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Abstrat

When the magneti setor of hot QCD, 3D SU(N) Yang-Mills theory, is desribed as a dilute

gas of non-Abelian monopoles in the adjoint representation of the magneti group, Wilson

loops of N -ality k are known to obey a periodi k(N � k) law. Lattie simulations have

on�rmed this predition to a few perent for N = 4 and 6. We desribe in detail how the

magneti ux of the monopoles produes di�erent area laws for spatial Wilson k-loops. A

simple physial argument is presented, why the predited and observed Casimir saling is

allowed in the large-N limit by usual power-ounting arguments. The same saling is also

known to hold in two-loop perturbation theory for the spatial 't Hooft loop, whih measures

the eletri ux. We then present new lattie data for 3D N = 8 k-strings as long as 3`fm'

that provide further on�rmation. Finally we suggest new tests in theories with spontaneous

breaking and in SO(4n + 2) gauge groups.
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1 Introdution

The title of this paper may sound to most pratitioners of lattie gauge theory and hot QCD of

a somewhat esoteri nature. And on the other hand a�ionados of the beauty of non-Abelian

monopoles [3, 4, 6℄ [8, 5℄ [7, 10℄ may reet on the title as being hereti, sine non-Abelian

monopoles have so far withstood the traditional approah that has been implemented suess-

fully for 't Hooft-Polyakov monopoles: as yet, nobody has ome up with a viable onstrution

of a lassial solution, that is then quantized by semi-lassial methods. Only reently a on-

strution of non-Abelian uxes in a low energy �eld theory version has been aomplished [9℄.

These are models that relegate the intriaies of non-Abelian monopoles to their high energy

setor, and manage to onstrut expliit non-Abelian uxes in the low energy setor.

Somewhat analogously, we will forget about the intriate nature of individual non-Abelian

monopoles and assume that a gas of suh objets has relatively straightforward properties.

That will allow us to ompute and interpret in a simple-minded way the average behaviour of

magneti ux loops, that is, spatial Wilson loops [19℄. Suh spatial loops have been measured

in lattie simulations by Teper's group [25, 29℄ in a wide temperature range, thus showing that

the preditions of the model an be tested from �rst priniples.

At temperatures well above the ritial T



, the temporal extent of the system beomes

negligible, and we are left with a three-dimensional system. This implies that the tension of

the spatial loop at suh very high T also bears the interpretation of a three-dimensional string

tension, due to a hromo-eletri ux tube. In other words, our model is also indiretly a model

for on�nement in 2+1 dimensional gauge theories.

Generally speaking, in non-Abelian SU(N) gauge theories in three and four dimensions,

the hromo-eletri ux between two stati olour soures arranges itself so as to produe a

linearly rising potential. This naturally suggests a ux-tube on�guration and leads to the

string piture of on�nement. While in SU(3) there is only one string tension, that of the

string appearing between harges in the fundamental representation, in SU(N � 4) there are

[N=2℄ independent stable `k-strings' whih are proteted from sreening by the enter-symmetry

Z(N).

The piture that we propose for the origin of the area laws of the spatial Wilson k-loops, and

hene for 3d k-strings, is rooted (perhaps paradoxially) in high temperature 3+1 dimensional

QCD and involves a gas of sreened non-Abelian monopoles { or rather \magneti quasi-

partiles". We prefer the latter terminology, sine it stresses that our monopoles need not be

eigenstates of the Hamiltonian but are rather olletive modes of the plasma. The objets that

we shall desribe in the 3d gauge theory are the dimensionally redued versions of these modes,

muh in the same way as Polyakov's `pseudopartiles' [14℄ in the 3d Georgi-Glashow model

are the desendants of the t'Hooft-Polyakov monopoles [2℄ living in the 4d Georgi-Glashow

model. The non-Abelian Stokes theorem [49℄ establishes a onnetion between spatial Wilson

loops and the magneti ux in the plasma; whih in our model is indued by the magneti

quasi-partiles. That is, shematially, how we are able to make preditions for 3d k-string

tensions.

Of ourse, k-strings are also interesting in their own right. Sine they are perfetly stable,

their tension ratios an be used to disriminate unambiguously between models of on�nement.

In what follows, without giving a omprehensive view of the latter, we put our model in
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perspetive with respet to a broader lass of suh models.

Our adjoint monopole gas model [19, 21℄ is related to the dual-superondutor piture of

on�nement [1℄. The latter would naturally predit the presene of monopoles in the plasma,

as manifestations of the ondensate at low T . It is a natural generalization of the seminal idea

of 't Hooft [16℄, that Abelian monopoles Bose-ondense in the ground state, and are transient

states in that they won't show up in the spetrum of the Hamiltonian. In the hot deon�ned

phase they should populate the ground state, just like gluons. To explain the k-loop tensions

in the hot phase is however non-trivial beause the number of di�erent speies of Abelian

monopoles is too small (N � 1 for SU(N)).

There is the elegant aloron solution to the equations of motion [23℄. It is a periodi

instanton with a Higgs-like bakground furnished by the non-trivial value of the Polyakov

loop. This gives rise to N monopoles (a fundamental multiplet) inside the aloron. Could

these be related to the quasi-partiles that we are invoking? It may be [23℄ that at high

enough temperatures the monopoles inside an individual aloron start to \deon�ne" and are

able to move freely from one to another aloron, muh in the same vein that gluons an freely

move from one glueball to another at high T . However free monopoles in the fundamental

multiplet an not explain the observed Casimir saling [21℄. Nevertheless, as explained in the

next setion, even at asymptoti temperatures we are atually faing strong oupling when we

try to explain the spatial Wilson loop behaviour. It ould well be that this strong oupling

favours binding into adjoint monopoles (while binding into singlets is statistially disfavoured

at large N). Non-Abelian monopoles in the adjoint representation furnish preisely the orret

number of speies to explain the observed Casimir saling, as shown in earlier work [19℄ and

in setion 4.4 below.

The ratios of k-string tensions are also tests for formulations of SU(N) gauge theories

derived from fundamental string theory. Examples of the latter are the MQCD framework [40℄

and the AdS/CFT alulations in Ref. [42℄ for D = 3. The latter give Casimir saling for N

large and k of order N ; our model predits Casimir saling for any value of N .

The MQCD framework gives a sin(k�=N) law for the k-tension, implying in partiular that

the tension ratios �

k

=�

1

have 1=N

2

orretions. An elegant paper by Gliozzi [22℄ provides a

simple geometri interpretation for the sine law. He shows that in the old phase the sine law

is the borderline between formation of Z(N) symmetri stati baryons (no k � 2 ux tubes

involved) and formation of stati baryons with k = 2 or higher ux tubes (it is assumed that

arbitrary short ux tubes have the same tension as long ux tubes).

Casimir saling and the sine law both predit that �

k

=�

1

! k at large N , �xed k; in other

words, a k-string is a olletion of k non-interating fundamental strings in the planar limit

N ! 1. Casimir saling however attributes a binding energy to these k strings of order

1=N , while if the sine law is orret, this energy is only O(1=N

2

). Reently there has been

a disussion [39℄ on the onit of 1=N orretions with standard 1=N power-ounting rules,

based on the assumption that all representations with a given N -ality k produe the same

tension. We point out in setion 6 that this analysis neglets mixing e�ets between reduible

representations whih are of order 1=N and whih lower the energy of the lightest string by an

amount of that order. Earlier work on strong oupling expansions [43℄ orroborates our general

argument. More reently, analyti alulations of the tension for 't Hooft loops [20, 19℄ have
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been shown to lead to the same k(N � k) saling law.

As already mentioned, lattie alulations have been arried out [25, 26, 29℄ in three and

four dimensional SU(N) gauge theory to determine the ratios of the k-string tensions to the

fundamental string tension. Here we study the k-strings in 3d SU(N) gauge theories, present-

ing new data for their tension ratios obtained for the gauge group SU(8) and ombining the

new information with previously obtained SU(4) and SU(6) data [25℄. The numerial advan-

tage of searhing for the e�et of monopoles on Wilson loops at high T is that the relevant

simulations are three-dimensional; needless to say, to obtain the same auray, the amount of

omputational e�ort is onsiderably lower for the 3d simulations employing the redued ation.

By the same token, given suh an auray for the 3d lattie data, it is useful to know to

what auray in the oupling g(T ) the dimensionally redued ations reprodue the full 4d

QCD result. For the ase of three olours one knows [38℄ that the 3d results for the string

tension reprodue the 4d lattie data up to 1:1T



through the running of g(T ) up to and

inluding two loops.

The lay-out of the paper is as follows. We start with setion 2 on how the problem of the

residual strong interations in hot QCD is attaked quantitatively { by dimensional redution.

In setion 3 we review briey non-Abelian monopoles. We then derive in setion 4.2 a Stokes

type formula for the spatial Wilson loops that permits us to quantify the e�et of the putative

non-Abelian monopoles in setion 4.4. Then follows setion 5 on strings in higher represen-

tations where our arguments on the 1=N ounting are exposed, and the lattie alulation is

presented in setion 6. Finally we ompile and disuss the lattie data aumulated so far

(setion 6.4) and the paper ends with a general onlusion (setion 7).

2 High temperature QCD

This setion is meant to introdue the reader into the essentialia of hot QCD, and to motivate

the model.

At temperatures well above T



asymptoti freedom drives the running oupling g(T ) down

to zero. On the other hand the average density of gluons is the Bose-Einstein density n

BE

(p=T )

(p = j~pj is the momentum of a gluon). Beause of this density the oupling in the plasma has

to desribe stimulated emission and equals

g

2

st

= g

2

n

BE

(p=T ) = g

2

1

expp=T � 1

: (1)

This leads to a piture of a gluon plasma, where one has to distinguish three sales:

� hard gluons with momentum p of order T, interating weakly, g

2

st

= O(g

2

).

� soft gluons with momentum p of order gT , still interating weakly g

2

st

= O(g).

� ultra-soft gluons with momentum p = O(g

2

T ), interating strongly, g

2

st

= O(1).

Thus, in spite of asymptoti freedom, there is a strongly interating setor left. Strongly

interating beause the large population of ultra-soft energy levels pushes the oupling up [13℄.
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Thus, at these length sales, semi-lassial methods are unlikely to apply, as we argued in the

introdution.

The hard gluons are familiar from the Stefan-Boltzmann form for the pressure. The hard

gluons ause Debye sreening m

D

� gT of the fore between eletri test harges. All this has

been known for long from eletrodynami plasmas.

A new feature beomes apparent for the non-Abelian plasma at sales g

2

T . It is the

sreening of the magneti fore (m

M

� g

2

T ) between two stati magneti test harges. In

eletrodynami plasmas no stati magneti sreening exists. Magneti sreening not only

ours at arbitrary high temperatures, it persists at arbitrary low temperatures, where the

eletri sreening has disappeared and has turned into eletri on�nement. It is a hallmark

of the non-Abelian system, and hints at a magneti ativity for all temperatures [12℄.

One purpose of this paper is to understand and test a spei� model [19℄ for the strongly

interating setor. We will state its assumptions at the end of this setion.

2.1 Dimensional redution at high T

In this setion we give a fast review of how one omputes equilibrium properties of the plasma

in a systemati way. The problem of strong oupling at large distanes is dealt with through a

sequene of e�etive ations [35℄. It is the last and strongly interating e�etive (\magneti")

ation that our monopole model approximates.

By integrating out the hard modes in the QCD ation one produes an e�etive 3d ation

alled S

EQCD

. If one aepts to have an auray of O(g(T )

4

) this eletrostati ation is the

superrenormalizable ation in terms of the stati potentials. The form of our e�etive ation

S

EQCD

is ditated by all symmetries, global and loal, of the original QCD ation, whih are

respeted by the integration proess. That implies all the symmetries we knew already, exept

that the eletri term in the stati ation will have no �

0

~

A term. So A

0

appears as an adjoint

Higgs term in our 3D gauge theory. The eletrostati QCD ation density reads:

L

E

= Tr f(

~

D(A)A

0

)

2

g+m

2

E

Tr fA

2

0

g+ �

E

(Tr fA

2

0

g)

2

+

+

�

�

E

�

(Tr fA

0

g)

4

�

1

2

(Tr fA

2

0

g)

2

�

+

1

2

Tr fF

2

ij

g+ ÆL

E

: (2)

Beause of R- onjugation invariane (A

0

! �A

0

) the eletrostati ation must be even in A

0

.

For SU(2) and SU(3) the seond quarti term is identially zero.

The parameters in this 3d ation are the oupling g

E

, the eletri mass m

E

and the 4-point

ouplings �. All of them are expanded in powers of the QCD running oupling g

2

(T ), and all

of them are now known to O(g

4

) [36, 37℄. The eletri mass oinides with the Debye sreening

mass m

2

D

=

g

2

N

3

T

2

to one loop order. The 4-point ouplings start with the fourth power of

g(T ). It is ustomary [45℄ to express all these parameters in terms of the dimensionful sale

g

E

, x = �

E

=g

2

E

, similarly for �x, and �nally y = m

2

E

=g

4

E

. For large T the x variable beomes

equal to g

2

, the xy variable approahes a onstant.

In the limit where the eletri mass m

E

� gT beomes very large ompared to the oupling

g

2

E

= g

2

T one an integrate out this mass sale and obtain magneti QCD:

L

M

=

1

2

Tr fF

2

ij

g+ ÆL

M

: (3)
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The oupling parameter in this Lagrangian is alled g

M

and it an be expressed in terms of

the eletri oupling g

E

[48℄:

g

2

M

= g

2

E

2

4

1 �

g

2

E

16�m

E

�

17

512

 

g

2

E

�m

E

!

2

3

5

: (4)

One should realize that in the pure N = 3 Yang-mills theory there is only one parameter:

the oupling g(T=�

T

). This means there is a relation between x and y, where the physis of

the plasma is:

xyj

4D

=

3

8�

2

�

1 +

3

2

x+O(x

2

)

�

for N = 3: (5)

This ation serves to ompute the leading ontribution to magneti quantities like the

spatial Wilson loop �, or the magneti sreening m

M

at very high T . For dimensional reasons

both are proportional to g

2

M

. The orretions are very small, and this seems to be a general

feature of this type of orretions [48℄. On the other hand the orretions due to hard modes

in two loop approximation are appreiable [38℄. It turns out that one an extrapolate the 3d

result for the Wilson loop to about 1.1T



just by using this 2-loop running of the oupling

g

E

, as a very good approximation to the 4d results. Quite likely the same is true for the

magneti sreening length l

M

or magneti sreening mass m

M

= l

�1

M

, whih is de�ned from

the orrelation of a heavy monopole pair: as for the spatial tension, its dominant ontribution

omes from the 3d magneti setor.

Summing up: omputing magneti quantities at T � T



, in 3d magnetostati QCD, is

suÆient to know them all over the deon�ned phase by simply using the two loop running of

the oupling. This means that some salient features of our model for the magneti setor (see

next subsetion) are valid for all of the deon�ned phase.

