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B%— BO mixing in the static approximation from the SF and tmQCD Filippo Palombi

1. Introduction

The oscillations of the systeBf — B° are one of the crucial topics in particle physics. Their
understanding represents a challenging bridge towardsiimerical determination of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix and a severe test of thedgtahModel. The transition ampli-
tude responsible for the mixing,

(BY| Oy 4 an|B°) :g Em5Bg, (1.1)
is mediated by the four-quark operat@yy aa = (I;y“d) (I;y“d) + (I;y“ ysd) (I;y“ysd). It has been
shown that the renormalisation of such operators is naratiin Wilson-like regularisations, re-
sulting in a mixing with other four-quark operatois [1]. ldewe propose a strategy to compute
the matrix element, based on the static approximation ohtery quark plus the adoption of
a tmQCD regularisation for the light one. It will be provedthfollowing these assumptions,
the mixing under renormalisation is eliminated. Of coutbe, potential results of the proposed
approach constitute an intermediate step to the physidatieo, as they must be considered in
view of the calculation of heavy quark subleading correwiand/or interpolations to relativistic
calculations performed at accessible heavy quark maskes [2

2. Operator mapping in tmQCD

In order to implement our strategy, we start by fixing the tiota Theb quark is replaced by
an infinitely massive quark, described by a pair of static&¢ly,, ;) propagating forward and
backward in time, whose dynamics is governed by the Eichtiiraction [3] (or one of its ALPHA
variants [#]),

SStat[Lﬂhv w11 = 614 Z Lﬂh DOwh (E;(X) DOWI;(X)] . (21)
On the light quark side, the degrees of freedom are repregdaytan isospin doublet! = (u,d),
made of anyp and adown quark, and described according to the tmQCD aétion

SthCD:a4Z (g () [l)—l—mz-l—iWTsVS] We(x) } (2.2)

The equivalence of this regularisation to ordinary QCDaklished in [6], is based on axial trans-
formations of the quark fields (plus the corresponding gpici transformations of the mass pa-
rametersn, and ), which induce a rotation of composite operators betweertwo theories. In
particular, for the operator under study one has

QCD tmQCD,a

(Ownn)g = coga) (Ovv+aa)r —isin(a) (Ovasav)g =07 (2.3)

where the terms have to be interpreted as operator insgiitiorenormalised Green functions in
the continuum limit, and a mass-independent renormatisacheme is assumed. Following the
notation of [6], the twist angler depends upon the renormalised mass parameters through the

Iwe will always work in the so-called twisted basis. For a dission of the problem in the physical basis, é;ée [5].
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relation tarta) = p;.r/mer, and (2.8) is an identity holding at each valueaof In particular, at
a = 11/2, which is known as thgully twisted case, (213) simplifies to

QCD

(Ow+an)g = —i(ﬁVA+Av)tFTQCDn/2 : (2.4)

In this way, &y 1 aa in standard QCD is mapped onto its countergart, 4y in tmQCD. Using the
mass independence of the renormalisation scheme, we will #ihthe next section thatya ; av
renormalises multiplicatively in the static approximatievhich represents the main advantage of
using the above mapping. In this sense, the proposed apprepiesents an extension to the static
case of the tmQCD framework used to determineRhgarameter:[7,.8].

3. Renormalisation pattern

We now concentrate on the renormalisation properties ofyrtight four-quark operators,
with the aim of proving that/ya, ay renormalises multiplicatively. Unfortunately, for breys
sake, we skip algebraic details {10]. We start by considggieneric four-quark operators

1. - - _ —
OF v, = 5 L 1) (BT 24) & (G 1) (G 24, (3.1)

wherel 1 > represent Dirac matrices. In principle, operators comadmg to different Dirac struc-
tures could mix among them under renormalisation, thusgivise to a matrix renormalisation
pattern; consequently a complete basis of such operatasbaiconsidered, such as

parity—even: Q7 = Oy, an»  Parity—odd: 2f = 0%, ay
03 = O%s.pp, 25 = Ogprps
03 = Oy _pa - 23 = O _py -
Q7 = O3s pp> 23 = Osp ps- (3.2)

The renormalisation matrix., whose size is in principle 8 8 (mixing betweent- and— operators
is trivially excluded), can be constrained through symgnatguments. Given a symmetry of the
theory, and the matri® that implements a symmetry transformation at the level efdherator
basis, it is sufficient to require thdtis invariant under a-rotation [9], i.e.

7 = ®Zd 1. (3.3)
The symmetries we use are:

e Parity. It prevents the mixing among operators with opposite pakifter implementing it,
the renormalisation matri is reduced to a block-diagonal form, where twg 4 diagonal
blocks describe the mixing of the parity-even and paritg-oderators among themselves.

e Chiral simmetry . It is useda la [1]]: were chirality respected by the regulator, there would
be no chance of mixing among different chirality sectors.e Thixing due to the Wilson
chirality breaking in the parity-odd sector can be represgaccording to the form

k%5 FEZX5 0 0 0 0 A% A%, k%5
2 | _|Za%m 0 0 || 0 0 A3;A5 25 (3.9)
23 0 0 k% A R R
2i )0 \ o oz B oy, 0 0 )]\ 2
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where the coefficient&;; are scale dependent, while thg’s are not.

