deomposition is provided by the following proposition.

Proposition 2: (Left-right regular ation) With respet to the left-right regular ation of

g
 g, the spae of funtions on the supergroup deomposes aording to

L

2

(GL(1j1)) =

Z

e6=0

dedn H

L

h�e;�n+1i


 H

R

he;ni

�

Z

1

0

dq J

q

:

Here J

q

; q 2 [0; 1[; denotes a a family of in�nite dimensional indeomposable representa-

tion of g 
 g. When restrited to either left or right regular ation, the latter deompose

aording to

(J

q

)

g

R

� (J

�q

)

g

L

=

M

a2Z

P

q+a

for all q 2 [0; 1[ :

The �rst term in the deomposition formula follows from proposition 1 as in the ase of

Lie algebras. Our seond term involves unusual in�nite dimensional representations whih

annot be further deomposed. They appear as follows. We have displayed an expliit

basis for the 4-dimensional spaes P

n

of the right regular ation in eq. (2.5): from this it

is easy to see that

L

�

: P

n

�! P

n+1

; L

+

: P

n

�! P

n�1

;

i.e. that the invariant subspaes P

n

of the right regular ation are mapped into eah other

by the left regular ation and vie versa, thus \linking" the projetives for left and right

ations into a big blok. In terms of its deomposition series, the struture of J

q

is given

10



by

J

q

:

M

a2Z

hq + ai 
 h�q � ai

�!

M

a2Z

hq + a+ 1i 
 h�q � ai �

M

a2Z

hq + ai 
 h�q � a� 1i

�!

M

a2Z

hq + ai 
 h�q � ai :

Note that hni
hmi are atypial 1-dimensional representations of g
g. The rightmost term

in this �ltration of J

q

denotes the so-alled sole, i.e. the largest semi-simple submodule.

The leftmost term is the head of J

q

. It is the largest semi-simple representation that

arises as a quotient of J

q

. The term in the middle, �nally, is the head of the radial.

2.3 Correlation funtions in minisuperspae

In the minisuperspae theory, �elds are represented through funtions � on the supergroup

and their orrelators are omputed by integration with the invariant measure, i.e.

h

m

Y

�=1

�

�

i =

Z

d�(x; y; �

�

)

m

Y

�=1

�

�

(x; y; �

�

) :

Here we shall be mostly onerned with the orrelators involving matrix elements of the

objets '

he;ni

.

In order to prepare for our analysis of orrelators of typial �elds we need to introdue

a bit of notation. As before, we shall denote the eigenstates of N in typial representations

by j0i and j1i. Our hoie is suh that 	

�

j0i = 0. States of an m-fold tensor produt

an be thought of as states in a spin hain of length m. A basis in this spae is given by

j�

1

: : : �

m

i with �

i

= 0; 1. In this vetor spae we shall introdue a set of linear maps E

by

E

�

1

:::�

m

�

0

1

:::�

0

m

= j�

1

: : : �

m

i h�

0

1

: : : �

0

m

j :

These are the elementary matries of the state spae of our spin hain. They will appear

later in our formulas for the orrelation funtions of primary �elds that are assoiated

with typial representations.

When we evaluate m-point funtions of our matrix valued funtions '

he;ni

, we an

express the answer in terms of the elementary matries E for a spin hain of length m.

11



Note that only elementary matries an arise that preserve the number p of spins that

are ipped to the position � = 1. We an also observe that an elementary matrix with p

ipped spins omes multiplied by a delta funtion Æ(

P

m

�=1

n

�

�m+p�2), i.e. an m-point

funtion possesses the general form

3

h

m

Y

�=1

'

he

�

;n

�

i

i = Æ(

m

X

�=1

e

�

)

m�1

X

p=1

G

(m)

p

Æ(

m

X

�=1

n

�

�m+ p� 2) ; (2.6)

where G

(m)

p

are linear ombinations of the elementary matries for a spin hain of length

m with p spins in the � = 1 position. We shall �nd the same struture for the orrelators

in the �eld theory later on. There is one more rule, however, that is spei� to the

partile limit: an elementary matrix an only ontribute to the invariant tensor G

(m)

p

if

it shifts at most one spin along the hain. For m � 3 this onditions is trivially satis�ed,

but starting from 4-point funtions, some number preserving elementary matries are no

longer admitted in the partile limit. We shall see below that this last ondition may be

violated for the full �eld theory.

3 Representation theory of urrent algebra

Based on the experiene from the previous setion we would now like to present a similar

analysis of the representation theory of the aÆne algebra. This will ultimately lead us

to a onjeture on the state spae of the GL(1j1) WZW model. Our proposal will follow

losely the outome of the harmoni analysis on the supergroup. The only new ingredient

enters through an additional spetral ow symmetry of the aÆne algebra.

3.1 The gl(1j1) urrent algebra

Let us begin by listing a few results on the aÆne algebra and its representation theory.

The gl(1j1) urrent algebra is generated by the modes of two bosoni urrents N(z); E(z)

and two fermioni urrents 	

�

(z). Their ommutation relations read

[E

n

; N

m

℄ = kmÆ

n+m

; [N

n

;	

�

m

℄ = �	

�

n+m

(3.7)

f	

�

n

;	

+

m

g = E

n+m

+ kmÆ

n+m

: (3.8)

3

The term with p = m vanishes due to onservation of the e-harge

12



All other (anti-)ommutators vanish. This algebra admits an interesting family of spetral

ow automorphism 

m

whih ats on generators aording to



m

(E

n

) = E

n

+mkÆ

n

; 

m

(	

�

n

) = 	

�

n�m

and leavesN

n

invariant. We shall see later that for integerm these automorphisms provide

a symmetry of the GL(1j1) WZW model.