2.2 Magneti quasi-partile model for the magneti setor

The magneti setor is governed by 3d Yang-Mills theory. For the physis over distanes larger

than the magneti sreening length we make three Ansaetze:

1. The interation for the magneti gluons is so strong that they bind in lumps.

2. The lumps are dilute.

3. The lumps are non-Abelian monopoles.

Their size is on the order of the magneti sreening mass m

M

= O(g

2

T ). And so is their

inter-partile distane, or their density n

M

. The ratio of the two orresponding volumes is the

diluteness

Æ = n

M

=m

3

M

: (6)

As the oupling drops out in this ratio there is no parametri reason that the diluteness is

small.

5



From these Ansaetze follows from simple dilute gas arguments (repeated in setion 4.4)

that the tension � of the spatial Wilson loop equals:

� �

1

m

M

n

M

: (7)

There is a group fator in front (whih will be disussed in setion 4.5), and the the orretions

are in powers-not neessarily integer- of the diluteness.

So the diluteness is known, one the tension and the magneti sreening mass are known

from lattie measurements. Its smallness is a dynamial e�et giving a value of about 0:05

(with a orretion of O(1=N

2

) [24℄) in the hot phase for SU(N) groups: it is given by the string

tension in the 3D gauge theory in units of the lightest glueball mass. Clearly it is gratifying

to have an { admittedly empirial { justi�ation for the diluteness being small.

It is instrutive to ompare our dilute gas of omposite lumps with radius l

M

to the dilute

gas one �nds in the usual weak oupling plasmas. There the lumps are point-like partiles, and

the Debye sreening length l

D

is large with respet to the inter-partile distane, i.e. l

3

D

n� 1,

the weak oupling plasma ondition. For hard gluons one has n � T

3

and l

�2

D

� g

2

and the

plasma ondition is ful�lled.

We want to lose this setion with a brief omment. It is tempting to go down from in�-

nite temperature to �nite temperature, and onsider the lumps as magneti quasipartiles, or

olletive exitations of the plasma. From our theoretial knowledge of the magneti sreen-

ing [31℄ we know that at T = 0 the sreening mass equals the lowest glueball mass in the

4D gauge theory; and the spatial Wilson tension equals the string tension at T = 0. Lattie

simulations [25℄ �nd the diluteness at zero temperature, as given by the string tension in units

of the lightest glueball mass in the 4D gauge theory, is still small, on the order of 0:09 for

N large! Thus our dilute gas stays dilute when lowering the temperature. At some temper-

ature T

q

the Bose-Einstein statistis takes over (where the ratio of magneti sreening and

de Broglie thermal wave length T

�1

beome on the same order). And, in the spirit of dual

superondutivity, BE-ondensation is then marking the transition to the on�ned phase.

3 Non-Abelian monopoles

The magneti setor of hot QCD has magneti lumps through the strong (g

2

� 1) binding of

magneti gluons. Very spei�ally we do not have a Higgs �eld at our disposal to de�ne the

U(1) �eld strengths. The question is whether other than 't Hooft-Polyakov [2℄ monopoles an

be formed under suh irumstanes. The answer is not known to date. But if they are there

they must obey a Dira ondition.

In 1977, Englert, Windey, Goddard, Olive and Nuyts [3℄ analysed preisely suh hypothet-

ial monopoles in an unbroken gauge theory, and formulated the generalized Dira ondition.

This ondition is the following. Let B be a matrix in the SU(N) Lie-algebra. Let the olour

magneti �eld

~

B be given far away from the monopole by:

~

B = g~r

B

4�r

3

: (8)

6



The Dira ondition then reads:

exp igB = 1: (9)

This ondition has to be ful�lled for any matter �eld that ouples to the gauge �eld. Obviously

we an take B to be diagonal. Note also that for U(1) we get the expeted result gB = 2�n.

For any simple Lie group one has the orthogonal set of diagonal generators

~

H = (H

1

; : : : ;H

r

),

with r the dimension of the Cartan subalgebra. The remaining orthogonal generators are

E

�

= E

y

��

. The roots ~� = (�

1

; : : : ; �

r

) are given by:

[

~

H;E

�

℄ = ~�E

�

[E

�

; E

�

℄ = (~� +

~

�)E

�+�

if ~� +

~

� is a root

[E

�

; E

�

℄ = 0 otherwise

[E

�

; E

��

℄ = ~� �

~

H: (10)

These de�nitions imply a ommon normalization Tr fE

�

E

��

g = Tr fH

2

i

g. In physis we are

used to have it equal to 1=2.

We de�ne now the oroots

~

�̂ =

~�

~�

2

. In terms of those the group admits a set of SU(2)

subgroups (like the familiar I, U and V spin in SU(3)) for any root �, denoted by SU(2)

�

. One

gets them by projeting

~

H on the oroots and using the E

�

. More preisely:

^

E

��

=

1

j~�j

E

��

^

H

�

=

~�

~�

2

�

~

H: (11)

Cruial is now that the matries

^

H

�

, being homogeneous in the roots and the H

i

, are inde-

pendent of the normalization of the matries H

i

. Hene they have eigenvalues, whih are pure

numbers. What are those?

The ommutation relations that normalize H

�

follow from Eq. 10, with the result:

[

^

E

�

;

^

E

��

℄ =

^

H

�

: (12)

The weights of an irreduible representation are given by the eigenvalues of the diagonal op-

erators. So if the arrier vetors v

(k)

diagonalize the representation we an de�ne the weights

~w

k

by :

~

Hv

(k)

= ~w

k

v

(k)

: (13)

Now a theorem on Lie algebras [11℄ tells us that 2

^

H

�

has integer eigenvalues on any irreduible

representation, and hene from Eq. 13:

2

~�

~�

2

~w

k

is integer. (14)

So on any irreduible representation the eigenvalues of H

�

are (half)- integer. This fat

tells us that the magneti roots

~

b de�ned by

B =

4�

g

~

b �

~

H (15)

7



γ

γ

2

1

Figure 1: The lattie of allowed magneti harges spanned by the oroots for the gauge group SU(3).

must lie on a lattie generated by oroots

~

b =

~�

~�

2

if the magneti strength B obeys the Dira

ondition, Eq. 9. That is, every point

~

b on the magneti root lattie is a linear ombination

with integer oeÆients of the oroots

~�

~�

2

.

In Fig. 1 we show the oroot lattie for SU(3). The two simple roots ~

1;2

span the lattie.

They de�ne, with

~

H in the fundamental representation, the matries

~

1

�

~

H � H

12

=

1

2

diag(1;�1; 0) (16)

~

2

�

~

H � H

23

=

1

2

diag(0; 1;�1) (17)

whih indeed have half-integer eigenvalues and are the third omponents of I-spin and U-spin

respetively. Often it is more onvenient to work with these matries than with the root vetors

themselves, as the former are truly simple.

For SU(N), the simple roots are given by the generalization of I and U spin. The general

representative is:

H

k;k+1

=

1

2

diag(0; 0; :::0; 1;�1; 0; :::): (18)

The �rst non-zero member is on the k-th diagonal entry, and k ranges from 1 to N , with:

H

N;N+1

� H

N;1

=

1

2

diag(�1; 0; ::::; 0; 1): (19)

The sum of these matries is zero, and usually the �rst N � 1 are taken as simple roots. It is

then lear that we an rephrase the Dira ondition as:

B =

4�

g

(n

12

H

12

+ ::::+ n

N�1;N

H

N;N�1

); (20)

where the n's are integers

1

.

1

This notation is adapted to our notation for the Wilson loop in later setions.
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This lassi�es the possible monopoles for all simple lassial Lie-algebras, as hypothesized

in the seond paper of referene [3℄.

For the group SU(2) the onsequenes of the Dira ondition and this hypothesis are simple.

We have a doublet with, in units of 4�=g, I

3

= �1=2. Then an iso-triplet with in the same units

I

3

= �1; 0. For a spin J (half)-integer multiplet we have the same. Our matrix gB=4� with

the spin 1/2 multiplet of magneti harges gives only on integer spin eletri harge multiplets

an integer. So the magneti group of SO(3) is SU(2). On the other hand the iso-triplet of

magneti harges is ompatible with any harge multiplet, half integer or integer, and so the

magneti group of SU(2) is SO(3).

More generally, for the gauge group SU(N) all possible monopoles are multiplets of a

magneti group SU(N)=Z(N). The opposite is also true: the gauge group SU(N)=Z(N) admits

monopoles in multiplets of the magneti group SU(N).

In Fig. 1 the lattie is shown for the gauge group SU(3); for the gauge group SU(3)=Z(3) the

lattie of monopoles will inlude the additional sublattie generated by the triplet representa-

tion. This additional sublattie is obtained in a natural way by introduing the 2 hyperharges

Y

k

, k=1,2. Of ourse they are not uniquely de�ned. They generate through exponentiation

exp(i2�Y

k

) the enter-group elements of Z(3). We may for instane hoose a set whih is at a

minimal distane (de�ned as the trae of the square of the matrix) of the enter of the Cartan

algebra:

Y

1

=

1

3

diag(2;�1;�1)

Y

2

=

1

3

diag(1; 1;�2): (21)

In terms of the simple root matries one �nds:

Y

1

=

2

3

(2H

12

+H

23

)

Y

2

=

2

3

(3H

23

+ 2H

12

+H

31

): (22)

So following in Fig. 1 the steps along the weight lattie to arrive at Y

1

one gets the highest

weight of the triplet representation. Similarly Y

2

is the highest weight of the anti-triplet

representation. In Appendix B we formulate this relationship for general SU(N) and the

generators of its enter-group Z(N). Not only are the N � 1 Y matries an alternative basis

for the Cartan algebra. More important for us, they are a measure for the strength of the

Wilson loops needed to observe the monopoles (see setion 4.2) .

For any general lassial Lie group it is the \dual" group [3℄ built from the dual Lie al-

gebra [11℄ that gives the possible multiplets. The preise dual group with the appropriate

enter-group follows from the same onsiderations as for the SU(N) ase: the larger the orig-

inal, eletri, gauge group, the more stringent the Dira ondition beomes and a smaller

magneti group follows. In mathematial terms it is the onnetivity of the group and the

ensuing Z(N) fators.

In an earlier paper [19℄ preisely these hypothetial monopoles were identi�ed with our

lumps in 3 dimensions. As we supposed the lumps { now monopoles { to be dilute we an

9



ompute their e�et on Wilson loops. For SU(N) groups the hoie of adjoint representation

is unquestionably favoured numerially, as simulated by k-loops for N = 4; 6 by Teper [25℄

and for N = 8 in this paper.

A omment on the nature of the magneti group is in order. The monopoles, as bound states

of magneti gluons, will transform inside a multiplet under some perhaps very ompliated

funtion of the original vetor potentials. So the global magneti SU(N) group will not oinide

with the original global olour group. This ties in with a phenomenon disovered by the authors

in Ref. [8℄: global olour is not de�ned on the quantized version of the non-Abelian monopoles,

due to the long range nature of the olour magneti �elds of the monopole

2

.

3.1 Monopoles as a dilute gas: the broken symmetry ase in the

Georgi-Glashow model

At this stage it is useful to put our model into a well-known ontext, the Georgi-Glashow

model, with gauge group SU(2) in D = 3 with gauge oupling g

3

. Aording to our hypothesis

we have a dilute gas of iso-triplet monopoles whih desribes the behaviour of Wilson loops.

Their density is proportional to g

6

3

, the only sale before breaking the symmetry. And their

sreening mass is proportional to g

2

3

. Adding an adjoint Higgs salar with a \heavy" VEV v,

i.e. v � g

3

, will give us the broken phase with heavy 't Hooft-Polyakov monopoles:

SO(3) ! U(1): (23)

This model was studied by semi-lassial methods in a seminal paper by Polyakov [14℄, in

the limit that g

3

=v is small. In that limit the diluteness of the monopoles is a fat. The Wilson

loop tension � is exponentially small, like the density of the monopoles and the sreening mass.

The exponent is on the order of exp�v=g

3

,  some numerial onstant. The result for the

string tension an be expressed in terms of the density of monopoles n

M

and the magneti

sreening mass M by ombining:

� =

g

2

3

M

2�

2

"

1�

�M

2g

2

3

+ : : :

#

; and (24)

n

M

=

g

2

3

M

2

32�

2

"

1 +O

 

M

g

2

3

!#

(25)

into

� =

16n

M

M

"

1 +O

 

M

g

2

3

!#

(26)

The orretion to the tension is due to the authors in Ref. [15℄.

Eqs. 25 and 26 are typial for weak oupling plasmas. The dimensionless ratio of tension

over sreening is proportional to the number of monopoles inside a sphere of radius the sreening

length:

�

M

2

= 16

n

M

M

3

"

1 +O

 

M

g

2

3

!#

: (27)

2

In the work by Bais and ollaborators [6℄ an interesting interpretation of the magneti group is proposed

but its disussion falls beyond the sope of this paper.
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From Eq. 25, this number is seen to be large:

�

M

2

= 16

n

M

M

3

=

g

2

3

(2�

2

)M

� 1: (28)

In our model for the strongly interating symmetri phase (see Eq. 6 and below), this

very same ratio is small! Physially, what happens is that the strong oupling reates a

bound state of the original semi-lassial monopoles within the magneti sreening radius.

And indeed, as stated before, Monte-Carlo simulations in the symmetri phase give for the

ratio

�

M

2

0.046(2) [24℄.

3.2 Broken symmetry: SU(3)/Z(3) and higher groups

Our next example is the gauge group SU(3)=Z(3) broken by the adjoint to U(1)

2

or to SU(2)�

U(1)=Z(2).

The �rst ase is shown in Fig. 2. Every point represents an 't Hooft-Polyakov monopole in

the orresponding SU(2) subgroup, as in Eq. 12. The Dira ondition arries integers whih

are the topologial winding numbers of the Higgs �eld [6℄. So this ase does not go beyond

what we already knew. As we wil see in the sequel this phase is not realized in simulations, so

we will not onsider this phase anymore.

Φ0

1γ

γ2 γ

Φ0

2

1γ

(a) (b)

Figure 2: The lattie of harges allowed by the quantisation ondition, spanned by the simple oroots. In this

�gure also the diretion of the Higgs �eld �

0

in the Cartan subalgebra is indiated. In (a) the stable harges

for an arbitrary non-degenerate orientation of the Higgs �eld are indiated by blak dots. In that ase the

residual gauge group is U (1)�U (1) and all allowed harges orrespond to a winding number. In (b) the Higgs

�eld is degenerate and leaves the non-Abelian group U (2) unbroken. Now only one omponent of the magneti

harge is the winding number, and in eah topologial setor only the smallest total harge is onserved. The

points symmetri with respet to the Higgs �eld are onjugate through the unbroken group.

More interesting is the breaking pattern with unbroken group U(2). This model is very

often used [10℄ for investigations for non-Abelian monopoles. For momenta p � v the broken

phase is perturbative, for momenta muh smaller than g

2

3

the oupling beomes strong. We

expet sreening at those distanes, inluding sreening of monopoles.

