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Abstra
t

When the magneti
 se
tor of hot QCD, 3D SU(N) Yang-Mills theory, is des
ribed as a dilute

gas of non-Abelian monopoles in the adjoint representation of the magneti
 group, Wilson

loops of N -ality k are known to obey a periodi
 k(N � k) law. Latti
e simulations have


on�rmed this predi
tion to a few per
ent for N = 4 and 6. We des
ribe in detail how the

magneti
 
ux of the monopoles produ
es di�erent area laws for spatial Wilson k-loops. A

simple physi
al argument is presented, why the predi
ted and observed Casimir s
aling is

allowed in the large-N limit by usual power-
ounting arguments. The same s
aling is also

known to hold in two-loop perturbation theory for the spatial 't Hooft loop, whi
h measures

the ele
tri
 
ux. We then present new latti
e data for 3D N = 8 k-strings as long as 3`fm'

that provide further 
on�rmation. Finally we suggest new tests in theories with spontaneous

breaking and in SO(4n + 2) gauge groups.
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1 Introdu
tion

The title of this paper may sound to most pra
titioners of latti
e gauge theory and hot QCD of

a somewhat esoteri
 nature. And on the other hand a�
ionados of the beauty of non-Abelian

monopoles [3, 4, 6℄ [8, 5℄ [7, 10℄ may re
e
t on the title as being hereti
, sin
e non-Abelian

monopoles have so far withstood the traditional approa
h that has been implemented su

ess-

fully for 't Hooft-Polyakov monopoles: as yet, nobody has 
ome up with a viable 
onstru
tion

of a 
lassi
al solution, that is then quantized by semi-
lassi
al methods. Only re
ently a 
on-

stru
tion of non-Abelian 
uxes in a low energy �eld theory version has been a

omplished [9℄.

These are models that relegate the intri
a
ies of non-Abelian monopoles to their high energy

se
tor, and manage to 
onstru
t expli
it non-Abelian 
uxes in the low energy se
tor.

Somewhat analogously, we will forget about the intri
ate nature of individual non-Abelian

monopoles and assume that a gas of su
h obje
ts has relatively straightforward properties.

That will allow us to 
ompute and interpret in a simple-minded way the average behaviour of

magneti
 
ux loops, that is, spatial Wilson loops [19℄. Su
h spatial loops have been measured

in latti
e simulations by Teper's group [25, 29℄ in a wide temperature range, thus showing that

the predi
tions of the model 
an be tested from �rst prin
iples.

At temperatures well above the 
riti
al T




, the temporal extent of the system be
omes

negligible, and we are left with a three-dimensional system. This implies that the tension of

the spatial loop at su
h very high T also bears the interpretation of a three-dimensional string

tension, due to a 
hromo-ele
tri
 
ux tube. In other words, our model is also indire
tly a model

for 
on�nement in 2+1 dimensional gauge theories.

Generally speaking, in non-Abelian SU(N) gauge theories in three and four dimensions,

the 
hromo-ele
tri
 
ux between two stati
 
olour sour
es arranges itself so as to produ
e a

linearly rising potential. This naturally suggests a 
ux-tube 
on�guration and leads to the

string pi
ture of 
on�nement. While in SU(3) there is only one string tension, that of the

string appearing between 
harges in the fundamental representation, in SU(N � 4) there are

[N=2℄ independent stable `k-strings' whi
h are prote
ted from s
reening by the 
enter-symmetry

Z(N).

The pi
ture that we propose for the origin of the area laws of the spatial Wilson k-loops, and

hen
e for 3d k-strings, is rooted (perhaps paradoxi
ally) in high temperature 3+1 dimensional

QCD and involves a gas of s
reened non-Abelian monopoles { or rather \magneti
 quasi-

parti
les". We prefer the latter terminology, sin
e it stresses that our monopoles need not be

eigenstates of the Hamiltonian but are rather 
olle
tive modes of the plasma. The obje
ts that

we shall des
ribe in the 3d gauge theory are the dimensionally redu
ed versions of these modes,

mu
h in the same way as Polyakov's `pseudoparti
les' [14℄ in the 3d Georgi-Glashow model

are the des
endants of the t'Hooft-Polyakov monopoles [2℄ living in the 4d Georgi-Glashow

model. The non-Abelian Stokes theorem [49℄ establishes a 
onne
tion between spatial Wilson

loops and the magneti
 
ux in the plasma; whi
h in our model is indu
ed by the magneti


quasi-parti
les. That is, s
hemati
ally, how we are able to make predi
tions for 3d k-string

tensions.

Of 
ourse, k-strings are also interesting in their own right. Sin
e they are perfe
tly stable,

their tension ratios 
an be used to dis
riminate unambiguously between models of 
on�nement.

In what follows, without giving a 
omprehensive view of the latter, we put our model in
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perspe
tive with respe
t to a broader 
lass of su
h models.

Our adjoint monopole gas model [19, 21℄ is related to the dual-super
ondu
tor pi
ture of


on�nement [1℄. The latter would naturally predi
t the presen
e of monopoles in the plasma,

as manifestations of the 
ondensate at low T . It is a natural generalization of the seminal idea

of 't Hooft [16℄, that Abelian monopoles Bose-
ondense in the ground state, and are transient

states in that they won't show up in the spe
trum of the Hamiltonian. In the hot de
on�ned

phase they should populate the ground state, just like gluons. To explain the k-loop tensions

in the hot phase is however non-trivial be
ause the number of di�erent spe
ies of Abelian

monopoles is too small (N � 1 for SU(N)).

There is the elegant 
aloron solution to the equations of motion [23℄. It is a periodi


instanton with a Higgs-like ba
kground furnished by the non-trivial value of the Polyakov

loop. This gives rise to N monopoles (a fundamental multiplet) inside the 
aloron. Could

these be related to the quasi-parti
les that we are invoking? It may be [23℄ that at high

enough temperatures the monopoles inside an individual 
aloron start to \de
on�ne" and are

able to move freely from one to another 
aloron, mu
h in the same vein that gluons 
an freely

move from one glueball to another at high T . However free monopoles in the fundamental

multiplet 
an not explain the observed Casimir s
aling [21℄. Nevertheless, as explained in the

next se
tion, even at asymptoti
 temperatures we are a
tually fa
ing strong 
oupling when we

try to explain the spatial Wilson loop behaviour. It 
ould well be that this strong 
oupling

favours binding into adjoint monopoles (while binding into singlets is statisti
ally disfavoured

at large N). Non-Abelian monopoles in the adjoint representation furnish pre
isely the 
orre
t

number of spe
ies to explain the observed Casimir s
aling, as shown in earlier work [19℄ and

in se
tion 4.4 below.

The ratios of k-string tensions are also tests for formulations of SU(N) gauge theories

derived from fundamental string theory. Examples of the latter are the MQCD framework [40℄

and the AdS/CFT 
al
ulations in Ref. [42℄ for D = 3. The latter give Casimir s
aling for N

large and k of order N ; our model predi
ts Casimir s
aling for any value of N .

The MQCD framework gives a sin(k�=N) law for the k-tension, implying in parti
ular that

the tension ratios �

k

=�

1

have 1=N

2


orre
tions. An elegant paper by Gliozzi [22℄ provides a

simple geometri
 interpretation for the sine law. He shows that in the 
old phase the sine law

is the borderline between formation of Z(N) symmetri
 stati
 baryons (no k � 2 
ux tubes

involved) and formation of stati
 baryons with k = 2 or higher 
ux tubes (it is assumed that

arbitrary short 
ux tubes have the same tension as long 
ux tubes).

Casimir s
aling and the sine law both predi
t that �

k

=�

1

! k at large N , �xed k; in other

words, a k-string is a 
olle
tion of k non-intera
ting fundamental strings in the planar limit

N ! 1. Casimir s
aling however attributes a binding energy to these k strings of order

1=N , while if the sine law is 
orre
t, this energy is only O(1=N

2

). Re
ently there has been

a dis
ussion [39℄ on the 
on
i
t of 1=N 
orre
tions with standard 1=N power-
ounting rules,

based on the assumption that all representations with a given N -ality k produ
e the same

tension. We point out in se
tion 6 that this analysis negle
ts mixing e�e
ts between redu
ible

representations whi
h are of order 1=N and whi
h lower the energy of the lightest string by an

amount of that order. Earlier work on strong 
oupling expansions [43℄ 
orroborates our general

argument. More re
ently, analyti
 
al
ulations of the tension for 't Hooft loops [20, 19℄ have
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been shown to lead to the same k(N � k) s
aling law.

As already mentioned, latti
e 
al
ulations have been 
arried out [25, 26, 29℄ in three and

four dimensional SU(N) gauge theory to determine the ratios of the k-string tensions to the

fundamental string tension. Here we study the k-strings in 3d SU(N) gauge theories, present-

ing new data for their tension ratios obtained for the gauge group SU(8) and 
ombining the

new information with previously obtained SU(4) and SU(6) data [25℄. The numeri
al advan-

tage of sear
hing for the e�e
t of monopoles on Wilson loops at high T is that the relevant

simulations are three-dimensional; needless to say, to obtain the same a

ura
y, the amount of


omputational e�ort is 
onsiderably lower for the 3d simulations employing the redu
ed a
tion.

By the same token, given su
h an a

ura
y for the 3d latti
e data, it is useful to know to

what a

ura
y in the 
oupling g(T ) the dimensionally redu
ed a
tions reprodu
e the full 4d

QCD result. For the 
ase of three 
olours one knows [38℄ that the 3d results for the string

tension reprodu
e the 4d latti
e data up to 1:1T




through the running of g(T ) up to and

in
luding two loops.

The lay-out of the paper is as follows. We start with se
tion 2 on how the problem of the

residual strong intera
tions in hot QCD is atta
ked quantitatively { by dimensional redu
tion.

In se
tion 3 we review brie
y non-Abelian monopoles. We then derive in se
tion 4.2 a Stokes

type formula for the spatial Wilson loops that permits us to quantify the e�e
t of the putative

non-Abelian monopoles in se
tion 4.4. Then follows se
tion 5 on strings in higher represen-

tations where our arguments on the 1=N 
ounting are exposed, and the latti
e 
al
ulation is

presented in se
tion 6. Finally we 
ompile and dis
uss the latti
e data a

umulated so far

(se
tion 6.4) and the paper ends with a general 
on
lusion (se
tion 7).

2 High temperature QCD

This se
tion is meant to introdu
e the reader into the essentialia of hot QCD, and to motivate

the model.

At temperatures well above T




asymptoti
 freedom drives the running 
oupling g(T ) down

to zero. On the other hand the average density of gluons is the Bose-Einstein density n

BE

(p=T )

(p = j~pj is the momentum of a gluon). Be
ause of this density the 
oupling in the plasma has

to des
ribe stimulated emission and equals

g

2

st

= g

2

n

BE

(p=T ) = g

2

1

expp=T � 1

: (1)

This leads to a pi
ture of a gluon plasma, where one has to distinguish three s
ales:

� hard gluons with momentum p of order T, intera
ting weakly, g

2

st

= O(g

2

).

� soft gluons with momentum p of order gT , still intera
ting weakly g

2

st

= O(g).

� ultra-soft gluons with momentum p = O(g

2

T ), intera
ting strongly, g

2

st

= O(1).

Thus, in spite of asymptoti
 freedom, there is a strongly intera
ting se
tor left. Strongly

intera
ting be
ause the large population of ultra-soft energy levels pushes the 
oupling up [13℄.
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Thus, at these length s
ales, semi-
lassi
al methods are unlikely to apply, as we argued in the

introdu
tion.

The hard gluons are familiar from the Stefan-Boltzmann form for the pressure. The hard

gluons 
ause Debye s
reening m

D

� gT of the for
e between ele
tri
 test 
harges. All this has

been known for long from ele
trodynami
 plasmas.

A new feature be
omes apparent for the non-Abelian plasma at s
ales g

2

T . It is the

s
reening of the magneti
 for
e (m

M

� g

2

T ) between two stati
 magneti
 test 
harges. In

ele
trodynami
 plasmas no stati
 magneti
 s
reening exists. Magneti
 s
reening not only

o

urs at arbitrary high temperatures, it persists at arbitrary low temperatures, where the

ele
tri
 s
reening has disappeared and has turned into ele
tri
 
on�nement. It is a hallmark

of the non-Abelian system, and hints at a magneti
 a
tivity for all temperatures [12℄.

One purpose of this paper is to understand and test a spe
i�
 model [19℄ for the strongly

intera
ting se
tor. We will state its assumptions at the end of this se
tion.