In [24℄ it was shown that the the Virasoro element L

0

of the gl(1j1) model possesses

the following form,

L

0

=

1

2k

(2N

0

E

0

� E

0

+ 2	

�

0

	

+

0

+

1

k

E

2

0

)

+

1

k

X

m�0

(E

�m

N

m

+N

�m

E

m

+	

�

�m

	

+

m

�	

+

�m

	

�

m

+

1

k

E

�m

E

m

)

Under the ation of the spetral ow automorphism, L

0

behaves aording to



m

(L

0

) = L

0

+m(N

0

� 1) :

This very simple behavior of L

0

plays an important role in determining the ation of the

spetral ow on representations of the urrent algebra.

3.2 Representations of the gl(1j1) urrent algebra

In the following we shall denote the Verma module over the typial representation he; ni

by V

he;ni

. As long as e is not an integer multiple of the level k, the Verma modules are

irreduible. But when e = km, the story is a bit more interesting.

Lemma: The Verma module that is built on the typial representations hmk; ni;m 6= 0;

ontains a singular vetor on the m

th

level. Expliitly, it is given by

jkm; n� 1i

hmk;ni

=

jm�1j

Y

p=1

	

�

p

jmj

Y

p=1

	

�

�p

jmk; ni for 0 < �m (3.9)

where jmk; ni denotes the ground state of the Verma module V

hmk;ni

.

Proof: Without loss of generality, let us restrit to m > 0. In order to prove our

statement we shall begin with the following simple fat,

	

�

q

m

Y

p=1

	

+

�p

jmk; ni = 0 for all q � m :
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For q > m, the formula would hold regardless of the ground state we use. Only the ase

q = m is slightly more subtle and it uses that E

0

= mk. With this insight in mind it is

then straightforward to establish the Lemma.

If we divide the Verma module V

hmk;ni

by the invariant subspae that is generated

from its singular vetor (3.9) we end up with an irreduible representation of the urrent

algebra. We shall denote the latter by H

hmk;ni

. One may also show that the invariant

subspae whih is built on the vetor (3.9) is irreduible and isomorphi to H

hmk;n�1i

.

Hene, the struture of the Verma module V

he;ni

is enoded in the following diagram

V

hmk;ni

: H

hmk;ni

�! H

hmk;n�1i

for 0 < �m :

For negative m, this resembles the struture of the module h0; ni. And indeed, one an

easily see that the Verma module V

hkm;ni

for m < 0 is the spetral ow image of the

Verma module V

h0;ni

. Similarly, for positive m, the spetral ow takes us from the Verma

module V

h0;n+1i

to the Verma module V

hkm;ni

.

In order to disuss the ation of the spetral ow on the Verma modules over the

projetive overs P

n

, we need to enlarge the lass of aÆne representations and inlude

ertain representations

^

P

hmk;ni

that are known as twisted highest weight modules. These

are generated from a state jmk; ni satisfying the onditions

	

�

r

jmk; ni = 0 for r > �m (3.10)

E

r

jmk; ni = 0 = N

r

jmk; ni for r > 0 (3.11)

E

0

jmk; ni = mkjmk; ni ; N

0

jmk; ni = njmk; ni (3.12)

by appliations of the generators 	

�

�r

; r � �m; and E

r

; N

r

; r > 0 (note the di�erene in

(3.10) with the de�nition of ordinary highest weight modules whih would involve r > 0

instead). Let us note that for m = 0, the onstrution gives us the Verma module of

the projetive over P

n

. We also observe that in the twisted highest weight module, the

eigenvalues of L

0

are bounded from below, simply beause we an only apply a �nite

number of fermioni generators to desend from jmk; ni. For m 6= 0 there are two states

of lowest L

0

eigenvalue whih are given by

jmj

Y

r=1

	

�sign(m)

r

jmk; ni ;

jmj

Y

r=0

	

�sign(m)

r

jmk; ni :
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For m � 0 for instane, they possess L

0

eigenvalue nm�m

2

=2�m=2 and transform in the

typial representation hmk; n�mi. Consequently, the module

^

P

hmk;ni

ontains V

hmk;n�mi

as a subspae. If we divide by the latter we stay with a Verma module V

hmk;n�m+1i

. This

struture in enoded in the following diagram,

^

P

hmk;ni

:

H

hmk;n�m+2i

((QQQQQQQQQQQQQ

H

hmk;n�m+1i

((PPPPPPPPPPPP

66nnnnnnnnnnnn

H

hmk;n�m+1i

:

H

hmk;n�mi

66mmmmmmmmmmmmm

(3.13)

It is easy to see that the

^

P

hmk;ni

are the images of the P

n

under the spetral ow. The

piture does not only tell us how spetral ow ats on the various Verma modules we an

built over representations with E = 0, it also displays the twisted highest weight modules

^

P as natural ousins of the projetive overs P

n

.

3.3 The state spae of the GL(1j1) WZW model

Having gained some insight into the representation theory of the gl(1j1) urrent algebra,

it is very tempting to onjeture that the state spae of the full �eld theory possesses

exatly the same struture as the minisuperspae theory with only one extra feature: the

theory is periodi under shifts of e by multiples of the level k,

H

WZW

=

Z

e6=m mod k

dedn H

L

h�e;�n+1i


 H

R

he;ni

�

X

m

Z

1

0

dq

^

J

(m)

q

:

Here

^

J

q

; q 2 [0; 1[; denotes a family of indeomposable representations of ĝl(1j1)
 ĝl(1j1).

They are built from irreduible representations aording to the following diagram

J

(m)

q

:

M

a2Z

H

hmk;q+ai


H

h�mk;�q�ai

�!

M

a2Z

H

hmk;q+a+1i


H

h�mk;�q�ai

�

M

a2Z

H

hmk;q+ai


H

h�mk;�q�a�1i

�!

M

a2Z

H

hmk;q+ai


H

h�mk;�q�ai

:

Aording to several remarks earlier on, it is lear that the Virasoro modes L

0

and

�

L

0

annot be diagonalized on H

WZW

. As we realled in the introdution, suh a behavior
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is losely linked with the existene of logarithmi singularities in the operator produt

expansion of loal �elds in the model.