If we try to onstrut an 't Hooft-Polyakov monopole in the unbroken SU(2) group along

~

1

in Fig. 2, we will fail beause the VEV is laking in that subgroup. Along the root ~

2

the

VEV is non-zero, so along that diretion the integers still orrespond to a winding number.

Similarly along the diretion ~

1

+ ~

2

, obtained by reetion of ~

2

w.r.t. the diretion of the
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Figure 3: The phase diagram of the 3d SU(3) + adjoint Higgs theory [45℄. The open symbols

are results from the simulations, and the �lled irle is the perturbative result [44, 45℄.

Higgs breaking �

0

. Their long range magneti �elds are transforming into eah other by the

unbroken gauge transformations. When trying to quantize these monopoles this property poses

a problem [8℄ of onsisteny, whih is related to the fat that for the quantized solutions we

expet sreening. The long range �eld is unstable.

The mass of these objets is growing with the size of the VEV in the lassial approximation.

In what follows we will assume that this property survives the non-perturbative quantization.

In terms of our model, the dilute gas of light otet monopoles in the symmetri phase will after

breaking leave the expeted isotriplet in the unbroken SU(2), and two heavy iso-doublets. The

iso-triplet stays light after breaking, with a density g

6

3

. The iso-doublets are the monopoles we

desribed above and live at the lattie points ~

2

and ~

1

+~

2

in Fig. 2. Due to their large mass

they have an exponentially small density like the 't Hooft-Polyakov monopoles in the previous

example. Note that in both examples the unbroken group de�nes a neutral singlet, that was

present before breaking, but has disappeared in the transition between the two phases.

For illustration we show in Fig. 3 the phase diagram of the eletrostati theory given by

the ation in Eq. 2 for SU(3) by numerial simulation [45℄. The relevant variables are the

dimensionless ombinations x and xy disussed in setion 2.1. There is a �rst order transition

for small x, that is semi-lassially alulable [44, 45℄. It marks the border of the region where

SU(3) symmetry is broken to SU(2)�U(1) and where the global R symmetry is spontaneously

broken [44℄. For larger x the transition beomes seond order. Above the border there is the

unbroken phase. This unbroken phase an be smoothly aessed from the broken phase by the

dotted, seond order transition line. It means that putative monopoles in the unbroken phases

are smooth deformations of the monopoles in the broken phase.

12



Note the absene of a phase where U(1) � U(1) is unbroken but all other generators are

broken [45℄. In general, for SU(N), the adjoint Higgs does admit for breakings of the type

SU(k)� SU(N � k)�U(1) [46℄.

This phase diagram not only relates the putative monopoles in the unbroken phase to their

more familiar analogues in the broken phase [47℄. In order to detet the monopoles one needs

an operator that measures their ux. This operator is the Stokes version of the spatial Wilson

loop, and is intimately related to a similar operator for the broken phase. This is the subjet

of the next setion.

4 Flux representation for spatial 't Hooft and Wilson

loops

The monopoles have an e�et on spatial Wilson loops, beause the loops reord magneti ux.

The traditional representation of the loop as a line integral is not appropriate to quantify the

e�et, and we have to �nd a ux representation for the loop. For a loop in the U(1) ase we

have Stokes' theorem:

exp ig

I

L

d

~

l �

~

A = exp ig

Z

d

~

S �

~

B for U(1). (29)

Now the non-Abelian ase. For a ertain lass of irreduible representations of SU(N)

one �nds a simple and useful generalization of the Abelian ase. It is due to Diakonov and

Petrov [49℄. If R is any one of the fully anti-symmetri irreduible representations given by the

one olumn Young tableau with k entries it has highest weight Y

k

(see appendix A; reall the

property exp (i2�Y

k

) = e

i2�k=N

). Then one �nds for the Wilson loop W

R

(L):

TrP exp ig

I

L

d

~

l �

~

A

R

=

Z

D
 exp ig

Z

d

~

S � Tr

n


Y

k




y

~

B

o

: (30)

The integration is over regular gauge transforms 
.

In this setion the physial ideas behind this Stokes law will be expounded. There are many

papers [50℄ onerning its derivation, but we have not seen any exploring the signi�ane of the

lass of gauge transformations involved, nor the speial role played by the fully anti-symmetri

irreduible representations. First we will make the Stokes theorem plausible by realling some

known features [41℄ of olour eletri analogue of the spatial Wilson loop: the spatial 't Hooft

loop.

4.1 Flux representation of the spatial 't Hooft loop

Colour eletri ux is on�ned inside glueballs. It is only above the ritial temperature that

it beomes visible through the area law obeyed by the thermal average of the spatial 't Hooft

loop.

The `t Hooft loop is de�ned as a loop of a Dira vortex, with strength z

k

= e

i2�k=N

in the

enter group. The vortex is reated by a gauge transformation 


k

with a disontinuity z

k

,
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when irumnavigating the vortex. The lous of the disontinuity is a surfae S spanned by

the vortex L.

We take the simplest gauge transformation that does have a disontinuity of this type.

Gauge transformations are generated by Gauss' operator

~

D �

~

E. If �(S) makes a unit jump

when going through the surfae in the diretion of the normal ~n, then

V

k

(L) = exp i

4�

g

Z

d~x Tr

n

Y

k

(

~

E �

~

D)�(S)

o

(31)

has the required disontinuity.

On physial states, only the gradient in the ovariant derivative

~

D =

~

� + ig[

~

A; ounts [41℄.

The gluon harge gf

ab

~

A:

~

E is ontinuous through the surfae. So the spatial 't Hooft loop

beomes:

V

k

(L) = exp i

4�

g

Z

d

~

S �Tr

n

Y

k

~

E

o

(on physial states). (32)

This operator does not look gauge invariant, although on the physial subspae it is. In order

to bring it in a manifestly gauge-invariant form, we multiply it on the left with a regular gauge

transformation 
, and on the right with 


y

; a matrix element of V

k

between two physial states

is not a�eted by this operation. After integration over all regular transformations,

V

k

(L) =

Z

D
 exp i

4�

g

Z

d

~

S � Tr

n


Y

k




y

~

E

o

(on physial states). (33)

is manifestly gauge-invariant.

It seems plausible to obtain its magneti analogue by replaing

~

E by

~

B and the oupling

� � g

2

=4� by �

�1

. That gives the formula for the Wilson loop, Eq. 30.

4.2 The ux representation for the Wilson loop

The plausibility argument from the preeding setion gives a formula whih is onsistent with

the expression given in Ref. [49℄ for Wilson loop in any representation R, with highest weight

H

R

. Let 
 be any gauge transformation that is periodi on the loop. Then, with

~

r


y

=

(

~

� � ig

~

A)


y

and

~

r
 =

~

�
 + ig


~

A:

W

R

(L) =

Z

D
 exp ig

Z

d

~

S � Tr

(

[H

R

 




~

B


y

�

1

ig

~

r
�

~

r


y

!)

: (34)

This result, proved in Appendix B, di�ers from that of the plausibility argument through the

presene of the seond term. This term redues in the SU(2) ase to the familiar 't Hooft

soure term. If we limit ourselves to regular gauge transformations, this seond term would

drop out in the equations of motion.

In the light of this we feel it is justi�ed to make the following assumption: in our model with

a dilute monopole gas the ontribution of the seond term is negligible. A seond simpli�ation

ours when we are only interested in its (thermal) expetation value. This is beause in this

ase W

R

ats on the left and on the right only on physial states , so the e�et of the regular

gauge transforms 
 is undone.
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There is a further omment related to this Stokes formula . It is derived under the assump-

tion (see Appendix B) that it is regulated by the SU(N) asymmetri top [49℄. The question is

whether the pure Yang-Mills theory average an be provided with suh a regulator. For N = 2

and in three dimensions the answer is aÆrmative [41℄ by adding an adjoint Higgs system and

letting the VEV go to zero, followed by deoupling the Higgs in the in�nite mass limit. The

VEV is the moment of inertia of the symmetri top. We an not aommodate the extra

parameter of the asymmetri top, and this is the reason that the Stokes formula is then only

valid for the fully antisymmetri irreduible representations with highest weight H

R

= Y

k

. The

reason for this is that the seond order Casimir operator takes its minimal value { with �xed

N-ality k { in the fully antisymmetri representation.

For general N the answer is analogous, but Nature realizes only a limited set of Higgs

phases with only one adjoint Higgs �eld. They are limited to breakings of the type where

SU(k)� SU(N � k)�U(1) is still unbroken, k � [N=2℄ [46℄. That implies one more that the

proof of the Stokes formula is only valid for those highest weights that have this symmetry,

i.e. of the form H

R

= lY

k

, l a positive integer. For l = 1 this is the weight of the totally

antisymmetri Young tableaux with k boxes. Appendix B shows that l > 1 is exluded. This

ends our disussion of Eq. 30.

4.3 Eletri ux loop and its expetation value

Let us return to the eletri ux loop, Eq. 32. In this ase the 
 integration drops out when one

ats with V

k

(L) on a physial state, beause the only e�et of V

k

(L) is to multiply interseting

Wilson loops in the physial state with a enter-group fator (see [41℄ for more details):

exp(i2�
Y

k




y

) = 
 exp(i2�Y

k

) 


y

= exp(ik2�=N): (35)

The thermal expetation value of the 't Hooft loop has been alulated analytially at

high temperature in powers of g(T ), inluding g(T )

3

. This is possible beause the e�etive

potential is in low orders built up by hard modes (O(T)) and soft modes (O(gT)). The ultra-

soft magneti modes ome in at higher orders. This potential has a Z(N) symmetry, and the

thermal expetation value of the loop tension,

hV

k

(L)i = exp (��

k

(T )A(L)) ; (36)

is obtained from the tunneling between two vaua, one orresponding to k = 0 and one orre-

sponding to k. One �nds then [20℄ that:

�

k

(T ) = �

1

(T )

k(N � k)

(N � 1)

; (37)

up and inluding two loop order. Conretely, in one loop order the value of �

1

(T ) is [18℄:

�

1

(T ) =

4�

2

3

p

3g

2

N

(N � 1)T

2

: (38)

In three loop the above Casimir saling is slightly invalidated, as it is found to be in lattie

simulations [27, 28℄.
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4.4 Dilute gas approximation for both eletri and magneti ux

loops

From the formulae in the preeding subsetion one an easily �nd the behaviour of the tensions

in terms of k, one one assumes a dilute gas of gluons for the eletri loop and a dilute gas

of monopoles for the magneti loop at high temperature. A dilute gas of gluons at high

temperature will ertainly disorder the eletri loop. The reason is that the ux from one

single speies of gluons is going through the loop only when within sreening distane l

E

from

the loop:

l

E

�

1

m

D

=

s

3

g

2

N

1

T

: (39)

Thus all the ux through the loop an only ome from the gluon being in a slab of thikness

l

E

and area A(L) of the loop. Thus the ux is approximated by a theta-funtion in the distane

d from the loop.

The total ux from a harged gluon is �1, as follows from the adjoint representation of Y

k

.

Thus the height of the theta-funtion is �

1

2

, beause half of the ux is lost on the loop. Its

e�et on the loop is that it piks up a fator

V

k

(L) = exp

�

i2�

�

�

1

2

��

= �1: (40)

Note that not the value of the harge, but only the multipliity of the harge depends on k.

This multipliity is k(N � k) for eah value.

Now the distribution funtion of say ` gluons of a given harged speies in suh a slab

is peaked around

�

`, the mean number of gluons in the box. Its width should, aording to

thermodynamis, be proportional to

�

`, like e.g. the Poisson distribution:

P (`) =

e

�

�

`

`!

(

�

`)

`

: (41)

The average of the loop is therefore:

hV

k

(L)ij

one speies

=

X

`

P (`)(�1)

`

= e

�2

�

`

: (42)

Together with Eq. 36 this means that a single harged gluon speies will determine the thermal

average of the loop to be an area law:

A(L)�

k

j

one speies

= 2

�

` = 2A(L)l

E

n(T ): (43)

Note the absene of k dependene in the outome! What ounts is that the harge is non-zero,

but its sign is irrelevant

3

.

3

The reader might be alarmed by our avalier treatment of the sreening of the ux. The ux �(d) that

a gluon at distane d shines through the loop is exponential in d, not a theta-funtion! One an orret for

this by dividing the spae above and below the loop in parallel slabs of in�nitesimal thikness. This means the

summand in Eq. 42 is replaed by an integral

R

d(d) exp[1� osf2��(d)g℄. As a result the fator 2 in Eq. 43

inreases by a fator 1.64282....
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Thus the only way the k dependene omes in is when we take all the harged gluons into

aount. This number, the multipliity with respet to the harge Y

k

, is for the adjoint gluon

multiplet equal to 2k(N � k). It is the number of non-zero entries in the diagonal adjoint

representation of Y

k

. We supposed the gluons to be independent; it follows that

�

k

j

all speies

= 2

�

` � 2k(N � k) = 4l

E

n(T ) k(N � k): (44)

Thus the k-loop is proportional to the multipliity of harged gluons with respet to the harge

Y

k

. Note also that equation 39, together with the density of the gluons being � T

3

, makes the

outome of the one speies alulation parametrially idential to the analyti result in Eq. 38.

The alulation of the magneti loop is idential. The unit of magneti harge is 4�=g

instead of g, but this is aneled by hanging from eletri to magneti loop. It is useful to

realize that the surfae integral

R

d

~

S �

~

B for a single magneti quasipartile is given by

1

2

B,

where B is the magneti harge matrix satisfying the Dira ondition (see setion 3); this

ondition thus diretly leads to the phase � neessary to disorder the Wilson loop, for any

member of the adjoint representation. So the thermal expetation for the magneti k-tension

is, as for its eletri ounterpart:

�

k

� l

M

n

M

(T ) k(N � k): (45)

Though super�ially very alike, there is an important di�erene between the two tensions in

units of the respetive sreening lengths. The eletri tension in those units beomes

l

2

E

�

k

� l

3

E

n: (46)

On the right hand side we have a large number, O(g

�3

(T )), for high T. This is the plasma

ondition. It says that an eletri sreening volume ontains a large number of almost free

gluons. And orretions are in terms of inverse frational powers of this ratio, as disussed

already in setion 3.1. On the other hand the Wilson k-tension equals:

l

2

M

�

k

� l

3

M

n

M

: (47)

Both the magneti sreening and the magneti density are O(g

2

T ). So in the ratio the oupling

drops out. Lattie data tell us the l.h.s. is small for all N . The orretions are disussed in

setion 4.6.

For large N the dimensionless quantity n

M

l

3

M

is of order 1=N . This is so beause the

magneti sreening length l

M

an be shown to be given by the 0

++

mass of the Hamiltonian of

2+1 dimensional Yang-Mills theory, and therefore behaves parametrially like 1=g

2

NT . The

density of a single monopole speies n

M

should be

1

N

(g

2

NT )

3

, in order to reover a tension of

O(1).