e Heavy quark spin symmetry and H(3) spatial rotations We then consider two finite spin
rotations of the heavy fields, plus two lattice spatial riotag of both heavy and light fields

heavy quark spin rotations: U = Wnyols, Wy — Wryeys,
Un = Pnyayr, W, — Pryava,
) rotates thd axis onto th@ axis

lattice spatial rotations: Z(1—
1— 3) rotates thd axis onto th& axis.  (3.5)

2
#(1—3

After a change of basis and some tedious algebra, the paoigting block reduces to

k%5 ZF0 0 O 0 0Af O k%5
2:+425| _| 0240 0 p| 0 0 0| |2r+as 3.6)
25 +22; 0 020 A 0 0 Of|25+22f
25 -22;) . 0 0 0z 0AF 0O 95 —29F

¢ Time reversal. We finally consider a time reversal transformation of thargdields:

Wn(x) = yoys W (x7),  Wyr(x) = yoysWn(x7),  W(x) = yoysgi(x"), k=1,2. (3.7)

It further constrains the parity-odd block by forcing thaidmualA; coefficients in (3.6) to
vanish. Purely multiplicative renormalisation &£, . », follows therefrom.

4. Renormalisation in Schrédinger Functional schemes

We use the Schrodinger Functional (SF) to define a family dtiefimolume renormalisation
schemes, in view of a non-perturbative study of the runnirtg@dy 44y operator. Our approach
closely follows here refs..[7], to which the reader is rederfor unexplained notation. We first
introduce bilinear boundary sourcesigt= 0,7 (beingT the time extension of the SF),

Fusnlll=a Z ZS1 M, (y) S1S2 =a Z Zsll (4.1)

wherel is a Dirac matrix and the flavour indices, can assume either relativistic or static values.
Then, we define a set of SF correlators in order to probe theatpe 2%,

F (xo0) L3 Z anll 3127 (x) Sl 1] 723l 2])
S1S2 1 ! 5152 1 S
A= e Tl anlBl) s 2= — g 5 (KL T D) - (4.2)

k=1

The triple[I'1, 2, 3] has to be chosen such tHgt is non-zero. The boundary correlatgisand
k1, which can have eith@ighs-light or heavy-light flavour structure, are needed in order to cancel
the renormalisation of the boundary source§1ﬁ1 In practice, we consider ratios of the form

Fi* (xo)
hf (x0) = ffl [ fiz]la [kgl)l]l/Z—a (43)
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and then impose in the chiral limit the renormalisation dbad
ZhE(T/2) = W (T/2) | go=0- (4.4)

Of course, the renormalisation facm‘if[ depends upon all calculational details, e.g. the lightkguar
action (Wilson with(out) a clover term), the static actidighten-Hill, or its ALPHA variants),
the choice of the Dirac structur¢B;,I",, 3], the value of thef-angle of the SF and the value
of the parameter introduced in (4.3). This richness of degrees of freedomEexploited in
order to identify some optimal renormalisation schemeso®ting to the general requirements of
maximisation of the nonperturbative signal/noise ratioywing down of the operator running and
minimisation of lattice artefacts.

5. NLO anomalous dimension of2; from perturbative matching at one-loop order

In order to gain information about the running and its latt&tefacts, we have performed
a one-loop perturbative calculation of the renormalisafaxctor Z;* in some of the SF schemes
discussed above. Such a calculation allows us to determéiitO anomalous dimension &,
via a perturbative matching to some reference scheme inhwthie NLO anomalous dimension
is already known. The matching procedure has been illestrand applied several times in the
literature [111, 7, 12], and it will not be reviewed here. Tleéerence scheme was chosen to be
DRED, where the NLO anomalous dimension®f and its perturbative matching to the so-called
lat-scheme have been computediin [13]. The perturbative eiqgraofZ;" reads

(g8 a/L) = 1+ Zgékg’*()—yrgo agn($)+o(F)] 4ol G

whereyd = —1/(2m?) is the universal anomalous dimension of the oper&gr, andr is the
one-loop scheme-dependent finite part, peculiar to the 8Frendefining choices listed at the end
of the previous section. The running of the operator is diesdrby the step scaling function (ssf),

fép—i— (807a/2L)
o ) = I (onalD) |

=1+ Z g&af W (5.2)
g?(L)=u
As an example of the running, the ssf.8f at NLO andN; = 0 is reported as a function of the
renormalised coupling on the left side of Figure 1. The p#fers to the choic@l 1,5, N3] =
[¥5, V6, ¥5]. The straight line represents the universal LO running,thadands describe the depen-
dence of the NLO anomalous dimension upon the choicg @fhen the latter ranges in the interval
[0,1/2]. On the right side of Figure 1 we report a comparison of thickartefact®;" (a/L) on
the ssf, defined as inL1], between the static-light casatamtight-light one (data from [7]). The
comparison refers to the schemes whérg M2, 3] =[5, 5, 5], 6 = 0.5 anda = 0. The light
quarks are discretised according to the unimproved (W) @cdlrimproved (SW) Wilson action,
while the static quarks are discretised according to thétercHill (EH) action. Although the
static-light schemes cannot be directly compared to ttaivéstic ones (where the normalisation
of the four-quark correlator is always performed using ahlg relativistic correlators), the plot
shows that the introduction of static quarks does not impsygaificant increment of the lattice
artefacts in perturbation theory.
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Figure 1: On the left side the step scaling function8f at NLO andV; = 0 is reported vs. the renormalised
coupling in the SF scheme. On the right side we compare tliedatrtefacts of the step scaling function
between the full relativistic case and the static-ligheca®oth plots are preliminary.
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