2.1 Dimensional redu
tion at high T

In this se
tion we give a fast review of how one 
omputes equilibrium properties of the plasma

in a systemati
 way. The problem of strong 
oupling at large distan
es is dealt with through a

sequen
e of e�e
tive a
tions [35℄. It is the last and strongly intera
ting e�e
tive (\magneti
")

a
tion that our monopole model approximates.

By integrating out the hard modes in the QCD a
tion one produ
es an e�e
tive 3d a
tion


alled S

EQCD

. If one a

epts to have an a

ura
y of O(g(T )

4

) this ele
trostati
 a
tion is the

superrenormalizable a
tion in terms of the stati
 potentials. The form of our e�e
tive a
tion

S

EQCD

is di
tated by all symmetries, global and lo
al, of the original QCD a
tion, whi
h are

respe
ted by the integration pro
ess. That implies all the symmetries we knew already, ex
ept

that the ele
tri
 term in the stati
 a
tion will have no �

0

~

A term. So A

0

appears as an adjoint

Higgs term in our 3D gauge theory. The ele
trostati
 QCD a
tion density reads:

L

E

= Tr f(

~

D(A)A

0

)

2

g+m

2

E

Tr fA

2

0

g+ �

E

(Tr fA

2

0

g)

2

+

+

�

�

E

�

(Tr fA

0

g)

4

�

1

2

(Tr fA

2

0

g)

2

�

+

1

2

Tr fF

2

ij

g+ ÆL

E

: (2)

Be
ause of R- 
onjugation invarian
e (A

0

! �A

0

) the ele
trostati
 a
tion must be even in A

0

.

For SU(2) and SU(3) the se
ond quarti
 term is identi
ally zero.

The parameters in this 3d a
tion are the 
oupling g

E

, the ele
tri
 mass m

E

and the 4-point


ouplings �. All of them are expanded in powers of the QCD running 
oupling g

2

(T ), and all

of them are now known to O(g

4

) [36, 37℄. The ele
tri
 mass 
oin
ides with the Debye s
reening

mass m

2

D

=

g

2

N

3

T

2

to one loop order. The 4-point 
ouplings start with the fourth power of

g(T ). It is 
ustomary [45℄ to express all these parameters in terms of the dimensionful s
ale

g

E

, x = �

E

=g

2

E

, similarly for �x, and �nally y = m

2

E

=g

4

E

. For large T the x variable be
omes

equal to g

2

, the xy variable approa
hes a 
onstant.

In the limit where the ele
tri
 mass m

E

� gT be
omes very large 
ompared to the 
oupling

g

2

E

= g

2

T one 
an integrate out this mass s
ale and obtain magneti
 QCD:

L

M

=

1

2

Tr fF

2

ij

g+ ÆL

M

: (3)
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The 
oupling parameter in this Lagrangian is 
alled g

M

and it 
an be expressed in terms of

the ele
tri
 
oupling g

E

[48℄:

g

2

M

= g

2

E

2

4

1 �

g

2

E

16�m

E

�

17

512

 

g

2

E

�m

E

!

2

3

5

: (4)

One should realize that in the pure N = 3 Yang-mills theory there is only one parameter:

the 
oupling g(T=�

T

). This means there is a relation between x and y, where the physi
s of

the plasma is:

xyj

4D

=

3

8�

2

�

1 +

3

2

x+O(x

2

)

�

for N = 3: (5)

This a
tion serves to 
ompute the leading 
ontribution to magneti
 quantities like the

spatial Wilson loop �, or the magneti
 s
reening m

M

at very high T . For dimensional reasons

both are proportional to g

2

M

. The 
orre
tions are very small, and this seems to be a general

feature of this type of 
orre
tions [48℄. On the other hand the 
orre
tions due to hard modes

in two loop approximation are appre
iable [38℄. It turns out that one 
an extrapolate the 3d

result for the Wilson loop to about 1.1T




just by using this 2-loop running of the 
oupling

g

E

, as a very good approximation to the 4d results. Quite likely the same is true for the

magneti
 s
reening length l

M

or magneti
 s
reening mass m

M

= l

�1

M

, whi
h is de�ned from

the 
orrelation of a heavy monopole pair: as for the spatial tension, its dominant 
ontribution


omes from the 3d magneti
 se
tor.

Summing up: 
omputing magneti
 quantities at T � T




, in 3d magnetostati
 QCD, is

suÆ
ient to know them all over the de
on�ned phase by simply using the two loop running of

the 
oupling. This means that some salient features of our model for the magneti
 se
tor (see

next subse
tion) are valid for all of the de
on�ned phase.

2.2 Magneti
 quasi-parti
le model for the magneti
 se
tor

The magneti
 se
tor is governed by 3d Yang-Mills theory. For the physi
s over distan
es larger

than the magneti
 s
reening length we make three Ansaetze:

1. The intera
tion for the magneti
 gluons is so strong that they bind in lumps.

2. The lumps are dilute.

3. The lumps are non-Abelian monopoles.

Their size is on the order of the magneti
 s
reening mass m

M

= O(g

2

T ). And so is their

inter-parti
le distan
e, or their density n

M

. The ratio of the two 
orresponding volumes is the

diluteness

Æ = n

M

=m

3

M

: (6)

As the 
oupling drops out in this ratio there is no parametri
 reason that the diluteness is

small.
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From these Ansaetze follows from simple dilute gas arguments (repeated in se
tion 4.4)

that the tension � of the spatial Wilson loop equals:

� �

1

m

M

n

M

: (7)

There is a group fa
tor in front (whi
h will be dis
ussed in se
tion 4.5), and the the 
orre
tions

are in powers-not ne
essarily integer- of the diluteness.

So the diluteness is known, on
e the tension and the magneti
 s
reening mass are known

from latti
e measurements. Its smallness is a dynami
al e�e
t giving a value of about 0:05

(with a 
orre
tion of O(1=N

2

) [24℄) in the hot phase for SU(N) groups: it is given by the string

tension in the 3D gauge theory in units of the lightest glueball mass. Clearly it is gratifying

to have an { admittedly empiri
al { justi�
ation for the diluteness being small.

It is instru
tive to 
ompare our dilute gas of 
omposite lumps with radius l

M

to the dilute

gas one �nds in the usual weak 
oupling plasmas. There the lumps are point-like parti
les, and

the Debye s
reening length l

D

is large with respe
t to the inter-parti
le distan
e, i.e. l

3

D

n� 1,

the weak 
oupling plasma 
ondition. For hard gluons one has n � T

3

and l

�2

D

� g

2

and the

plasma 
ondition is ful�lled.

We want to 
lose this se
tion with a brief 
omment. It is tempting to go down from in�-

nite temperature to �nite temperature, and 
onsider the lumps as magneti
 quasiparti
les, or


olle
tive ex
itations of the plasma. From our theoreti
al knowledge of the magneti
 s
reen-

ing [31℄ we know that at T = 0 the s
reening mass equals the lowest glueball mass in the

4D gauge theory; and the spatial Wilson tension equals the string tension at T = 0. Latti
e

simulations [25℄ �nd the diluteness at zero temperature, as given by the string tension in units

of the lightest glueball mass in the 4D gauge theory, is still small, on the order of 0:09 for

N large! Thus our dilute gas stays dilute when lowering the temperature. At some temper-

ature T

q

the Bose-Einstein statisti
s takes over (where the ratio of magneti
 s
reening and

de Broglie thermal wave length T

�1

be
ome on the same order). And, in the spirit of dual

super
ondu
tivity, BE-
ondensation is then marking the transition to the 
on�ned phase.

3 Non-Abelian monopoles

The magneti
 se
tor of hot QCD has magneti
 lumps through the strong (g

2

� 1) binding of

magneti
 gluons. Very spe
i�
ally we do not have a Higgs �eld at our disposal to de�ne the

U(1) �eld strengths. The question is whether other than 't Hooft-Polyakov [2℄ monopoles 
an

be formed under su
h 
ir
umstan
es. The answer is not known to date. But if they are there

they must obey a Dira
 
ondition.

In 1977, Englert, Windey, Goddard, Olive and Nuyts [3℄ analysed pre
isely su
h hypothet-

i
al monopoles in an unbroken gauge theory, and formulated the generalized Dira
 
ondition.

This 
ondition is the following. Let B be a matrix in the SU(N) Lie-algebra. Let the 
olour

magneti
 �eld

~

B be given far away from the monopole by:

~

B = g~r

B

4�r

3

: (8)

6



The Dira
 
ondition then reads:

exp igB = 1: (9)

This 
ondition has to be ful�lled for any matter �eld that 
ouples to the gauge �eld. Obviously

we 
an take B to be diagonal. Note also that for U(1) we get the expe
ted result gB = 2�n.

For any simple Lie group one has the orthogonal set of diagonal generators

~

H = (H

1

; : : : ;H

r

),

with r the dimension of the Cartan subalgebra. The remaining orthogonal generators are

E

�

= E

y

��

. The roots ~� = (�

1

; : : : ; �

r

) are given by:

[

~

H;E

�

℄ = ~�E

�

[E

�

; E

�

℄ = (~� +

~

�)E

�+�

if ~� +

~

� is a root

[E

�

; E

�

℄ = 0 otherwise

[E

�

; E

��

℄ = ~� �

~

H: (10)

These de�nitions imply a 
ommon normalization Tr fE

�

E

��

g = Tr fH

2

i

g. In physi
s we are

used to have it equal to 1=2.

We de�ne now the 
oroots

~

�̂ =

~�

~�

2

. In terms of those the group admits a set of SU(2)

subgroups (like the familiar I, U and V spin in SU(3)) for any root �, denoted by SU(2)

�

. One

gets them by proje
ting

~

H on the 
oroots and using the E

�

. More pre
isely:

^

E

��

=

1

j~�j

E

��

^

H

�

=

~�

~�

2

�

~

H: (11)

Cru
ial is now that the matri
es

^

H

�

, being homogeneous in the roots and the H

i

, are inde-

pendent of the normalization of the matri
es H

i

. Hen
e they have eigenvalues, whi
h are pure

numbers. What are those?

The 
ommutation relations that normalize H

�

follow from Eq. 10, with the result:

[

^

E

�

;

^

E

��

℄ =

^

H

�

: (12)

The weights of an irredu
ible representation are given by the eigenvalues of the diagonal op-

erators. So if the 
arrier ve
tors v

(k)

diagonalize the representation we 
an de�ne the weights

~w

k

by :

~

Hv

(k)

= ~w

k

v

(k)

: (13)

Now a theorem on Lie algebras [11℄ tells us that 2

^

H

�

has integer eigenvalues on any irredu
ible

representation, and hen
e from Eq. 13:

2

~�

~�

2

~w

k

is integer. (14)

So on any irredu
ible representation the eigenvalues of H

�

are (half)- integer. This fa
t

tells us that the magneti
 roots

~

b de�ned by

B =

4�

g

~

b �

~

H (15)
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γ

γ

2

1

Figure 1: The latti
e of allowed magneti
 
harges spanned by the 
oroots for the gauge group SU(3).

must lie on a latti
e generated by 
oroots

~

b =

~�

~�

2

if the magneti
 strength B obeys the Dira



ondition, Eq. 9. That is, every point

~

b on the magneti
 root latti
e is a linear 
ombination

with integer 
oeÆ
ients of the 
oroots

~�

~�

2

.

In Fig. 1 we show the 
oroot latti
e for SU(3). The two simple roots ~


1;2

span the latti
e.

They de�ne, with

~

H in the fundamental representation, the matri
es

~


1

�

~

H � H

12

=

1

2

diag(1;�1; 0) (16)

~


2

�

~

H � H

23

=

1

2

diag(0; 1;�1) (17)

whi
h indeed have half-integer eigenvalues and are the third 
omponents of I-spin and U-spin

respe
tively. Often it is more 
onvenient to work with these matri
es than with the root ve
tors

themselves, as the former are truly simple.

For SU(N), the simple roots are given by the generalization of I and U spin. The general

representative is:

H

k;k+1

=

1

2

diag(0; 0; :::0; 1;�1; 0; :::): (18)

The �rst non-zero member is on the k-th diagonal entry, and k ranges from 1 to N , with:

H

N;N+1

� H

N;1

=

1

2

diag(�1; 0; ::::; 0; 1): (19)

The sum of these matri
es is zero, and usually the �rst N � 1 are taken as simple roots. It is

then 
lear that we 
an rephrase the Dira
 
ondition as:

B =

4�

g

(n

12

H

12

+ ::::+ n

N�1;N

H

N;N�1

); (20)

where the n's are integers

1

.