4.5 Monopole multiplets other than the adjoint

Now we use a general multiplet R arrying a unitary representation D

R

of the magneti group

as the magneti quasi-partiles in our model [21℄. Its dimension is d

R

. The Lie- representative
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of the harge Y

k

is written as (Y

k

)

R

and the orresponding group element as D

R

(Y

k

). Of ourse

D

R

(Y

k

) = exp i(Y

k

)

R

As in the previous subsetion, the quasi-partile model produes for a given member r

(r = 1; 2; : : : ; d

R

) of the multiplet R an area law for the k-loop with harge Y

k

, Eq. 30:

W

k

(L)j

r

= exp

h

�(1� Re D

R

(Y

k

)

r;r

)

�

`

i

: (48)

The k-dependene of the tension due to all members of the multiplet is then proportional to:

�

k

= [d

R

� ReTr fD

R

(Y

k

)

R

g = d

R

� ReTr fexp(i�(Y

k

)

R

)g℄ l

M

n

M

: (49)

This result is invariant under a gauge rotation,

Y

k

! 
Y

k




y

(50)

as Eq. 30 suggests. And it redues to 2k(N�k) for the ase where R is the adjoint. The reason

is that (Y

k

)

adjoint

has either 0 or �1 on the diagonal as argued already in the previous setion.

Hene the formula ounts the multipliity of harged members of the adjoint multiplet.

For the spinor representation one �nds from Eq. 49 the result quoted in Ref. [21℄:

�

k

� [N � k os (((N � k)�=N))� (N � k) os (k�=N))℄ : (51)

Both adjoint and spinor multiplets are ompared to the lattie data in the setion on data

analysis.

4.6 Corretions

There are two soures of orretions to the Casimir saling formula. One is the diluteness, and

the other are the e�ets of Bose-Einstein statistis.

� The diluteness Æ = l

3

M

n

M

= �

1

=m

2

M

is small (� 0:05, as disussed in setion 2.2) but

produes orretions. The use of lassial Boltzmann statistis is allowed at large T, sine

the thermal de Broglie wave length 1=T is muh smaller than the inter-partile distane

1=g

(

T )T .

� As we desend in temperature the diluteness stays onstant, sine we know from the

results by Laine and Shroeder [38℄ that magneti quantities are determined to a very

good approximation through all of the plasma phase by their value at very large T in

3d Yang-Mills theory, and the running of the oupling due to hard radiative orretions.

Below T



�

1

is virtually onstant [30℄. Unfortunately the behaviour of the magneti mass

is not known in the old phase, but we know its value at T = 0 leading to a diluteness

� 0:09( see setion 2.2), whih suggests that it is small at all temperatures.

� What hanges as we go down in T is the ratio of thermal wave length to inter-partile

distane. So Bose-Einstein statistis kiks in at temperatures on the order of 4T



, where

g

2

(T ) = O(1). It seems natural that the transition is where Bose-Einstein ondensation

starts.

In priniple the e�ets due to the small but non-zero diluteness an be omputed. Comparison

to lattie data [30℄ in the deon�ned phase shows that they should be small, on the order of a

few perent at most.
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5 On strings in higher representations and

1

N

orretions

We now leave the disussion of the adjoint-monopole-gas model and disuss the properties of

k-strings from the point of view of the large-N expansion.

Standard arguments on large N SU(N) gauge theory [51, 52℄, based on the planarity of

Feynman diagrams and the (assumed) on�nement of olor, imply that gauge invariant states

have masses of order N

0

+ N

�2

, with a width of order N

�2

. Also, no bound state of olor

singlet onstituents survives the large N limit: the theory is expeted to be a theory of free

`hadrons'.

It is interesting to onsider, at large but �nite number of olors, preisely those states

whose wavefuntion ontains a signi�ant omponent whih is a diret produt of olor singlet

piees. Phenomenology provides a number of potential examples. A lassi example would

be the deuteron, a very loosely bound state lying only a few MeV under the nuleon-nuleon

threshold. Another interesting though less �rmly established ase is the f

0

(980) meson, whose

wavefuntion has been disussed in terms of a mixture of a kaon-kaon moleule and a four-

quark state ([55℄ and ref. therein). Again, the state is only a few MeV under the two-kaon

threshold.

At a more theoretial level, there are examples in the pure SU(N) gauge theory in three and

four dimensions. Consider the theory de�ned on a �nite (but large: L� 1=T



) hypertorus. In

addition to glueballs, the spetrum ontains `torelon' states (whose mass we denote by m

k

(L))

whih transform non-trivially under the entre symmetry Z

N

. The setors of di�erent N -ality

are proteted by this global symmetry. Thus for N � 4, one may ask whether two fundamental

torelons an form a bound state lying under the threshold 2m

k=1

(L). That this is indeed the

ase was �rst numerially demonstrated from �rst priniples in the work [25℄. Further, at large

L the states are string-like and one an ask what the ratios of their string tensions are (we

may use the fundamental `k = 1' string tension as the referene). An alternative formulation

of the problem would onsider the strings to be open and attahed to stati soures in the

appropriate representation [53℄.

For simpliity, we now fous on the k = 2 setor; for N � 4, the sreening of the string is

forbidden by the entre symmetry. In our view, the �rst question to settle in the ontext of

the large-N expansion is, `What is the 1=N power of the leading orretion to the planar limit

result �

2

= 2�

1

?'. Sine m

2

(L) lies under the threshold 2m

k=1

(L) at all L [25℄, the question

arises whether one should think of the k = 2 torelon as a weakly bound state of two k = 1

torelons, or if the olour struture gets ompletely rearranged into a single `unfatorisable' olor

singlet piee. In the nuleon-nuleon system, the analogous question is whether the deuteron

is primarily a bound state of two nuleons, or a 6-quark state. In the �rst ase, onsidered

in [39℄, the long-distane attrative fore between the two k = 1 strings will be driven by the

exhange of the lightest (0

++

) glueball, while the short distane fore is essentially given by

two-gluon exhange. Both e�ets are indeed [39℄ suppressed by 1=N

2

with respet to the free

propagation of two k = 1 strings. Regarding the seond on�guration, the simplest lassial

string on�guration is that of a single string winding twie around a yle of the hypertorus.

At large N , the energy of suh a on�guration is expeted to approah threshold from below

19



at a 1=N

2

rate.

At �nite N and asymptotially large L however, we are in presene of two almost degenerate

on�gurations lying near threshold. It is therefore imperative to onsider the mixing e�ets

between these two on�gurations. To keep the disussion as simple as possible, we may keep the

transverse spatial dimensions L

?

�nite, so as to separate two-torelon `sattering states' from

the weakly bound states we disuss by a �nite, �xed gap. As N is inreased, this transverse

volume an be inreased as well without a�eting the validity of our treatment of the k = 2

setor as a 2-level system.

We suppose, following [34℄, that the Hamiltonian of the SU(N) gauge theory an be ex-

panded in inverse powers of 1=N :

H(L;N) =

1

X

k=0

H

k

(L)

N

k

: (52)

The existene of the t'Hooft limit implies that H

o

(L) has the same eigenvalues as the Hamil-

tonian of the SU(1) theory in the same spatial volume. We onsider now the k = 2 ux tubes

winding around a yle of the torus as a quantum mehanial two-state system, as was done

in [34℄ for the ase of the salar glueball { adjoint Polyakov loop system in intermediate volume.

Consider on the one hand the state made of two k = 1 non-interating losed fundamental

strings, and on the other a single fundamental string with winding number 2; in this basis H

o

reads H

o

= 2m

k=1

I

2�2

.

The `perturbation' desribes the deviations from the planar limit. On the diagonal, the

orretions are O(1=N

2

). Indeed, the attrative potential between two fundamental torelons is

suppressed by the produt of two 3-verties eah of whih arries a 1=N fator. On the other

hand, the amplitude of the transition from one of our basis states to the other only ontains

one suh vertex, and therefore the o�-diagonal element of our 2 � 2 hamiltonian is O(1=N).

The perturbation hamiltonian in our basis reads:

�H =

 

�

�

h

1

=N

2

�

h=N

�

h=N �

�

h

2

=N

2

!

(53)

with

�

h

1

,

�

h

2

and

�

h of order N

0

. It is lear that to leading order in 1=N , the resulting energy

eigenstates are now the symmetri and anti-symmetri linear ombinations of our basis states.

The assoiated energies are E

A

= 2m

k=1

�

�

h

N

+ O(1=N

2

) and E

S

= 2m

k=1

+

�

h

N

+ O(1=N

2

).

We thus reahed the perhaps surprising onlusion that the orretions to the mass of the

lightest k = 2 string are of order 1=N . There is one state below threshold and one above,

situated symmetrially about the threshold energy, up to O(1=N) orretions. We note that

�

h

(as well as the

�

h

i

) is expeted to grow proportionally to L at large L, sine the breaking of the

string an our at any point along the string, so that the ratio in the torelon masses diretly

translates into the ratio of the string tensions.

A aveat partiularly relevant to Monte-Carlo simulations is that in all the onsiderations

above we have supposed the strings to be long enough to be able to identify the ratios of string

tensions ratios with the ratio of torelon masses. Sine the 1=L string orretion [17℄ lowers the

energy of the string, it indues a repulsive fore between two fundamental torelons at �nite

20



L [34℄. Sine the binding energy of the strings redues at large N , L must be inreased so

that the ondition

�

1

L

2

� N (54)

is satis�ed to ensure that the ratio of torelon loops yields the orret N -dependene of the

string tension ratios. If the large N limit is taken at �nite L, the ratio of k = 2 to k = 1

torelon masses will approah 2 with 1=N

2

orretions, beause a mixing amplitude only a�ets

the energy spetrum at leading order if the `unperturbed' states are degenerate (to that order).

And indeed, the two lassial-string on�gurations we took as unperturbed states have di�erent

1=L orretions: if 

1

is the L�usher oeÆient of the fundamental string, the diret-produt

on�guration of two k = 1 strings has a 2

1

=L orretion, while the fundamental string with

winding number 2 admits a 

1

=2L string orretion. As all lattie simulations so far [25, 26, 29℄,

ours are done in the regime N < �

1

L

2

< N

2

. The seond inequality implies that the energy

gap (

�

h

1

�

�

h

2

)=N

2

is parametrially smaller than the string vibrational exitations.

Eq. 54 however also implies that the vibrational exitations of the strings are separated by

4�=L gaps whih are parametrially muh smaller than the mixing energy

�

h=N . We have thus

negleted the matrix elements of the Hamiltonian H

1

between the two states that we foused

on and the vibrationnally exited states, sine we redued the diagonalisation problem from

the full Hilbert spae to the spae spanned by these two states. Although the negleted matrix

elements an modify the splitting pattern around the threshold, the mixing between the string

ground states will be enhaned relatively to the other mixings if the ondition �

1

L

2

� N

2

holds. In any ase, the parametri size of these matrix elements is �L=N and so we must

expet the orretions to the k = 2 string tension to be of that order.

In summary, the preditions of the two-state mixing model are:

1. the energy eigenstates are the anti-symmetri and the symmetri linear ombinations of

the diret-produt on�guration of two k = 1 strings and the fundamental string with

winding number 2.

2. they are split symmetrially around the threshold energy 2m

1

(up to O(1=N) orretions).

3. the splitting energy itself is of order 1=N .

5.1 Stati potentials

If one onsiders open strings attahed to stati `quarks', the argument takes a slightly di�erent

form. The relevant quantities here are the stati potentials between olour soures in irreduible

representations of SU(N).

The k=1 string binds a quark and a distant antiquark together. Similarly the k=2 on�gu-

ration an be viewed as two (weakly interating) strings eah joining one of the quarks to one

of the antiquarks. If we number the quarks by 1 and 2, and the antiquarks by

�

1 and

�

2, then

there are two lassial string on�gurations whih are exatly degenerate: the on�guration

where 1 is attahed by a string to

�

1 and 2 is attahed to

�

2, and the other where 1 is attahed

to

�

2 and 2 to

�

1. However, the interation between the strings an take one on�guration into

the other. Therefore a splitting ours between the symmetri and anti-symmetri linear om-

binations, orresponding to the stati potential splitting between the k = 2 symmetri and
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anti-symmetri irreduible representations of SU(N). There is however general agreement that

sreening of the stati soures through virtual gluons implies that the string tension obtained

in either representation at large enough separations is the same; although it an be diÆult to

demonstrate this in Monte-Carlo simulations.

5.2 A aveat on the impliations of fatorisation at large N

The standard way to extrat the stati potential for fundamental harges, namely by measuring

the expetation value of a retangular Wilson loop of size R�T , T � R, an be generalised to

extrat it for any representation [53℄. In partiular, the simplest way to obtain a representation

of N -ality k = 2 is to take the real part of the square of W (R;T ), the trae of the fundamental

Wilson loop. At �nite R; T , the fatorisation property of gauge invariant operators (see for

instane [56℄) then implies that the expetation value of this operator is given by

hW (R;T )

2

i = hW (R;T )i

2

(1 +O(1=N

2

)): (fatorisation) (55)

On the other hand, if we onsider small separations R, asymptoti freedom implies that the

short-distane potential in an irreduible representationR is given by C

R

�

s

=R. The symmetri

k = 2 representation has C

R

= C

S

= 2(N +2)C

F

=(N +1), while the k = 2 anti-symmetri has

C

A

= 2(N � 2)C

F

=(N � 1). In partiular, for the fundamental representation, it is

W (R;T ) = exp

�

�

��T

2R

�

+ O(1=N

2

); R� �

�1=2

: (56)

The operator W

2

(R;T ) belongs to a representation that an be redued into the symmetri

and anti-symmetri. Therefore, if we take the T ! 1 limit, the potential energy of the

anti-symmetri representation dominates the expetation value of W

2

(R;T ):

lim

T!1

hW

2

(R;T )i / e

�C

A

�

s

CT=R

= hW (R;T )i

2

e

��T

NR

(1 +O(1=N

2

)); R� �

�1=2

: (57)

Thus tree-level perturbation theory ontradits the large-N ounting rules onerning the lead-

ing orretions to fatorisation. The origin of the paradox lies in the straightforward T !1

limit neessary to �lter out the ground state. If the ontribution from the symmetri repre-

sentation is kept, the large N limit of the small-R, large-T Wilson loop hW

2

(R;T )i is given

by

lim

T!1

hW

2

(R;T )i / hW (R;T )i

2

osh

�

��T

NR

�

(1 +O(1=N

2

)); (58)

whih, at �xed T , has 1=N

2

orretions to the planar limit result.

