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Abstra
t

We present a 
omplete solution of the WZW model on the supergroup GL(1j1).

Our analysis begins with a 
areful study of its minisuperspa
e limit (\harmoni


analysis on the supergroup"). Its spe
trum is shown to 
ontain inde
omposable

representations. This is interpreted as a geometri
 signal for the appearan
e of log-

arithms in the 
orrelators of the full �eld theory. We then dis
uss the representation

theory of the gl(1j1) 
urrent algebra and propose an Ansatz for the state spa
e of

the WZW model. The latter is established through an expli
it 
omputation of the


orrelation fun
tion. We show in parti
ular, that the 4-point fun
tions of the theory

fa
torize on the proposed set of states and that the model possesses an interesting

spe
tral 
ow symmetry. The note 
on
ludes with some remarks on generalizations

to other supergroups.
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1 Introdu
tion

Throughout the last two de
ades, non-linear sigma models with super-manifold target

spa
es have emerged in a wide variety of systems and their study has be
ome in
reasingly

relevant for some of the 
hallenging problems of modern physi
s, ranging from e.g. the

quantum Hall e�e
t to the famous AdS/CFT 
orresponden
e in string theory.

In 
ondensed matter, super-manifold target spa
es arise mostly in the study of geo-

metri
al problems su
h as per
olation and polymers [1℄, or in non-intera
ting disordered

systems [2, 3℄, where ill de�ned n ! 0 \repli
a" limits are handled instead by the intro-

du
tion of fermioni
 degrees of freedom to, typi
ally, 
an
el bosoni
 loops. The transition

between plateaux in the integer quantum Hall e�e
t is thus believed to be related to

the sigma model U(1,1j2)=U(1j1) � U(1j1) at � = �, a 
onformal �eld theory whi
h

has not yet been understood, despite de
ades of work (for a re
ent attempt, see [4℄).

Slightly more progress has been made for geometri
al loop models, leading to partial so-

lutions of sigma models on U(n+mjn)=U(1)� U(n+m-1jn) (super proje
tive spa
es) and

Osp(2n+mj2n)=Osp(2n+m-1j2n) (superspheres) [5℄.

In string theory, super-manifold target spa
es re
eived brief attention about then years

ago when they were argued to arise as mirrors of rigid Calabi-Yau (CY) manifolds, i.e.

of CY spa
es without 
omplex moduli. A

ording to the usual rules, the mirror image

of su
h spa
es has no K�ahler moduli and hen
e it 
annot be a usual CY manifold. In

[6℄ Sethi argued that the dual of a rigid CY is instead given by a CY super-manifold.

The proposal was further investigated in a small number of subsequent publi
ations (see

e.g. [7, 8℄ and referen
es therein), but it did not trigger mu
h interest in sigma models

with super-target spa
es. Mirror symmetry (or T-duality) involving non-
ommutative

geometries, of whi
h super-manifolds are the simplest examples, has also been dis
ussed

re
ently in [9, 10, 11℄.

Presumably more important, however, is the role that super-group and super-
oset

targets play for the des
ription of strings in Anti-deSitter spa
es. Using the Green-

S
hwarz formalism, a link was �rst established by Metsaev and Tseytlin [12℄. Shortly

after, Berkovits, Vafa and Witten explained [13℄ how string theory on AdS

3

�S

3


ould be

quantized if it was possible to 
onstru
t 
onformal quantum �eld theories with a PSL(2j2)

target spa
e. Su
h models were investigated in an interesting paper by Bershadsky [14℄

in whi
h some of the pe
uliar features of super-target spa
es surfa
ed. For further string
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motivated resear
h in this dire
tion see e.g. [15, 16, 17℄, and for more 
ondensed matter

oriented work see [19, 20, 21, 22℄).

In most 
ir
umstan
es, the models of interest are believed to be more 
ompli
ated

than WZW models on supergroups. In the 
ase of the integer quantum Hall e�e
t for

instan
e, it has be
ome 
lear over the years that the sigma model at � = � 
ows to a

theory whi
h does not exhibit the full 
urrent algebra symmetry [5℄ (presumably be
ause

of the appearan
e of logarithmi
 terms in the OPEs of the 
urrents). Nevertheless, even

the WZW models on supergroups are far from being understood. This is largely due to

te
hni
al reasons (inde
omposability of operator produ
ts and appearan
e of logarithms in


orrelation fun
tions, 
ontinuous modular transforms of the irredu
ible 
hara
ters [23℄. . . ),


ombined with a la
k of \physi
al intuition".

Our aim in this note is to initiate a systemati
 study of WZW models on supergroups

by relying more heavily on geometri
 
on
epts. We shall, in parti
ular, gain a better

understanding of logarithmi
 features by relating them to super-geometry. Logarithmi



onformal �eld theories have been studied for a bit more than a de
ade now (see [24, 25℄

for some early 
ontributions). Even though only a few examples have been 
onstru
ted

in full detail [26℄, their importan
e, in parti
ular for disordered 
riti
al points, is widely

appre
iated (see e.g. [27, 28, 5, 29℄ and referen
es therein). By de�nition, the operator

produ
t expansions in a logarithmi
 
onformal �eld theory 
ontain a logarithmi
 depen-

den
e on the separation between the �elds. In the simplest 
ases, these may look e.g. as

follows,

�(x; �x)�(0; 0) �

1

jxj

2�

�

�2h

C

�

log jxj

2

C(0; 0) +D(0; 0)

�

+ : : : :

We 
on
lude that the 
hiral generators L

0

and

�

L

0

of dilations in the world-sheet 
oordinate

x a
t a

ording to

L

0

jDi = h

C

jDi + jCi ; L

0

jCi = h

C

jCi :

Here, jCi; jDi denote the states that are asso
iated with the �elds C;D and similar

relations hold for

�

L

0

. Consequently, L

0

and

�

L

0


ease to be diagonalizable. This feature

is 
ommon to all logarithmi
 
onformal �eld theories and it is rather easy to diagnose.

Many more details and referen
es may be found in re
ent review arti
les [30, 31℄.

Our strategy here is to approa
h the analysis of the WZWmodel through the harmoni


analysis on the supergroup GL(1j1) and to show that the minisuperspa
e analogues of L

0

2



and

�

L

0

, i.e. the quadrati
 Casimir elements in the left and right regular representations,

are non-diagonalizable. This leaves the full �eld theoreti
 model no other 
han
e but to be

logarithmi
. The harmoni
 analysis on the supergroup GL(1j1) is the main subje
t of the

next se
tion. In se
tion 3 we will suggest an expression for the state spa
e of the full �eld

theory. Our proposal is motivated in parts by the experien
e with the minisuperspa
e

theory 
ombined with some results from the representation theory of the gl(1j1) 
urrent

algebra. It is established later through a full 
onstru
tion of the theory, in
luding all

its 
orrelators. Our solution is based on free �eld 
omputations involving a 
 = 2 linear

dilaton in the bosoni
 se
tor and an (anti-)
hiral b
-system with 
entral 
harge 
 = �2

for the fermioni
 part. All 3-point fun
tions of the model are 
onstru
ted and studied

in se
tion 5. There we shall also show that the theory possesses an interesting spe
tral


ow symmetry. In se
tion 6, �nally, we determine 4-point fun
tions of our model an show

that they fa
torize on the proposed set of states. We 
on
lude with a few remarks on

generalizations to other supergroups and with an outlook on further open problems.

2 The minisuperspa
e analysis

The following se
tion is devoted to the \parti
le limit" of the GL(1j1) WZW model . In

more physi
al terms, one 
an imagine putting the WZWmodel on a 
ylinder with periodi


spa
e and in�nite (imaginary) time, and restri
ting to zero modes, ie to �eld 
on�gurations

that are independent of the spa
e variable. Their dynami
s is the one of a parti
le with

phase spa
e the target spa
e of the WZW model. Thus, in more mathemati
al terms we

shall be 
on
erned with the harmoni
 analysis on GL(1j1). Su
h harmoni
 analysis has

been quite su

essful in the study of WZW models on non-
ompa
t bosoni
 target spa
es

su
h as the SL(2,C)/SU(2) model (see e.g. [32℄).

We will require a bit of ba
kground from the representation theory of the Lie superal-

gebra gl(1j1). In parti
ular we shall introdu
e its typi
al representations (long multiplets)

and show how they generate 
ertain inde
omposable 
omposites of atypi
al representa-

tions (short multiplets) through tensor produ
ts. We then 
onstru
t the spa
e of fun
tions

on the supergroup along with the left and right regular a
tion of gl(1j1). The regular

representation is expli
itly de
omposed into its building blo
ks and it is shown that in-

de
omposable (but not irredu
ible) representations emerge in the spe
trum. Part of the

results we dis
uss here were �rst derived in [33℄.
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2.1 The Lie superalgebra gl(1j1) and its representations

The Lie superalgebra g = gl(1j1) is generated by two bosoni
 elements E;N and two

fermioni
 generators 	

�

su
h that E is 
entral and the other generators obey

[N;	

�

℄ = �	

�

and f	

�

;	

+

g = E :

Let us also �x the following Casimir element C for gl(1j1)

C = (2N � 1)E + 2	

�

	

+

:

The 
hoi
e of C is not unique sin
e we 
ould add any fun
tion of the 
entral element E.

Our pres
ription is motivated by the form of the Virasoro element in the �eld theory (see

[24℄ and below).