In the next three setions we shall prove that the state spae of the WZW model does

indeed possess the proposed form. First we shall set up a free �eld approah that will

allow us to ompute any orrelation funtion in the system. Then we use this tool to

alulate the 3-point ouplings. Finally, we shall ompute the 4-point funtions and show

that they fatorize over the proposed set of states. Along the way we shall also prove

that the theory possesses the onjetured spetral ow symmetry. Needless to add that

we will also �nd the predited logarithmi singularities in the orrelation funtions.

4 Solutions of the full CFT

Our aim now is to onstrut orrelation funtion of the WZW model on the supergroup

GL(1j1). We shall obtain our expliit formulas through a free �eld representation of the

model.

4.1 Free �eld theory approah

We shall suggest here to think of the WZW model on the supergroup GL(1j1) as a

perturbation of a free �eld theory. The latter is omposed from a bosoni linear dilaton

bakground and two hiral fermioni b-systems with entral harges 

�

= �2. Our

split of the theory into this free �eld theory and an interation does not preserve the

hiral symmetries of the full model, but it is manifestly loal. Hene, onsisteny of our

orrelation funtion is guaranteed but their relation with the GL(1j1) WZW model, and

in partiular the hiral symmetry, needs to be established.

To desribe strings that move on the supergroup target GL(1j1) we would normally

use the following WZW ation

S

WZW

=

k

4�

Z

�

d

2

z

�

�X

�

�Y + �Y

�

�X � 2e

�iY

�

�

�

�

+

�

: (4.14)

Here, X and Y are bosoni �eld on the world-sheet and 

�

are fermioni. The invariant

measure on the spae of these �elds is

d�

WZW

� DX DY D(e

�i

2

Y



�

) D(e

�i

2

Y



+

) :
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We shall use another ation S to desribe this system that ontains an additional pair of

hiral auxiliary fermions b

�

. It is built, starting from the following free �eld theory

S

0

=

1

4�

Z

�

d

2

z

�

k �X

�

�Y + k �Y

�

�X � �Y

�

�Y +QRY

�

(4.15)

+

1

2�

Z

�

d

2

z

�

b

+

�

+

+ b

�

�

�

�

�

: (4.16)

Terms in the �rst line form a linear dilaton bakground whose harge Q we �x to be

Q = i=2. Note that the linear dilaton term depends only on the Y oordinate. Therefore

the ontribution 

b

= 2 of the bosoni �elds to the entral harge in independent of the

bakground harge Q. In addition, the ation S

0

ontains two hiral b-systems. We

hose to have the hiral �elds 

�

with onformal weight �



�

= 0 while their partners b

�

are �elds of weight �

b

�

= 1; the entral harge is then 

f

�

= �2.

To the free �eld theory S

0

we now add an interation term of the following simple

form

S(X;Y; b

�

; 

�

) = S

0

+ S

int

= S

0

�

1

�k

Z

�

d

2

z e

iY

b

�

b

+

: (4.17)

Note that all X-independent �elds have vanishing onformal weight. Hene, the inter-

ation term is massless. In our treatment of the theory S we work with the anonial

measure

d� � DX DY D

�

D

+

Db

�

Db

+

: (4.18)

On a formal level it is possible to ompare the theory S with the original WZW-model on

the supergroup GL(1j1). The omparison makes use of a rather subtle relation between

the involved measures

d�

WZW

D(b

�

) D(b

+

) � exp

�

1

4�

Z

�

d

2

z

�

��Y

�

�Y +QRY

�

�

d� :

One this is inserted into our theory S , we an integrate the auxiliary �elds to reover

the ation of the WZW model.

We shall also need a free �eld representation for the vertex operators operators of our

theory. Let us begin with the �elds V

he;ni

that are assoiated to typial representations.

We model them after the matries '

he;ni

, i.e.

V

he;ni

(x; �x) = : e

ieX(x;�x)+i(n�1)Y (x;�x)

:

�

1 i

�

(x)

ie

+

(�x) e

�

(x)

+

(�x)

�

: (4.19)
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Their onformal dimension is given by

�

(e;n)

= (2n� 3)

e

2k

+

e

2

2k

2

:

Comparison with eq. (2.4) shows that we have dropped one term in the lower right orner

of the matrix. When e 6= 0, the onformal dimension of the omitted vertex operator

di�ers from the dimension of the other matrix elements so that in some sense (see below)

we should onsider the additional term as `subleading'. Note that the vertex operators

(4.19) may only be used for e 6= 0. We need a new presription to deal with e = 0. One

more, the expression may be motivated with the help of the matrix '

he;ni

whih, at e = 0,

degenerates to

'

h0;ni

=

�

e

i(n�1)y

i�

�

e

i(n�1)y

0 e

iny

�

:

Sine the lower right orner ontains only a single term, there is nothing we an omit and

onsequently the orresponding vertex operators are introdued by

V

h0;ni

(x; �x) =

�

: e

i(n�1)Y (x;�x)

i

�

(x) : e

i(n�1)Y (x;�x)

:

0 : e

inY (x;�x)

:

�

:

Reall that at e = 0, there exists a seond family of 2-dimensional representations h0; ni.