What have we learnt? The large-N fatorisation property does not neessarily imply that

the lowest energy state of a `meson' made of a stati olour soure in a ertain representation

and its anti-soure has O(1=N

2

) orretions, beause other representations of same N -ality

beome degenerate with it in the N ! 1 limit. Sine string tensions are extrated from the

lowest energy at large R, the same aveat applies to them.
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5.3 Strings in open and losed form

We �nish with a remark on the relation between di�erent representations of same N -ality and

exited states in the open and the losed string setors. To that end it is useful to onsider the

orrelator of Polyakov loops of length L hP

R

(0)P

�

R

0
(~x)i. This expetation value is interpreted

(from the point of view of the transfer matrix along the dimension of size L) as the free

energy of the system in the presene of two stati harges in the given representations. When

R = R

0

= N , the fundamental representation, the heavy-heavy bound state an a priori be in

the adjoint or the singlet representation (in SU(3): 3 


�

3 = 8 � 1). Now, it is believed that

only bound states in the singlet representation have a �nite free-energy in the on�ned phase.

That means that if the heavy harges themselves are not in the singlet representation, virtual

gluons will try and sreen the hromoeletri �eld emanating from this oloured bound state

until it is a singlet again. Sine the gluons are in the adjoint representation, they an sreen

the on�gurations of the heavy-quark bound state that are in the adjoint representation, albeit

at a ertain energy ost. On the other hand they annot sreen a single heavy quark, and the

latter therefore has an in�nite free energy.

Suppose we want to determine the stati potential for soures in all possible representations

of SU(N) (not neessarily irreduible) of a given N -ality k and up to a given size. Clearly it

is suÆient to determine the Polyakov loop orrelators between the irreduible representations

obtained in the deomposition of the diret produt representation of k quarks. The question

then arises whether the ross-orrelations (i.e. for R 6= R

0

) between Polyakov loops in these

irreduible representations vanish or not. If they do, it implies that the energy eigenstates are

in de�nite irreduible representations.

Consider the k = 2 ase. The diret produt of two fundamental representations deompose

into a symmetri and an anti-symmetri representation: N 
N = A�S. In the most familiar

ase of SU(3), the anti-symmetri representation is nothing but the

�

3 (anti-fundamental):

3
 3 = 6 +

�

3. So we are asking whether hP

S

(0)P

�

A

(~x)i has to vanish. We have 6
 3 = 10� 8,

so that virtual gluons an sreen the adjoint piee, thus ensuring that the free energy of

this system is �nite. So in general these ross-orrelations do not vanish. It is easy to see

(using Young tableaux) that in SU(N) the adjoint representation appears exatly one in the

deomposition of S 


�

A. However sine gluons have to sreen the heavy-heavy system, the

hP

S

(0)P

�

A

(~x)i are 1=N

2

suppressed at large N . Let us now see what this onlusion implies for

the determination of the k-string tensions in the open and the losed string setors.

In order to study the lightest open string, one may in priniple hoose to immerse any one

stati soure of the relevant N -ality in the system, sine for large enough R the soures are

expeted to be sreened down to the representation with the smallest string tension. One

the linear behaviour of V (R) with the latter slope sets in, the di�erenes between the stati

potentials in irreduible representations of same N -ality are expeted to beome only weakly

R-dependent (they orrespond to `gluelump' masses [54℄). For long enough strings, the lowest

exitations of any of these stati `mesons' orrespond to the lowest exitations of that string,

whih ome in gaps of order 1=R. In short, there is at most one stable open string for a given

N -ality.

It is also possible to interpret the Polyakov loop orrelator with a transfer matrix along the

diretion ~x. One is then measuring the spetrum of states of the gauge theory whih arry a
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winding number with respet to a yle of the hypertorus of length L. Of ourse, sine the

Polyakov loop orrelator has a unique asymptoti area law, the oeÆient in front of the area

de�nes both the string tension in the open as in the losed string setor. Just as in the open

string ase, there annot be more than one stable string per N -ality beause of the sreening

by gluons. A simple piture [25℄ is that virtual gluons sreen the unstable string down to the

stable one and propagate along it until they annihilate around the yle of the torus.

For long enough torelons, the lowest losed-string exitations are again expeted to be

string-like, i.e. oming in 1=L gaps. There an be resonant states of the torelons (lying above

the k-torelon threshold) whose energies grow linearly with L. It is then natural to assoiate

them with meta-stable strings.

What we inferred about the ross-orrelations between di�erent irreduible representations

above tells us that the energy eigenstates do not in general belong to irreduible representations

of SU(N), although the mixing between them is suppressed (at least in the k = 2 ase) by

1=N

2

.

6 Lattie simulations

We extrat string tensions in the three-dimensional SU(8) gauge theory from the masses of

`torelons`, gauge invariant states transforming non-trivially under the Z(N) symmetry of the

ation; they wind around one spatial yle of a the hypertorus. These masses are extrated

from the exponential deay of orrelation funtions at `large' Eulidean time. To enhane

the signal-to-noise ratio, we use fuzzing tehniques in the onstrution of our operators as

desribed in [29℄. The orrelation funtions are measured on gauge on�gurations generated

by a Monte-Carlo program. We use the original Wilson ation [59℄. The on�guration is

updated by sequenes of `sweeps'. One sweep onsists of updating all links by performing

either a heat-bath (HB) [62℄ or an over-relaxation (OR) [63℄ step on N(N � 1)=2 of its SU(2)

subgroups [61℄. The ratio of HB:OR is 1:3, and we typially perform a sequene of 1 HB and

3 OR between measurements. We use a 2-level algorithm [32℄ as desribed in [33℄. The latter

referene also ontains a detailed omparison of eÆieny of the ordinary 1-level and 2-level

algorithms. The number of measurements performed at �xed time-slies was 800 at � = 115,

200 at � = 138 and 40 at � = 172:5.

6.1 String orretions

Consider the Eulidean gauge theory on a L�L� T hypertorus, with yles of length L. The

gauge-invariant states with winding number k 6= 0 around one spatial yle of the hypertorus

are alled torelons. In the Hamiltonian language they are reated by spatial Polyakov-loop

operators with N -ality k; a desription of the operators used an be found in appendix C. If

the dynamis of a torelon state of length L

p

� � 1 is desribed by an e�etive string ation,

then the expression for its mass as a funtion of its length reads

m(L) = �L

"

1 �



�L

2

+O

�

1

�L

2

�

2

#

; (59)
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where  is a numerial oeÆient of order one whih only depends on the universality lass

of the string [17℄. Reent aurate numerial results [57, 25℄ show that the ux-tube in the

fundamental representation belongs to the bosoni string lass. In the ase of a torelon this

implies that

 = 

b

�

(D � 2)�

6

: (60)

In general, if Eq. 59 holds, the ratio of the lightest k-torelon mass to the k = 1 torelon

mass is given by

m

k

m

1

(L) =

�

k

�

1

+

�

k

�

1

L

2

+O

�

1

�

1

L

2

�

2

; �

k

=



1

�

k

�

1

� 

k

(61)

The sign of �

k

is of interest. If the k-string is a weakly bound state of k fundamental strings,

then one would expet 

k

= k

1

and therefore �

k

= �(k�

�

k

�

1

)

1

< 0. If one the other hand the

utuations of the k fundamental strings are `in phase', then the number of degrees of freedom

on the worldsheet of the k-string is the same as for the fundamental string, hene 

k

= 

1

and

�

k

= (

�

k

�

1

� 1)

1

> 0.

At eah lattie spaing, we measured the masses of the torelon states of at least three

di�erent lengths. In pratie, we use two asymmetri latties of the type L

1

� L

2

� L

t

and

L

2

� L

3

� L

t

. In this way, we obtain three di�erent lengths of the torelon, and we an also

hek for any dependene on the transverse size of the lattie by omparing the mass obtained

for the torelon of length L

2

on the two latties. The L

i

range from 1.4fm to 3fm, if we set the

sale by

p

�

1

= 440MeV. This is longer than what has been normally measured so far, and is

made possible by the use of the two-level algorithm. We use Eq. 59 to obtain the fundamental

string tension by �tting m(L)=L with a linear funtion in 1=L

2

. The interept yields the string

tension; the slope gives the L�usher oeÆient. Whether the funtional form (59) suessfully

desribes the leading deviation from onstant linear mass density is ontrolled by the �

2

of the

�t.

Systemati errors play an important role in omparing the numerial data to model pre-

ditions. In an attempt to get them under ontrol we propose two separate ways to extrat

the ratios of string tensions (we refer to the �rst method as the `unonstrained' one, and the

seond as the `onstrained' one). In pratie, having learnt from the pros and ontras of both

data analyses, we present our �nal, `eduated' analysis in setion 6.2.4.

1. Firstly the ratios of torelon masses m

k

(L)=m

1

(L) are �tted aording to Eq. 61 with a

linear funtion in 1=L

2

, and the interept gives us the ratio

�

k

�

1

. In this way, we need make no

assumption about the values of the oeÆients  orresponding to the di�erent representations;

in partiular, the di�erent strings ould have di�erent oeÆients 

k

. Finally, these string ratios

are extrapolated to the ontinuum, a! 0, in a standard way.

2. The seond analysis will assume that all k-strings belong to the bosoni lass. Conse-

quently, we an extrat the string tension ratio from Eq. 61 using the estimate �

k

'

m

k



1

m

1

� 

k

with 

k

= 

1

= 

b

at every L. The estimates of the ratios obtained at di�erent L are then

simply averaged, as long as they are ompatible with eahother, to produe the estimates of
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the string-tension ratios. If the �

2

of the average is large, we drop the smallest L until an

aeptable �

2

is reahed. The ontinuum limit is then taken.

The multi-level algorithm allows us to apply the variational method [60℄ on the orrelation

matries at t � 2a of Eulidean time separation, an improvement over the traditional where

the method is usually unstable unless t = 0, although the method really �nds its justi�ation

when applied at large t.

Having said that, we note that this work onstitutes the �rst attempt to extrat the k = 4

string tension from Monte-Carlo simulations, and should be regarded as exploratory in that

setor. Indeed we found that the variational method [60℄ generally beame unstable if all

�ve operators listed in appendix C were fed in the generalised eigenvalue problem. As a

onsequene only three or four of the �ve types of measured operators (at the `best' level of

smearing-bloking) were �nally employed. This and the fat that we only have a short range

in Eulidean time to identify the mass plateau, due to the rapid fall-o� of the signal, means

that the k = 4 string tension has a signi�ant systemati error attahed to it. For the lower

k states, these problems are less aute and we are muh more on�dent about their mass

estimates.

6.2 Data analysis

We give the masses of the lightest spatial torelons of eah N -ality in Tab. 1; Tab. 4 gives

estimates of the �rst-exited torelon mass in the k = 2 setor, that will be disussed below.

Within the range onsidered (L ' 1:9fm, 0:8L � L

?

� 1:2L), we ertainly �nd no dependene

of the k = 1 torelon masses on the transverse size. There is also no statistially signi�ant

variation of the lightest higher-k torelon masses. Transverse size orretions are expeted to

be suppressed by a power of 1=L varying ontinuously with L

?

, but greater than 3 [58℄.

We show on Fig. 6 the loal e�etive mass of the orrelators in the k = 1 and k = 2

representations. We emphasize that the variational method, whih yields (quasi-)orthogonal

states, automatially piks out the symmetri and anti-symmetri linear ombinations (within

very small utuations on the oeÆients). We shall ome bak to this point in the disussion

below, setion 6.3.

6.2.1 Setting the sale

Although one ould hoose the (dimensionful) oupling to set the sale, we prefer to use

p

�

1

for this purpose. We extrat the fundamental string tension in lattie units at eah of our

three lattie spaings by linearly extrapolating the torelon mass per unit length, m

T

=g

4

L as a

funtion of 1=(g

4

L

2

), to in�nite L. This is illustrated by Fig. 4 in the ase � �

2N

ag

2

= 138. The

resulting string tensions are given in Tab. 2. We are able to extrat the oeÆient of the 1=R

string orretion with moderate auray; it is also given in Tab. 2. The oeÆients we obtain

are within 1.3 standard deviations of the bosoni string value.

Similarly, we an extrat the k = 2 string tension and its string orretion oeÆient 

2

(Fig. 4, bottom plot). It is lear however that the auray of the data does not allow us to

estimate 

2

.
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6.2.2 Unonstrained extrapolations

In this analysis, for eah lattie spaing we extrapolate the ratios of k-torelon masses to L =1,

assuming 1=(g

2

L)

2

orretions. In most ases, we have three torelon lengths to extrapolate.

For the intermediate length, where we have two statistially independent and ompatible values

obtained at di�erent transverse sizes of the spatial lattie, the average (weighted by the inverse

square of the statistial error) of the two values was taken, whilst keeping the smaller of the two

errors. In the ratio of the k-torelon to the k = 1 torelon mass obtained in the same simulation,

we heked in several ases that the error bars obtained by assuming statistial independene

do not di�er by more than 10% from the jaknife values of the error bars; the former are then

used in the following.

We note that the results of these extrapolations done at di�erent lattie spaings are in fat

onsistent within error bars (see Tab. 2); it appears that �nite lattie spaing e�ets are muh

smaller than the �nite string-length e�ets in our data set. The �

2

of eah of these �ts are

good (smaller than 1), exept for the extrapolation of the �

2

=�

1

at � = 172:5, where �

2

= 3:0.

Sine the L = 1 extrapolated value is entirely onsistent with that obtained at the other

values of �, we attribute this to a statistial utuation and, perhaps, a slight underestimation

of the error bars (due to the neglet of the sort of systemati errors mentioned at the end of

setion 6.1).

Now extrapolating these string tension ratios to the ontinuum (assuming O(�

1

a

2

) disreti-

sation errors), we obtain �

2

=�

1

= 1:701(77), �

3

=�

1

= 2:31(16) and �

4

=�

1

= 1:96(23). The �

2

of these �ts are smaller than 1. The �nal error bars have blown up due to a somewhat small

level-arm in the ontinuum extrapolation.

6.2.3 Constrained analysis

In this independent analysis, we assume the validity of Eq. 59 with  given by the bosoni string

value Eq. 60 to extrat the string tensions at �nite L (negleting the O(1=L

4

) terms); see the

string tension ratios in Tab. 3, where again statistial errors have been added in quadrature.

In most ases, these ratios are onsistent with being independent of L for L � 1:4fm. The

exeptions onern the k = 2 string at the two smaller lattie spaings (due to the auray

of the data), where we drop the smallest L in our average. We note that, ompared to the

values of the unonstrained analysis (Tab. 2), the ratios are systematially larger. The ratios

for the k-strings in the ontinuum limit now are: �

2

=�

1

= 1:776(33), �

3

=�

1

= 2:210(50) and

�

4

=�

1

= 2:282(63). The �

2

of the �ts are again smaller than 1.