There are �ve di�erent 
lasses of representations that shall play some role in the

following. To begin with, we list the irredu
ible representations whi
h fall into the di�erent

series. There is one series of 2-dimensional representations he; ni whi
h is labeled by pairs

e; n with e 6= 0 and n 2 R. In these representations, the generators take the form E = e1

2

and

N =

�

n� 1 0

0 n

�

; 	

+

=

�

0 0

e 0

�

; 	

�

=

�

0 1

0 0

�

:

These representations are the typi
al representations (long multiplets) of g =gl(1j1). In

addition, there is one series of atypi
al representations hni (short multiplets). These are

1-dimensional and parametrized by the value n 2 R of N . All other generators vanish.

For the typi
al representations we assumed that the parameter e does not vanish. But

it is still interesting to explore what happens when we set e = 0. The above matri
es 
er-

tainly 
ontinue to provide a representation of gl(1j1) only that this is no longer irredu
ible.

In fa
t, we observe that the basis ve
tor j0i = (1; 0)

T

generates a 1-dimensional invariant

subspa
e of the 
orresponding 2-dimensional representation spa
e. But one should not


on
lude that there exits an invariant 
omplement. In fa
t, it is impossible to de
ouple

the ve
tor j1i = (0; 1)

T

from the representation sin
e 	

�

j1i = j0i, independently of the


hoi
e of the parameter e. The representation h0; ni is therefore inde
omposable but it is

not irredu
ible. We 
an think of h0; ni as being built up from two atypi
al 
onstituents,

namely from the representations hni and hn � 1i. To visualize the internal stru
ture of

h0; ni, we may employ the following diagram,

h0; ni : hn� 1i  � hni :
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Later we shall see mu
h more 
ompli
ated 
omposites of atypi
al representations. It is

therefore useful to be
ome familiar with diagrammati
 presentations of inde
omposables.

In the representations he; ni, the fermioni
 generators appear on a somewhat di�erent

footing sin
e 	

+

depends on the parameter e while 	

�

does not. There exists another

family of 2-dimensional representations he; ni, however, in whi
h the roles of 	

�

and 	

+

are inter
hanged,

N =

�

n 0

0 n� 1

�

; 	

+

=

�

0 1

0 0

�

; 	

�

=

�

0 0

e 0

�

:

As long as e 6= 0 the representations he; ni and he; ni are equivalent. In fa
t, the iso-

morphism between the two representations may be implemented by 
onjugation with the

matri
es W

e

= e�

+

+ �

�

where �

�

are the usual Pauli matri
es. This isomorphism does

not survive the limit e ! 0 and hen
e the representations h0; ni and h0; ni are inequiv-

alent. h0; ni is also an inde
omposable representation that is built up from the same

atypi
al 
onstituents as h0; ni, but this time the non-vanishing generator 	

+

maps us

from hni to hn � 1i, i.e.

h0; ni : hn� 1i �! hni :

Below, the representations h0; ni and h0; ni will eventually enter as limits of typi
al rep-

resentations.

Having seen all the irredu
ible representations he; ni and hni of gl(1j1) along with

their limits as e goes to zero, our next task is to 
ompute tensor produ
ts of typi
al

representations he

1

; n

2

i and he

2

; n

2

i. As long as e

1

+ e

2

6= 0, the tensor produ
t is easily

seen to de
ompose into a sum of two typi
als,

he

1

; n

2

i 
 he

2

; n

2

i = he

1

+ e

2

; n

1

+ n

2

� 1i � he

1

+ e

2

; n

1

+ n

2

i :

But when e

1

+e

2

= 0 we obtain a 4-dimensional representation that 
annot be de
omposed

into a dire
t sum of smaller subrepresentations. The representation matri
es of these 4-

dimensional inde
omposables P

n

read as follows

N =

0

B

B

�

n� 1 0 0 0

0 n 0 0

0 0 n 0

0 0 0 n+ 1

1

C

C

A

; 	

+

=

0

B

B

�

0 0 0 0

�1 0 0 0

1 0 0 0

0 1 1 0

1

C

C

A

; 	

�

=

0

B

B

�

0 1 1 0

0 0 0 1

0 0 0 �1

0 0 0 0

1

C

C

A

:

As we have seen before, it is useful to pi
ture the stru
ture of inde
omposables. The form

of N tells us that P

n

is 
omposed from the atypi
al irredu
ibles hn� 1i; 2hni, hn + 1i.

5



The a
tion of 	

�

relates these four representations as follows

P

n

: hn + 1i

$$IIIII
III

I

hni

;;wwwwwwwww

##GG
GG

GGG
GG

hni :

hn� 1i

::uuuuuuuuu

(2.1)

There are a few remarks we would like to make at this point. The �rst one 
on
erns the

form of the Casimir element C in the representations P

n

. It is straightforward to see that

C maps the subspa
e hni on the left onto the hni on the right of the above diagram and

that it is zero otherwise. This means that C 
annot be diagonalized in P

n

. We shall

return to this observation later on.

It is also obvious from the diagrammati
 representation that P

n


ontains the inde
om-

posables h0; ni and h0; n + 1i as subrepresentations. In this sense, the latter are extendable

into a larger inde
omposable. For the representation P

n

the situation is quite di�erent: it

may be shown (and is intuitively 
lear) that P

n

is maximal in the sense that it 
an never

appear as a subrepresentation of a larger inde
omposable. In the mathemati
s literature,

su
h representations are known as proje
tive. Sin
e the proje
tive representation P

n


on-

tains the irredu
ible hni as a true subrepresentation, one also 
alls P

n

the proje
tive 
over

of hni.

The typi
al representations he; ni; e 6= 0; along with the inde
omposables P

n

exhaust

the set of �nite dimensional proje
tives of gl(1j1). What will be parti
ularly important

for us is the fa
t that proje
tive representations are known to 
lose under tensor produ
ts.

In parti
ular, tensor produ
ts of the representations P

n

do not generate any new types of

representations. This is not to say that there are not any others. In fa
t, there is a large

family of inde
omposables (\zigzag modules") with arbitrarily large dimension (see e.g.

[34℄ for a 
omplete list and a 
omputation of their tensor produ
ts). Our following analysis

will shortly 
on�rm the standard mathemati
al result that only proje
tives emerge from

the harmoni
 analysis on the supergroup and hen
e these are the only ones that will play

a major role below.
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2.2 Harmoni
 analysis on the supergroup GL(1j1)

Our aim now is to study the spa
e of fun
tions on the 
orresponding supergroup and

to analyse the various a
tions of the Lie superalgebra gl(1j1). Before we get into the

details, however, let us brie
y re
all the situation in the 
ase of 
ompa
t groups whi
h

is 
overed by Peter-Weyl theory. The latter des
ribes how the spa
e L

2

(G) of square

integrable fun
tions on a 
ompa
t group de
omposes under the right regular a
tion. It

asserts that the in�nite dimensional representation spa
e L

2

(G) de
omposes into a dire
t

sum of irredu
ibles H

J

of G and that ea
h irredu
ible appears with a multipli
ity that is

given by the dimension d

J

of H

J

, i.e.

L

2

(G)

�

=

X

J

H

J


H

R

J

:

Here, the �rst fa
tor H

J

in ea
h summand is the multipli
ity spa
e. The generators of

the right regular representation a
t ex
lusively in the se
ond tensor fa
tor whi
h is why

we marked it with the supers
ript R.

We 
an a
tually be even more pre
ise and 
onstru
t ea
h summand in the above de-


omposition rather expli
itly. To this end we note that the Hilbert spa
e L

2

(G) possesses

a basis whi
h is formed by matrix elements of irredu
ible representations of G. Any ir-

redu
ible representation H

J


ontributes d

2

J

matrix elements to the basis. These span the

subspa
es H

J


H

R

J

in the above de
omposition of L

2

(G).

Obviously, there exists a se
ond a
tion of G on L

2

(G) by left multipli
ation. It pro-

motes the multipli
ity spa
es H

J

into representation spa
es of G, i.e.

L

2

(G)

�

=

X

J

H

L

J


H

R

J

:

The stru
ture of this de
omposition under the 
ombined left and right a
tion is somewhat

reminis
ent of the famous holomorphi
 fa
torization in WZW models.

In the following dis
ussion of fun
tions on the supergroup, we would like to remain

very expli
it. Therefore, we introdu
e the so-
alled Gauss 
oordinates x; y; �

�

in whi
h

elements of the supergroup read

U = U(x; y; �

�

) = e

i�

+

	

+

e

ixE+iyN

e

i�

�

	

�

:

It is not hard to work out the form of the invariant measure in these 
oordinates. The

result is

d� = e

�iy

dx dy d�

�

d�

+

:

7



Similarly, one 
an determine the form of the left and right invariant ve
tor �elds. Again

we only quote the results of a straightforward 
omputation. For the left invariant ve
tor

�elds one �nds

L

E

= i�

x

; L

N

= i�

y

� �

+

�

+

; L

+

= �i�

+

; L

�

= ie

iy

�

�

� �

+

�

x

: (2.2)

Here, the symbols �

�

stand for derivatives with respe
t to �

�

. Right invariant ve
tor

�elds possess the form

R

E

= �i�

x

; R

N

= �i�

y

+ �

�

�

�

; R

�

= �i�

�

; R

+

= ie

iy

�

+

+ �

�

�

x

: (2.3)

The reader is invited to 
he
k that these two sets of generators satisfy the relations of the

Lie superalgebra gl(1j1) and that they (anti-)
ommute among ea
h other.