The orresponding matries '

h0;ni

of funtions on the supergroup are given by

'

h0;ni

=

�

e

iny

0

i�

+

e

i(n�1)y

e

i(n�1)y

�

:

These may also be obtained from the matries '

he;ni

, but we have to onjugate the latter

with the matrix W = e�

+

+ �

�

(�

�

are Pauli matries) before sending e to zero. The

assoiated vertex operators are onstruted as

V

h0;ni

(x; �x) =

�

: e

inY (x;�x)

: 0

i

+

(�x) : e

i(n�1)Y (x;�x)

: : e

i(n�1)Y (x;�x)

:

�

:

Our matries ' do ontain the funtions e

+

(0; n) whih were not inluded in '. Never-

theless, we are still missing all funtions of the form

'

n

= �

�

�

+

e

i(n�1)y

:

The orresponding vertex operators are obtained in the obvious way through the formula

V

n

(x; �x) = 

�

(x)

+

(�x) : e

i(n�1)Y (x;�x)

: :
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We shall think of the funtions '

n

and the vertex operators V

n

as being assoiated with

1-dimensional atypial representations of gl(1j1).

4

Some readers might prefer to onstrut

the additional series of objets with the help of projetive overs, replaing our '

n

through

4�4 matries (the representation matries of the supergroup elements). Similarly, vertex

operators ould then also be assembled into 4 � 4 matries. At least in the ase of the

gl(1j1) model, suh an alternative approah arries no more information than the one we

have hosen here. Therefore, we shall ontinue to work with single omponent objets.

4.2 Computation of orrelation funtions

Let us denote the typial primary �elds of the full interating theory S by �

he;ni

. Then

our presription for the m-point orrelators of this theory is

h

m

Y

�=1

�

he

�

;n

�

i

(x

�

; �x

�

) i =

1

X

s=0

1

s!

h

�

�1

�k

Z

�

d

2

z e

iY

b

�

b

+

�

s

m

Y

�=1

V

he

�

;n

�

i

(x

�

; �x

�

) i

0

:

(4.20)

We an employ the same formula if some of the e

�

vanish as long as we agree to insert

the orresponding vertex operators V

h0;n

�

i

for eah suh primary �eld into the orrelators

on the right hand side. Similarly, the presription may be used to determine orrelation

funtions involving the �eld theory analogue �

n

of the funtions '

n

de�ned above.

The orrelators on the right hand side are to be evaluated in the free �eld theory S

0

.

In order to determine the latter we shall use the following simple formula for orrelators

in the bosoni theory

h

m

Y

�=1

V

(e

�

;n

�

)

(x

�

; �x

�

) i =

Y

�<�

jx

�

� x

�

j

�2�

��

Æ(

m

X

�=1

n

�

� n� 1) Æ(

m

X

�=1

e

�

) (4.21)

where �

��

= (1� n

�

)

e

�

k

+ (1� n

�

)

e

�

k

�

e

�

e

�

k

2

: (4.22)

Here, V

(e;n)

=: exp(ieX + i(n � 1)Y ) : are standard bosoni vertex operators with a

somewhat unusual shift in the labels. The harge onservation for the e-harge is standard.

For the parameters n

�

, the bakground harge Q beomes relevant. The usual rules tell

us that

P

(n

�

� 1) = 2Q=i = 1.

In addition we will have to evaluate orrelation funtions in the hiral b-systems.

Aording to the usual rules, non-vanishing orrelators on the sphere must satisfy #

�

�

4

This does not mean that they transform under the atypial 1-dimensional representation. In fat,

the ation of gl(1j1) ertainly mixes e.g. �

n

with omponents of �

h0;mi

.
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#b

�

= 1, i.e. the number of insertions of 

�

must exeed the number of insertions of b

�

by one. For suh hiral orrelation funtions one obtains

h

n

Y

�=1

b

�

(z

�

)

n+1

Y

�=1



�

(x

�

) i

0

=

Q

�<�

0

(z

�

� z

�

0

)

Q

�<�

0

(x

�

� x

�

0

)

Q

�

Q

�

(z

�

� x

�

)

(4.23)

and a similar formula applies to 

+

and b

+

. This onludes our preparation. We an now

turn to a alulation of the orrelators.

It is quite instrutive to ompare the above expansion (4.20) for �eld theory orrelators

with our previous disussion of \orrelation funtions" in the minisuperspae limit. From

harge onservation in the Y -diretion (parameter n) we infer that the s

th

term in the

expansion is nonzero if and only if

s+

m

X

�=1

(n

�

� 1) = 1 :

Hene, the summation over s in eq. (4.20) is equivalent to the summation over p in our

formula (2.6), the preise relation between the two summation parameters being p = s+1.

In setion 2.3 we saw that there ould only be a �nite number of terms. The same is true

for the full �eld theory sine the number of b-insertions has to be smaller that the number

of possible -insertions. Hene, terms with s � m vanish so that the summation is �nite.

A slightly more detailed analysis shows one more that the term with s = m� 1 vanishes

as long as we only insert typial �elds. Consequently, the last non-vanishing term appears

at p = s + 1 = m� 1, just as in the minisuperspae model. Let us antiipate, however,

that orrelators of the �elds �

n

do reeive ontributions from s = m� 1.

5 The 3-point funtions of the GL(1j1) model

For our evaluation of the 3-point funtions we shall adopt the following strategy. To

begin with, we shall onstrut the 3-point funtions of the typial �elds �

he;ni

. In the

limit where e! 0, these inlude orrelations involving �elds �

h0;ni

or �

h0;ni

so that we do

not have to list the orresponding 3-point funtions separately. All these orrelators turn

out to mimi very losely the minisuperspae theory, exept from a minor but interesting

quantum deformation. In a seond step, we shall then also determine 3-point funtions

involving one or more insertions of the �elds �

n

that ome with the funtions '

n

. These

orrelation funtions ontain logarithms.
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5.1 3-point funtions of typial �elds

The �rst important result of this subsetion provides us with an expliit formula for the

3-point orrelator of typial �eld. It takes the form

h�

he

1

;n

1

i

(1)�

he

2

;n

2

i

(1)�

he

3

;n

3

i

(x) i =

X

s=0;1

C

s

(e

1

; e

2

; e

3

)

h'

he

1

;n

1

i

'

he

2

;n

2

i

'

he

3

;n

3

i

i

s

j1� xj

2�

s

where C

0

(e

1

; e

2

; e

3

) = 1 and C

1

(e

1

; e

2

; e

3

) =

3

Y

i=1

�(1 +

e

i

k

)=�(1 �

e

i

k

)

The exponents in the denominator are given by �

0

= (n

2

� 1)a

3

+ (n

3

� 1)a

2

+ a

2

a

3

and �

1

= n

2

a

3

+ n

3

a

2

+ a

2

a

3

with the resaled parameters a

i

= �e

i

=k. Note that for

eah hoie of the parameters n

i

at most one of the two terms in the sum an ontribute.