1

This notation is adapted to our notation for the Wilson loop in later se
tions.
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This 
lassi�es the possible monopoles for all simple 
lassi
al Lie-algebras, as hypothesized

in the se
ond paper of referen
e [3℄.

For the group SU(2) the 
onsequen
es of the Dira
 
ondition and this hypothesis are simple.

We have a doublet with, in units of 4�=g, I

3

= �1=2. Then an iso-triplet with in the same units

I

3

= �1; 0. For a spin J (half)-integer multiplet we have the same. Our matrix gB=4� with

the spin 1/2 multiplet of magneti
 
harges gives only on integer spin ele
tri
 
harge multiplets

an integer. So the magneti
 group of SO(3) is SU(2). On the other hand the iso-triplet of

magneti
 
harges is 
ompatible with any 
harge multiplet, half integer or integer, and so the

magneti
 group of SU(2) is SO(3).

More generally, for the gauge group SU(N) all possible monopoles are multiplets of a

magneti
 group SU(N)=Z(N). The opposite is also true: the gauge group SU(N)=Z(N) admits

monopoles in multiplets of the magneti
 group SU(N).

In Fig. 1 the latti
e is shown for the gauge group SU(3); for the gauge group SU(3)=Z(3) the

latti
e of monopoles will in
lude the additional sublatti
e generated by the triplet representa-

tion. This additional sublatti
e is obtained in a natural way by introdu
ing the 2 hyper
harges

Y

k

, k=1,2. Of 
ourse they are not uniquely de�ned. They generate through exponentiation

exp(i2�Y

k

) the 
enter-group elements of Z(3). We may for instan
e 
hoose a set whi
h is at a

minimal distan
e (de�ned as the tra
e of the square of the matrix) of the 
enter of the Cartan

algebra:

Y

1

=

1

3

diag(2;�1;�1)

Y

2

=

1

3

diag(1; 1;�2): (21)

In terms of the simple root matri
es one �nds:

Y

1

=

2

3

(2H

12

+H

23

)

Y

2

=

2

3

(3H

23

+ 2H

12

+H

31

): (22)

So following in Fig. 1 the steps along the weight latti
e to arrive at Y

1

one gets the highest

weight of the triplet representation. Similarly Y

2

is the highest weight of the anti-triplet

representation. In Appendix B we formulate this relationship for general SU(N) and the

generators of its 
enter-group Z(N). Not only are the N � 1 Y matri
es an alternative basis

for the Cartan algebra. More important for us, they are a measure for the strength of the

Wilson loops needed to observe the monopoles (see se
tion 4.2) .

For any general 
lassi
al Lie group it is the \dual" group [3℄ built from the dual Lie al-

gebra [11℄ that gives the possible multiplets. The pre
ise dual group with the appropriate


enter-group follows from the same 
onsiderations as for the SU(N) 
ase: the larger the orig-

inal, ele
tri
, gauge group, the more stringent the Dira
 
ondition be
omes and a smaller

magneti
 group follows. In mathemati
al terms it is the 
onne
tivity of the group and the

ensuing Z(N) fa
tors.

In an earlier paper [19℄ pre
isely these hypotheti
al monopoles were identi�ed with our

lumps in 3 dimensions. As we supposed the lumps { now monopoles { to be dilute we 
an

9




ompute their e�e
t on Wilson loops. For SU(N) groups the 
hoi
e of adjoint representation

is unquestionably favoured numeri
ally, as simulated by k-loops for N = 4; 6 by Teper [25℄

and for N = 8 in this paper.

A 
omment on the nature of the magneti
 group is in order. The monopoles, as bound states

of magneti
 gluons, will transform inside a multiplet under some perhaps very 
ompli
ated

fun
tion of the original ve
tor potentials. So the global magneti
 SU(N) group will not 
oin
ide

with the original global 
olour group. This ties in with a phenomenon dis
overed by the authors

in Ref. [8℄: global 
olour is not de�ned on the quantized version of the non-Abelian monopoles,

due to the long range nature of the 
olour magneti
 �elds of the monopole

2

.

3.1 Monopoles as a dilute gas: the broken symmetry 
ase in the

Georgi-Glashow model

At this stage it is useful to put our model into a well-known 
ontext, the Georgi-Glashow

model, with gauge group SU(2) in D = 3 with gauge 
oupling g

3

. A

ording to our hypothesis

we have a dilute gas of iso-triplet monopoles whi
h des
ribes the behaviour of Wilson loops.

Their density is proportional to g

6

3

, the only s
ale before breaking the symmetry. And their

s
reening mass is proportional to g

2

3

. Adding an adjoint Higgs s
alar with a \heavy" VEV v,

i.e. v � g

3

, will give us the broken phase with heavy 't Hooft-Polyakov monopoles:

SO(3) ! U(1): (23)

This model was studied by semi-
lassi
al methods in a seminal paper by Polyakov [14℄, in

the limit that g

3

=v is small. In that limit the diluteness of the monopoles is a fa
t. The Wilson

loop tension � is exponentially small, like the density of the monopoles and the s
reening mass.

The exponent is on the order of exp�
v=g

3

, 
 some numeri
al 
onstant. The result for the

string tension 
an be expressed in terms of the density of monopoles n

M

and the magneti


s
reening mass M by 
ombining:

� =

g

2

3

M

2�

2

"

1�

�M

2g

2

3

+ : : :

#

; and (24)

n

M

=

g

2

3

M

2

32�

2

"

1 +O

 

M

g

2

3

!#

(25)

into

� =

16n

M

M

"

1 +O

 

M

g

2

3

!#

(26)

The 
orre
tion to the tension is due to the authors in Ref. [15℄.

Eqs. 25 and 26 are typi
al for weak 
oupling plasmas. The dimensionless ratio of tension

over s
reening is proportional to the number of monopoles inside a sphere of radius the s
reening

length:

�

M

2

= 16

n

M

M

3

"

1 +O

 

M

g

2

3

!#

: (27)

2

In the work by Bais and 
ollaborators [6℄ an interesting interpretation of the magneti
 group is proposed

but its dis
ussion falls beyond the s
ope of this paper.
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From Eq. 25, this number is seen to be large:

�

M

2

= 16

n

M

M

3

=

g

2

3

(2�

2

)M

� 1: (28)

In our model for the strongly intera
ting symmetri
 phase (see Eq. 6 and below), this

very same ratio is small! Physi
ally, what happens is that the strong 
oupling 
reates a

bound state of the original semi-
lassi
al monopoles within the magneti
 s
reening radius.

And indeed, as stated before, Monte-Carlo simulations in the symmetri
 phase give for the

ratio

�

M

2

0.046(2) [24℄.

3.2 Broken symmetry: SU(3)/Z(3) and higher groups

Our next example is the gauge group SU(3)=Z(3) broken by the adjoint to U(1)

2

or to SU(2)�

U(1)=Z(2).

The �rst 
ase is shown in Fig. 2. Every point represents an 't Hooft-Polyakov monopole in

the 
orresponding SU(2) subgroup, as in Eq. 12. The Dira
 
ondition 
arries integers whi
h

are the topologi
al winding numbers of the Higgs �eld [6℄. So this 
ase does not go beyond

what we already knew. As we wil see in the sequel this phase is not realized in simulations, so

we will not 
onsider this phase anymore.

Φ0

1γ

γ2 γ

Φ0

2

1γ

(a) (b)

Figure 2: The latti
e of 
harges allowed by the quantisation 
ondition, spanned by the simple 
oroots. In this

�gure also the dire
tion of the Higgs �eld �

0

in the Cartan subalgebra is indi
ated. In (a) the stable 
harges

for an arbitrary non-degenerate orientation of the Higgs �eld are indi
ated by bla
k dots. In that 
ase the

residual gauge group is U (1)�U (1) and all allowed 
harges 
orrespond to a winding number. In (b) the Higgs

�eld is degenerate and leaves the non-Abelian group U (2) unbroken. Now only one 
omponent of the magneti



harge is the winding number, and in ea
h topologi
al se
tor only the smallest total 
harge is 
onserved. The

points symmetri
 with respe
t to the Higgs �eld are 
onjugate through the unbroken group.

More interesting is the breaking pattern with unbroken group U(2). This model is very

often used [10℄ for investigations for non-Abelian monopoles. For momenta p � v the broken

phase is perturbative, for momenta mu
h smaller than g

2

3

the 
oupling be
omes strong. We

expe
t s
reening at those distan
es, in
luding s
reening of monopoles.

If we try to 
onstru
t an 't Hooft-Polyakov monopole in the unbroken SU(2) group along

~


1

in Fig. 2, we will fail be
ause the VEV is la
king in that subgroup. Along the root ~


2

the

VEV is non-zero, so along that dire
tion the integers still 
orrespond to a winding number.

Similarly along the dire
tion ~


1

+ ~


2

, obtained by re
e
tion of ~


2

w.r.t. the dire
tion of the

11
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Figure 3: The phase diagram of the 3d SU(3) + adjoint Higgs theory [45℄. The open symbols

are results from the simulations, and the �lled 
ir
le is the perturbative result [44, 45℄.

Higgs breaking �

0

. Their long range magneti
 �elds are transforming into ea
h other by the

unbroken gauge transformations. When trying to quantize these monopoles this property poses

a problem [8℄ of 
onsisten
y, whi
h is related to the fa
t that for the quantized solutions we

expe
t s
reening. The long range �eld is unstable.

The mass of these obje
ts is growing with the size of the VEV in the 
lassi
al approximation.

In what follows we will assume that this property survives the non-perturbative quantization.

In terms of our model, the dilute gas of light o
tet monopoles in the symmetri
 phase will after

breaking leave the expe
ted isotriplet in the unbroken SU(2), and two heavy iso-doublets. The

iso-triplet stays light after breaking, with a density g

6

3

. The iso-doublets are the monopoles we

des
ribed above and live at the latti
e points ~


2

and ~


1

+~


2

in Fig. 2. Due to their large mass

they have an exponentially small density like the 't Hooft-Polyakov monopoles in the previous

example. Note that in both examples the unbroken group de�nes a neutral singlet, that was

present before breaking, but has disappeared in the transition between the two phases.

For illustration we show in Fig. 3 the phase diagram of the ele
trostati
 theory given by

the a
tion in Eq. 2 for SU(3) by numeri
al simulation [45℄. The relevant variables are the

dimensionless 
ombinations x and xy dis
ussed in se
tion 2.1. There is a �rst order transition

for small x, that is semi-
lassi
ally 
al
ulable [44, 45℄. It marks the border of the region where

SU(3) symmetry is broken to SU(2)�U(1) and where the global R symmetry is spontaneously

broken [44℄. For larger x the transition be
omes se
ond order. Above the border there is the

unbroken phase. This unbroken phase 
an be smoothly a

essed from the broken phase by the

dotted, se
ond order transition line. It means that putative monopoles in the unbroken phases

are smooth deformations of the monopoles in the broken phase.
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Note the absen
e of a phase where U(1) � U(1) is unbroken but all other generators are

broken [45℄. In general, for SU(N), the adjoint Higgs does admit for breakings of the type

SU(k)� SU(N � k)�U(1) [46℄.

This phase diagram not only relates the putative monopoles in the unbroken phase to their

more familiar analogues in the broken phase [47℄. In order to dete
t the monopoles one needs

an operator that measures their 
ux. This operator is the Stokes version of the spatial Wilson

loop, and is intimately related to a similar operator for the broken phase. This is the subje
t

of the next se
tion.

4 Flux representation for spatial 't Hooft and Wilson

loops

The monopoles have an e�e
t on spatial Wilson loops, be
ause the loops re
ord magneti
 
ux.

The traditional representation of the loop as a line integral is not appropriate to quantify the

e�e
t, and we have to �nd a 
ux representation for the loop. For a loop in the U(1) 
ase we

have Stokes' theorem:

exp ig

I

L

d

~

l �

~

A = exp ig

Z

d

~

S �

~

B for U(1). (29)

Now the non-Abelian 
ase. For a 
ertain 
lass of irredu
ible representations of SU(N)

one �nds a simple and useful generalization of the Abelian 
ase. It is due to Diakonov and

Petrov [49℄. If R is any one of the fully anti-symmetri
 irredu
ible representations given by the

one 
olumn Young tableau with k entries it has highest weight Y

k

(see appendix A; re
all the

property exp (i2�Y

k

) = e

i2�k=N

). Then one �nds for the Wilson loop W

R

(L):

TrP exp ig

I

L

d

~

l �

~

A

R

=

Z

D
 exp ig

Z

d

~

S � Tr

n


Y

k




y

~

B

o

: (30)

The integration is over regular gauge transforms 
.