After this preparation, we would like to analyze the spa
e of square integrable fun
tions

on the supergroup. By de�nition, these are obje
ts f of the form

f(x; y; �

�

) = f

0

(x; y) + f

+

(x; y)�

+

+ f

�

(x; y)�

�

+ f

2

(x; y)�

�

�

+

with any set of square integrable fun
tions f

�

on R

2

. This spa
e is spanned by the

following basis

1

e

0

(k; l) = e

ikx+ily

; e

�

(k; l) = e

0

(k; l)�

�

; e

2

(k; l) = e

0

(k; l)�

�

�

+

:

The spa
e of square integrable fun
tions 
arries two (anti-)
ommuting a
tions of the Lie

superalgebra gl(1j1) whi
h are generated by the left- and right invariant ve
tor �elds. Our

aim is to understand in detail the stru
ture of these representations.

Proposition 1: (Right regular a
tion) With respe
t to the right regular a
tion, the spa
e

of square integrable fun
tions on the supergroup de
omposes a

ording to

L

2

(GL(1j1)) =

Z

e6=0

dedn

�

H

0

he;ni

�H

R

he;ni

�

�

Z

dn P

n

:

Here H

R

he;ni

denotes the graded representation spa
e of the typi
al representation he; ni and

H

0

he;ni

is the same ve
tor spa
e with shifted Z

2

grading.

Let us make a few remarks about this result before we explain its derivation. The two

integrals in our de
omposition formula 
orrespond to an integration over the spa
e of typ-

i
al and atypi
al representations, respe
tively. As in the 
ase of ordinary groups, typi
al

1

The elements of this basis are Æ-fun
tion normalizable sin
e we are dealing with a non-
ompa
t group.

8



representations appear with a multipli
ity given by their dimension, i.e. by d

he;ni

= 2 in

our spe
ial 
ase. For atypi
al representations, the story is more 
ompli
ated. In general,

they do not appear themselves but are repla
ed by their proje
tive 
overs. Their multi-

pli
ity, on the other hand, is obtained from the dimension of the atypi
al representation,

i.e. by d

hni

= 1 in our spe
ial 
ase.

2

Our de
omposition formula is thus in full agreement

with the general result in [33℄. Note that the stru
ture of the se
tor whi
h 
omes with the

atypi
al representations does not possess the usual form that is en
oded in the Peter-Weyl

theorem (see above).

We also mention is passing that the Casimir element C is non-diagonalizable in the

right regular representation sin
e the latter 
ontains the proje
tive 
overs and, a

ording

to our earlier dis
ussion, C 
annot be diagonalized in P

n

. In the full �eld theory, the

Casimir elements lifts to the Virasoro zero mode L

0

so that our simple 
orollary on the

stru
ture of C in the right regular representation will eventually have dire
t and far

rea
hing impli
ations for the WZW model.

Our result on the de
omposition of the right regular representation is rather easy to

obtain and we 
an even �nd expli
it formulas for the basis ve
tors of all the summands.

In order to do so, we shall have a brief look at the spa
e of fun
tions that appear as

matrix elements of the supergroup in the typi
al representations he; ni,

'

he;ni

=

�

e

iex+i(n�1)y

i�

�

e

iex+i(n�1)y

ie�

+

e

iex+i(n�1)y

e�

�

�

+

e

iex+i(n�1)y

+ e

iex+iny

�

: (2.4)

The fun
tions in the �rst row form a basis of the summand H

he;ni

, whereas the fun
tions

in the se
ond row span the spa
e H

0

he;ni

,

H

he;ni

= span (e

0

(e; n� 1); e

�

(e; n� 1)) ;

H

0

he;ni

= span (e

+

(e; n� 1); ee

2

(e; n� 1) + e

0

(e; n)) :

It is obvious that the matrix elements of the typi
al representations provide a basis for

eigenfun
tions of R

E

with eigenvalue e 6= 0.

What we are missing is an analysis of the spa
e of fun
tions with e = 0. The spa
e

of these fun
tions is spanned by e

�

(0; l) and it is easily seen to de
ompose into a sum of

4-dimensional inde
omposables P

n

,

P

n

= span (e

0

(0; n); e

+

(0; n� 1); e

�

(0; n); e

2

(0; n� 1)) : (2.5)

2

For some Lie superalgebras, there 
an be representations for whi
h the multipli
ity is only half of

this value.
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One may 
he
k by dire
t 
omputation that R

�

e

2

(0; n� 1) = �ie

�

(0; n� 1=2 � 1=2) and

similarly that R

�

e

�

(0; n � 1=2 � 1=2) = �ie

0

(0; n). Hen
e, we re
over the stru
ture of

the proje
tive 
over P

n

.

The fun
tions on our supergroup 
arry another (anti-)
ommuting a
tion of the Lie

superalgebra g by left derivations. There is a 
orresponding de
omposition whi
h is


ertainly identi
al to the de
omposition in proposition 1. A more interesting problem is

to de
ompose the spa
e of fun
tions with respe
t to the graded produ
t g
g in whi
h the

�rst fa
tors a
ts through the left regular a
tion while for the se
ond fa
tor we use the right

regular a
tion. The asso
iated de
omposition is provided by the following proposition.

Proposition 2: (Left-right regular a
tion) With respe
t to the left-right regular a
tion of

g
 g, the spa
e of fun
tions on the supergroup de
omposes a

ording to

L

2

(GL(1j1)) =

Z

e6=0

dedn H

L

h�e;�n+1i


 H

R

he;ni

�

Z

1

0

dq J

q

:

Here J

q

; q 2 [0; 1[; denotes a a family of in�nite dimensional inde
omposable representa-

tion of g 
 g. When restri
ted to either left or right regular a
tion, the latter de
ompose

a

ording to

(J

q

)

g

R

� (J

�q

)

g

L

=

M

a2Z

P

q+a

for all q 2 [0; 1[ :

The �rst term in the de
omposition formula follows from proposition 1 as in the 
ase of

Lie algebras. Our se
ond term involves unusual in�nite dimensional representations whi
h


annot be further de
omposed. They appear as follows. We have displayed an expli
it

basis for the 4-dimensional spa
es P

n

of the right regular a
tion in eq. (2.5): from this it

is easy to see that

L

�

: P

n

�! P

n+1

; L

+

: P

n

�! P

n�1

;

i.e. that the invariant subspa
es P

n

of the right regular a
tion are mapped into ea
h other

by the left regular a
tion and vi
e versa, thus \linking" the proje
tives for left and right

a
tions into a big blo
k. In terms of its de
omposition series, the stru
ture of J

q

is given

10



by

J

q

:

M

a2Z

hq + ai 
 h�q � ai

�!

M

a2Z

hq + a+ 1i 
 h�q � ai �

M

a2Z

hq + ai 
 h�q � a� 1i

�!

M

a2Z

hq + ai 
 h�q � ai :

Note that hni
hmi are atypi
al 1-dimensional representations of g
g. The rightmost term

in this �ltration of J

q

denotes the so-
alled so
le, i.e. the largest semi-simple submodule.

The leftmost term is the head of J

q

. It is the largest semi-simple representation that

arises as a quotient of J

q

. The term in the middle, �nally, is the head of the radi
al.

2.3 Correlation fun
tions in minisuperspa
e

In the minisuperspa
e theory, �elds are represented through fun
tions � on the supergroup

and their 
orrelators are 
omputed by integration with the invariant measure, i.e.

h

m

Y

�=1

�

�

i =

Z

d�(x; y; �

�

)

m

Y

�=1

�

�

(x; y; �

�

) :

Here we shall be mostly 
on
erned with the 
orrelators involving matrix elements of the

obje
ts '

he;ni

.

In order to prepare for our analysis of 
orrelators of typi
al �elds we need to introdu
e

a bit of notation. As before, we shall denote the eigenstates of N in typi
al representations

by j0i and j1i. Our 
hoi
e is su
h that 	

�

j0i = 0. States of an m-fold tensor produ
t


an be thought of as states in a spin 
hain of length m. A basis in this spa
e is given by

j�

1

: : : �

m

i with �

i

= 0; 1. In this ve
tor spa
e we shall introdu
e a set of linear maps E

by

E

�

1

:::�

m

�

0

1

:::�

0

m

= j�

1

: : : �

m

i h�

0

1

: : : �

0

m

j :

These are the elementary matri
es of the state spa
e of our spin 
hain. They will appear

later in our formulas for the 
orrelation fun
tions of primary �elds that are asso
iated

with typi
al representations.

When we evaluate m-point fun
tions of our matrix valued fun
tions '

he;ni

, we 
an

express the answer in terms of the elementary matri
es E for a spin 
hain of length m.
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Note that only elementary matri
es 
an arise that preserve the number p of spins that

are 
ipped to the position � = 1. We 
an also observe that an elementary matrix with p


ipped spins 
omes multiplied by a delta fun
tion Æ(

P

m

�=1

n

�

�m+p�2), i.e. an m-point

fun
tion possesses the general form

3

h

m

Y

�=1

'

he

�

;n

�

i

i = Æ(

m

X

�=1

e

�

)

m�1

X

p=1

G

(m)

p

Æ(

m

X

�=1

n

�

�m+ p� 2) ; (2.6)

where G

(m)

p

are linear 
ombinations of the elementary matri
es for a spin 
hain of length

m with p spins in the � = 1 position. We shall �nd the same stru
ture for the 
orrelators

in the �eld theory later on. There is one more rule, however, that is spe
i�
 to the

parti
le limit: an elementary matrix 
an only 
ontribute to the invariant tensor G

(m)

p

if

it shifts at most one spin along the 
hain. For m � 3 this 
onditions is trivially satis�ed,

but starting from 4-point fun
tions, some number preserving elementary matri
es are no

longer admitted in the parti
le limit. We shall see below that this last 
ondition may be

violated for the full �eld theory.