Hene, our result is manifestly onsistent with the onformal invariane of the model.

The symbols hfi

s

that appear in the numerator on the right hand side refer to the terms

in the minisuperspae result for the 3-point funtion (see eq. (2.6), i.e.

h'

he

1

;n

1

i

'

he

2

;n

2

i

'

he

3

;n

3

i

i =

Z

d�'

he

1

;n

1

i

'

he

2

;n

2

i

'

he

3

;n

3

i

=

X

s=0;1

h'

he

1

;n

1

i

'

he

2

;n

2

i

'

he

3

;n

3

i

i

s

where h'

he

1

;n

1

i

'

he

2

;n

2

i

'

he

3

;n

3

i

i

s

= G

(3)

s

Æ(

P

�

e

�

) Æ(

P

�

n

�

� 4 + s)

and G

(3)

s

are the unique invariant tensors in the triple tensor produts of typial represen-

tations. Expliit formulas an be worked out by integration of the threefold produts over

the supergroup. We shall not need these formulas here. Sine the terms in our result are

proportional to the tensors G

(3)

s

, our 3-point ouplings are manifestly gl(1j1) ovariant.

The main di�erene between the minisuperspae limit and the full �eld theory result arises

from the non-trivial, e-dependent fator C

1

in front of the seond term. Note that the

latter approahes C

1

� 1 as we send k to in�nity, thereby reproduing the minisuperspae

result in this limit.

Our formula for the 3-point funtions is not very diÆult to derive. Note that the

�rst term with s = 0 arises from the orresponding term in the expansion (4.20). Sine

there is no sreening harge inserted in this ase, the �eld theory omputation is idential

to the assoiated alulation in the minisuperspae theory and hene C

0

= 1. As for

the seond term, the omputation is slightly more involved. Let us only ompute one
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partiular omponent here.

h

0

0

�

he

1

;n

1

i

(1)

1

1

�

he

2

;n

2

i

(1)

1

1

�

he

3

;n

3

i

(x) i �

1

k

Z

d

2

ze

2

e

3

jz � 1j

2a

2

�2

jz � xj

2a

3

�2

j1 � xj

2�

0

�2

=

1

k

e

2

e

3

j1 � xj

2�

1

�(�a

2

)�(1 + a

2

+ a

3

)�(�a

3

)

�(1 + a

3

)�(�a

2

� a

3

)�(1 + a

2

)

= C

1

(e

1

; e

2

; e

3

)

e

2

+ e

3

j1� xj

2�

1

The � in the �rst line means that we only display the oeÆient in front of the Æ-funtions

for the ontribution with s = 1 insertion of the interation, i.e. we assume impliitly that

e

1

= �e

2

+ e

3

and n

1

= 3 � n

2

� n

3

. In the omputation we used a speial ase of the

Dotsenko-Fateev integration formula (Appendix A). The other steps are straightforward.

It is �nally easy to see that e

2

+ e

3

arises as a result of the orresponding minisuperspae

omputation.

It is now rather instrutive to study what happens to the omponent

1

1

�

he;ni

as we

send e to zero. Sine we are using the assoiated vertex operator e

�



+

V

(e;n)

in the free

�eld omputation, one might naively expet that the limiting �eld is zero. Our formula

for the 3-point oupling, however, shows that this is not the ase. Instead we �nd

lim

e!0

1

1

�

he;ni

=

0

0

�

he;n+1i

:

Though this result may appear a bit surprising at �rst, it is atually rather natural. In

order to onstrut the vertex operator for typial �elds, we had to remove one term from

the orresponding matrix '

he;ni

of the minisuperspae theory. We delared this term to

be `subleading' in some sense. But when e is sent to zero, the `leading term' in the lower

right orner of '

he;ni

vanishes so that the other term is no longer `negligible'. This is

exatly what we may infer from the previous formula.

Another remark onerns a very interesting new symmetry of the �eld theory that is

not present in the minisuperspae theory. Note that the oeÆients C

1

of the 3-point

ouplings have poles whenever one of the a

i

beomes a positive integer. This behavior

seems to distinguish the lines e = kZin the parameter spae of he; ni. In the minisuper-

spae theory, only the line e = 0 was speial. Hene, we take the behavior of C

1

as a �rst

indiation that the spetral ow symmetry might be a symmetry of our physial model,

not just of its symmetry (see setion 3). This is indeed the ase. In fat, one may show

by a short expliit omputation that

h �

he

1

;n

1

i

(1)

0

0

�

he

2

;n

2

i

(1)

1

1

�

he

3

;n

3

i

(0) i = N h �

he

1

;n

1

i

(1)

1

1

�

he

2

+k;n

2

�1i

(1)

0

0

�

he

3

�k;n

3

+1i

(0) i
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for all the matrix omponents of �

he

1

;n

1

i

. The oeÆient N = e

3

=(e

2

+ k) is due to our

normalization of the omponents

1

1

� and it would be absent had we normalized our �elds

in the anonial way. Consequently, the 3-point funtions of typial �elds are periodi in

the parameter e with period length k. This proves that spetral ow symmetry of the

model on the level of its 3-point funtions funtions.

Let us �nally reall that the 3-point orrelators involving primaries �

h0;ni

with e = 0

may be obtained by taking e

i

to zero in the above expression of the 3-point ouplings.