In this se
tion the physi
al ideas behind this Stokes law will be expounded. There are many

papers [50℄ 
on
erning its derivation, but we have not seen any exploring the signi�
an
e of the


lass of gauge transformations involved, nor the spe
ial role played by the fully anti-symmetri


irredu
ible representations. First we will make the Stokes theorem plausible by re
alling some

known features [41℄ of 
olour ele
tri
 analogue of the spatial Wilson loop: the spatial 't Hooft

loop.

4.1 Flux representation of the spatial 't Hooft loop

Colour ele
tri
 
ux is 
on�ned inside glueballs. It is only above the 
riti
al temperature that

it be
omes visible through the area law obeyed by the thermal average of the spatial 't Hooft

loop.

The `t Hooft loop is de�ned as a loop of a Dira
 vortex, with strength z

k

= e

i2�k=N

in the


enter group. The vortex is 
reated by a gauge transformation 


k

with a dis
ontinuity z

k

,
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when 
ir
umnavigating the vortex. The lo
us of the dis
ontinuity is a surfa
e S spanned by

the vortex L.

We take the simplest gauge transformation that does have a dis
ontinuity of this type.

Gauge transformations are generated by Gauss' operator

~

D �

~

E. If �(S) makes a unit jump

when going through the surfa
e in the dire
tion of the normal ~n, then

V

k

(L) = exp i

4�

g

Z

d~x Tr

n

Y

k

(

~

E �

~

D)�(S)

o

(31)

has the required dis
ontinuity.

On physi
al states, only the gradient in the 
ovariant derivative

~

D =

~

� + ig[

~

A; 
ounts [41℄.

The gluon 
harge gf

ab


~

A:

~

E is 
ontinuous through the surfa
e. So the spatial 't Hooft loop

be
omes:

V

k

(L) = exp i

4�

g

Z

d

~

S �Tr

n

Y

k

~

E

o

(on physi
al states). (32)

This operator does not look gauge invariant, although on the physi
al subspa
e it is. In order

to bring it in a manifestly gauge-invariant form, we multiply it on the left with a regular gauge

transformation 
, and on the right with 


y

; a matrix element of V

k

between two physi
al states

is not a�e
ted by this operation. After integration over all regular transformations,

V

k

(L) =

Z

D
 exp i

4�

g

Z

d

~

S � Tr

n


Y

k




y

~

E

o

(on physi
al states). (33)

is manifestly gauge-invariant.

It seems plausible to obtain its magneti
 analogue by repla
ing

~

E by

~

B and the 
oupling

� � g

2

=4� by �

�1

. That gives the formula for the Wilson loop, Eq. 30.

4.2 The 
ux representation for the Wilson loop

The plausibility argument from the pre
eding se
tion gives a formula whi
h is 
onsistent with

the expression given in Ref. [49℄ for Wilson loop in any representation R, with highest weight

H

R

. Let 
 be any gauge transformation that is periodi
 on the loop. Then, with

~

r


y

=

(

~

� � ig

~

A)


y

and

~

r
 =

~

�
 + ig


~

A:

W

R

(L) =

Z

D
 exp ig

Z

d

~

S � Tr

(

[H

R

 




~

B


y

�

1

ig

~

r
�

~

r


y

!)

: (34)

This result, proved in Appendix B, di�ers from that of the plausibility argument through the

presen
e of the se
ond term. This term redu
es in the SU(2) 
ase to the familiar 't Hooft

sour
e term. If we limit ourselves to regular gauge transformations, this se
ond term would

drop out in the equations of motion.

In the light of this we feel it is justi�ed to make the following assumption: in our model with

a dilute monopole gas the 
ontribution of the se
ond term is negligible. A se
ond simpli�
ation

o

urs when we are only interested in its (thermal) expe
tation value. This is be
ause in this


ase W

R

a
ts on the left and on the right only on physi
al states , so the e�e
t of the regular

gauge transforms 
 is undone.
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There is a further 
omment related to this Stokes formula . It is derived under the assump-

tion (see Appendix B) that it is regulated by the SU(N) asymmetri
 top [49℄. The question is

whether the pure Yang-Mills theory average 
an be provided with su
h a regulator. For N = 2

and in three dimensions the answer is aÆrmative [41℄ by adding an adjoint Higgs system and

letting the VEV go to zero, followed by de
oupling the Higgs in the in�nite mass limit. The

VEV is the moment of inertia of the symmetri
 top. We 
an not a

ommodate the extra

parameter of the asymmetri
 top, and this is the reason that the Stokes formula is then only

valid for the fully antisymmetri
 irredu
ible representations with highest weight H

R

= Y

k

. The

reason for this is that the se
ond order Casimir operator takes its minimal value { with �xed

N-ality k { in the fully antisymmetri
 representation.

For general N the answer is analogous, but Nature realizes only a limited set of Higgs

phases with only one adjoint Higgs �eld. They are limited to breakings of the type where

SU(k)� SU(N � k)�U(1) is still unbroken, k � [N=2℄ [46℄. That implies on
e more that the

proof of the Stokes formula is only valid for those highest weights that have this symmetry,

i.e. of the form H

R

= lY

k

, l a positive integer. For l = 1 this is the weight of the totally

antisymmetri
 Young tableaux with k boxes. Appendix B shows that l > 1 is ex
luded. This

ends our dis
ussion of Eq. 30.

4.3 Ele
tri
 
ux loop and its expe
tation value

Let us return to the ele
tri
 
ux loop, Eq. 32. In this 
ase the 
 integration drops out when one

a
ts with V

k

(L) on a physi
al state, be
ause the only e�e
t of V

k

(L) is to multiply interse
ting

Wilson loops in the physi
al state with a 
enter-group fa
tor (see [41℄ for more details):

exp(i2�
Y

k




y

) = 
 exp(i2�Y

k

) 


y

= exp(ik2�=N): (35)

The thermal expe
tation value of the 't Hooft loop has been 
al
ulated analyti
ally at

high temperature in powers of g(T ), in
luding g(T )

3

. This is possible be
ause the e�e
tive

potential is in low orders built up by hard modes (O(T)) and soft modes (O(gT)). The ultra-

soft magneti
 modes 
ome in at higher orders. This potential has a Z(N) symmetry, and the

thermal expe
tation value of the loop tension,

hV

k

(L)i = exp (��

k

(T )A(L)) ; (36)

is obtained from the tunneling between two va
ua, one 
orresponding to k = 0 and one 
orre-

sponding to k. One �nds then [20℄ that:

�

k

(T ) = �

1

(T )

k(N � k)

(N � 1)

; (37)

up and in
luding two loop order. Con
retely, in one loop order the value of �

1

(T ) is [18℄:

�

1

(T ) =

4�

2

3

p

3g

2

N

(N � 1)T

2

: (38)

In three loop the above Casimir s
aling is slightly invalidated, as it is found to be in latti
e

simulations [27, 28℄.
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4.4 Dilute gas approximation for both ele
tri
 and magneti
 
ux

loops

From the formulae in the pre
eding subse
tion one 
an easily �nd the behaviour of the tensions

in terms of k, on
e one assumes a dilute gas of gluons for the ele
tri
 loop and a dilute gas

of monopoles for the magneti
 loop at high temperature. A dilute gas of gluons at high

temperature will 
ertainly disorder the ele
tri
 loop. The reason is that the 
ux from one

single spe
ies of gluons is going through the loop only when within s
reening distan
e l

E

from

the loop:

l

E

�

1

m

D

=

s

3

g

2

N

1

T

: (39)

Thus all the 
ux through the loop 
an only 
ome from the gluon being in a slab of thi
kness

l

E

and area A(L) of the loop. Thus the 
ux is approximated by a theta-fun
tion in the distan
e

d from the loop.

The total 
ux from a 
harged gluon is �1, as follows from the adjoint representation of Y

k

.

Thus the height of the theta-fun
tion is �

1

2

, be
ause half of the 
ux is lost on the loop. Its

e�e
t on the loop is that it pi
ks up a fa
tor

V

k

(L) = exp

�

i2�

�

�

1

2

��

= �1: (40)

Note that not the value of the 
harge, but only the multipli
ity of the 
harge depends on k.

This multipli
ity is k(N � k) for ea
h value.

Now the distribution fun
tion of say ` gluons of a given 
harged spe
ies in su
h a slab

is peaked around

�

`, the mean number of gluons in the box. Its width should, a

ording to

thermodynami
s, be proportional to

�

`, like e.g. the Poisson distribution:

P (`) =

e

�

�

`

`!

(

�

`)

`

: (41)

The average of the loop is therefore:

hV

k

(L)ij

one spe
ies

=

X

`

P (`)(�1)

`

= e

�2

�

`

: (42)

Together with Eq. 36 this means that a single 
harged gluon spe
ies will determine the thermal

average of the loop to be an area law:

A(L)�

k

j

one spe
ies

= 2

�

` = 2A(L)l

E

n(T ): (43)

Note the absen
e of k dependen
e in the out
ome! What 
ounts is that the 
harge is non-zero,

but its sign is irrelevant

3

.

3

The reader might be alarmed by our 
avalier treatment of the s
reening of the 
ux. The 
ux �(d) that

a gluon at distan
e d shines through the loop is exponential in d, not a theta-fun
tion! One 
an 
orre
t for

this by dividing the spa
e above and below the loop in parallel slabs of in�nitesimal thi
kness. This means the

summand in Eq. 42 is repla
ed by an integral

R

d(d) exp[1� 
osf2��(d)g℄. As a result the fa
tor 2 in Eq. 43

in
reases by a fa
tor 1.64282....
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Thus the only way the k dependen
e 
omes in is when we take all the 
harged gluons into

a

ount. This number, the multipli
ity with respe
t to the 
harge Y

k

, is for the adjoint gluon

multiplet equal to 2k(N � k). It is the number of non-zero entries in the diagonal adjoint

representation of Y

k

. We supposed the gluons to be independent; it follows that

�

k

j

all spe
ies

= 2

�

` � 2k(N � k) = 4l

E

n(T ) k(N � k): (44)

Thus the k-loop is proportional to the multipli
ity of 
harged gluons with respe
t to the 
harge

Y

k

. Note also that equation 39, together with the density of the gluons being � T

3

, makes the

out
ome of the one spe
ies 
al
ulation parametri
ally identi
al to the analyti
 result in Eq. 38.

The 
al
ulation of the magneti
 loop is identi
al. The unit of magneti
 
harge is 4�=g

instead of g, but this is 
an
eled by 
hanging from ele
tri
 to magneti
 loop. It is useful to

realize that the surfa
e integral

R

d

~

S �

~

B for a single magneti
 quasiparti
le is given by

1

2

B,

where B is the magneti
 
harge matrix satisfying the Dira
 
ondition (see se
tion 3); this


ondition thus dire
tly leads to the phase � ne
essary to disorder the Wilson loop, for any

member of the adjoint representation. So the thermal expe
tation for the magneti
 k-tension

is, as for its ele
tri
 
ounterpart:

�

k

� l

M

n

M

(T ) k(N � k): (45)

Though super�
ially very alike, there is an important di�eren
e between the two tensions in

units of the respe
tive s
reening lengths. The ele
tri
 tension in those units be
omes

l

2

E

�

k

� l

3

E

n: (46)

On the right hand side we have a large number, O(g

�3

(T )), for high T. This is the plasma


ondition. It says that an ele
tri
 s
reening volume 
ontains a large number of almost free

gluons. And 
orre
tions are in terms of inverse fra
tional powers of this ratio, as dis
ussed

already in se
tion 3.1. On the other hand the Wilson k-tension equals:

l

2

M

�

k

� l

3

M

n

M

: (47)

Both the magneti
 s
reening and the magneti
 density are O(g

2

T ). So in the ratio the 
oupling

drops out. Latti
e data tell us the l.h.s. is small for all N . The 
orre
tions are dis
ussed in

se
tion 4.6.

For large N the dimensionless quantity n

M

l

3

M

is of order 1=N . This is so be
ause the

magneti
 s
reening length l

M


an be shown to be given by the 0

++

mass of the Hamiltonian of

2+1 dimensional Yang-Mills theory, and therefore behaves parametri
ally like 1=g

2

NT . The

density of a single monopole spe
ies n

M

should be

1

N

(g

2

NT )

3

, in order to re
over a tension of

O(1).