3 Representation theory of 
urrent algebra

Based on the experien
e from the previous se
tion we would now like to present a similar

analysis of the representation theory of the aÆne algebra. This will ultimately lead us

to a 
onje
ture on the state spa
e of the GL(1j1) WZW model. Our proposal will follow


losely the out
ome of the harmoni
 analysis on the supergroup. The only new ingredient

enters through an additional spe
tral 
ow symmetry of the aÆne algebra.

3.1 The gl(1j1) 
urrent algebra

Let us begin by listing a few results on the aÆne algebra and its representation theory.

The gl(1j1) 
urrent algebra is generated by the modes of two bosoni
 
urrents N(z); E(z)

and two fermioni
 
urrents 	

�

(z). Their 
ommutation relations read

[E

n

; N

m

℄ = kmÆ

n+m

; [N

n

;	

�

m

℄ = �	

�

n+m

(3.7)

f	

�

n

;	

+

m

g = E

n+m

+ kmÆ

n+m

: (3.8)

3

The term with p = m vanishes due to 
onservation of the e-
harge
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All other (anti-)
ommutators vanish. This algebra admits an interesting family of spe
tral


ow automorphism 


m

whi
h a
ts on generators a

ording to




m

(E

n

) = E

n

+mkÆ

n

; 


m

(	

�

n

) = 	

�

n�m

and leavesN

n

invariant. We shall see later that for integerm these automorphisms provide

a symmetry of the GL(1j1) WZW model.

In [24℄ it was shown that the the Virasoro element L

0

of the gl(1j1) model possesses

the following form,

L

0

=

1

2k

(2N

0

E

0

� E

0

+ 2	

�

0

	

+

0

+

1

k

E

2

0

)

+

1

k

X

m�0

(E

�m

N

m

+N

�m

E

m

+	

�

�m

	

+

m

�	

+

�m

	

�

m

+

1

k

E

�m

E

m

)

Under the a
tion of the spe
tral 
ow automorphism, L

0

behaves a

ording to




m

(L

0

) = L

0

+m(N

0

� 1) :

This very simple behavior of L

0

plays an important role in determining the a
tion of the

spe
tral 
ow on representations of the 
urrent algebra.

3.2 Representations of the gl(1j1) 
urrent algebra

In the following we shall denote the Verma module over the typi
al representation he; ni

by V

he;ni

. As long as e is not an integer multiple of the level k, the Verma modules are

irredu
ible. But when e = km, the story is a bit more interesting.

Lemma: The Verma module that is built on the typi
al representations hmk; ni;m 6= 0;


ontains a singular ve
tor on the m

th

level. Expli
itly, it is given by

jkm; n� 1i

hmk;ni

=

jm�1j

Y

p=1

	

�

p

jmj

Y

p=1

	

�

�p

jmk; ni for 0 < �m (3.9)

where jmk; ni denotes the ground state of the Verma module V

hmk;ni

.

Proof: Without loss of generality, let us restri
t to m > 0. In order to prove our

statement we shall begin with the following simple fa
t,

	

�

q

m

Y

p=1

	

+

�p

jmk; ni = 0 for all q � m :
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For q > m, the formula would hold regardless of the ground state we use. Only the 
ase

q = m is slightly more subtle and it uses that E

0

= mk. With this insight in mind it is

then straightforward to establish the Lemma.

If we divide the Verma module V

hmk;ni

by the invariant subspa
e that is generated

from its singular ve
tor (3.9) we end up with an irredu
ible representation of the 
urrent

algebra. We shall denote the latter by H

hmk;ni

. One may also show that the invariant

subspa
e whi
h is built on the ve
tor (3.9) is irredu
ible and isomorphi
 to H

hmk;n�1i

.

Hen
e, the stru
ture of the Verma module V

he;ni

is en
oded in the following diagram

V

hmk;ni

: H

hmk;ni

�! H

hmk;n�1i

for 0 < �m :

For negative m, this resembles the stru
ture of the module h0; ni. And indeed, one 
an

easily see that the Verma module V

hkm;ni

for m < 0 is the spe
tral 
ow image of the

Verma module V

h0;ni

. Similarly, for positive m, the spe
tral 
ow takes us from the Verma

module V

h0;n+1i

to the Verma module V

hkm;ni

.

In order to dis
uss the a
tion of the spe
tral 
ow on the Verma modules over the

proje
tive 
overs P

n

, we need to enlarge the 
lass of aÆne representations and in
lude


ertain representations

^

P

hmk;ni

that are known as twisted highest weight modules. These

are generated from a state jmk; ni satisfying the 
onditions

	

�

r

jmk; ni = 0 for r > �m (3.10)

E

r

jmk; ni = 0 = N

r

jmk; ni for r > 0 (3.11)

E

0

jmk; ni = mkjmk; ni ; N

0

jmk; ni = njmk; ni (3.12)

by appli
ations of the generators 	

�

�r

; r � �m; and E

r

; N

r

; r > 0 (note the di�eren
e in

(3.10) with the de�nition of ordinary highest weight modules whi
h would involve r > 0

instead). Let us note that for m = 0, the 
onstru
tion gives us the Verma module of

the proje
tive 
over P

n

. We also observe that in the twisted highest weight module, the

eigenvalues of L

0

are bounded from below, simply be
ause we 
an only apply a �nite

number of fermioni
 generators to des
end from jmk; ni. For m 6= 0 there are two states

of lowest L

0

eigenvalue whi
h are given by

jmj

Y

r=1

	

�sign(m)

r

jmk; ni ;

jmj

Y

r=0

	

�sign(m)

r

jmk; ni :
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For m � 0 for instan
e, they possess L

0

eigenvalue nm�m

2

=2�m=2 and transform in the

typi
al representation hmk; n�mi. Consequently, the module

^

P

hmk;ni


ontains V

hmk;n�mi

as a subspa
e. If we divide by the latter we stay with a Verma module V

hmk;n�m+1i

. This

stru
ture in en
oded in the following diagram,

^

P

hmk;ni

:

H

hmk;n�m+2i

((QQQQQQQQQQQQQ

H

hmk;n�m+1i

((PPPPPPPPPPPP

66nnnnnnnnnnnn

H

hmk;n�m+1i

:

H

hmk;n�mi

66mmmmmmmmmmmmm

(3.13)

It is easy to see that the

^

P

hmk;ni

are the images of the P

n

under the spe
tral 
ow. The

pi
ture does not only tell us how spe
tral 
ow a
ts on the various Verma modules we 
an

built over representations with E = 0, it also displays the twisted highest weight modules

^

P as natural 
ousins of the proje
tive 
overs P

n

.

3.3 The state spa
e of the GL(1j1) WZW model

Having gained some insight into the representation theory of the gl(1j1) 
urrent algebra,

it is very tempting to 
onje
ture that the state spa
e of the full �eld theory possesses

exa
tly the same stru
ture as the minisuperspa
e theory with only one extra feature: the

theory is periodi
 under shifts of e by multiples of the level k,

H

WZW

=

Z

e6=m mod k

dedn H

L

h�e;�n+1i


 H

R

he;ni

�

X

m

Z

1

0

dq

^

J

(m)

q

:

Here

^

J

q

; q 2 [0; 1[; denotes a family of inde
omposable representations of ĝl(1j1)
 ĝl(1j1).

They are built from irredu
ible representations a

ording to the following diagram

J

(m)

q

:

M

a2Z

H

hmk;q+ai


H

h�mk;�q�ai

�!

M

a2Z

H

hmk;q+a+1i


H

h�mk;�q�ai

�

M

a2Z

H

hmk;q+ai


H

h�mk;�q�a�1i

�!

M

a2Z

H

hmk;q+ai


H

h�mk;�q�ai

:

A

ording to several remarks earlier on, it is 
lear that the Virasoro modes L

0

and

�

L

0


annot be diagonalized on H

WZW

. As we re
alled in the introdu
tion, su
h a behavior
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is 
losely linked with the existen
e of logarithmi
 singularities in the operator produ
t

expansion of lo
al �elds in the model.

In the next three se
tions we shall prove that the state spa
e of the WZW model does

indeed possess the proposed form. First we shall set up a free �eld approa
h that will

allow us to 
ompute any 
orrelation fun
tion in the system. Then we use this tool to


al
ulate the 3-point 
ouplings. Finally, we shall 
ompute the 4-point fun
tions and show

that they fa
torize over the proposed set of states. Along the way we shall also prove

that the theory possesses the 
onje
tured spe
tral 
ow symmetry. Needless to add that

we will also �nd the predi
ted logarithmi
 singularities in the 
orrelation fun
tions.

4 Solutions of the full CFT

Our aim now is to 
onstru
t 
orrelation fun
tion of the WZW model on the supergroup

GL(1j1). We shall obtain our expli
it formulas through a free �eld representation of the

model.