In ase of �

h0;ni

one should remember to onjugate the typial �elds with the matrix

W = e�

+

+ �

�

before performing the limit. All the ouplings in the resulting orrelators

agree with the minisuperspae result. In fat, when one of the labels e

i

= 0, the other

two labels di�er only by their sign and hene the oeÆient C

1

= 1.

5.2 3-point funtions involving �

n

It now remains to �nd orrelation funtions involving the �elds �

n

.

5

These an again be

determined by expliit omputation using our free �eld representation. Let us start by

stating the result for a single insertion of the �eld �

n

,

h�

n

1

(1)�

he

2

;n

2

i

(1)�

he

3

;n

3

i

(x) i =

h'

n

1

'

he

2

;n

2

i

'

he

3

;n

3

i

i

j1� xj

2�

(5.24)

+

1

k

h$

n

1

'

he

2

;n

2

i

'

he

3

;n

3

i

i

j1 � xj

2�

�

Z + #(a

2

)� log j1� xj

2

�

where #(a) = 2 (1) �  (a)�  (1� a) ; (5.25)

the funtion $

n

is de�ned as $

n

= exp(iny), our symbol  (a) = �

0

(a)=�(a) denotes

the Di-gamma funtion and the exponent � agrees with the exponents �

0

= �

1

we

introdued previously. Sine a non-vanishing 3-point oupling requires a

2

= �a

3

we

obtain � = (n

3

� n

2

)a

2

� a

2

2

. The onstant Z, �nally, may be shifted through a �eld

rede�nition and therefore its exat value is irrelevant. In fat, if we substitute the atypial

�eld �

n

on the left hand side of the above equation by

~

�

n

= �

n

+ � �

0

0

�

h0;n+1i

then the 3-point funtion remains of the same form with Z being replaed by

~

Z = Z + �k :

5

Reall that the �elds �

n

and their minisuperspae ounterparts '

n

do not arry any matrix indies

(see also our omments at the end of setion 4.1).
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Let us note that with our original de�nition of the �eld �

n

, the onstant Z � 1=(e

2

+ e

3

)

turns our to be in�nite.

It is not very diÆult to prove the formula (5.24). With the help of our free �eld

representation we �nd

h�

n

1

(1)

1

1

�

he

2

;n

2

i

(1)

0

0

�

he

3

;n

3

i

(x) i �

e

2

k

�(a

2

)�(��)�(1� a

2

+ �)

�(a

2

� �)�(1 � a

2

)�(1 + �)

j1� xj

2�

=

e

2

k

�

�

1

�

+ 2 (1)�  (a

2

)�  (1� a

2

)� log j1� xj

2

+ o(�)

�

Here we use the same onventions as in the previous subsetion along with some results

whih may be found in the appendix. The expansion around � = a

2

+a

3

� 0 is performed

using

�(x+ �)=�(x) � 1 + � (x) + o(�

2

) :

In the minisuperspae limit, the assoiated 3-point funtion assumes the value e

2

. Hene,

we have established eq. (5.24) with Z � �1=�, at least for one partiular omponent.

Similar steps allow us to determine the orrelator in ase there are there two insertions

of the �eld �

n

,

h�

he

1

;n

1

i

(1)�

n

2

(1)�

n

3

(x) i =

2

k

h'

he

1

;n

1

i

$

n

2

'

n

3

i

�

Z + log j1� xj

2

�

: (5.26)

Here we use the same notation as in eq. (5.24). Note that a non-vanishing 3-point oupling

with two insertions of �

n

requires the third �eld to have e

1

= 0. In the minisuperspae

orrelator on the right hand side we ould also have replaed '

n

3

by $

n

3

rather than

performing this substitution on '

n

2

.

Finally, when all three �elds are of the type �

n

, the 3-point ouplings read

h�

n

1

(1)�

n

2

(1)�

n

3

(x) i =

1

k

2

h'

n

1

$

n

2

$

n

3

i

�

3Z

2

+ 2Z log j1� xj

2

� (log j1� xj

2

)

2

�

:

The attentive reader might have notied that the minisuperspae integral on the right

hand side ontains an in�nite fator

R

de = Æ(0). To understand suh a behavior we reall

that the �elds we use are assoiated with Æ-funtion normalizable states. They an all

be approahed through a series of normalizable �elds by smearing them with appropriate

funtions in (e; n)-spae. Correlation funtions are �nite as long as one of the involved

�elds is normalizable. In our last orrelator for three �elds of the type �

n

, however, we

had so set all the parameters e to zero. Hene, from this 3-point funtion alone it is
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no longer possible to dedue any �nite orrelation funtions in whih at least one �eld

would need to be normalizable (and hene to be smeared out in the e-oordinate). Having

unovered the rather trivial origin of the divergene, we shall no longer hesitate to write

fators Æ(0).

After this brief digression into mathematial subtleties it is instrutive to ompare our

answers for the orrelation funtions of sympleti fermions (see e.g. [36℄). The omparison

shows that our typial vertex operators are very lose relatives of the twist �elds of the

sympleti fermion while �

n

behave like the logarithmi partner of the vauum in that

theory.

6 The 4-point funtion and fatorization

We are �nally in a position to show that the state spae we have proposed at the end of

the third setion is onsistent with the fatorization of 4-point funtions. To this end we

shall now ompute at least one speial 4-point funtion of typial �elds and we shall show

that it fatorizes over the onjetures set of possible intermediate states.