4.5 Monopole multiplets other than the adjoint

Now we use a general multiplet R 
arrying a unitary representation D

R

of the magneti
 group

as the magneti
 quasi-parti
les in our model [21℄. Its dimension is d

R

. The Lie- representative
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of the 
harge Y

k

is written as (Y

k

)

R

and the 
orresponding group element as D

R

(Y

k

). Of 
ourse

D

R

(Y

k

) = exp i(Y

k

)

R

As in the previous subse
tion, the quasi-parti
le model produ
es for a given member r

(r = 1; 2; : : : ; d

R

) of the multiplet R an area law for the k-loop with 
harge Y

k

, Eq. 30:

W

k

(L)j

r

= exp

h

�(1� Re D

R

(Y

k

)

r;r

)

�

`

i

: (48)

The k-dependen
e of the tension due to all members of the multiplet is then proportional to:

�

k

= [d

R

� ReTr fD

R

(Y

k

)

R

g = d

R

� ReTr fexp(i�(Y

k

)

R

)g℄ l

M

n

M

: (49)

This result is invariant under a gauge rotation,

Y

k

! 
Y

k




y

(50)

as Eq. 30 suggests. And it redu
es to 2k(N�k) for the 
ase where R is the adjoint. The reason

is that (Y

k

)

adjoint

has either 0 or �1 on the diagonal as argued already in the previous se
tion.

Hen
e the formula 
ounts the multipli
ity of 
harged members of the adjoint multiplet.

For the spinor representation one �nds from Eq. 49 the result quoted in Ref. [21℄:

�

k

� [N � k 
os (((N � k)�=N))� (N � k) 
os (k�=N))℄ : (51)

Both adjoint and spinor multiplets are 
ompared to the latti
e data in the se
tion on data

analysis.

4.6 Corre
tions

There are two sour
es of 
orre
tions to the Casimir s
aling formula. One is the diluteness, and

the other are the e�e
ts of Bose-Einstein statisti
s.

� The diluteness Æ = l

3

M

n

M

= �

1

=m

2

M

is small (� 0:05, as dis
ussed in se
tion 2.2) but

produ
es 
orre
tions. The use of 
lassi
al Boltzmann statisti
s is allowed at large T, sin
e

the thermal de Broglie wave length 1=T is mu
h smaller than the inter-parti
le distan
e

1=g

(

T )T .

� As we des
end in temperature the diluteness stays 
onstant, sin
e we know from the

results by Laine and S
hroeder [38℄ that magneti
 quantities are determined to a very

good approximation through all of the plasma phase by their value at very large T in

3d Yang-Mills theory, and the running of the 
oupling due to hard radiative 
orre
tions.

Below T




�

1

is virtually 
onstant [30℄. Unfortunately the behaviour of the magneti
 mass

is not known in the 
old phase, but we know its value at T = 0 leading to a diluteness

� 0:09( see se
tion 2.2), whi
h suggests that it is small at all temperatures.

� What 
hanges as we go down in T is the ratio of thermal wave length to inter-parti
le

distan
e. So Bose-Einstein statisti
s ki
ks in at temperatures on the order of 4T




, where

g

2

(T ) = O(1). It seems natural that the transition is where Bose-Einstein 
ondensation

starts.

In prin
iple the e�e
ts due to the small but non-zero diluteness 
an be 
omputed. Comparison

to latti
e data [30℄ in the de
on�ned phase shows that they should be small, on the order of a

few per
ent at most.
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5 On strings in higher representations and

1

N


orre
tions

We now leave the dis
ussion of the adjoint-monopole-gas model and dis
uss the properties of

k-strings from the point of view of the large-N expansion.

Standard arguments on large N SU(N) gauge theory [51, 52℄, based on the planarity of

Feynman diagrams and the (assumed) 
on�nement of 
olor, imply that gauge invariant states

have masses of order N

0

+ N

�2

, with a width of order N

�2

. Also, no bound state of 
olor

singlet 
onstituents survives the large N limit: the theory is expe
ted to be a theory of free

`hadrons'.

It is interesting to 
onsider, at large but �nite number of 
olors, pre
isely those states

whose wavefun
tion 
ontains a signi�
ant 
omponent whi
h is a dire
t produ
t of 
olor singlet

pie
es. Phenomenology provides a number of potential examples. A 
lassi
 example would

be the deuteron, a very loosely bound state lying only a few MeV under the nu
leon-nu
leon

threshold. Another interesting though less �rmly established 
ase is the f

0

(980) meson, whose

wavefun
tion has been dis
ussed in terms of a mixture of a kaon-kaon mole
ule and a four-

quark state ([55℄ and ref. therein). Again, the state is only a few MeV under the two-kaon

threshold.

At a more theoreti
al level, there are examples in the pure SU(N) gauge theory in three and

four dimensions. Consider the theory de�ned on a �nite (but large: L� 1=T




) hypertorus. In

addition to glueballs, the spe
trum 
ontains `torelon' states (whose mass we denote by m

k

(L))

whi
h transform non-trivially under the 
entre symmetry Z

N

. The se
tors of di�erent N -ality

are prote
ted by this global symmetry. Thus for N � 4, one may ask whether two fundamental

torelons 
an form a bound state lying under the threshold 2m

k=1

(L). That this is indeed the


ase was �rst numeri
ally demonstrated from �rst prin
iples in the work [25℄. Further, at large

L the states are string-like and one 
an ask what the ratios of their string tensions are (we

may use the fundamental `k = 1' string tension as the referen
e). An alternative formulation

of the problem would 
onsider the strings to be open and atta
hed to stati
 sour
es in the

appropriate representation [53℄.

For simpli
ity, we now fo
us on the k = 2 se
tor; for N � 4, the s
reening of the string is

forbidden by the 
entre symmetry. In our view, the �rst question to settle in the 
ontext of

the large-N expansion is, `What is the 1=N power of the leading 
orre
tion to the planar limit

result �

2

= 2�

1

?'. Sin
e m

2

(L) lies under the threshold 2m

k=1

(L) at all L [25℄, the question

arises whether one should think of the k = 2 torelon as a weakly bound state of two k = 1

torelons, or if the 
olour stru
ture gets 
ompletely rearranged into a single `unfa
torisable' 
olor

singlet pie
e. In the nu
leon-nu
leon system, the analogous question is whether the deuteron

is primarily a bound state of two nu
leons, or a 6-quark state. In the �rst 
ase, 
onsidered

in [39℄, the long-distan
e attra
tive for
e between the two k = 1 strings will be driven by the

ex
hange of the lightest (0

++

) glueball, while the short distan
e for
e is essentially given by

two-gluon ex
hange. Both e�e
ts are indeed [39℄ suppressed by 1=N

2

with respe
t to the free

propagation of two k = 1 strings. Regarding the se
ond 
on�guration, the simplest 
lassi
al

string 
on�guration is that of a single string winding twi
e around a 
y
le of the hypertorus.

At large N , the energy of su
h a 
on�guration is expe
ted to approa
h threshold from below
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at a 1=N

2

rate.

At �nite N and asymptoti
ally large L however, we are in presen
e of two almost degenerate


on�gurations lying near threshold. It is therefore imperative to 
onsider the mixing e�e
ts

between these two 
on�gurations. To keep the dis
ussion as simple as possible, we may keep the

transverse spatial dimensions L

?

�nite, so as to separate two-torelon `s
attering states' from

the weakly bound states we dis
uss by a �nite, �xed gap. As N is in
reased, this transverse

volume 
an be in
reased as well without a�e
ting the validity of our treatment of the k = 2

se
tor as a 2-level system.

We suppose, following [34℄, that the Hamiltonian of the SU(N) gauge theory 
an be ex-

panded in inverse powers of 1=N :

H(L;N) =

1

X

k=0

H

k

(L)

N

k

: (52)

The existen
e of the t'Hooft limit implies that H

o

(L) has the same eigenvalues as the Hamil-

tonian of the SU(1) theory in the same spatial volume. We 
onsider now the k = 2 
ux tubes

winding around a 
y
le of the torus as a quantum me
hani
al two-state system, as was done

in [34℄ for the 
ase of the s
alar glueball { adjoint Polyakov loop system in intermediate volume.

Consider on the one hand the state made of two k = 1 non-intera
ting 
losed fundamental

strings, and on the other a single fundamental string with winding number 2; in this basis H

o

reads H

o

= 2m

k=1

I

2�2

.

The `perturbation' des
ribes the deviations from the planar limit. On the diagonal, the


orre
tions are O(1=N

2

). Indeed, the attra
tive potential between two fundamental torelons is

suppressed by the produ
t of two 3-verti
es ea
h of whi
h 
arries a 1=N fa
tor. On the other

hand, the amplitude of the transition from one of our basis states to the other only 
ontains

one su
h vertex, and therefore the o�-diagonal element of our 2 � 2 hamiltonian is O(1=N).

The perturbation hamiltonian in our basis reads:

�H =

 

�

�

h

1

=N

2

�

h=N

�

h=N �

�

h

2

=N

2

!

(53)

with

�

h

1

,

�

h

2

and

�

h of order N

0

. It is 
lear that to leading order in 1=N , the resulting energy

eigenstates are now the symmetri
 and anti-symmetri
 linear 
ombinations of our basis states.

The asso
iated energies are E

A

= 2m

k=1

�

�

h

N

+ O(1=N

2

) and E

S

= 2m

k=1

+

�

h

N

+ O(1=N

2

).

We thus rea
hed the perhaps surprising 
on
lusion that the 
orre
tions to the mass of the

lightest k = 2 string are of order 1=N . There is one state below threshold and one above,

situated symmetri
ally about the threshold energy, up to O(1=N) 
orre
tions. We note that

�

h

(as well as the

�

h

i

) is expe
ted to grow proportionally to L at large L, sin
e the breaking of the

string 
an o

ur at any point along the string, so that the ratio in the torelon masses dire
tly

translates into the ratio of the string tensions.

A 
aveat parti
ularly relevant to Monte-Carlo simulations is that in all the 
onsiderations

above we have supposed the strings to be long enough to be able to identify the ratios of string

tensions ratios with the ratio of torelon masses. Sin
e the 1=L string 
orre
tion [17℄ lowers the

energy of the string, it indu
es a repulsive for
e between two fundamental torelons at �nite
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L [34℄. Sin
e the binding energy of the strings redu
es at large N , L must be in
reased so

that the 
ondition

�

1

L

2

� N (54)

is satis�ed to ensure that the ratio of torelon loops yields the 
orre
t N -dependen
e of the

string tension ratios. If the large N limit is taken at �nite L, the ratio of k = 2 to k = 1

torelon masses will approa
h 2 with 1=N

2


orre
tions, be
ause a mixing amplitude only a�e
ts

the energy spe
trum at leading order if the `unperturbed' states are degenerate (to that order).

And indeed, the two 
lassi
al-string 
on�gurations we took as unperturbed states have di�erent

1=L 
orre
tions: if 


1

is the L�us
her 
oeÆ
ient of the fundamental string, the dire
t-produ
t


on�guration of two k = 1 strings has a 2


1

=L 
orre
tion, while the fundamental string with

winding number 2 admits a 


1

=2L string 
orre
tion. As all latti
e simulations so far [25, 26, 29℄,

ours are done in the regime N < �

1

L

2

< N

2

. The se
ond inequality implies that the energy

gap (

�

h

1

�

�

h

2

)=N

2

is parametri
ally smaller than the string vibrational ex
itations.

Eq. 54 however also implies that the vibrational ex
itations of the strings are separated by

4�=L gaps whi
h are parametri
ally mu
h smaller than the mixing energy

�

h=N . We have thus

negle
ted the matrix elements of the Hamiltonian H

1

between the two states that we fo
used

on and the vibrationnally ex
ited states, sin
e we redu
ed the diagonalisation problem from

the full Hilbert spa
e to the spa
e spanned by these two states. Although the negle
ted matrix

elements 
an modify the splitting pattern around the threshold, the mixing between the string

ground states will be enhan
ed relatively to the other mixings if the 
ondition �

1

L

2

� N

2

holds. In any 
ase, the parametri
 size of these matrix elements is �L=N and so we must

expe
t the 
orre
tions to the k = 2 string tension to be of that order.

In summary, the predi
tions of the two-state mixing model are:

1. the energy eigenstates are the anti-symmetri
 and the symmetri
 linear 
ombinations of

the dire
t-produ
t 
on�guration of two k = 1 strings and the fundamental string with

winding number 2.

2. they are split symmetri
ally around the threshold energy 2m

1

(up to O(1=N) 
orre
tions).

3. the splitting energy itself is of order 1=N .

5.1 Stati
 potentials

If one 
onsiders open strings atta
hed to stati
 `quarks', the argument takes a slightly di�erent

form. The relevant quantities here are the stati
 potentials between 
olour sour
es in irredu
ible

representations of SU(N).