6.2.4 Final `eduated' analysis

We onsider the preeding analysis to be somewhat unsatifatory, beause it assumes a spei�

orretion to the k-string energies whih we are not presently able to on�rm diretly (see

Fig. 4), and yet (in the k = 2 ase) is of the same order of magnitude as the di�erene

between two theoretial expetations we are to ompare our data to. Moreover we saw that

the string tension ratios obtained in this way are systematially higher than if we do not make

any assumptions about the L�usher oeÆients, although the trend is at the one-standard-

deviation level.
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The �rst analysis is well-prinipled but su�ers from the suession of extrapolations to

L =1 and a = 0, most of whih are based on three data points only and are therefore rather

unstable. Considering the large-L extrapolation (Fig. 5, in partiular the k = 2 plot), we see

that while the oarsest lattie spaing data still shows a di�erene with respet to the other

two data sets, the latter two essentially fall on a single urve. Therefore we drop the � = 115

data and ombine the data at � = 138 and � = 172:5 to do a single extrapolation to L =1.

The result is:

lattie (�nal) adj:monop: fund:monop: trigonometri

�

2

=�

1

= 1:707(28) 1:714 2:105 1:848

�

3

=�

1

= 2:182(55) 2:143 2:958 2:414 (62)

�

4

=�

1

= 2:203(82) 2:286 3:256 2:613:

(the �

2

are respetively 3:5=5, 2:35=4 and 2:6=4). One ought to assoiate a systemati error

with this �nal result whih is of the same order as the statistial error, sine evidene for the

absene of saling violations was given only at that level of auray. We also note that the

slope, whih orresponds to the quantity �

k

de�ned in setion 5, is learly positive, learly

demonstrating that the entral harge of a k-string is not k times that of the fundamental

string.

It is hoped that presenting di�erent analysis strategies has given the reader a sense of the

hallenge presented by these alulations to redue the systemati errors on the �nal string

tension ratios. Comparing our data to the theoretial preditions of various models (Eq. 62)

we �nd that our data is onsistent with the Casimir saling predited by the adjoint monopole

model, and rules out the sine formula by at least 3 standard deviations at all k (even if

we onservatively assign to the data a systemati error equal to the statistial one). These

onlusions agree with earlier results obtained for SU(4) and SU(6) [25℄, although the auray

was high enough for N = 4 to see a (non unexpeted) small deviation from Casimir saling.

6.3 Exited k = 2 strings

Fig. 6 shows the loal e�etive masses, de�ned as m

e�

(t +

a

2

) � log

�

C(t)

Ct+a)

�

, of several of our

operators; a plateau is the signature that an energy eigenstate is saturating the orrelator. We

show the loal e�etive mass for our best k = 1 operator. The latter has been determined

by a variational method [60℄ allowing to minimise the ontributions from exited states to

the orrelator. Although several levels of fuzzing were inluded in the variational basis, the

output wave funtion turned out to be dominated by a single level of fuzzing. We note that

its plateau extends out to t ' �

�1=2

, giving as on�dene in our mass extration. In the

k = 2 setor, we show loal e�etive masses orresponding to the same level of fuzzing that

was optimal for the k = 1 setor (the inlusion of other fuzzing levels leads to impereptible

hanges in the mass plateaux). After the basis operators had been normalised in suh a way

that hO

i

(0)O

�

i

(t = 0)i = 1 (i = 1; 2), the variational proedure seleted (within O(1%) error

bars) the anti-symmetri and the symmetri linear ombinations of the operators O

1

� Tr fP

2

g

and O

2

� (TrP )

2

for respetively the lightest state and the �rst exited state. Correspondingly

these operators show quite onvining mass plateaux. By omparison, the individual operators
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have a less good overlap onto the lightest state, although the signal extends far enough in

Eulidean time to see that this overlap is not strongly suppressed: their loal-e�etive-masses

end up being onsistent with the plateau of the anti-symmetri ombination. Remarkably their

whole orrelators seem to agree at all t.

Thus the theoretial expetation that the energy eigenstates belong to irreduible repre-

sentations of SU(N) up to O(1=N

2

) admixtures, whih was motivated both in the two-state

mixing model and by more general arguments about the N -dependene of sreening (resp.

setions 5 and 5.3), is indeed well veri�ed.

Another predition of the two-state mixing model presented in setion 5 is that the lightest

and the �rst-exited states should be split symmetrially around the threshold energy of 2m

k=1

(to leading order in 1=N). This is tested quantitatively in Tab. 4, whih diretly ompares

2m

k=1

to

1

2

(m

k=2

+m

�

k=2

). The latter two quantities are remarkably lose for all string lengths

and lattie spaings, and in many ases they are ompatible within the quite small error bars

4

.

As we disuss next, the numerial evidene obtained so far favours a binding energy of

k-strings of order 1=N . The three preditions that follow straightforwardly from the two-state

mixing model presented in setion 5 have thus been veri�ed quantitatively.

6.4 N-dependene of the binding energy of k-strings

On Fig. 7 (top) we show the relative binding energy of k-strings per unit length, k�

1

� �

k

, in

units of �

1

and resaled by a fator N . We do so by ompiling our SU(8) lattie data with the

SU(4) and SU(6) data from [25℄. The preditions of Casimir saling and of the Sine formula

are also plotted. The �gure ertainly suggests that the k = 2 binding energy sales as 1=N ,

with a oeÆient of order one. By ontrast, to aount for the measured N = 8; k = 2 binding

energy in a 1=N

2

expansion, the �rst oeÆient would have to be about 20. We further note

that the numerial agreement between the Casimir saling predition and the lattie data is

quite remarkable. If anything, it lies somewhat above the lattie data, indiating that the

k-strings are slightly less tightly bound that the Casimir formula suggests.

On the bottom plot, we show the k = N=2 string tension, resaled by a fator 2=N , as a

funtion of 1=N . The data is plausibly heading towards a �nite value at N = 1. Here too,

Casimir saling o�ers a good desription of the data. Note that it predits that the binding

energy of the k = N=2 string is half of the energy of k non-interating fundamental strings. The

ase k = N=2 is speial in that the relevant operators (listed in appendix C) and their omplex

onjugate an mix through the appearane of the baryoni vertex on the string. Pitorially it

swaps the oriented string from on orientation to the other. Naturally the eigenstates of the

Hamiltonian are also eigenstates of the harge onjugation operator, i.e. the real and imaginary

parts of the operators, whih are respetively C = + and C = �. However the existene of

a non-vanishing transition probability between the strings of de�nite orientations means that

there is a splitting between the C = + and the C = � states of N -ality N=2 (for k < N=2, the

enter symmetry fores the degeneray of these two sets of states). In a two-state Hamiltonian

formalism, the Casimir formula thus suggests that the Hamiltonian matrix element (per unit

4

As a tehnial aside, we note that it is essential here to use the orrelations between the loal e�etive mass

of the lightest and the �rst-exited k = 2 states, as they seem to be strongly anti-orrelated.

29



length of the string) assoiated with the baryon-vertex is

N

2

�.

It should be noted that the ost of omputing the binding energy for a given k naively

inreases as N

5

(N

3

for the ost of multiplying SU(N) together in the Monte-Carlo simulation

and a / N

2

inrease of the statistis to ompensate for the 1=N size of the binding energy).

And this does not even take into aount the ondition �

1

L

2

� N formulated in setion 5.

Therefore it ould be useful to also ompute the string tension ratios for SU(5) and SU(7)

before moving to even larger groups.

7 Conlusion

The piture of hot multi-olor QCD onsidered in this paper relies on the separation of the

hard, soft and ultra-soft sales by means of a well-known sequene of two e�etive theories.

The seond of these, whih desribes the magneti properties of the quark-gluon plasma at

energies of order g

2

(T )T , is the 3D SU(N) gauge theory obtained by dimensionally reduing

the original theory.

In the ase of the spatial t'Hooft k-loop, whih reords the utuations of the eletri ux

of N -ality k going through it, perturbation theory is diretly appliable and beomes ever more

aurate at higher temperatures. On the other hand, a simple physial piture emerges if the

eletri-ux utuations are attributed to gluons passing randomly through it. By assuming

these quasi-partiles to be dilute and non-interating, one easily derives an expression whose

parametri dependene on the temperature and the N -ality of the loop math the perturbative

result.

The adjoint monopole gas model disussed in this paper assumes a similar piture to hold for

the spatial Wilson k-loops: the magneti-ux is attributed to non-Abelian monopoles in the 3D

SU(N) theory. The assumption that these monopoles are in the adjoint representation diretly

leads to the predition of Casimir saling for the ratios of the assoiated k-string tensions.

The k-dependene is indeed given by the multipliity of harged monopoles with respet to

the harge Y

k

of the loop, while the sensitivity to other details of the model is redued in

these ratios. Perturbation theory is not appliable in this setor, but non-perturbative lattie

Monte-Carlo alulations of the k-string tension ratios, although numerially hallenging, are

in priniple straightforward.

Previous simulations [25℄ for N = 4; 6, as well as the N = 8 data presented in this paper

on�rm the Casimir saling property of k-string tension at the few perent level. Care must

be taken in these alulations that the strings are long enough, �L

2

� N , for the quantum

orretions to the string energy to be subleading with respet to the weak binding energy of the

k fundamental strings. The energy of the string is then large and a multi-level algorithm [32℄

proved useful in this situation to redue the variane on the orrelator from whih this energy

is extrated. While the Casimir saling predition lies slightly above the 3-loop expression

for the t'Hooft loop, it is slightly lower than the lattie results for spatial Wilson loops: the

(small) orretions to Casimir saling in the magneti setor seem to have the opposite sign

with respet to the eletri setor.

The fundamental assumptions of the model an be further tested. The behaviour of k-

loops, as we argued, is the simplest observable to onsider. It an be measured for other gauge
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groups, as long as the enter is Z(N); N � 4; indeed the adjoint monopoles may be formed

in any non-Abelian gauge theory. The lassial groups have as andidates, apart from the

SU(N) groups, the Spin(4p + 2) groups with enter group Z(4). One may also introdue an

adjoint Higgs �eld whih aquires a VEV. Depending on the symmetry breaking pattern, some

monopoles will beome heavy, and the k-ratios will hange in a preditable way [47℄.

We also disussed the behaviour of the 't Hooft loops for di�erent N -alities at �nite tem-

perature. Here the same Casimir saling is observed in the lattie data [27, 28℄ as predited

by perturbation theory for high T (and by the quasi-partile piture of gluons). Surprisingly,

the saling ontinues to hold down to pratially T



. And the same is true for the magneti

k-loops [38, 30℄: Casimir saling stays valid down to � T



.

In onlusion: all available data on eletri and magneti k-loops for N � 4 are onsistent

with a sreened eletri and magneti quasi-partile model throughout all of the plasma phase.

Whether the same is true for QCD (N = 3) remains to be tested.

Aknowledgements

We aknowledge disussions with Pierre van Baal, Sander Bais, Nik Dorey, Philippe de

Forrand, Pierre Giovannangeli, Prem Kumar, Mikko Laine, Nik Manton, Hugh Osborne,

Owe Philipsen, Martin Shvellinger, Jan Smit, and Mike Teper. Finally to Tony Kennedy,

Tony Gonzalez-Arroyo and partiipants of the lattie Meeting (Marh 2005 at KITP Santa

Barbara).

The lattie simulations were performed on the PC luster of the Rudolf Peierls Centre for

Theoretial Physis at Oxford University in the year 2004. The mahine was partly funded by

EPSRC and PPARC grants.

Referenes

[1℄ G. 't Hooft, in High Energy Physis, ed. A. Zihihi (Editrie Compositori Bologna, 1976);

S. Mandelstam, Phys. Rep. 23C (1976), 245

[2℄ G.'t Hooft, Nul.Phys.B79:276, 1974; A. M. Polyakov (Landau Inst.), JETP Lett.20:194,

1974, Pisma Zh.Eksp.Teor.Fiz.20:430, 1974.

[3℄ P. Goddard, J. Nuyts, D. A. Olive, Nul. Phys.B125 (1977), F. Englert, P. Windey, Phys.

Rev.D 14(1977), 2728.

[4℄ F.A. Bais, J.R. Primak, Nul.Phys.B123:253,1977; F. A. Bais, Phys.Rev.D18:1206,1978.

E. J. Weinberg, Nul. Phys. B167 (1980), 500.

[5℄ P. Goddard, D. I. Olive, Nul.Phys.B191, 511 (1981); P. Goddard, D. I. Olive,

Nul.Phys.B191, 528 (1981).

[6℄ F. A. Bais, B. J. Shroers, Nul. Phys. B512, 250 (1998), hep-th/9708004;

Nul.Phys.B535:197-218,1998; hep-th/9805163.

31

http://arxiv.org/abs/hep-th/9708004
http://arxiv.org/abs/hep-th/9805163


[7℄ R.A. Brandt, F. Neri, Nul. Phys. B 161 (1979), 253. S. Coleman, Proeedings of the 1981

Erie Shool, Ed. A. Zihihi, Plenum (New York), (1982).

[8℄ A. Abouelsaoud, Nul.Phys.B 226 (1983), 309; P. N. Nelson, A. Manohar, Phys. Rev.

Lett.50 (1983), 943; A. Balahandran et al., Phys. Rev. Lett. 50 (1983) 1553; P. N.

Nelson, S.R. Coleman, Nul.Phys.B237:1,1984; N. Dorey, C. Fraser, T. J. Hollowood, M.

A.C. Kneipp; hep-th/9512116.

[9℄ A. Hanany, D. Tong, JHEP 0307 (2003) 037, hep-th/0306150; A. Gorsky, M. Shifman, A.

Yung, Phys.Rev.D71:045010,2005, hep-th/0412082;

[10℄ P. Irwin, Phys.Rev.D56:5200-5208,1997, hep-th/9704153; K-M. Lee, E. J. Weinberg, P.

Yi, Phys.Rev.D54:6351,1996,hep-th/9605229;

[11℄ J. E. Humphries, Introdution to Lie Algebras and Representation Theory, Springer, New

York.

[12℄ For a disussion of thermal sreening of pointlike monopoles, see C. Manuel, Ann. Phys.263

(1998), 238.

[13℄ A.D. Linde, Phys. Lett.B 96,289 (1980).

[14℄ A. M. Polyakov, Nul.Phys.B120, (1977), 429.

[15℄ S. Jaimungal, G.W. Semeno� and K. Zarembo, hep-th/9811238. Unpublished work by D.

Diakonov and M. Chernodub (1999), private ommuniation by D. Diakonov.

[16℄ G. 't Hooft, Nul.Phys.B190, 455, 1981.

[17℄ M. Luesher, K. Symanzik and P. Weisz, Nul. Phys. B 173 (1980) 365; M. Luesher,

Nul. Phys. B 180 (1981) 317.

[18℄ T. Bhattaharya, A. Goksh, C.P. Korthals Altes, R. D. Pisarski, Nul.Phys.B 383,

(1992),497; Phys.Rev.Lett.66,998 (1991); C.P. Korthals Altes, Nul.Phys.B420 (1994),

637.

[19℄ P. Giovannangeli, C. P. Korthals Altes, Nul. Phys.B608, 203, (2001).

[20℄ P. Giovannangeli, C. P. Korthals Altes, to appear in Nul. Phys.B.; hep-ph/0412322,

hep-ph/0212298.