The 4-point funtion we are about to ompute has the following form [24℄)

G(x; �x) := h�

h�e

0

+";1�n

0

i

(1)�

he;ni

(x; �x)�

h�e�";1�ni

(1)�

he

0

;n

0

i

(0) i :

Let us note that the same 4-point funtion was also omputed in [24℄ as a loal solution of

the orresponding Knizhnik-Zamolodhikov equation. Needless to say that our free �eld

omputations shall give the same answer. In any ase, it is easy to see that this orrelator

only reeives ontributions from the insertion of one sreening harge. In order to spell

out the result, we rely heavily on the notations that are introdued throughout this work

(in partiular in subsetion 2.3 and in appendix A). Furthermore, it will be onvenient to

work with the resaled parameters

a = �

e

k

; a

0

= �

e

0

k

; � = �

"

k

:

With these notations, the four point funtion G an be written in the following form

G(x; �x) =

1

2k

jxj

2�
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2
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(6.27)

where � = (1� n)a

0

+ (1 � n

0

)a+ aa

0

 = (n � 1)(� + a) + na+ a(�+ a)
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where the summation extends over all spin on�gurations suh that

P

i

�

i

=

P

i

��

i

= 2.

Note that this inludes omplementary spin assignments, i.e. on�gurations satisfying

�

i

+ ��

i

= 1 for all i, whih an not arise in the minisuperspae theory. It remains to spell

out the funtions G. Up to a sign, they are given by

G(x; �x) = (�e

0

+ ")

��

1

e

��

2

(�e� ")

��

3

(e

0

)

��

4

x

�

2

�

4

(x� 1)

�

2

�

3

�x

��

2

��

4

(�x� 1)

��

2

��

3

�

� (�1)

P

����3

��

�

�

�

�

jF(a+ �

2

; a

0

� �+ �

2

+ �

3

+ �

4

� 1; a+ a

0

+ �

2

+ �

4

jx)j

2

+

+ (�1)

�

2

+�

3

+��

2

+��

3

jx

1��

2

��

4

�a�a

0

F(�

3

� �� a; 1� �

4

� a

0

; 2 � �

2

� �

4

� a� a

0

jx)j

2

i

Here, the notation j:j

2

means that we we multiply the argument with an idential fator in

whih F ; �

i

and x have been replaed by the bared quantities. In this form, it is possible

to ompare our result with the expressions that were found in [24℄.

We are now interested in the losed string states that propagate in the intermediate

hannel when �! 0. It is onvenient to rewrite the funtion G at � = 0 in terms of the

variables m = 1��

2

��

3

and �m = 1� ��

2

� ��

3

whih may assume values m; �m = �1; 0; 1,
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Sine the third argument of the funtion F oinides with the sum of the �rst two argu-

ments up to an integer, we expet logarithms to appear when we expand the orrelators

G around x = 1,

G(x; �x)
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i (6.28)

+

ee

0

k

Æ

m;0

Æ

�m=0

(log j1� xj

2

� #(a)� #(a

0

))

�

+ : : : ;

where the exponent � = �(� = 0) is given by � = (1� 2n)a� a

2

. The funtion # was

introdued in eq. (5.25).

We would �nally like to show that formula (6.28) is onsistent with the fatorization

through the set of proposed states. The proof employs the following expression for the
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operator produt expansion

�

he;ni

(x)�

h�e;1�ni

(1) �

1

j1� xj

2�

�

Z

dl h$

l

'

he;ni

'

h�e;1�ni

i �

l

(1) + (6.29)

+

Z

dl h'

l

'

he;ni

'

h�e;1�ni

i


l

(1) +

1

k

h$

l

'

he;ni

'

h�e;1�ni

i

�

#(a)�Z � log j1 � xj

2

�




l

(1)

�

::

where 


l

is a shorthand for 


l

=

0

0

�

h0;l+1i

. This operator produt is a diret onsequene

of our results on 3-point funtions. In order to verify the sign in front of the onstant Z

on the right hand side one uses that

h�

n

(1)�

n

0

(1)i = 2Z Æ(0) Æ(n+ n

0

� 2) :

After inserting this operator produt into the 4-point orrelator, we an evaluate the

resulting terms with the help of eq. (5.24). The �rst terms in eah line of eq. (6.29)

obviously ombine into the �rst term of formula (6.28). We may evaluate the ontribution

from the last term on the right hand side of eq. (6.29) with the help of

h$

l

'

he;ni

'

h�e;1�ni

i = �e Æ

m;0

Æ

�m;0

Æ(l� 1) :

As before, the formula should be read as a set of equations for the matrix omponents

�

��

'

he;ni

and

�

0

��

0

'

he;ni

. The quantities m and �m on the right hand side are de�ned through

m = 1����

0

and �m = 1� ��� ��

0

. Putting all this together we arrive at the seond term

in formula (6.28). Consequently, we have on�rmed that our 4-point funtions fatorize

on the set of states we had predited.

7 Conluding remarks

In this note we have onstruted the orrelators of the GL(1j1) WZW model through a

free �eld representation and we have investigated some properties of the theory. We have

seen in partiular that some orrelators of the model ontain logarithmi singularities. Let

us stress one more that speial 4-point funtions of this theory had been omputed before

[24℄. Rozansky and Saleur had also observed the logarithms whih appear whenever the

intermediate states are assoiated with atypial representations. The new aspet of our

approah here is that we were able to relate this very losely to the geometry (harmoni

analysis) of supergroups. To the best of our knowledge, this is the �rst time that a family
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of logarithmi onformal �eld theories omes with a geometri interpretation. This may

well prove to be a valuable soure for further insights.

While our formulas for the 4-point funtions agree with those of [24℄, it is not lear

how other aspets relate in detail. We notie in partiular that in [24℄, the need to build

non trivial knot invariants led to speial regularizations. These inlude e.g. a presription

to eliminate the divergene in the Z fators above. In addition, the haraters of two

dimensional representations were required to be orthogonal, even though their natural

salar produt is always zero - as a result, the metri used in [35℄ (formula 148 of that

paper) di�ers by a fator e from the invariant metri. In any ase, it is very possible that,

for partiular values of k (espeially in the strong quantum regime), other onsistent

quantum theories appear.