The k=1 string binds a quark and a distant antiquark together. Similarly the k=2 
on�gu-

ration 
an be viewed as two (weakly intera
ting) strings ea
h joining one of the quarks to one

of the antiquarks. If we number the quarks by 1 and 2, and the antiquarks by

�

1 and

�

2, then

there are two 
lassi
al string 
on�gurations whi
h are exa
tly degenerate: the 
on�guration

where 1 is atta
hed by a string to

�

1 and 2 is atta
hed to

�

2, and the other where 1 is atta
hed

to

�

2 and 2 to

�

1. However, the intera
tion between the strings 
an take one 
on�guration into

the other. Therefore a splitting o

urs between the symmetri
 and anti-symmetri
 linear 
om-

binations, 
orresponding to the stati
 potential splitting between the k = 2 symmetri
 and
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anti-symmetri
 irredu
ible representations of SU(N). There is however general agreement that

s
reening of the stati
 sour
es through virtual gluons implies that the string tension obtained

in either representation at large enough separations is the same; although it 
an be diÆ
ult to

demonstrate this in Monte-Carlo simulations.

5.2 A 
aveat on the impli
ations of fa
torisation at large N

The standard way to extra
t the stati
 potential for fundamental 
harges, namely by measuring

the expe
tation value of a re
tangular Wilson loop of size R�T , T � R, 
an be generalised to

extra
t it for any representation [53℄. In parti
ular, the simplest way to obtain a representation

of N -ality k = 2 is to take the real part of the square of W (R;T ), the tra
e of the fundamental

Wilson loop. At �nite R; T , the fa
torisation property of gauge invariant operators (see for

instan
e [56℄) then implies that the expe
tation value of this operator is given by

hW (R;T )

2

i = hW (R;T )i

2

(1 +O(1=N

2

)): (fa
torisation) (55)

On the other hand, if we 
onsider small separations R, asymptoti
 freedom implies that the

short-distan
e potential in an irredu
ible representationR is given by C

R

�

s

=R. The symmetri


k = 2 representation has C

R

= C

S

= 2(N +2)C

F

=(N +1), while the k = 2 anti-symmetri
 has

C

A

= 2(N � 2)C

F

=(N � 1). In parti
ular, for the fundamental representation, it is

W (R;T ) = exp

�

�

��T

2R

�

+ O(1=N

2

); R� �

�1=2

: (56)

The operator W

2

(R;T ) belongs to a representation that 
an be redu
ed into the symmetri


and anti-symmetri
. Therefore, if we take the T ! 1 limit, the potential energy of the

anti-symmetri
 representation dominates the expe
tation value of W

2

(R;T ):

lim

T!1

hW

2

(R;T )i / e

�C

A

�

s

CT=R

= hW (R;T )i

2

e

��T

NR

(1 +O(1=N

2

)); R� �

�1=2

: (57)

Thus tree-level perturbation theory 
ontradi
ts the large-N 
ounting rules 
on
erning the lead-

ing 
orre
tions to fa
torisation. The origin of the paradox lies in the straightforward T !1

limit ne
essary to �lter out the ground state. If the 
ontribution from the symmetri
 repre-

sentation is kept, the large N limit of the small-R, large-T Wilson loop hW

2

(R;T )i is given

by

lim

T!1

hW

2

(R;T )i / hW (R;T )i

2


osh

�

��T

NR

�

(1 +O(1=N

2

)); (58)

whi
h, at �xed T , has 1=N

2


orre
tions to the planar limit result.

What have we learnt? The large-N fa
torisation property does not ne
essarily imply that

the lowest energy state of a `meson' made of a stati
 
olour sour
e in a 
ertain representation

and its anti-sour
e has O(1=N

2

) 
orre
tions, be
ause other representations of same N -ality

be
ome degenerate with it in the N ! 1 limit. Sin
e string tensions are extra
ted from the

lowest energy at large R, the same 
aveat applies to them.
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5.3 Strings in open and 
losed form

We �nish with a remark on the relation between di�erent representations of same N -ality and

ex
ited states in the open and the 
losed string se
tors. To that end it is useful to 
onsider the


orrelator of Polyakov loops of length L hP

R

(0)P

�

R

0
(~x)i. This expe
tation value is interpreted

(from the point of view of the transfer matrix along the dimension of size L) as the free

energy of the system in the presen
e of two stati
 
harges in the given representations. When

R = R

0

= N , the fundamental representation, the heavy-heavy bound state 
an a priori be in

the adjoint or the singlet representation (in SU(3): 3 


�

3 = 8 � 1). Now, it is believed that

only bound states in the singlet representation have a �nite free-energy in the 
on�ned phase.

That means that if the heavy 
harges themselves are not in the singlet representation, virtual

gluons will try and s
reen the 
hromoele
tri
 �eld emanating from this 
oloured bound state

until it is a singlet again. Sin
e the gluons are in the adjoint representation, they 
an s
reen

the 
on�gurations of the heavy-quark bound state that are in the adjoint representation, albeit

at a 
ertain energy 
ost. On the other hand they 
annot s
reen a single heavy quark, and the

latter therefore has an in�nite free energy.

Suppose we want to determine the stati
 potential for sour
es in all possible representations

of SU(N) (not ne
essarily irredu
ible) of a given N -ality k and up to a given size. Clearly it

is suÆ
ient to determine the Polyakov loop 
orrelators between the irredu
ible representations

obtained in the de
omposition of the dire
t produ
t representation of k quarks. The question

then arises whether the 
ross-
orrelations (i.e. for R 6= R

0

) between Polyakov loops in these

irredu
ible representations vanish or not. If they do, it implies that the energy eigenstates are

in de�nite irredu
ible representations.

Consider the k = 2 
ase. The dire
t produ
t of two fundamental representations de
ompose

into a symmetri
 and an anti-symmetri
 representation: N 
N = A�S. In the most familiar


ase of SU(3), the anti-symmetri
 representation is nothing but the

�

3 (anti-fundamental):

3
 3 = 6 +

�

3. So we are asking whether hP

S

(0)P

�

A

(~x)i has to vanish. We have 6
 3 = 10� 8,

so that virtual gluons 
an s
reen the adjoint pie
e, thus ensuring that the free energy of

this system is �nite. So in general these 
ross-
orrelations do not vanish. It is easy to see

(using Young tableaux) that in SU(N) the adjoint representation appears exa
tly on
e in the

de
omposition of S 


�

A. However sin
e gluons have to s
reen the heavy-heavy system, the

hP

S

(0)P

�

A

(~x)i are 1=N

2

suppressed at large N . Let us now see what this 
on
lusion implies for

the determination of the k-string tensions in the open and the 
losed string se
tors.

In order to study the lightest open string, one may in prin
iple 
hoose to immerse any one

stati
 sour
e of the relevant N -ality in the system, sin
e for large enough R the sour
es are

expe
ted to be s
reened down to the representation with the smallest string tension. On
e

the linear behaviour of V (R) with the latter slope sets in, the di�eren
es between the stati


potentials in irredu
ible representations of same N -ality are expe
ted to be
ome only weakly

R-dependent (they 
orrespond to `gluelump' masses [54℄). For long enough strings, the lowest

ex
itations of any of these stati
 `mesons' 
orrespond to the lowest ex
itations of that string,

whi
h 
ome in gaps of order 1=R. In short, there is at most one stable open string for a given

N -ality.

It is also possible to interpret the Polyakov loop 
orrelator with a transfer matrix along the

dire
tion ~x. One is then measuring the spe
trum of states of the gauge theory whi
h 
arry a
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winding number with respe
t to a 
y
le of the hypertorus of length L. Of 
ourse, sin
e the

Polyakov loop 
orrelator has a unique asymptoti
 area law, the 
oeÆ
ient in front of the area

de�nes both the string tension in the open as in the 
losed string se
tor. Just as in the open

string 
ase, there 
annot be more than one stable string per N -ality be
ause of the s
reening

by gluons. A simple pi
ture [25℄ is that virtual gluons s
reen the unstable string down to the

stable one and propagate along it until they annihilate around the 
y
le of the torus.

For long enough torelons, the lowest 
losed-string ex
itations are again expe
ted to be

string-like, i.e. 
oming in 1=L gaps. There 
an be resonant states of the torelons (lying above

the k-torelon threshold) whose energies grow linearly with L. It is then natural to asso
iate

them with meta-stable strings.

What we inferred about the 
ross-
orrelations between di�erent irredu
ible representations

above tells us that the energy eigenstates do not in general belong to irredu
ible representations

of SU(N), although the mixing between them is suppressed (at least in the k = 2 
ase) by

1=N

2

.

6 Latti
e simulations

We extra
t string tensions in the three-dimensional SU(8) gauge theory from the masses of

`torelons`, gauge invariant states transforming non-trivially under the Z(N) symmetry of the

a
tion; they wind around one spatial 
y
le of a the hypertorus. These masses are extra
ted

from the exponential de
ay of 
orrelation fun
tions at `large' Eu
lidean time. To enhan
e

the signal-to-noise ratio, we use fuzzing te
hniques in the 
onstru
tion of our operators as

des
ribed in [29℄. The 
orrelation fun
tions are measured on gauge 
on�gurations generated

by a Monte-Carlo program. We use the original Wilson a
tion [59℄. The 
on�guration is

updated by sequen
es of `sweeps'. One sweep 
onsists of updating all links by performing

either a heat-bath (HB) [62℄ or an over-relaxation (OR) [63℄ step on N(N � 1)=2 of its SU(2)

subgroups [61℄. The ratio of HB:OR is 1:3, and we typi
ally perform a sequen
e of 1 HB and

3 OR between measurements. We use a 2-level algorithm [32℄ as des
ribed in [33℄. The latter

referen
e also 
ontains a detailed 
omparison of eÆ
ien
y of the ordinary 1-level and 2-level

algorithms. The number of measurements performed at �xed time-sli
es was 800 at � = 115,

200 at � = 138 and 40 at � = 172:5.

6.1 String 
orre
tions

Consider the Eu
lidean gauge theory on a L�L� T hypertorus, with 
y
les of length L. The

gauge-invariant states with winding number k 6= 0 around one spatial 
y
le of the hypertorus

are 
alled torelons. In the Hamiltonian language they are 
reated by spatial Polyakov-loop

operators with N -ality k; a des
ription of the operators used 
an be found in appendix C. If

the dynami
s of a torelon state of length L

p

� � 1 is des
ribed by an e�e
tive string a
tion,

then the expression for its mass as a fun
tion of its length reads

m(L) = �L

"

1 �




�L

2

+O

�

1

�L

2

�

2

#

; (59)
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where 
 is a numeri
al 
oeÆ
ient of order one whi
h only depends on the universality 
lass

of the string [17℄. Re
ent a

urate numeri
al results [57, 25℄ show that the 
ux-tube in the

fundamental representation belongs to the bosoni
 string 
lass. In the 
ase of a torelon this

implies that


 = 


b

�

(D � 2)�

6

: (60)

In general, if Eq. 59 holds, the ratio of the lightest k-torelon mass to the k = 1 torelon

mass is given by

m

k

m

1

(L) =

�

k

�

1

+

�

k

�

1

L

2

+O

�

1

�

1

L

2

�

2

; �

k

=




1

�

k

�

1

� 


k

(61)

The sign of �

k

is of interest. If the k-string is a weakly bound state of k fundamental strings,

then one would expe
t 


k

= k


1

and therefore �

k

= �(k�

�

k

�

1

)


1

< 0. If one the other hand the


u
tuations of the k fundamental strings are `in phase', then the number of degrees of freedom

on the worldsheet of the k-string is the same as for the fundamental string, hen
e 


k

= 


1

and

�

k

= (

�

k

�

1

� 1)


1

> 0.

At ea
h latti
e spa
ing, we measured the masses of the torelon states of at least three

di�erent lengths. In pra
ti
e, we use two asymmetri
 latti
es of the type L

1

� L

2

� L

t

and

L

2

� L

3

� L

t

. In this way, we obtain three di�erent lengths of the torelon, and we 
an also


he
k for any dependen
e on the transverse size of the latti
e by 
omparing the mass obtained

for the torelon of length L

2

on the two latti
es. The L

i

range from 1.4fm to 3fm, if we set the

s
ale by

p

�

1

= 440MeV. This is longer than what has been normally measured so far, and is

made possible by the use of the two-level algorithm. We use Eq. 59 to obtain the fundamental

string tension by �tting m(L)=L with a linear fun
tion in 1=L

2

. The inter
ept yields the string

tension; the slope gives the L�us
her 
oeÆ
ient. Whether the fun
tional form (59) su

essfully

des
ribes the leading deviation from 
onstant linear mass density is 
ontrolled by the �

2

of the

�t.