4.1 Free �eld theory approa
h

We shall suggest here to think of the WZW model on the supergroup GL(1j1) as a

perturbation of a free �eld theory. The latter is 
omposed from a bosoni
 linear dilaton

ba
kground and two 
hiral fermioni
 b
-systems with 
entral 
harges 


�

= �2. Our

split of the theory into this free �eld theory and an intera
tion does not preserve the


hiral symmetries of the full model, but it is manifestly lo
al. Hen
e, 
onsisten
y of our


orrelation fun
tion is guaranteed but their relation with the GL(1j1) WZW model, and

in parti
ular the 
hiral symmetry, needs to be established.

To des
ribe strings that move on the supergroup target GL(1j1) we would normally

use the following WZW a
tion

S

WZW

=

k

4�

Z

�

d

2

z

�

�X

�

�Y + �Y

�

�X � 2e

�iY

�

�


�

�


+

�

: (4.14)

Here, X and Y are bosoni
 �eld on the world-sheet and 


�

are fermioni
. The invariant

measure on the spa
e of these �elds is

d�

WZW

� DX DY D(e

�i

2

Y




�

) D(e

�i

2

Y




+

) :
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We shall use another a
tion S to des
ribe this system that 
ontains an additional pair of


hiral auxiliary fermions b

�

. It is built, starting from the following free �eld theory

S

0

=

1

4�

Z

�

d

2

z

�

k �X

�

�Y + k �Y

�

�X � �Y

�

�Y +QRY

�

(4.15)

+

1

2�

Z

�

d

2

z

�

b

+

�


+

+ b

�

�

�


�

�

: (4.16)

Terms in the �rst line form a linear dilaton ba
kground whose 
harge Q we �x to be

Q = i=2. Note that the linear dilaton term depends only on the Y 
oordinate. Therefore

the 
ontribution 


b

= 2 of the bosoni
 �elds to the 
entral 
harge in independent of the

ba
kground 
harge Q. In addition, the a
tion S

0


ontains two 
hiral b
-systems. We


hose to have the 
hiral �elds 


�

with 
onformal weight �




�

= 0 while their partners b

�

are �elds of weight �

b

�

= 1; the 
entral 
harge is then 


f

�

= �2.

To the free �eld theory S

0

we now add an intera
tion term of the following simple

form

S(X;Y; b

�

; 


�

) = S

0

+ S

int

= S

0

�

1

�k

Z

�

d

2

z e

iY

b

�

b

+

: (4.17)

Note that all X-independent �elds have vanishing 
onformal weight. Hen
e, the inter-

a
tion term is massless. In our treatment of the theory S we work with the 
anoni
al

measure

d� � DX DY D


�

D


+

Db

�

Db

+

: (4.18)

On a formal level it is possible to 
ompare the theory S with the original WZW-model on

the supergroup GL(1j1). The 
omparison makes use of a rather subtle relation between

the involved measures

d�

WZW

D(b

�

) D(b

+

) � exp

�

1

4�

Z

�

d

2

z

�

��Y

�

�Y +QRY

�

�

d� :

On
e this is inserted into our theory S , we 
an integrate the auxiliary �elds to re
over

the a
tion of the WZW model.

We shall also need a free �eld representation for the vertex operators operators of our

theory. Let us begin with the �elds V

he;ni

that are asso
iated to typi
al representations.

We model them after the matri
es '

he;ni

, i.e.

V

he;ni

(x; �x) = : e

ieX(x;�x)+i(n�1)Y (x;�x)

:

�

1 i


�

(x)

ie


+

(�x) e


�

(x)


+

(�x)

�

: (4.19)
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Their 
onformal dimension is given by

�

(e;n)

= (2n� 3)

e

2k

+

e

2

2k

2

:

Comparison with eq. (2.4) shows that we have dropped one term in the lower right 
orner

of the matrix. When e 6= 0, the 
onformal dimension of the omitted vertex operator

di�ers from the dimension of the other matrix elements so that in some sense (see below)

we should 
onsider the additional term as `subleading'. Note that the vertex operators

(4.19) may only be used for e 6= 0. We need a new pres
ription to deal with e = 0. On
e

more, the expression may be motivated with the help of the matrix '

he;ni

whi
h, at e = 0,

degenerates to

'

h0;ni

=

�

e

i(n�1)y

i�

�

e

i(n�1)y

0 e

iny

�

:

Sin
e the lower right 
orner 
ontains only a single term, there is nothing we 
an omit and


onsequently the 
orresponding vertex operators are introdu
ed by

V

h0;ni

(x; �x) =

�

: e

i(n�1)Y (x;�x)

i


�

(x) : e

i(n�1)Y (x;�x)

:

0 : e

inY (x;�x)

:

�

:

Re
all that at e = 0, there exists a se
ond family of 2-dimensional representations h0; ni.

The 
orresponding matri
es '

h0;ni

of fun
tions on the supergroup are given by

'

h0;ni

=

�

e

iny

0

i�

+

e

i(n�1)y

e

i(n�1)y

�

:

These may also be obtained from the matri
es '

he;ni

, but we have to 
onjugate the latter

with the matrix W = e�

+

+ �

�

(�

�

are Pauli matri
es) before sending e to zero. The

asso
iated vertex operators are 
onstru
ted as

V

h0;ni

(x; �x) =

�

: e

inY (x;�x)

: 0

i


+

(�x) : e

i(n�1)Y (x;�x)

: : e

i(n�1)Y (x;�x)

:

�

:

Our matri
es ' do 
ontain the fun
tions e

+

(0; n) whi
h were not in
luded in '. Never-

theless, we are still missing all fun
tions of the form

'

n

= �

�

�

+

e

i(n�1)y

:

The 
orresponding vertex operators are obtained in the obvious way through the formula

V

n

(x; �x) = 


�

(x)


+

(�x) : e

i(n�1)Y (x;�x)

: :
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We shall think of the fun
tions '

n

and the vertex operators V

n

as being asso
iated with

1-dimensional atypi
al representations of gl(1j1).

4

Some readers might prefer to 
onstru
t

the additional series of obje
ts with the help of proje
tive 
overs, repla
ing our '

n

through

4�4 matri
es (the representation matri
es of the supergroup elements). Similarly, vertex

operators 
ould then also be assembled into 4 � 4 matri
es. At least in the 
ase of the

gl(1j1) model, su
h an alternative approa
h 
arries no more information than the one we

have 
hosen here. Therefore, we shall 
ontinue to work with single 
omponent obje
ts.

4.2 Computation of 
orrelation fun
tions

Let us denote the typi
al primary �elds of the full intera
ting theory S by �

he;ni

. Then

our pres
ription for the m-point 
orrelators of this theory is

h

m

Y

�=1

�

he

�

;n

�

i

(x

�

; �x

�

) i =

1

X

s=0

1

s!

h

�

�1

�k

Z

�

d

2

z e

iY

b

�

b

+

�

s

m

Y

�=1

V

he

�

;n

�

i

(x

�

; �x

�

) i

0

:

(4.20)

We 
an employ the same formula if some of the e

�

vanish as long as we agree to insert

the 
orresponding vertex operators V

h0;n

�

i

for ea
h su
h primary �eld into the 
orrelators

on the right hand side. Similarly, the pres
ription may be used to determine 
orrelation

fun
tions involving the �eld theory analogue �

n

of the fun
tions '

n

de�ned above.

The 
orrelators on the right hand side are to be evaluated in the free �eld theory S

0

.

In order to determine the latter we shall use the following simple formula for 
orrelators

in the bosoni
 theory

h

m

Y

�=1

V

(e

�

;n

�

)

(x

�

; �x

�

) i =

Y

�<�

jx

�

� x

�

j

�2�

��

Æ(

m

X

�=1

n

�

� n� 1) Æ(

m

X

�=1

e

�

) (4.21)

where �

��

= (1� n

�

)

e

�

k

+ (1� n

�

)

e

�

k

�

e

�

e

�

k

2

: (4.22)

Here, V

(e;n)

=: exp(ieX + i(n � 1)Y ) : are standard bosoni
 vertex operators with a

somewhat unusual shift in the labels. The 
harge 
onservation for the e-
harge is standard.

For the parameters n

�

, the ba
kground 
harge Q be
omes relevant. The usual rules tell

us that

P

(n

�

� 1) = 2Q=i = 1.

In addition we will have to evaluate 
orrelation fun
tions in the 
hiral b
-systems.

A

ording to the usual rules, non-vanishing 
orrelators on the sphere must satisfy #


�

�

4

This does not mean that they transform under the atypi
al 1-dimensional representation. In fa
t,

the a
tion of gl(1j1) 
ertainly mixes e.g. �

n

with 
omponents of �

h0;mi

.
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#b

�

= 1, i.e. the number of insertions of 


�

must ex
eed the number of insertions of b

�

by one. For su
h 
hiral 
orrelation fun
tions one obtains

h

n

Y

�=1

b

�

(z

�

)

n+1

Y

�=1




�

(x

�

) i

0

=

Q

�<�

0

(z

�

� z

�

0

)

Q

�<�

0

(x

�

� x

�

0

)

Q

�

Q

�

(z

�

� x

�

)

(4.23)

and a similar formula applies to 


+

and b

+

. This 
on
ludes our preparation. We 
an now

turn to a 
al
ulation of the 
orrelators.

It is quite instru
tive to 
ompare the above expansion (4.20) for �eld theory 
orrelators

with our previous dis
ussion of \
orrelation fun
tions" in the minisuperspa
e limit. From


harge 
onservation in the Y -dire
tion (parameter n) we infer that the s

th

term in the

expansion is nonzero if and only if

s+

m

X

�=1

(n

�

� 1) = 1 :

Hen
e, the summation over s in eq. (4.20) is equivalent to the summation over p in our

formula (2.6), the pre
ise relation between the two summation parameters being p = s+1.