[21℄ C. P. Korthals Altes, invited talk at \Continuous Advanes in QCD", Minnesota, 13-16

May 2004, to appear in the Proeedings; hep-ph/0408301.

[22℄ F. Gliozzi, hep-th/0504105.

[23℄ T. C. Kraan, P. van Baal, Phys.Lett.B435:389-395,1998; hep-th/9806034.

[24℄ M. Teper, Phys. Rev. D59 (1999) 014512; hep-lat/9812344.

32

http://arxiv.org/abs/hep-th/9512116
http://arxiv.org/abs/hep-th/0306150
http://arxiv.org/abs/hep-th/0412082
http://arxiv.org/abs/hep-th/9704153
http://arxiv.org/abs/hep-th/9605229
http://arxiv.org/abs/hep-th/9811238
http://arxiv.org/abs/hep-ph/0412322
http://arxiv.org/abs/hep-ph/0212298
http://arxiv.org/abs/hep-ph/0408301
http://arxiv.org/abs/hep-th/0504105
http://arxiv.org/abs/hep-th/9806034
http://arxiv.org/abs/hep-lat/9812344


[25℄ B. Luini and M. Teper, Phys. Rev. D64, 105019 (2001), hep-lat/0107007.

[26℄ L. Del Debbio, H. Panagopoulos, P. Rossi and E. Viari, JHEP 0201 (2002) 009

[arXiv:hep-th/0111090℄.

[27℄ P. de Forrand, B. Luini, M. Vettorazzo; hep-lat/0409148

[28℄ F. Bursa, M. Teper; hep-lat/0505025.

[29℄ B. Luini, M. Teper and U. Wenger, JHEP 0406:012,2004; hep-lat/0404008.

[30℄ B. Luini, M. Teper, U. Wenger, JHEP 0502 (2005) 033; hep-lat/0502003.

[31℄ P. de Forrand, C.P. Korthals Altes, O. Philipsen, to appear.

[32℄ H. B. Meyer, JHEP 0301 (2003) 048, hep-lat/0209145.

[33℄ H. B. Meyer, JHEP 0401 (2004) 030, hep-lat/0312034.

[34℄ H. B. Meyer, JHEP 0503:064,2005; hep-lat/0412021.

[35℄ T. Applequist, R.D. Pisarski, Phys.Rev.D23,2305,(1981); P. Ginsparg,

Nul.Phys.B170,388, (1980). E. Braaten and A. Nieto, Phys. Rev. D 51 (1995)

6990 ;hep-ph/9501375. K. Farakos, K. Kajantie, K. Rummukainen, M. E. Shaposhnikov,

Nul.Phys.B425:67, 1994; hep-ph/9404201.

[36℄ S. Z. Huang, M. Lissia, Nul.Phys.B438,54,1995; hep-ph/9411293.

[37℄ K. Kajantie, M. Laine, K. Rummukainen, M. Shaposhnikov, Nul.Phys.B503:357;

hep-ph/9704416.

[38℄ M. Laine, Y. Shroeder, hep-ph/0503061.

[39℄ A. Armoni and M. Shifman, Nul. Phys. B 664 (2003) 233, hep-th/0304127; A. Armoni

and M. Shifman, Nul. Phys.B 671.67 (2003), hep-th/0307020.

[40℄ A. Hanany, M.J. Strassler, A. Za�aroni, Nul.Phys B513, 87 (1998), hep-th/9707244; C.P.

Herzog, I. R. Klebanov, Phys. Lett.B526, 388 (2002), hep-th/0111078.

[41℄ C. P. Korthals Altes, A. Kovner, Phys. Rev D62, 096008, 2000; hep-ph/0004052.

[42℄ C. P. Herzog, Phys. Rev.D 66, 065009; hep-th/0205064.

[43℄ D. J. Gross, W. Taylor, Nul.Phys.B403:395,1993; hep-th/9303046 .

[44℄ S. Brono�, C. P. Korthals Altes, Phys.Lett.B448:85, 1999; hep-ph/9811243.

[45℄ K. Kajantie, M. Laine, A. Rajantie, K. Rummukainen, M. Tsypin, JHEP 9811:011,1998;

hep-lat/9811004.

33

http://arxiv.org/abs/hep-lat/0107007
http://arxiv.org/abs/hep-th/0111090
http://arxiv.org/abs/hep-lat/0409148
http://arxiv.org/abs/hep-lat/0505025
http://arxiv.org/abs/hep-lat/0404008
http://arxiv.org/abs/hep-lat/0502003
http://arxiv.org/abs/hep-lat/0209145
http://arxiv.org/abs/hep-lat/0312034
http://arxiv.org/abs/hep-lat/0412021
http://arxiv.org/abs/hep-ph/9501375
http://arxiv.org/abs/hep-ph/9404201
http://arxiv.org/abs/hep-ph/9411293
http://arxiv.org/abs/hep-ph/9704416
http://arxiv.org/abs/hep-ph/0503061
http://arxiv.org/abs/hep-th/0304127
http://arxiv.org/abs/hep-th/0307020
http://arxiv.org/abs/hep-th/9707244
http://arxiv.org/abs/hep-th/0111078
http://arxiv.org/abs/hep-ph/0004052
http://arxiv.org/abs/hep-th/0205064
http://arxiv.org/abs/hep-th/9303046
http://arxiv.org/abs/hep-ph/9811243
http://arxiv.org/abs/hep-lat/9811004


[46℄ A. Rajantie, Nul. Phys.B 501, 521; hep-ph/9702255.

[47℄ C.P. Korthals altes, A. Rajantie, in preparation.

[48℄ P. Giovannangeli, Phys.Lett.B585:144, 2004; hep-ph/0312307; hep-ph/0506318.

[49℄ D. Diakonov, V.Yu. Petrov, Phys.Lett.B224:131, 1989; D. Diakonov and V. Petrov, J.

Exp. Theor. Phys. 92 (2001) 905 [arXiv:hep-th/0008035℄.

[50℄ F. V. Gubarev, Phys. Rev. D 69 (2004) 114502 [arXiv:hep-lat/0309023℄. B. Broda,

arXiv:math-ph/0012035. D. Diakonov and V. Petrov, J. Exp. Theor. Phys. 92 (2001)

905 [arXiv:hep-th/0008035℄.

[51℄ G. 't Hooft, Nul. Phys. B 72 (1974) 461.

[52℄ E. Witten, Nul. Phys. B160, 57 (1979).

[53℄ S. Deldar, Phys. Rev. D62, 034509 (2000), hep-lat/9911008; G. S. Bali, Phys. Rev. D62,

114503 (2000), hep-lat/0006022.

[54℄ N. A. Campbell, I. H. Jorysz and C. Mihael, Phys. Lett. B 167 (1986) 91.

[55℄ F. E. Close and N. A. Tornqvist, J. Phys. G 28 (2002) R249 [arXiv:hep-ph/0204205℄.

[56℄ S. R. Das, Rev. Mod. Phys. 59 (1987) 235.

[57℄ M. Luesher and P. Weisz, JHEP 07, 049 (2002), hep-lat/0207003.

[58℄ H. B. Meyer, arXiv:hep-th/0506034.

[59℄ K. G. Wilson, Phys. Rev. D 10 (1974) 2445.

[60℄ M. Lusher and U. Wol�, Nul. Phys. B339, 222 (1990).

[61℄ N. Cabibbo, E. Marinari, Phys. Lett. B119(1982) 387

[62℄ K. Fabriius, O. Haan, Phys. Lett B143 (1984) 459;

A.D. Kennedy, B.J. Pendleton, Phys. Lett., 156B (1985) 393

[63℄ S.L. Adler, Phys. Rev. D 23 (1981) 2901

Appendix A

In this appendix we briey indiate the group theory needed to get from a given Young tableau

(de�ning the irreduible representation R) the orresponding highest weight and the value of

the quadrati Casimir. In what follows we suppose a representation to be irreduible without

mentioning so. We hoose the Y

k

as follows:

Y

k

=

1

N

diag(k; k; : : : ; k

| {z }

N�k times

; k �N; k �N; : : : ; k �N

| {z }

k times

): (63)
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Let the Young tableau have n

1

boxes in the �rst row, n

2

in the seond row, et. . . Then one

an de�ne the non-negative numbers w

l

= n

l

� n

l+1

. Now the highest weight matrix for the

Young tableau is de�ned through the Y

k

matries:

H

R

=

N�1

X

l=1

w

l

Y

l

: (64)

For example, for the totally antisymmetri tableau of k boxes in one olumn we have H

R

= Y

k

.

For the totally symmetri tableau with all k boxes in one rowH

R

= kL

1

. Note that the stability

group of Y

k

(the subgroup of SU(N) matries ommuting with Y

k

) is SU(k)�SU(N�k)�U(1).

So the totally antisymmetri representation with k squares has a highest weight with this

stability group. All other representations with k squares have di�erent stability groups.

We de�ne one more diagonal N �N matrix by:

2Y � 2

N�1

X

l=1

Y

l

= diag(N � 1; N � 3; ::::;�N + 1): (65)

The quadrati Casimir operator C

2

(N; k; fw

l

g) � C

2

(R) is de�ned by summing the square of

all generators T

a

in the representation R. The result is

P

T

2

a

= C

2

(R)1

R

, where 1

R

is the unit

matrix in R and C

2

(R) is a -number (normalization is [T

a

; T

b

℄ = if

ab

T



; f

ab

f

bd

= NÆ

ad

).

Then the quadrati Casimir equals:

C

2

(R) =

1

2

(Tr fH

2

R

g+ 2Tr fY H

R

g): (66)

The quadrati Casimir for the fundamental representation is C

F

=

(N

2

�1)

2N

. The Casimir for

the antisymmetri representation is then

C

2

(R = AS) = C

F

k(N � k)

(N � 1)

; (67)

and for the symmetri representation it is:

C

2

(R = SS) = C

F

k(N + k)

(N + 1)

: (68)

To derive these relations one needs the inner produt of two Y matries:

Tr fY

k

Y

l

g =

1

N

(min(k; l)N � kl): (69)

One an show that for �xed k � N the antisymmetri Casimir is the minimal one.

Finally we give the relation between the Y

k

matries and the Chevalley basis H

k;k+1

=

diag(0; 0; 0; ::::1;�1; 0; :::0), Y

N;N+1

� Y

N;1

. We introdue the matries y

k

, with y

1

� NY

1

. y

2

follows from y

1

by a yli permutation of the diagonal elements: the �rst beomes the seond

and so forth. y

3

follows from y

2

the same way. We keep doing this until we have reahed y

N

,

y

N+1

= y

1

. The sum of all the y

k

vanishes. The Y

k

are related to the y

k

by:

NY

k

=

k

X

l=1

y

l

: (70)
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Then:

1

2

y

1

= (N � 1)H

12

+ (N � 2)H

23

+ (N � 3)H

34

+ :::::+ 1:H

N�1N

+ 0:H

N1

1

2

y

2

= 0:H

12

+ (N � 1)H

23

+ (N � 2)H

34

+ :::::+ 2:HN � 1N + 1:H

N1

1

2

y

3

= 1:H

12

+ 0:H

23

+ (N � 1)H

34

+ :::::+ 3:HN � 1N + 2:H

N1

The general term is:

1

2

y

k

= (k�2)H

12

+(k�3)H

23

+ :::+0:H

kk�1

+(N �1)H

kk

+ ::::+kH

N�1N

+(k�1)H

N1

: (71)

Note the diagonal translation invariane of the oeÆient matrix M relating the N y

k

to the

N H

l;l+1

.

Evaluate the �rst diagonal element of the r.h.s. in Eq. 70, using the matrix M above. It

equals, beause of the relative sign in the non-zero elements of H

12

and H

N1

, the di�erene of

the �rst olumn and the last olumn of M , up and inluding the �rst k rows of M . Beause of

the translation invariane only the di�ereneM

11

�M

kN

= N�k survives. The seond diagonal

element equals M

k1

�M

12

= N �k. This goes on till we reah the oeÆientM

kk�1

= 0. Then

there is a jump to M

k;k+1

= N � 1, and the diagonal elements beome �k. So we reprodued

the matrix NY

k

in Eq. 70. The harges NY

k

lie on the root lattie spanned by the H

ll+1

.

Appendix B

The derivation of Eq. 34 is based on simple properties of the quantum-mehanial SU(N)

rotator in an external �eld. We reprodue it here in a form that should render its origins lear.

We are interested in the Wilson line between two points x(s

1

) and x(s

2

), the line between

the two points being parametrized by s. The line is the ordered produt (from right to left) in

some irreduible representation R

0

with highest weight H

0

of unitary matries with dimension

d

R

0

:

W (s

f

; s

i

) = P exp

�

ig

Z

s

f

s

i

A

s

ds

�

: (72)

Here A

s

=

d~x

ds

:

~

A the projetion of

~

A on the line.

The Wilson loop is ovariantly onstant along the urve L, �

s

W

y

(s; s

i

) � igW

y

A

s

= 0, so

along the loop one an write the vetor potential as a pure gauge

A

s

=

�1

ig

U�

s

U

y

(73)

with U = W (s; s

i

)U

i

with U

i

an arbitrary SU(N) matrix. So the loop beomes in the repre-

sentation R

0

the unitary matrix :

D

R

0

(U

f

U

y

i

): (74)

We lose the Wilson loop ( so s

f

and s

i

represent the same point) and take the trae of Eq. 74.

The main result of this appendix is:
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� The sum over all irreduible representations of the normalized trae of the Wilson loop

is the group average of the propagator of the SU(N) rotator with Hamiltonian H in the

external �eld H

0

, Eq. 82.

� Then a speial limit of the path integral version of this propagator, Eq. 86, is nothing

but Eq. 34.

To de�ne the Hamiltonian we start with the generators l

a

of the group SU(N). They at

as left multipliation on the Hilbert spae de�ned on the group manifold, with kets jUi, U an

SU(N) element. The generators obey the ommutation relations

[l

a

; l

b

℄ = if

ab

l



; with f

ab

f

a

0

b

= NÆ

aa

0

: (75)

The N � 1 diagonal generators l

d

are denoted by the suÆx d, whereas a general generator

is denoted by indies a.

Likewise we an de�ne the generators r

a

of right multipliation.

The state spae of kets j
 > is has an omplete orthogonal basis onsisting of all the

irreduible representations D

R

(
)

l;r

, and the orthogonality relations read:

Z

d
 D

R

k;l

(
)D

R

0

m;n

(


y

) =

1

d

R

0

Æ

R;R

0

Æ

k;n

Æ

l;m

: (76)

The dimension of the representation R equals Tr fD

R

(1)g = d

R

. We de�ne kets and bras

jR; l; ri with the property:

h
jR; l; ri = D

R

(
)

l;r

: (77)

From Eq. 76 one sees that the norm of suh kets is d

�1

R

.