Another omment onerns an argument in [37℄ whih suggest that the GL(1j1) model

is a rather trivial example of a logarithmi onformal �eld theory. This assessment is

based on the observation that its stress energy tensor

T =

1

2k

�

2NE +	

�

	

+

�	

+

	

�

�

+

1

2k

2

E

2

(7.30)

is the bottom omponent of a projetive representation under the right urrent algebra,

with the top omponent being

t =

1

8k

2

�

2NE �	

�

	

+

+	

+

	

�

�

+

1

2k

N

2

(7.31)

and two intermediate fermioni omponents of the form

f	

�

; tg =

1

2k

2

E	

�

+

1

2k

(N	

�

+	

�

N)

f	

+

; tg = �

1

2k

2

E	

+

�

1

2k

(N	

+

+	

+

N) (7.32)

The operator produt expansion between the bosoni omponents t and T ,

T (z)t(w) =

1

2k

1

(z � w)

4

+

2t(w)

(z � w)

2

+

�t

z � w

(7.33)

an be used to argue very easily that L

0

is diagonalizable on this multiplet, a onlusion

whih is not in ontradition with anything we have said before sine the identi�ation

between L

0

and the Casimir element applies only to highest weight states. Looking at this

one multiplet alone, it would seem that more \interesting" logarithmi theories [37℄ are
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those for whih the Virasoro �eld T appears together with its partner t on the right hand

side of the operator produt (7.33). In fat, the ation of L

0

in the Virasoro multiplet of

suh theories eases to be diagonalizable Let us stress, however, that the GL(1j1) WZW

model is muh riher than this observation would suggest. As our results show, it possesses

many multiplets with non-diagonalizable L

0

e.g. even within the spae of ground states.

The top omponent of another potentially interesting multiplet an be obtained with L

�2

on �

1

.

Even though our analysis here was arried out for GL(1j1), we do not expet the results

to be muh di�erent for ompati�ed U(1j1) model. In the latter ase, the spetrum of e

and n should be disrete, and, in the full quantum �eld theory, winding will have to be

introdued.

Irrespetive of whether we hoose U(1j1) or GL(1j1), we note that the spetrum of the

theory is not bounded from below. This is expeted sine the gl(1j1) metri is not positive

de�nite - a fat manifest, for instane, in that the naive funtional integral for the free

�eld representation say (4.14) is divergent. This feature is generi of supergroups, and it

was suggested by Zirnbauer in partiular [4℄ that the WZW model ould only be de�ned

by trading the target spae for a Riemannian symmetri superspae with real submanifold

H

1

�S

1

. We have not followed that route here, observing instead that quantummehanis

on GL(1j1) was well de�ned, and assuming that there existed a quantum �eld theory

reduing to it in the minisuperspae limit.

Let us �nally point out that the geometri arguments that lead to the existene of

indeomposables in the spetrum were not spei� to the partiular model under on-

sideration. All they required was the presene of a Lie-superalgebra symmetry and the

existene of the identity �eld in the spetrum of the theory. The latter always sits in

an atypial representation and is - at least whenever the theory ontains a typial �eld

multiplet - part of a larger indeomposable projetive representation. The existene of an

identity �eld also has a rather simple geometri origin: it appears for all theories in whih

the bosoni manifold of the target spae is ompat. For non-ompat target spaes, the

identity an only be part of the spetrum if it may be approximated by normalizable

funtions. This is the ase for at target spaes, i.e. in the example we have studied. In

more generi non-ompat urved bakgrounds, however, the identity is separated by a

gap from the normalizable states of the theory. We therefore onlude that models with

a ompat (or at) target spae and a Lie superalgebra symmetry provide examples of
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logarithmi onformal �eld theory. This is ertainly a vast lass.

The insights of this note might be relevant also for non-ompat bakgrounds one

we admit world-sheets with boundaries. In geometri terms, the boundary onditions we

impose along the various boundary omponents are interpreted as branes. Suh branes

wrap ertain subsets of the target spae whih may be either non-ompat or ompat.

In the latter ase, the boundary spetrum does ontain an identity �eld even if the bulk

spetrum does not. For branes that preserve some Lie superalgebra symmetries we are

therefore bak with a setup that resembles the one we disussed in the previous paragraph.

Therefore we expet to �nd logarithmi singularities in the boundary orrelators of a

ompat brane theory. We plan to ome bak to suh issues in a forthoming publiation.
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8 Appendix A: Some integral formulas

Correlation funtions an be omputed from the free �eld representation using the follow-

ing simple onsequene of the Dotsenko-Fateev integral formula,

1

�

Z

d

2

z z

a

�z

�a

(1� z)

b

(1 � �z)

�

b

(z � x)



(�z � �x)

�

= jF(�;�� 1 � a� b;�� ajx)j

2

+ (�1)

��+b�

�

b

jx

a++1

F(�b; a+ 1; a+ + 2jx)j

2

:
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We expressed the result of the integration through the following funtions

F(a; b; jx) =

�(� b)�(b)

�()

2

F

1

(a; b; jx) ; (8.1)

�

F(�a;

�

b; �j�x) =

�(1 � �)

�(1 � �+

�

b)�(1 �

�

b)

2

F

1

(�a;

�

b; �j�x) : (8.2)

Validity of the integration formula requires that all the di�erenes a� �a; b�

�

b and � �

are integers. When one pair of exponents, e.g. the labels a; �a, vanishes, then the result

simpli�es to

1

�

Z

d

2

z (1� z)

b

(1� �z)

�

b

(z � x)



(�z � �x)

�

= jF(�;�� 1 � b;�jx)j

2

: (8.3)

This integral formula is used frequently in our evaluation of the 3-point ouplings. For

generi values of b;  we have

jF(�;�� 1 � b;�jx)j

2

=

�(1 + b)�(�1� � b)�(1 + �)

�(�)�(�

�

b)�(2 + �+

�

b)

j1� xj

2+b++

�

b+�

: (8.4)
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