In se
tion 2.3 we saw that there 
ould only be a �nite number of terms. The same is true

for the full �eld theory sin
e the number of b-insertions has to be smaller that the number

of possible 
-insertions. Hen
e, terms with s � m vanish so that the summation is �nite.

A slightly more detailed analysis shows on
e more that the term with s = m� 1 vanishes

as long as we only insert typi
al �elds. Consequently, the last non-vanishing term appears

at p = s + 1 = m� 1, just as in the minisuperspa
e model. Let us anti
ipate, however,

that 
orrelators of the �elds �

n

do re
eive 
ontributions from s = m� 1.

5 The 3-point fun
tions of the GL(1j1) model

For our evaluation of the 3-point fun
tions we shall adopt the following strategy. To

begin with, we shall 
onstru
t the 3-point fun
tions of the typi
al �elds �

he;ni

. In the

limit where e! 0, these in
lude 
orrelations involving �elds �

h0;ni

or �

h0;ni

so that we do

not have to list the 
orresponding 3-point fun
tions separately. All these 
orrelators turn

out to mimi
 very 
losely the minisuperspa
e theory, ex
ept from a minor but interesting

quantum deformation. In a se
ond step, we shall then also determine 3-point fun
tions

involving one or more insertions of the �elds �

n

that 
ome with the fun
tions '

n

. These


orrelation fun
tions 
ontain logarithms.
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5.1 3-point fun
tions of typi
al �elds

The �rst important result of this subse
tion provides us with an expli
it formula for the

3-point 
orrelator of typi
al �eld. It takes the form

h�

he

1

;n

1

i

(1)�

he

2

;n

2

i

(1)�

he

3

;n

3

i

(x) i =

X

s=0;1

C

s

(e

1

; e

2

; e

3

)

h'

he

1

;n

1

i

'

he

2

;n

2

i

'

he

3

;n

3

i

i

s

j1� xj

2�

s

where C

0

(e

1

; e

2

; e

3

) = 1 and C

1

(e

1

; e

2

; e

3

) =

3

Y

i=1

�(1 +

e

i

k

)=�(1 �

e

i

k

)

The exponents in the denominator are given by �

0

= (n

2

� 1)a

3

+ (n

3

� 1)a

2

+ a

2

a

3

and �

1

= n

2

a

3

+ n

3

a

2

+ a

2

a

3

with the res
aled parameters a

i

= �e

i

=k. Note that for

ea
h 
hoi
e of the parameters n

i

at most one of the two terms in the sum 
an 
ontribute.

Hen
e, our result is manifestly 
onsistent with the 
onformal invarian
e of the model.

The symbols hfi

s

that appear in the numerator on the right hand side refer to the terms

in the minisuperspa
e result for the 3-point fun
tion (see eq. (2.6), i.e.

h'

he

1

;n

1

i

'

he

2

;n

2

i

'

he

3

;n

3

i

i =

Z

d�'

he

1

;n

1

i

'

he

2

;n

2

i

'

he

3

;n

3

i

=

X

s=0;1

h'

he

1

;n

1

i

'

he

2

;n

2

i

'

he

3

;n

3

i

i

s

where h'

he

1

;n

1

i

'

he

2

;n

2

i

'

he

3

;n

3

i

i

s

= G

(3)

s

Æ(

P

�

e

�

) Æ(

P

�

n

�

� 4 + s)

and G

(3)

s

are the unique invariant tensors in the triple tensor produ
ts of typi
al represen-

tations. Expli
it formulas 
an be worked out by integration of the threefold produ
ts over

the supergroup. We shall not need these formulas here. Sin
e the terms in our result are

proportional to the tensors G

(3)

s

, our 3-point 
ouplings are manifestly gl(1j1) 
ovariant.

The main di�eren
e between the minisuperspa
e limit and the full �eld theory result arises

from the non-trivial, e-dependent fa
tor C

1

in front of the se
ond term. Note that the

latter approa
hes C

1

� 1 as we send k to in�nity, thereby reprodu
ing the minisuperspa
e

result in this limit.

Our formula for the 3-point fun
tions is not very diÆ
ult to derive. Note that the

�rst term with s = 0 arises from the 
orresponding term in the expansion (4.20). Sin
e

there is no s
reening 
harge inserted in this 
ase, the �eld theory 
omputation is identi
al

to the asso
iated 
al
ulation in the minisuperspa
e theory and hen
e C

0

= 1. As for

the se
ond term, the 
omputation is slightly more involved. Let us only 
ompute one
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parti
ular 
omponent here.

h

0

0

�

he

1

;n

1

i

(1)

1

1

�

he

2

;n

2

i

(1)

1

1

�

he

3

;n

3

i

(x) i �

1

k

Z

d

2

ze

2

e

3

jz � 1j

2a

2

�2

jz � xj

2a

3

�2

j1 � xj

2�

0

�2

=

1

k

e

2

e

3

j1 � xj

2�

1

�(�a

2

)�(1 + a

2

+ a

3

)�(�a

3

)

�(1 + a

3

)�(�a

2

� a

3

)�(1 + a

2

)

= C

1

(e

1

; e

2

; e

3

)

e

2

+ e

3

j1� xj

2�

1

The � in the �rst line means that we only display the 
oeÆ
ient in front of the Æ-fun
tions

for the 
ontribution with s = 1 insertion of the intera
tion, i.e. we assume impli
itly that

e

1

= �e

2

+ e

3

and n

1

= 3 � n

2

� n

3

. In the 
omputation we used a spe
ial 
ase of the

Dotsenko-Fateev integration formula (Appendix A). The other steps are straightforward.

It is �nally easy to see that e

2

+ e

3

arises as a result of the 
orresponding minisuperspa
e


omputation.

It is now rather instru
tive to study what happens to the 
omponent

1

1

�

he;ni

as we

send e to zero. Sin
e we are using the asso
iated vertex operator e


�




+

V

(e;n)

in the free

�eld 
omputation, one might naively expe
t that the limiting �eld is zero. Our formula

for the 3-point 
oupling, however, shows that this is not the 
ase. Instead we �nd

lim

e!0

1

1

�

he;ni

=

0

0

�

he;n+1i

:

Though this result may appear a bit surprising at �rst, it is a
tually rather natural. In

order to 
onstru
t the vertex operator for typi
al �elds, we had to remove one term from

the 
orresponding matrix '

he;ni

of the minisuperspa
e theory. We de
lared this term to

be `subleading' in some sense. But when e is sent to zero, the `leading term' in the lower

right 
orner of '

he;ni

vanishes so that the other term is no longer `negligible'. This is

exa
tly what we may infer from the previous formula.

Another remark 
on
erns a very interesting new symmetry of the �eld theory that is

not present in the minisuperspa
e theory. Note that the 
oeÆ
ients C

1

of the 3-point


ouplings have poles whenever one of the a

i

be
omes a positive integer. This behavior

seems to distinguish the lines e = kZin the parameter spa
e of he; ni. In the minisuper-

spa
e theory, only the line e = 0 was spe
ial. Hen
e, we take the behavior of C

1

as a �rst

indi
ation that the spe
tral 
ow symmetry might be a symmetry of our physi
al model,

not just of its symmetry (see se
tion 3). This is indeed the 
ase. In fa
t, one may show

by a short expli
it 
omputation that

h �

he

1

;n

1

i

(1)

0

0

�

he

2

;n

2

i

(1)

1

1

�

he

3

;n

3

i

(0) i = N h �

he

1

;n

1

i

(1)

1

1

�

he

2

+k;n

2

�1i

(1)

0

0

�

he

3

�k;n

3

+1i

(0) i
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for all the matrix 
omponents of �

he

1

;n

1

i

. The 
oeÆ
ient N = e

3

=(e

2

+ k) is due to our

normalization of the 
omponents

1

1

� and it would be absent had we normalized our �elds

in the 
anoni
al way. Consequently, the 3-point fun
tions of typi
al �elds are periodi
 in

the parameter e with period length k. This proves that spe
tral 
ow symmetry of the

model on the level of its 3-point fun
tions fun
tions.

Let us �nally re
all that the 3-point 
orrelators involving primaries �

h0;ni

with e = 0

may be obtained by taking e

i

to zero in the above expression of the 3-point 
ouplings.

In 
ase of �

h0;ni

one should remember to 
onjugate the typi
al �elds with the matrix

W = e�

+

+ �

�

before performing the limit. All the 
ouplings in the resulting 
orrelators

agree with the minisuperspa
e result. In fa
t, when one of the labels e

i

= 0, the other

two labels di�er only by their sign and hen
e the 
oeÆ
ient C

1

= 1.

5.2 3-point fun
tions involving �

n

It now remains to �nd 
orrelation fun
tions involving the �elds �

n

.