Systemati
 errors play an important role in 
omparing the numeri
al data to model pre-

di
tions. In an attempt to get them under 
ontrol we propose two separate ways to extra
t

the ratios of string tensions (we refer to the �rst method as the `un
onstrained' one, and the

se
ond as the `
onstrained' one). In pra
ti
e, having learnt from the pros and 
ontras of both

data analyses, we present our �nal, `edu
ated' analysis in se
tion 6.2.4.

1. Firstly the ratios of torelon masses m

k

(L)=m

1

(L) are �tted a

ording to Eq. 61 with a

linear fun
tion in 1=L

2

, and the inter
ept gives us the ratio

�

k

�

1

. In this way, we need make no

assumption about the values of the 
oeÆ
ients 
 
orresponding to the di�erent representations;

in parti
ular, the di�erent strings 
ould have di�erent 
oeÆ
ients 


k

. Finally, these string ratios

are extrapolated to the 
ontinuum, a! 0, in a standard way.

2. The se
ond analysis will assume that all k-strings belong to the bosoni
 
lass. Conse-

quently, we 
an extra
t the string tension ratio from Eq. 61 using the estimate �

k

'

m

k




1

m

1

� 


k

with 


k

= 


1

= 


b

at every L. The estimates of the ratios obtained at di�erent L are then

simply averaged, as long as they are 
ompatible with ea
hother, to produ
e the estimates of
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the string-tension ratios. If the �

2

of the average is large, we drop the smallest L until an

a

eptable �

2

is rea
hed. The 
ontinuum limit is then taken.

The multi-level algorithm allows us to apply the variational method [60℄ on the 
orrelation

matri
es at t � 2a of Eu
lidean time separation, an improvement over the traditional where

the method is usually unstable unless t = 0, although the method really �nds its justi�
ation

when applied at large t.

Having said that, we note that this work 
onstitutes the �rst attempt to extra
t the k = 4

string tension from Monte-Carlo simulations, and should be regarded as exploratory in that

se
tor. Indeed we found that the variational method [60℄ generally be
ame unstable if all

�ve operators listed in appendix C were fed in the generalised eigenvalue problem. As a


onsequen
e only three or four of the �ve types of measured operators (at the `best' level of

smearing-blo
king) were �nally employed. This and the fa
t that we only have a short range

in Eu
lidean time to identify the mass plateau, due to the rapid fall-o� of the signal, means

that the k = 4 string tension has a signi�
ant systemati
 error atta
hed to it. For the lower

k states, these problems are less a

ute and we are mu
h more 
on�dent about their mass

estimates.

6.2 Data analysis

We give the masses of the lightest spatial torelons of ea
h N -ality in Tab. 1; Tab. 4 gives

estimates of the �rst-ex
ited torelon mass in the k = 2 se
tor, that will be dis
ussed below.

Within the range 
onsidered (L ' 1:9fm, 0:8L � L

?

� 1:2L), we 
ertainly �nd no dependen
e

of the k = 1 torelon masses on the transverse size. There is also no statisti
ally signi�
ant

variation of the lightest higher-k torelon masses. Transverse size 
orre
tions are expe
ted to

be suppressed by a power of 1=L varying 
ontinuously with L

?

, but greater than 3 [58℄.

We show on Fig. 6 the lo
al e�e
tive mass of the 
orrelators in the k = 1 and k = 2

representations. We emphasize that the variational method, whi
h yields (quasi-)orthogonal

states, automati
ally pi
ks out the symmetri
 and anti-symmetri
 linear 
ombinations (within

very small 
u
tuations on the 
oeÆ
ients). We shall 
ome ba
k to this point in the dis
ussion

below, se
tion 6.3.

6.2.1 Setting the s
ale

Although one 
ould 
hoose the (dimensionful) 
oupling to set the s
ale, we prefer to use

p

�

1

for this purpose. We extra
t the fundamental string tension in latti
e units at ea
h of our

three latti
e spa
ings by linearly extrapolating the torelon mass per unit length, m

T

=g

4

L as a

fun
tion of 1=(g

4

L

2

), to in�nite L. This is illustrated by Fig. 4 in the 
ase � �

2N

ag

2

= 138. The

resulting string tensions are given in Tab. 2. We are able to extra
t the 
oeÆ
ient of the 1=R

string 
orre
tion with moderate a

ura
y; it is also given in Tab. 2. The 
oeÆ
ients we obtain

are within 1.3 standard deviations of the bosoni
 string value.

Similarly, we 
an extra
t the k = 2 string tension and its string 
orre
tion 
oeÆ
ient 


2

(Fig. 4, bottom plot). It is 
lear however that the a

ura
y of the data does not allow us to

estimate 


2

.
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6.2.2 Un
onstrained extrapolations

In this analysis, for ea
h latti
e spa
ing we extrapolate the ratios of k-torelon masses to L =1,

assuming 1=(g

2

L)

2


orre
tions. In most 
ases, we have three torelon lengths to extrapolate.

For the intermediate length, where we have two statisti
ally independent and 
ompatible values

obtained at di�erent transverse sizes of the spatial latti
e, the average (weighted by the inverse

square of the statisti
al error) of the two values was taken, whilst keeping the smaller of the two

errors. In the ratio of the k-torelon to the k = 1 torelon mass obtained in the same simulation,

we 
he
ked in several 
ases that the error bars obtained by assuming statisti
al independen
e

do not di�er by more than 10% from the ja
knife values of the error bars; the former are then

used in the following.

We note that the results of these extrapolations done at di�erent latti
e spa
ings are in fa
t


onsistent within error bars (see Tab. 2); it appears that �nite latti
e spa
ing e�e
ts are mu
h

smaller than the �nite string-length e�e
ts in our data set. The �

2

of ea
h of these �ts are

good (smaller than 1), ex
ept for the extrapolation of the �

2

=�

1

at � = 172:5, where �

2

= 3:0.

Sin
e the L = 1 extrapolated value is entirely 
onsistent with that obtained at the other

values of �, we attribute this to a statisti
al 
u
tuation and, perhaps, a slight underestimation

of the error bars (due to the negle
t of the sort of systemati
 errors mentioned at the end of

se
tion 6.1).

Now extrapolating these string tension ratios to the 
ontinuum (assuming O(�

1

a

2

) dis
reti-

sation errors), we obtain �

2

=�

1

= 1:701(77), �

3

=�

1

= 2:31(16) and �

4

=�

1

= 1:96(23). The �

2

of these �ts are smaller than 1. The �nal error bars have blown up due to a somewhat small

level-arm in the 
ontinuum extrapolation.

6.2.3 Constrained analysis

In this independent analysis, we assume the validity of Eq. 59 with 
 given by the bosoni
 string

value Eq. 60 to extra
t the string tensions at �nite L (negle
ting the O(1=L

4

) terms); see the

string tension ratios in Tab. 3, where again statisti
al errors have been added in quadrature.

In most 
ases, these ratios are 
onsistent with being independent of L for L � 1:4fm. The

ex
eptions 
on
ern the k = 2 string at the two smaller latti
e spa
ings (due to the a

ura
y

of the data), where we drop the smallest L in our average. We note that, 
ompared to the

values of the un
onstrained analysis (Tab. 2), the ratios are systemati
ally larger. The ratios

for the k-strings in the 
ontinuum limit now are: �

2

=�

1

= 1:776(33), �

3

=�

1

= 2:210(50) and

�

4

=�

1

= 2:282(63). The �

2

of the �ts are again smaller than 1.

6.2.4 Final `edu
ated' analysis

We 
onsider the pre
eding analysis to be somewhat unsatifa
tory, be
ause it assumes a spe
i�



orre
tion to the k-string energies whi
h we are not presently able to 
on�rm dire
tly (see

Fig. 4), and yet (in the k = 2 
ase) is of the same order of magnitude as the di�eren
e

between two theoreti
al expe
tations we are to 
ompare our data to. Moreover we saw that

the string tension ratios obtained in this way are systemati
ally higher than if we do not make

any assumptions about the L�us
her 
oeÆ
ients, although the trend is at the one-standard-

deviation level.
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The �rst analysis is well-prin
ipled but su�ers from the su

ession of extrapolations to

L =1 and a = 0, most of whi
h are based on three data points only and are therefore rather

unstable. Considering the large-L extrapolation (Fig. 5, in parti
ular the k = 2 plot), we see

that while the 
oarsest latti
e spa
ing data still shows a di�eren
e with respe
t to the other

two data sets, the latter two essentially fall on a single 
urve. Therefore we drop the � = 115

data and 
ombine the data at � = 138 and � = 172:5 to do a single extrapolation to L =1.

The result is:

latti
e (�nal) adj:monop: fund:monop: trigonometri


�

2

=�

1

= 1:707(28) 1:714 2:105 1:848

�

3

=�

1

= 2:182(55) 2:143 2:958 2:414 (62)

�

4

=�

1

= 2:203(82) 2:286 3:256 2:613:

(the �

2

are respe
tively 3:5=5, 2:35=4 and 2:6=4). One ought to asso
iate a systemati
 error

with this �nal result whi
h is of the same order as the statisti
al error, sin
e eviden
e for the

absen
e of s
aling violations was given only at that level of a

ura
y. We also note that the

slope, whi
h 
orresponds to the quantity �

k

de�ned in se
tion 5, is 
learly positive, 
learly

demonstrating that the 
entral 
harge of a k-string is not k times that of the fundamental

string.

It is hoped that presenting di�erent analysis strategies has given the reader a sense of the


hallenge presented by these 
al
ulations to redu
e the systemati
 errors on the �nal string

tension ratios. Comparing our data to the theoreti
al predi
tions of various models (Eq. 62)

we �nd that our data is 
onsistent with the Casimir s
aling predi
ted by the adjoint monopole

model, and rules out the sine formula by at least 3 standard deviations at all k (even if

we 
onservatively assign to the data a systemati
 error equal to the statisti
al one). These


on
lusions agree with earlier results obtained for SU(4) and SU(6) [25℄, although the a

ura
y

was high enough for N = 4 to see a (non unexpe
ted) small deviation from Casimir s
aling.

6.3 Ex
ited k = 2 strings

Fig. 6 shows the lo
al e�e
tive masses, de�ned as m

e�

(t +

a

2

) � log

�

C(t)

Ct+a)

�

, of several of our

operators; a plateau is the signature that an energy eigenstate is saturating the 
orrelator. We

show the lo
al e�e
tive mass for our best k = 1 operator. The latter has been determined

by a variational method [60℄ allowing to minimise the 
ontributions from ex
ited states to

the 
orrelator. Although several levels of fuzzing were in
luded in the variational basis, the

output wave fun
tion turned out to be dominated by a single level of fuzzing. We note that

its plateau extends out to t ' �

�1=2

, giving as 
on�den
e in our mass extra
tion. In the

k = 2 se
tor, we show lo
al e�e
tive masses 
orresponding to the same level of fuzzing that

was optimal for the k = 1 se
tor (the in
lusion of other fuzzing levels leads to imper
eptible


hanges in the mass plateaux). After the basis operators had been normalised in su
h a way

that hO

i

(0)O

�

i

(t = 0)i = 1 (i = 1; 2), the variational pro
edure sele
ted (within O(1%) error

bars) the anti-symmetri
 and the symmetri
 linear 
ombinations of the operators O

1

� Tr fP

2

g

and O

2

� (TrP )

2

for respe
tively the lightest state and the �rst ex
ited state. Correspondingly

these operators show quite 
onvin
ing mass plateaux. By 
omparison, the individual operators
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have a less good overlap onto the lightest state, although the signal extends far enough in

Eu
lidean time to see that this overlap is not strongly suppressed: their lo
al-e�e
tive-masses

end up being 
onsistent with the plateau of the anti-symmetri
 
ombination. Remarkably their

whole 
orrelators seem to agree at all t.

Thus the theoreti
al expe
tation that the energy eigenstates belong to irredu
ible repre-

sentations of SU(N) up to O(1=N

2

) admixtures, whi
h was motivated both in the two-state

mixing model and by more general arguments about the N -dependen
e of s
reening (resp.

se
tions 5 and 5.3), is indeed well veri�ed.

