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1. Introduction

The oscillations of the systemB0
� B̄0 are one of the crucial topics in particle physics. Their

understanding represents a challenging bridge towards thenumerical determination of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix and a severe test of the Standard Model. The transition ampli-
tude responsible for the mixing,

hB̄0
jOVV+AA jB

0
i=

8
3

f 2
Bm2

BBB; (1.1)

is mediated by the four-quark operatorOVV+AA = (b̄γµd)(b̄γµd)+ (b̄γµγ5d)(b̄γµγ5d). It has been
shown that the renormalisation of such operators is non-trivial in Wilson-like regularisations, re-
sulting in a mixing with other four-quark operators [1]. Here we propose a strategy to compute
the matrix element, based on the static approximation of theheavy quark plus the adoption of
a tmQCD regularisation for the light one. It will be proved that, following these assumptions,
the mixing under renormalisation is eliminated. Of course,the potential results of the proposed
approach constitute an intermediate step to the physical solution, as they must be considered in
view of the calculation of heavy quark subleading corrections and/or interpolations to relativistic
calculations performed at accessible heavy quark masses [2].

2. Operator mapping in tmQCD

In order to implement our strategy, we start by fixing the notation. Theb quark is replaced by
an infinitely massive quark, described by a pair of static fields (ψh;ψh̄) propagating forward and
backward in time, whose dynamics is governed by the Eichten-Hill action [3] (or one of its ALPHA
variants [4]),

Sstat
[ψh;ψh̄℄ = a4∑

x

[ψ̄h(x)∇�

0ψh(x)� ψ̄h̄(x)∇0ψh̄(x)℄ : (2.1)

On the light quark side, the degrees of freedom are represented by an isospin doubletψT
`

= (u;d),
made of anup and adown quark, and described according to the tmQCD action1,

StmQCD
= a4∑

x

�

ψ
`

(x)
�

=D+m
`

+ iµ
`

τ3γ5
�

ψ
`

(x)
	

: (2.2)

The equivalence of this regularisation to ordinary QCD, established in [6], is based on axial trans-
formations of the quark fields (plus the corresponding spurionic transformations of the mass pa-
rametersm

`

andµ
`

), which induce a rotation of composite operators between the two theories. In
particular, for the operator under study one has

(OVV+AA)
QCD
R = cos(α)(OVV+AA)

tmQCD;α
R � isin(α)(OVA+AV)

tmQCD;α
R ; (2.3)

where the terms have to be interpreted as operator insertions in renormalised Green functions in
the continuum limit, and a mass-independent renormalisation scheme is assumed. Following the
notation of [6], the twist angleα depends upon the renormalised mass parameters through the

1We will always work in the so-called twisted basis. For a discussion of the problem in the physical basis, see [5].
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relation tan(α) = µ
`;R=m

`;R, and (2.3) is an identity holding at each value ofα . In particular, at
α = π=2, which is known as thefully twisted case, (2.3) simplifies to

(OVV+AA)
QCD
R =�i(OVA+AV)

tmQCD;π=2
R : (2.4)

In this way,OVV+AA in standard QCD is mapped onto its counterpartOVA+AV in tmQCD. Using the
mass independence of the renormalisation scheme, we will show in the next section thatOVA+AV

renormalises multiplicatively in the static approximation, which represents the main advantage of
using the above mapping. In this sense, the proposed approach represents an extension to the static
case of the tmQCD framework used to determine theBK parameter [7, 8].

3. Renormalisation pattern

We now concentrate on the renormalisation properties of heavy-light four-quark operators,
with the aim of proving thatOVA+AV renormalises multiplicatively. Unfortunately, for brevity’s
sake, we skip algebraic details [10]. We start by considering generic four-quark operators

O�

Γ1Γ2
=

1
2
[(ψ̄hΓ1ψ1)(ψ̄h̄Γ2ψ2)� (ψ̄hΓ1ψ2)(ψ̄h̄Γ2ψ1)℄ ; (3.1)

whereΓ1;2 represent Dirac matrices. In principle, operators corresponding to different Dirac struc-
tures could mix among them under renormalisation, thus giving rise to a matrix renormalisation
pattern; consequently a complete basis of such operators must be considered, such as

parity�even : Q�

1 = O�

VV+AA ; parity�odd : Q�

1 = O�

VA+AV ;

Q�

2 = O�

SS+PP ; Q

�

2 = O�

SP+PS ;

Q�

3 = O�

VV�AA ; Q

�

3 = O�

VA�AV ;

Q�

4 = O�

SS�PP ; Q

�

4 = O�

SP�PS : (3.2)

The renormalisation matrixZ, whose size is in principle 8�8 (mixing between+ and� operators
is trivially excluded), can be constrained through symmetry arguments. Given a symmetry of the
theory, and the matrixΦ that implements a symmetry transformation at the level of the operator
basis, it is sufficient to require thatZ is invariant under aΦ-rotation [9], i.e.