5

These 
an again be

determined by expli
it 
omputation using our free �eld representation. Let us start by

stating the result for a single insertion of the �eld �

n

,

h�

n

1

(1)�

he

2

;n

2

i

(1)�

he

3

;n

3

i

(x) i =

h'

n

1

'

he

2

;n

2

i

'

he

3

;n

3

i

i

j1� xj

2�

(5.24)

+

1

k

h$

n

1

'

he

2

;n

2

i

'

he

3

;n

3

i

i

j1 � xj

2�

�

Z + #(a

2

)� log j1� xj

2

�

where #(a) = 2 (1) �  (a)�  (1� a) ; (5.25)

the fun
tion $

n

is de�ned as $

n

= exp(iny), our symbol  (a) = �

0

(a)=�(a) denotes

the Di-gamma fun
tion and the exponent � agrees with the exponents �

0

= �

1

we

introdu
ed previously. Sin
e a non-vanishing 3-point 
oupling requires a

2

= �a

3

we

obtain � = (n

3

� n

2

)a

2

� a

2

2

. The 
onstant Z, �nally, may be shifted through a �eld

rede�nition and therefore its exa
t value is irrelevant. In fa
t, if we substitute the atypi
al

�eld �

n

on the left hand side of the above equation by

~

�

n

= �

n

+ � �

0

0

�

h0;n+1i

then the 3-point fun
tion remains of the same form with Z being repla
ed by

~

Z = Z + �k :

5

Re
all that the �elds �

n

and their minisuperspa
e 
ounterparts '

n

do not 
arry any matrix indi
es

(see also our 
omments at the end of se
tion 4.1).
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Let us note that with our original de�nition of the �eld �

n

, the 
onstant Z � 1=(e

2

+ e

3

)

turns our to be in�nite.

It is not very diÆ
ult to prove the formula (5.24). With the help of our free �eld

representation we �nd

h�

n

1

(1)

1

1

�

he

2

;n

2

i

(1)

0

0

�

he

3

;n

3

i

(x) i �

e

2

k

�(a

2

)�(��)�(1� a

2

+ �)

�(a

2

� �)�(1 � a

2

)�(1 + �)

j1� xj

2�

=

e

2

k

�

�

1

�

+ 2 (1)�  (a

2

)�  (1� a

2

)� log j1� xj

2

+ o(�)

�

Here we use the same 
onventions as in the previous subse
tion along with some results

whi
h may be found in the appendix. The expansion around � = a

2

+a

3

� 0 is performed

using

�(x+ �)=�(x) � 1 + � (x) + o(�

2

) :

In the minisuperspa
e limit, the asso
iated 3-point fun
tion assumes the value e

2

. Hen
e,

we have established eq. (5.24) with Z � �1=�, at least for one parti
ular 
omponent.

Similar steps allow us to determine the 
orrelator in 
ase there are there two insertions

of the �eld �

n

,

h�

he

1

;n

1

i

(1)�

n

2

(1)�

n

3

(x) i =

2

k

h'

he

1

;n

1

i

$

n

2

'

n

3

i

�

Z + log j1� xj

2

�

: (5.26)

Here we use the same notation as in eq. (5.24). Note that a non-vanishing 3-point 
oupling

with two insertions of �

n

requires the third �eld to have e

1

= 0. In the minisuperspa
e


orrelator on the right hand side we 
ould also have repla
ed '

n

3

by $

n

3

rather than

performing this substitution on '

n

2

.

Finally, when all three �elds are of the type �

n

, the 3-point 
ouplings read

h�

n

1

(1)�

n

2

(1)�

n

3

(x) i =

1

k

2

h'

n

1

$

n

2

$

n

3

i

�

3Z

2

+ 2Z log j1� xj

2

� (log j1� xj

2

)

2

�

:

The attentive reader might have noti
ed that the minisuperspa
e integral on the right

hand side 
ontains an in�nite fa
tor

R

de = Æ(0). To understand su
h a behavior we re
all

that the �elds we use are asso
iated with Æ-fun
tion normalizable states. They 
an all

be approa
hed through a series of normalizable �elds by smearing them with appropriate

fun
tions in (e; n)-spa
e. Correlation fun
tions are �nite as long as one of the involved

�elds is normalizable. In our last 
orrelator for three �elds of the type �

n

, however, we

had so set all the parameters e to zero. Hen
e, from this 3-point fun
tion alone it is
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no longer possible to dedu
e any �nite 
orrelation fun
tions in whi
h at least one �eld

would need to be normalizable (and hen
e to be smeared out in the e-
oordinate). Having

un
overed the rather trivial origin of the divergen
e, we shall no longer hesitate to write

fa
tors Æ(0).

After this brief digression into mathemati
al subtleties it is instru
tive to 
ompare our

answers for the 
orrelation fun
tions of symple
ti
 fermions (see e.g. [36℄). The 
omparison

shows that our typi
al vertex operators are very 
lose relatives of the twist �elds of the

symple
ti
 fermion while �

n

behave like the logarithmi
 partner of the va
uum in that

theory.

6 The 4-point fun
tion and fa
torization

We are �nally in a position to show that the state spa
e we have proposed at the end of

the third se
tion is 
onsistent with the fa
torization of 4-point fun
tions. To this end we

shall now 
ompute at least one spe
ial 4-point fun
tion of typi
al �elds and we shall show

that it fa
torizes over the 
onje
tures set of possible intermediate states.

The 4-point fun
tion we are about to 
ompute has the following form [24℄)

G(x; �x) := h�

h�e

0

+";1�n

0

i

(1)�

he;ni

(x; �x)�

h�e�";1�ni

(1)�

he

0

;n

0

i

(0) i :

Let us note that the same 4-point fun
tion was also 
omputed in [24℄ as a lo
al solution of

the 
orresponding Knizhnik-Zamolod
hikov equation. Needless to say that our free �eld


omputations shall give the same answer. In any 
ase, it is easy to see that this 
orrelator

only re
eives 
ontributions from the insertion of one s
reening 
harge. In order to spell

out the result, we rely heavily on the notations that are introdu
ed throughout this work

(in parti
ular in subse
tion 2.3 and in appendix A). Furthermore, it will be 
onvenient to

work with the res
aled parameters

a = �

e

k

; a

0

= �

e

0

k

; � = �

"

k

:

With these notations, the four point fun
tion G 
an be written in the following form

G(x; �x) =

1

2k

jxj

2�

j1� xj

2


X

0

�

i

;��

i

E

�

1

�

2

�

3

�

4

��

1

��

2

��

3

��

4

G(x; �x)

��

1

��

2

��

3

��

4

�

1

�

2

�

3

�

4

(6.27)

where � = (1� n)a

0

+ (1 � n

0

)a+ aa

0


 = (n � 1)(� + a) + na+ a(�+ a)
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where the summation extends over all spin 
on�gurations su
h that

P

i

�

i

=

P

i

��

i

= 2.

Note that this in
ludes 
omplementary spin assignments, i.e. 
on�gurations satisfying

�

i

+ ��

i

= 1 for all i, whi
h 
an not arise in the minisuperspa
e theory. It remains to spell

out the fun
tions G. Up to a sign, they are given by

G(x; �x) = (�e

0

+ ")

��

1

e

��

2

(�e� ")

��

3

(e

0

)

��

4

x

�

2

�

4

(x� 1)

�

2

�

3

�x

��

2

��

4

(�x� 1)

��

2

��

3

�

� (�1)

P

����3

��

�

�

�

�

jF(a+ �

2

; a

0

� �+ �

2

+ �

3

+ �

4

� 1; a+ a

0

+ �

2

+ �

4

jx)j

2

+

+ (�1)

�

2

+�

3

+��

2

+��

3

jx

1��

2

��

4

�a�a

0

F(�

3

� �� a; 1� �

4

� a

0

; 2 � �

2

� �

4

� a� a

0

jx)j

2

i

Here, the notation j:j

2

means that we we multiply the argument with an identi
al fa
tor in

whi
h F ; �

i

and x have been repla
ed by the bared quantities. In this form, it is possible

to 
ompare our result with the expressions that were found in [24℄.

We are now interested in the 
losed string states that propagate in the intermediate


hannel when �! 0. It is 
onvenient to rewrite the fun
tion G at � = 0 in terms of the

variables m = 1��

2

��

3

and �m = 1� ��

2

� ��

3

whi
h may assume values m; �m = �1; 0; 1,

G(x; �x) = (�1)

��

1

+��

3

(e

0

)

��

1

+��

4

e

��
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+��

3
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(�x� 1)

��

2

��

3
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3

+ �

4

� 1; a+ a

0

+ 2�

2

+ �

3

+ �

4

� 1 +mjx)j

2

+

+ (�1)

m+ �m

jx

1��

2

��

4

�a�a
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F(�
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� a; 1� �

4

� a

0

; 1 + �

3

� �

4

� a� a

0

+mjx)j

2

i

Sin
e the third argument of the fun
tion F 
oin
ides with the sum of the �rst two argu-

ments up to an integer, we expe
t logarithms to appear when we expand the 
orrelators

G around x = 1,

G(x; �x)

x!1

�

1

j1 � xj

2�

�

h'

h�e

0

+";1�n

0

i

'

he;ni

'

h�e�";1�ni

'

he

0

;n

0

i

i (6.28)

+

ee

0

k

Æ

m;0

Æ

�m=0

(log j1� xj

2

� #(a)� #(a

0

))

�

+ : : : ;

where the exponent � = �
(� = 0) is given by � = (1� 2n)a� a

2

. The fun
tion # was

introdu
ed in eq. (5.25).