The Hamiltonian is de�ned in terms of the left multipliation generators as:

H =

1

2I

�

X

a

l

2

a

�

X

d

l

2

d

+

X

d

(l

d

�

1

2

H

0

d

)

2

�

: (78)

The last term represents the oupling of the rotator to the highest weight H

0

written in

omponent form H

0

=

P

d

H

0

d

�

d

2

, whih gives a Zeeman e�et for the energy levels in any

representation R.

Write

P

a

l

2

a

= C

2

(R) for the value of the quadrati Casimir in R and denote l for the N �1

diagonal quantum numbers l

d

in D(
)

l;r

. Similarly the N � 1 diagonal right multipliation

generators have quantum numbers, denoted by r. Then one has for the eigenvalues E

0

of this

Hamiltonian:

E

0

(R; l) =

1

2I

(C

2

(R) �

X

d

l

2

d

) +

1

2I

X

d

(l

d

�

1

2

H

0

d

)

2

: (79)

Let us �nd the orresponding Lagrangian L . De�ne the angular veloities from the speial

unitary matries S:

V

a

= i Tr fS�

s

S

y

�

a

g: (80)

Then:

L =

I

2

X

a

V

2

a

+

1

2

X

d

V

d

H

0

d

: (81)
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This Lagrangian gives the Hamiltonian in terms of the anonial momenta J

a

=

�L

�V

a

. There

is a subtlety: upon quantization we have the generators of left and right SU(N) rotations,

related by the adjoint representation. The question is then to whih the J's do orrespond.

This question is only relevant for the linear term,sine the quadrati term is invariant under

the adjoint. A short alulation shows that the left generators orrespond to the J's.

Let us now prove the following relation between the haraters of the group and the inte-

grated propagator of the SU(N) symmetri top:

Z

d
 h
U

f

j exp fi(s

f

� s

i

)Hg j
U

i

i

=

X

R;l

Tr fD

R

(U

f

U

y

i

)g exp

h

i(s

f

� s

i

)E

0

(R; l)

i

: (82)

On the r.h.s. we integrate over SU(N) matries 
, with the measure normalized to 1.

To prove this, insert the set of intermediate states jR; l; r > from Eq. 77 into the l.h.s. :

Z

d
 h
U

f

j exp fi(s

f

� s

i

)Hg j
U

i

i

=

Z

d


X

R;l;r

d

R

h
U

f

jR; l; ri exp

h

i(s

f

� s

i

)E

0

(R; l)

i

hR; l; rj
U

i

i: (83)

The right index r an be summed over, and using Eq. 77 one �nds:

X

r

h
U

f

jR; l; rihR; l; rj
U

i

i = D

R

(
U

f

(
U

i

)

y

)

l;l

: (84)

Integration over 
 gives, for �xed l, using Eq. 76:

Z

d
 D

R

(
U

f

(
U

i

)

y

)

l;l

=

1

d

R

Tr fD

R

(U

f

U

y

i

)g (85)

Plug this result into the r.h.s. of Eq. 83, and we have the main result Eq. 82.

Now we want to projet out from the main result the representation R

0

. This is done by

letting I ! 0 in the energy exponent and determining the minimum of E

0

(R;m). One suh

minimum is realized by

1

2

H

0

d

= m

d

and C

2

(R) = C

2

(R

0

).

So the sum over all irreduible representations R in Eq. 82 redues in this limit to the

representation R

0

singled out by the its orresponding highest weight H

0

.

Stritly speaking there is only one minimum when H

0

is the weight of the fundamental

representation, or of any of the representations orresponding to a fully antisymmetri Young

tableau. The reason is that for �xed N -ality C

2

(R) takes its minimum value for R being fully

antisymmetri.

For higher representations, like e.g. in SU(2) with weight j

0

( the number of boxes in the

Young tableau), there is the representation R = j

0

� 1, with m = j

0

� 1, that minimizes E

0

as well. This is why in the original work [49℄ the asymmetri top was taken, to provide an

independent inertia in front of the Zeeman splitting in Eq. 79 and taking them independently to

zero. So from now on the irrep R

0

stands for one of the totally antisymmetri representations.

38



Of ourse the result ontains the rapidly varying phase fator

exp

"

i(s

f

� s

i

)

E

0

(R

0

;H

0

)

2I

#

= exp

�

i(s

f

� s

i

)

�

C

2

(R

0

)�

1

2

Tr fH

2

0

g

�

=2I

�

� F (R

0

):

Aording to appendix A the value in this minimum is C

2

(R

0

)�

1

2

Tr fH

2

0

g =

P

N�1

l=1

w

l

(N�l)lN

with w

l

the weights de�ned by the Young diagram of R

0

. This same fator F (R

0

) appears also

in front of the path integral transription of the matrix element:

h
U

f

j exp fi(s

f

� s

i

)Hg j
U

i

i = F (R

0

)

Z


U

i


U

f

DS(s) exp

�

�i

Z

dsL

�

(86)

with L as in Eq. 81. This formula, together with the fat that the left generators in the matrix

element are orretly represented by the path integral an be proved straightforwardly. We

introdue the periodi utuation variable 
(s) with 
(s

i;f

) = 
 and transform the utuation

variable S in Eq. 86:

S(s) = 
(s)U(s) with D
 = DS: (87)

The path integral now beomes:

Z







D
(s) exp

�

�i

Z

dsL

�

(88)

with L as in Eq. 81, but with the substitution Eq. 87 in the angular veloities V

a

in (80):

V

a

= Tr f
(s)U(s)�

s

(
(s)U(s))

y

�

a

g

= Tr

n�


(s)(U(s)�

s

U(s)

y

)
(s)

y

+ 
(s)�

s


(s)

y

�

�

a

o

: (89)

Finally use Eq. 73 to write the angular veloity as the gauge transformed potential A

s

:

V

a

= Tr

n�


(s)(�igA

s

)
(s)

y

+ 
(s)�

s


(s)

y

�

�

a

o

= Tr

n�


(s)r

s


(s)

y

�

�

a

o

: (90)

Remember r

s


(s)

y

=

d~x

ds

:(

~

� � ig

~

A)
(s)

y

.

The �nal form of the Wilson loop in the irrep R

0

and with highest weight H

0

follows from

Eq. 81, 82 and 86:

W

R

0

= lim

I!0

Z

D
 exp

"

�i

I

2

I

ds

X

a

V

2

a

�

I

ds Tr

(

H

0

(


~

r �

d~x

ds




y

)

)#

: (91)

The line integral on the r.h.s. an be easily transformed into a surfae integral, beause it

now involves the gauge transform average of potential projeted on the highest weight, i.e. an

Abelian potential. The surfae S bounded by the loop L is overed by a set of nested loops

L(r) with L(r = 0) = L and L(r = 1) shrunk to a point. Then, in an obvious notation:

�

I

L

ds Tr fH

0

(
r

s




y

)g

=

Z

1

0

dr �

r

I

ds Tr fH

0


r

s




y

g (92)

=

Z

1

0

dr

I

ds Tr

n

H

0

�

�

rs

r

r


r

s




y

) + �

rs


r

r

r

s




y

�o

whih gives then Eq. 34, using the ommutator [r

r

;r

s

℄ = �igF

r;s

. The gauge transform in

the last expression is now extended to all of the surfae S and beyond. This surfae is of ourse

arbitrary, apart from its boundary.

39



Appendix C

We give the expliit form of our Polyakov loops with N -ality k. Let P (x; y; t) �

Q

L=a

n=1

~

U

x

(x+

na; y; t), where

~

U

x

(x) stands either for the original link variable U

x

(x) or a fuzzy [29℄ version

of it with the same gauge transformation properties. Then our operators are [25℄

O

(k)

(t) =

a

L

y

X

m

O

(k)

(x; y +ma; t) (93)

where the operator O

(k)

is one of

k = 2 :

1

N

Tr fP

2

g

1

N

2

(Tr fPg)

2

(94)

k = 3 :

1

N

Tr fP

3

g

1

N

3

(Tr fPg)

3

1

N

2

Tr fP

2

gTr fPg (95)

k = 4 :

1

N

Tr fP

4

g

1

N

4

(Tr fPg)

4

1

N

2

(Tr fP

2

g)

2

(96)

1

N

2

Tr fP

3

gTr fPg

1

N

3

Tr fP

2

g(Tr fPg)

2

;

where the argument of P is the same as that of O

(k)

in Eq. 93. The orrelation funtions we

measure are hO

(k)

(0)(O

(k)

(t))

�

i.
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I:� = 115:0 k = 1 k = 2 k = 3 k = 4

V = 24� 28� 24

L = 24 1.536(19) 2.67(13) / /

II:� = 115:0 k = 1 k = 2 k = 3 k = 4

V = 16� 20� 24

L = 16 1.0075(31)

�

1.729(30) 2.216(66) 2.32(12)

L = 20 1.2787(33)

�

2.174(59) 2.55(23) 3.04(33)

III:� = 115:0 k = 1 k = 2 k = 3 k = 4

V = 12� 16� 24

L = 12 0.7338(38)

�

1.275(24) 1.680(27) 1.789(36)

L = 16 0.9980(45)

�

1.702(28) 2.157(52) 2.423(93)

IV: � = 138:0 k = 1 k = 2 k = 3 k = 4

V = 20� 24� 24

L = 20 0.808(10) 1.436(15) 1.826(20) 1.985(29)

L = 24 0.991(13) 1.745(20) 2.214(42) 2.28(11)

V: � = 138:0 k = 1 k = 2 k = 3 k = 4

V = 16� 20� 24

L = 16 0.6348(58) 1.1580(96) 1.464(12) 1.540(15)

L = 20 0.8253(75) 1.462(15) 1.845(19) 1.937(29)

VI:� = 172:5 k = 1 k = 2 k = 3 k = 4

V = 24� 28� 36

L = 24 0.5869(32) 1.0260(82) 1.303(18) 1.401(19)

L = 28 0.6961(58) 1.242(12) 1.564(34) 1.576(57)

VII:� = 172:5 k = 1 k = 2 k = 3 k = 4

V = 20� 24� 36

L = 20 0.4883(31) 0.8939(65) 1.109(12) 1.213(18)

L = 24 0.5878(43) 1.042(16) 1.308(23) 1.381(22)

Table 1: The masses of ux-tubes of di�erent N -alities. Values followed by a

�

were extrated

from simulations employing a one-level algorithm. In addition, a � = 138 run on a 32�32�36

lattie was done with am

k=1

= 1:3347(49) and am

k=2

= 2:326(49).
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� = 115:0 � = 138:0 � = 172:5

a

p

�

1

0.2558(6) 0.2059(6) 0.1582(12)



1

0.624(78) 0.67(12) 0.27(19)

�

2

=�

1

j

L=1

1.690(52) 1.709(37) 1.695(45)

�

3

=�

1

j

L=1

2.01(12) 2.162(72) 2.175(88)

�

4

=�

1

j

L=1

2.28(20) 2.31(11) 2.08(12)

Table 2: Top: the fundamental string tension and the string orretion oeÆient (to be

ompared with the bosoni string value 

b

= �=6 ' 0:5236. Bottom: the ratios of k-torelon

masses, extrapolated to L = 1 assuming 1=L

2

orretions at three di�erent lattie spaings.

The ontinuum limit a! 0 of these ratios are given in setion 6.2.3.

� = 115:0 k = 2 k = 3 k = 4

L = 12 1.694(33) 2.213(36) 2.352(49)

L = 16 1.688(28) 2.141(51) 2.319(91)

L = 20 1.686(46) 1.98(18) 2.35(26)

L = 24 1.728(84) / /

Mean 1.692(28) 2.184(36) 2.349(49)

� = 138:0 k = 2 k = 3 k = 4

L = 16 1.782(22) 2.239(28) 2.352(32)

L = 20 1.749(24) 2.208(31) 2.356(42)

L = 24 1.744(30) 2.207(51) 2.27(11)

L = 32 1.734(37)

Mean 1.744(24)

�

2.222(28) 2.349(32)

� = 172:5 k = 2 k = 3 k = 4

L = 20 1.786(18) 2.202(28) 2.404(44)

L = 24 1.732(17) 2.177(33) 2.317(35)

L = 28 1.763(23) 2.195(28) 2.230(84)

Mean 1.743(17)

�

2.195(28) 2.304(35)

�

Table 3: The e�etive ratios of k-string tensions, orreted for �nite-length e�ets assum-

ing Eq. (61) with bosoni string oeÆient; at three di�erent lattie spaings. The values at

di�erent L are �tted by a onstant to give the 'mean' value. The mean values were obtained

by averaging values at all L, exept for those appearing with an asterisk

�

, where the shortest

torelon was dropped. The ontinuum limit a! 0 of these ratios are given in setion 6.2.3.
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m

�

k=2

1

2

(m

k=2

+m

�

k=2

) 2m

k=1

II: L = 16 2.122(60) 1.932(33) 2.015(6)

L = 20 2.49(25) 2.33(13) 2.557(6)

III: L = 12 1.677(37) 1.476(23) 1.468(4)

L = 16 2.244(75) 1.973(42) 1.996(9)

IV: L = 20 1.886(24) 1.661(17) 1.62(2)

L = 24 2.245(59) 1.995(31) 1.981(3)

V: L = 16 1.380(39) 1.272(23) 1.27(1)

L = 20 1.72(10) 1.598(54) 1.65(2)

VI: L = 24 1.328(15) 1.181(9) 1.174(6)

L = 28 1.672(31) 1.457(16) 1.39(1)

VII: L = 20 1.109(28) 1.002(14) 0.977(6)

L = 24 1.296(22) 1.174(10) 1.176(8)

Table 4: The �rst-exited k = 2 torelon mass. The roman numbers refer to the di�erent runs

whose parameters are given in Tab. 1.
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Figure 4: The linei mass of spatial torelons in the k = 1 and k = 2 setors at � = 138. The

interept on the vertial axis yields the string tension.

44



 1.6

 1.65

 1.7

 1.75

 1.8

 1.85

 1.9

 0  0.02  0.04  0.06  0.08  0.1  0.12

m
2/

m
1

1/(σ1L2)

3D SU(8) k=2 to k=1 string tension ratio

β=115.0
β=138.0
β=172.5

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 0  0.02  0.04  0.06  0.08  0.1  0.12

m
3/

m
1

1/(σ1L2)

3D SU(8) k=3 to k=1 string tension ratio

β=115.0
β=138.0
β=172.5

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 0  0.02  0.04  0.06  0.08  0.1  0.12

m
4/

m
1

1/(σ1L2)

3D SU(8) k=4 to k=1 string tension ratio

β=115.0
β=138.0
β=172.5

Figure 5: Final analysis: the extrapolation of the string tension ratios to in�nite string length

(only the �lled points are inluded in the extrapolation). The result of the extrapolation is

shown beyond the vertial axis.
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Figure 7: Top: the binding energy of k-strings per unit length, in units of �

1

and resaled by

a fator N , as a funtion of N . Bottom: the string tension ratio
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, resaled by a fator
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N

. The lattie data for SU(4) and SU(6) is taken from[25℄.
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