Z = ΦZΦ�1
: (3.3)

The symmetries we use are:

� Parity . It prevents the mixing among operators with opposite parity. After implementing it,
the renormalisation matrixZ is reduced to a block-diagonal form, where two 4�4 diagonal
blocks describe the mixing of the parity-even and parity-odd operators among themselves.

� Chiral simmetry . It is usedà la [1]: were chirality respected by the regulator, there would
be no chance of mixing among different chirality sectors. The mixing due to the Wilson
chirality breaking in the parity-odd sector can be represented according to the form

0

B

B

B

�

Q

�

1

Q

�

2

Q

�

3

Q

�

4

1

C

C

C

A

R

=

0

B

B

B

�

Z

�

11 Z
�

12 0 0
Z

�

21 Z
�

22 0 0
0 0 Z

�

33 Z
�

34

0 0 Z

�

43 Z
�

44

1

C

C

C

A

2

6

6

6

4

1+

0

B

B

B

�

0 0 ∆�13 ∆�14

0 0 ∆�23 ∆�24

∆�31 ∆�32 0 0
∆�41 ∆�42 0 0

1

C

C

C

A

3

7

7

7

5

0

B

B

B

�

Q

�

1

Q

�

2

Q

�

3

Q

�

4

1

C

C

C

A

; (3.4)
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where the coefficientsZi j are scale dependent, while the∆i j’s are not.

� Heavy quark spin symmetry and H(3) spatial rotations. We then consider two finite spin
rotations of the heavy fields, plus two lattice spatial rotations of both heavy and light fields

heavy quark spin rotations: ψ̄h ! ψ̄hγ2γ3; ψ̄h̄ ! ψ̄h̄γ2γ3;

ψ̄h ! ψ̄hγ3γ1; ψ̄h̄ ! ψ̄h̄γ3γ1;

lattice spatial rotations: R( 1̂! 2̂ ) rotates thê1 axis onto thê2 axis;

R( 1̂! 3̂ ) rotates thê1 axis onto thê3 axis. (3.5)

After a change of basis and some tedious algebra, the parity violating block reduces to
0

B

B

B

�

Q

�

1

Q

�

1 +4Q̂�

2

Q

�

3 +2Q̂�

4

Q

�

3 �2Q̂�

4

1

C

C

C

A

R

=

0

B

B

B

�

Z

�

1 0 0 0
0 Z �

2 0 0
0 0 Z �

3 0
0 0 0 Z �

4

1

C

C

C

A

2

6

6

6

4

1+

0

B

B

B

�

0 0 ∆�1 0
0 0 0 ∆�2

∆�3 0 0 0
0 ∆�4 0 0

1

C

C

C

A

3

7

7

7

5

0

B

B

B

�

Q

�

1

Q

�

1 +4Q�

2

Q

�

3 +2Q�

4

Q

�

3 �2Q�

4

1

C

C

C

A

: (3.6)

� Time reversal. We finally consider a time reversal transformation of the quark fields:

ψh(x)! γ0γ5ψh̄(x
τ
); ψh̄(x)! γ0γ5ψh(x

τ
); ψk(x)! γ0γ5ψk(x

τ
); k = 1;2: (3.7)

It further constrains the parity-odd block by forcing the residual∆i coefficients in (3.6) to
vanish. Purely multiplicative renormalisation ofQ�

VA+AV follows therefrom.

4. Renormalisation in Schrödinger Functional schemes

We use the Schrödinger Functional (SF) to define a family of finite volume renormalisation
schemes, in view of a non-perturbative study of the running of theOVA+AV operator. Our approach
closely follows here refs. [7], to which the reader is referred for unexplained notation. We first
introduce bilinear boundary sources atx0 = 0;T (beingT the time extension of the SF),

Ss1s2[Γ℄ = a6∑
x;y

ζ̄s1(x)Γζs2(y) ; S

0

s1s2
[Γ℄ = a6∑

x;y
ζ̄ 0s1

(x)Γζ 0s2
(y) ; (4.1)

whereΓ is a Dirac matrix and the flavour indicess1;2 can assume either relativistic or static values.
Then, we define a set of SF correlators in order to probe the operatorsQ�

1 ,

F�

1 (x0) =
a3

L3 ∑
x
hS

0

3h̄
[Γ3℄Q

�

1 (x)S1h[Γ1℄S23[Γ2℄i ;

f
s1s2
1 = �

1
L6 hS

0

s1s2
[γ5℄Ss2s1[γ5℄i ; k

s1s2
1 = �

1
3L6

3

∑
k=1

hS

0

s1s2
[γk℄Ss2s1[γk℄i : (4.2)

The triple[Γ1;Γ2;Γ3℄ has to be chosen such thatF�

1 is non-zero. The boundary correlatorsf1 and
k1, which can have eitherlight-light or heavy-light flavour structure, are needed in order to cancel
the renormalisation of the boundary sources inF�

1 . In practice, we consider ratios of the form

h�1 (x0) =
F�

1 (x0)

f hl
1 [ f ll

1 ℄
α
[kll

1 ℄
1=2�α (4.3)
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and then impose in the chiral limit the renormalisation condition

Z

�

1 h�1 (T=2) = h�1 (T=2)jg0=0: (4.4)

Of course, the renormalisation factorZ �

1 depends upon all calculational details, e.g. the light quark
action (Wilson with(out) a clover term), the static action (Eichten-Hill, or its ALPHA variants),
the choice of the Dirac structures[Γ1;Γ2;Γ3℄, the value of theθ -angle of the SF and the value
of the parameterα introduced in (4.3). This richness of degrees of freedom canbe exploited in
order to identify some optimal renormalisation schemes, according to the general requirements of
maximisation of the nonperturbative signal/noise ratio, slowing down of the operator running and
minimisation of lattice artefacts.

5. NLO anomalous dimension ofQ+1 from perturbative matching at one-loop order

In order to gain information about the running and its lattice artefacts, we have performed
a one-loop perturbative calculation of the renormalisation factorZ +

1 in some of the SF schemes
discussed above. Such a calculation allows us to determine the NLO anomalous dimension ofQ+

1

via a perturbative matching to some reference scheme in which the NLO anomalous dimension
is already known. The matching procedure has been illustrated and applied several times in the
literature [11, 7, 12], and it will not be reviewed here. The reference scheme was chosen to be
DRED, where the NLO anomalous dimension ofQ+

1 and its perturbative matching to the so-called
lat-scheme have been computed in [13]. The perturbative expansion ofZ +

1 reads

Z

+

1 (g2
0;a=L) = 1+

∞

∑
k=1

g2k
0 Z

+(k)

1 = 1+g2
0

h

r+0 + γ+0 ln
� a

L

�

+O
� a

L

�i

+O(g4
0) (5.1)

whereγ+0 = �1=(2π2
) is the universal anomalous dimension of the operatorQ

+

1 , andr+0 is the
one-loop scheme-dependent finite part, peculiar to the SF and the defining choices listed at the end
of the previous section. The running of the operator is described by the step scaling function (ssf),

σ+

1 (u) = lim
a!0

Z

+

1 (g0;a=2L)

Z

+

1 (g0;a=L)

�

�

�

�

ḡ2
(L)=u

= 1+
∞

∑
k=1

g2k
0 σ+(k)

1 (5.2)

As an example of the running, the ssf ofQ+

1 at NLO andNf = 0 is reported as a function of the
renormalised coupling on the left side of Figure 1. The plot refers to the choice[Γ1;Γ2;Γ3℄ =

[γ5;γ5;γ5℄. The straight line represents the universal LO running, andthe bands describe the depen-
dence of the NLO anomalous dimension upon the choice ofα , when the latter ranges in the interval
[0;1=2℄. On the right side of Figure 1 we report a comparison of the lattice artefactsδ+

1 (a=L) on
the ssf, defined as in [11], between the static-light case andthe light-light one (data from [7]). The
comparison refers to the schemes where[Γ1;Γ2;Γ3℄ = [γ5;γ5;γ5℄, θ = 0:5 andα = 0. The light
quarks are discretised according to the unimproved (W) or the csw-improved (SW) Wilson action,
while the static quarks are discretised according to the Eichten-Hill (EH) action. Although the
static-light schemes cannot be directly compared to the relativistic ones (where the normalisation
of the four-quark correlator is always performed using onlythe relativistic correlators), the plot
shows that the introduction of static quarks does not imply asignificant increment of the lattice
artefacts in perturbation theory.
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= =

Figure 1: On the left side the step scaling function ofQ+1 at NLO andNf = 0 is reported vs. the renormalised
coupling in the SF scheme. On the right side we compare the lattice artefacts of the step scaling function
between the full relativistic case and the static-light case. Both plots are preliminary.
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