We would �nally like to show that formula (6.28) is 
onsistent with the fa
torization

through the set of proposed states. The proof employs the following expression for the
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operator produ
t expansion

�

he;ni

(x)�

h�e;1�ni

(1) �

1

j1� xj

2�

�

Z

dl h$

l

'

he;ni

'

h�e;1�ni

i �

l

(1) + (6.29)

+

Z

dl h'

l

'

he;ni

'

h�e;1�ni

i


l

(1) +

1

k

h$

l

'

he;ni

'

h�e;1�ni

i

�

#(a)�Z � log j1 � xj

2

�




l

(1)

�

::

where 


l

is a shorthand for 


l

=

0

0

�

h0;l+1i

. This operator produ
t is a dire
t 
onsequen
e

of our results on 3-point fun
tions. In order to verify the sign in front of the 
onstant Z

on the right hand side one uses that

h�

n

(1)�

n

0

(1)i = 2Z Æ(0) Æ(n+ n

0

� 2) :

After inserting this operator produ
t into the 4-point 
orrelator, we 
an evaluate the

resulting terms with the help of eq. (5.24). The �rst terms in ea
h line of eq. (6.29)

obviously 
ombine into the �rst term of formula (6.28). We may evaluate the 
ontribution

from the last term on the right hand side of eq. (6.29) with the help of

h$

l

'

he;ni

'

h�e;1�ni

i = �e Æ

m;0

Æ

�m;0

Æ(l� 1) :

As before, the formula should be read as a set of equations for the matrix 
omponents

�

��

'

he;ni

and

�

0

��

0

'

he;ni

. The quantities m and �m on the right hand side are de�ned through

m = 1����

0

and �m = 1� ��� ��

0

. Putting all this together we arrive at the se
ond term

in formula (6.28). Consequently, we have 
on�rmed that our 4-point fun
tions fa
torize

on the set of states we had predi
ted.

7 Con
luding remarks

In this note we have 
onstru
ted the 
orrelators of the GL(1j1) WZW model through a

free �eld representation and we have investigated some properties of the theory. We have

seen in parti
ular that some 
orrelators of the model 
ontain logarithmi
 singularities. Let

us stress on
e more that spe
ial 4-point fun
tions of this theory had been 
omputed before

[24℄. Rozansky and Saleur had also observed the logarithms whi
h appear whenever the

intermediate states are asso
iated with atypi
al representations. The new aspe
t of our

approa
h here is that we were able to relate this very 
losely to the geometry (harmoni


analysis) of supergroups. To the best of our knowledge, this is the �rst time that a family
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of logarithmi
 
onformal �eld theories 
omes with a geometri
 interpretation. This may

well prove to be a valuable sour
e for further insights.

While our formulas for the 4-point fun
tions agree with those of [24℄, it is not 
lear

how other aspe
ts relate in detail. We noti
e in parti
ular that in [24℄, the need to build

non trivial knot invariants led to spe
ial regularizations. These in
lude e.g. a pres
ription

to eliminate the divergen
e in the Z fa
tors above. In addition, the 
hara
ters of two

dimensional representations were required to be orthogonal, even though their natural

s
alar produ
t is always zero - as a result, the metri
 used in [35℄ (formula 148 of that

paper) di�ers by a fa
tor e from the invariant metri
. In any 
ase, it is very possible that,

for parti
ular values of k (espe
ially in the strong quantum regime), other 
onsistent

quantum theories appear.

Another 
omment 
on
erns an argument in [37℄ whi
h suggest that the GL(1j1) model

is a rather trivial example of a logarithmi
 
onformal �eld theory. This assessment is

based on the observation that its stress energy tensor

T =

1

2k

�

2NE +	

�

	

+

�	

+

	

�

�

+

1

2k

2

E

2

(7.30)

is the bottom 
omponent of a proje
tive representation under the right 
urrent algebra,

with the top 
omponent being

t =

1

8k

2

�

2NE �	

�

	

+

+	

+

	

�

�

+

1

2k

N

2

(7.31)

and two intermediate fermioni
 
omponents of the form

f	

�

; tg =

1

2k

2

E	

�

+

1

2k

(N	

�

+	

�

N)

f	

+

; tg = �

1

2k

2

E	

+

�

1

2k

(N	

+

+	

+

N) (7.32)

The operator produ
t expansion between the bosoni
 
omponents t and T ,

T (z)t(w) =

1

2k

1

(z � w)

4

+

2t(w)

(z � w)

2

+

�t

z � w

(7.33)


an be used to argue very easily that L

0

is diagonalizable on this multiplet, a 
on
lusion

whi
h is not in 
ontradi
tion with anything we have said before sin
e the identi�
ation

between L

0

and the Casimir element applies only to highest weight states. Looking at this

one multiplet alone, it would seem that more \interesting" logarithmi
 theories [37℄ are
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those for whi
h the Virasoro �eld T appears together with its partner t on the right hand

side of the operator produ
t (7.33). In fa
t, the a
tion of L

0

in the Virasoro multiplet of

su
h theories 
eases to be diagonalizable Let us stress, however, that the GL(1j1) WZW

model is mu
h ri
her than this observation would suggest. As our results show, it possesses

many multiplets with non-diagonalizable L

0

e.g. even within the spa
e of ground states.

The top 
omponent of another potentially interesting multiplet 
an be obtained with L

�2

on �

1

.

Even though our analysis here was 
arried out for GL(1j1), we do not expe
t the results

to be mu
h di�erent for 
ompa
ti�ed U(1j1) model. In the latter 
ase, the spe
trum of e

and n should be dis
rete, and, in the full quantum �eld theory, winding will have to be

introdu
ed.

Irrespe
tive of whether we 
hoose U(1j1) or GL(1j1), we note that the spe
trum of the

theory is not bounded from below. This is expe
ted sin
e the gl(1j1) metri
 is not positive

de�nite - a fa
t manifest, for instan
e, in that the naive fun
tional integral for the free

�eld representation say (4.14) is divergent. This feature is generi
 of supergroups, and it

was suggested by Zirnbauer in parti
ular [4℄ that the WZW model 
ould only be de�ned

by trading the target spa
e for a Riemannian symmetri
 superspa
e with real submanifold

H

1

�S

1

. We have not followed that route here, observing instead that quantumme
hani
s

on GL(1j1) was well de�ned, and assuming that there existed a quantum �eld theory

redu
ing to it in the minisuperspa
e limit.

Let us �nally point out that the geometri
 arguments that lead to the existen
e of

inde
omposables in the spe
trum were not spe
i�
 to the parti
ular model under 
on-

sideration. All they required was the presen
e of a Lie-superalgebra symmetry and the

existen
e of the identity �eld in the spe
trum of the theory. The latter always sits in

an atypi
al representation and is - at least whenever the theory 
ontains a typi
al �eld

multiplet - part of a larger inde
omposable proje
tive representation. The existen
e of an

identity �eld also has a rather simple geometri
 origin: it appears for all theories in whi
h

the bosoni
 manifold of the target spa
e is 
ompa
t. For non-
ompa
t target spa
es, the

identity 
an only be part of the spe
trum if it may be approximated by normalizable

fun
tions. This is the 
ase for 
at target spa
es, i.e. in the example we have studied. In

more generi
 non-
ompa
t 
urved ba
kgrounds, however, the identity is separated by a

gap from the normalizable states of the theory. We therefore 
on
lude that models with

a 
ompa
t (or 
at) target spa
e and a Lie superalgebra symmetry provide examples of
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logarithmi
 
onformal �eld theory. This is 
ertainly a vast 
lass.

The insights of this note might be relevant also for non-
ompa
t ba
kgrounds on
e

we admit world-sheets with boundaries. In geometri
 terms, the boundary 
onditions we

impose along the various boundary 
omponents are interpreted as branes. Su
h branes

wrap 
ertain subsets of the target spa
e whi
h may be either non-
ompa
t or 
ompa
t.

In the latter 
ase, the boundary spe
trum does 
ontain an identity �eld even if the bulk

spe
trum does not. For branes that preserve some Lie superalgebra symmetries we are

therefore ba
k with a setup that resembles the one we dis
ussed in the previous paragraph.

Therefore we expe
t to �nd logarithmi
 singularities in the boundary 
orrelators of a


ompa
t brane theory. We plan to 
ome ba
k to su
h issues in a forth
oming publi
ation.
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8 Appendix A: Some integral formulas

Correlation fun
tions 
an be 
omputed from the free �eld representation using the follow-

ing simple 
onsequen
e of the Dotsenko-Fateev integral formula,

1

�

Z

d

2

z z

a

�z

�a

(1� z)

b

(1 � �z)

�

b

(z � x)




(�z � �x)

�


= jF(�
;�
� 1 � a� b;�
� ajx)j

2

+ (�1)


��
+b�

�

b

jx

a+
+1

F(�b; a+ 1; a+ 
+ 2jx)j

2

:

30



We expressed the result of the integration through the following fun
tions

F(a; b; 
jx) =

�(
� b)�(b)

�(
)

2

F

1

(a; b; 
jx) ; (8.1)

�

F(�a;

�

b; �
j�x) =

�(1 � �
)

�(1 � �
+

�

b)�(1 �

�

b)

2

F

1

(�a;

�

b; �
j�x) : (8.2)

Validity of the integration formula requires that all the di�eren
es a� �a; b�

�

b and 
� �


are integers. When one pair of exponents, e.g. the labels a; �a, vanishes, then the result

simpli�es to

1

�

Z

d

2

z (1� z)

b

(1� �z)

�

b

(z � x)




(�z � �x)

�


= jF(�
;�
� 1 � b;�
jx)j

2

: (8.3)

This integral formula is used frequently in our evaluation of the 3-point 
ouplings. For

generi
 values of b; 
 we have

jF(�
;�
� 1 � b;�
jx)j

2

=

�(1 + b)�(�1� 
� b)�(1 + �
)

�(�
)�(�
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