Another predi
tion of the two-state mixing model presented in se
tion 5 is that the lightest

and the �rst-ex
ited states should be split symmetri
ally around the threshold energy of 2m

k=1

(to leading order in 1=N). This is tested quantitatively in Tab. 4, whi
h dire
tly 
ompares

2m

k=1

to

1

2

(m

k=2

+m

�

k=2

). The latter two quantities are remarkably 
lose for all string lengths

and latti
e spa
ings, and in many 
ases they are 
ompatible within the quite small error bars

4

.

As we dis
uss next, the numeri
al eviden
e obtained so far favours a binding energy of

k-strings of order 1=N . The three predi
tions that follow straightforwardly from the two-state

mixing model presented in se
tion 5 have thus been veri�ed quantitatively.

6.4 N-dependen
e of the binding energy of k-strings

On Fig. 7 (top) we show the relative binding energy of k-strings per unit length, k�

1

� �

k

, in

units of �

1

and res
aled by a fa
tor N . We do so by 
ompiling our SU(8) latti
e data with the

SU(4) and SU(6) data from [25℄. The predi
tions of Casimir s
aling and of the Sine formula

are also plotted. The �gure 
ertainly suggests that the k = 2 binding energy s
ales as 1=N ,

with a 
oeÆ
ient of order one. By 
ontrast, to a

ount for the measured N = 8; k = 2 binding

energy in a 1=N

2

expansion, the �rst 
oeÆ
ient would have to be about 20. We further note

that the numeri
al agreement between the Casimir s
aling predi
tion and the latti
e data is

quite remarkable. If anything, it lies somewhat above the latti
e data, indi
ating that the

k-strings are slightly less tightly bound that the Casimir formula suggests.

On the bottom plot, we show the k = N=2 string tension, res
aled by a fa
tor 2=N , as a

fun
tion of 1=N . The data is plausibly heading towards a �nite value at N = 1. Here too,

Casimir s
aling o�ers a good des
ription of the data. Note that it predi
ts that the binding

energy of the k = N=2 string is half of the energy of k non-intera
ting fundamental strings. The


ase k = N=2 is spe
ial in that the relevant operators (listed in appendix C) and their 
omplex


onjugate 
an mix through the appearan
e of the baryoni
 vertex on the string. Pi
torially it

swaps the oriented string from on orientation to the other. Naturally the eigenstates of the

Hamiltonian are also eigenstates of the 
harge 
onjugation operator, i.e. the real and imaginary

parts of the operators, whi
h are respe
tively C = + and C = �. However the existen
e of

a non-vanishing transition probability between the strings of de�nite orientations means that

there is a splitting between the C = + and the C = � states of N -ality N=2 (for k < N=2, the


enter symmetry for
es the degenera
y of these two sets of states). In a two-state Hamiltonian

formalism, the Casimir formula thus suggests that the Hamiltonian matrix element (per unit

4

As a te
hni
al aside, we note that it is essential here to use the 
orrelations between the lo
al e�e
tive mass

of the lightest and the �rst-ex
ited k = 2 states, as they seem to be strongly anti-
orrelated.
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length of the string) asso
iated with the baryon-vertex is

N

2

�.

It should be noted that the 
ost of 
omputing the binding energy for a given k naively

in
reases as N

5

(N

3

for the 
ost of multiplying SU(N) together in the Monte-Carlo simulation

and a / N

2

in
rease of the statisti
s to 
ompensate for the 1=N size of the binding energy).

And this does not even take into a

ount the 
ondition �

1

L

2

� N formulated in se
tion 5.

Therefore it 
ould be useful to also 
ompute the string tension ratios for SU(5) and SU(7)

before moving to even larger groups.

7 Con
lusion

The pi
ture of hot multi-
olor QCD 
onsidered in this paper relies on the separation of the

hard, soft and ultra-soft s
ales by means of a well-known sequen
e of two e�e
tive theories.

The se
ond of these, whi
h des
ribes the magneti
 properties of the quark-gluon plasma at

energies of order g

2

(T )T , is the 3D SU(N) gauge theory obtained by dimensionally redu
ing

the original theory.

In the 
ase of the spatial t'Hooft k-loop, whi
h re
ords the 
u
tuations of the ele
tri
 
ux

of N -ality k going through it, perturbation theory is dire
tly appli
able and be
omes ever more

a

urate at higher temperatures. On the other hand, a simple physi
al pi
ture emerges if the

ele
tri
-
ux 
u
tuations are attributed to gluons passing randomly through it. By assuming

these quasi-parti
les to be dilute and non-intera
ting, one easily derives an expression whose

parametri
 dependen
e on the temperature and the N -ality of the loop mat
h the perturbative

result.

The adjoint monopole gas model dis
ussed in this paper assumes a similar pi
ture to hold for

the spatial Wilson k-loops: the magneti
-
ux is attributed to non-Abelian monopoles in the 3D

SU(N) theory. The assumption that these monopoles are in the adjoint representation dire
tly

leads to the predi
tion of Casimir s
aling for the ratios of the asso
iated k-string tensions.

The k-dependen
e is indeed given by the multipli
ity of 
harged monopoles with respe
t to

the 
harge Y

k

of the loop, while the sensitivity to other details of the model is redu
ed in

these ratios. Perturbation theory is not appli
able in this se
tor, but non-perturbative latti
e

Monte-Carlo 
al
ulations of the k-string tension ratios, although numeri
ally 
hallenging, are

in prin
iple straightforward.

Previous simulations [25℄ for N = 4; 6, as well as the N = 8 data presented in this paper


on�rm the Casimir s
aling property of k-string tension at the few per
ent level. Care must

be taken in these 
al
ulations that the strings are long enough, �L

2

� N , for the quantum


orre
tions to the string energy to be subleading with respe
t to the weak binding energy of the

k fundamental strings. The energy of the string is then large and a multi-level algorithm [32℄

proved useful in this situation to redu
e the varian
e on the 
orrelator from whi
h this energy

is extra
ted. While the Casimir s
aling predi
tion lies slightly above the 3-loop expression

for the t'Hooft loop, it is slightly lower than the latti
e results for spatial Wilson loops: the

(small) 
orre
tions to Casimir s
aling in the magneti
 se
tor seem to have the opposite sign

with respe
t to the ele
tri
 se
tor.

The fundamental assumptions of the model 
an be further tested. The behaviour of k-

loops, as we argued, is the simplest observable to 
onsider. It 
an be measured for other gauge
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groups, as long as the 
enter is Z(N); N � 4; indeed the adjoint monopoles may be formed

in any non-Abelian gauge theory. The 
lassi
al groups have as 
andidates, apart from the

SU(N) groups, the Spin(4p + 2) groups with 
enter group Z(4). One may also introdu
e an

adjoint Higgs �eld whi
h a
quires a VEV. Depending on the symmetry breaking pattern, some

monopoles will be
ome heavy, and the k-ratios will 
hange in a predi
table way [47℄.

We also dis
ussed the behaviour of the 't Hooft loops for di�erent N -alities at �nite tem-

perature. Here the same Casimir s
aling is observed in the latti
e data [27, 28℄ as predi
ted

by perturbation theory for high T (and by the quasi-parti
le pi
ture of gluons). Surprisingly,

the s
aling 
ontinues to hold down to pra
ti
ally T




. And the same is true for the magneti


k-loops [38, 30℄: Casimir s
aling stays valid down to � T




.

In 
on
lusion: all available data on ele
tri
 and magneti
 k-loops for N � 4 are 
onsistent

with a s
reened ele
tri
 and magneti
 quasi-parti
le model throughout all of the plasma phase.

Whether the same is true for QCD (N = 3) remains to be tested.

A
knowledgements

We a
knowledge dis
ussions with Pierre van Baal, Sander Bais, Ni
k Dorey, Philippe de

For
rand, Pierre Giovannangeli, Prem Kumar, Mikko Laine, Ni
k Manton, Hugh Osborne,

Owe Philipsen, Martin S
hvellinger, Jan Smit, and Mike Teper. Finally to Tony Kennedy,

Tony Gonzalez-Arroyo and parti
ipants of the latti
e Meeting (Mar
h 2005 at KITP Santa

Barbara).

The latti
e simulations were performed on the PC 
luster of the Rudolf Peierls Centre for

Theoreti
al Physi
s at Oxford University in the year 2004. The ma
hine was partly funded by

EPSRC and PPARC grants.

Referen
es

[1℄ G. 't Hooft, in High Energy Physi
s, ed. A. Zi
hi
hi (Editri
e Compositori Bologna, 1976);

S. Mandelstam, Phys. Rep. 23C (1976), 245

[2℄ G.'t Hooft, Nu
l.Phys.B79:276, 1974; A. M. Polyakov (Landau Inst.), JETP Lett.20:194,

1974, Pisma Zh.Eksp.Teor.Fiz.20:430, 1974.

[3℄ P. Goddard, J. Nuyts, D. A. Olive, Nu
l. Phys.B125 (1977), F. Englert, P. Windey, Phys.

Rev.D 14(1977), 2728.

[4℄ F.A. Bais, J.R. Prima
k, Nu
l.Phys.B123:253,1977; F. A. Bais, Phys.Rev.D18:1206,1978.

E. J. Weinberg, Nu
l. Phys. B167 (1980), 500.

[5℄ P. Goddard, D. I. Olive, Nu
l.Phys.B191, 511 (1981); P. Goddard, D. I. Olive,

Nu
l.Phys.B191, 528 (1981).

[6℄ F. A. Bais, B. J. S
hroers, Nu
l. Phys. B512, 250 (1998), hep-th/9708004;

Nu
l.Phys.B535:197-218,1998; hep-th/9805163.

31

http://arxiv.org/abs/hep-th/9708004
http://arxiv.org/abs/hep-th/9805163


[7℄ R.A. Brandt, F. Neri, Nu
l. Phys. B 161 (1979), 253. S. Coleman, Pro
eedings of the 1981

Eri
e S
hool, Ed. A. Zi
hi
hi, Plenum (New York), (1982).

[8℄ A. Abouelsaoud, Nu
l.Phys.B 226 (1983), 309; P. N. Nelson, A. Manohar, Phys. Rev.

Lett.50 (1983), 943; A. Bala
handran et al., Phys. Rev. Lett. 50 (1983) 1553; P. N.

Nelson, S.R. Coleman, Nu
l.Phys.B237:1,1984; N. Dorey, C. Fraser, T. J. Hollowood, M.

A.C. Kneipp; hep-th/9512116.

[9℄ A. Hanany, D. Tong, JHEP 0307 (2003) 037, hep-th/0306150; A. Gorsky, M. Shifman, A.

Yung, Phys.Rev.D71:045010,2005, hep-th/0412082;

[10℄ P. Irwin, Phys.Rev.D56:5200-5208,1997, hep-th/9704153; K-M. Lee, E. J. Weinberg, P.

Yi, Phys.Rev.D54:6351,1996,hep-th/9605229;

[11℄ J. E. Humphries, Introdu
tion to Lie Algebras and Representation Theory, Springer, New

York.

[12℄ For a dis
ussion of thermal s
reening of pointlike monopoles, see C. Manuel, Ann. Phys.263

(1998), 238.

[13℄ A.D. Linde, Phys. Lett.B 96,289 (1980).

[14℄ A. M. Polyakov, Nu
l.Phys.B120, (1977), 429.

[15℄ S. Jaimungal, G.W. Semeno� and K. Zarembo, hep-th/9811238. Unpublished work by D.

Diakonov and M. Chernodub (1999), private 
ommuni
ation by D. Diakonov.

[16℄ G. 't Hooft, Nu
l.Phys.B190, 455, 1981.

[17℄ M. Lues
her, K. Symanzik and P. Weisz, Nu
l. Phys. B 173 (1980) 365; M. Lues
her,

Nu
l. Phys. B 180 (1981) 317.

[18℄ T. Bhatta
harya, A. Go
ks
h, C.P. Korthals Altes, R. D. Pisarski, Nu
l.Phys.B 383,

(1992),497; Phys.Rev.Lett.66,998 (1991); C.P. Korthals Altes, Nu
l.Phys.B420 (1994),

637.

[19℄ P. Giovannangeli, C. P. Korthals Altes, Nu
l. Phys.B608, 203, (2001).

[20℄ P. Giovannangeli, C. P. Korthals Altes, to appear in Nu
l. Phys.B.; hep-ph/0412322,

hep-ph/0212298.

[21℄ C. P. Korthals Altes, invited talk at \Continuous Advan
es in QCD", Minnesota, 13-16

May 2004, to appear in the Pro
eedings; hep-ph/0408301.

[22℄ F. Gliozzi, hep-th/0504105.

[23℄ T. C. Kraan, P. van Baal, Phys.Lett.B435:389-395,1998; hep-th/9806034.

[24℄ M. Teper, Phys. Rev. D59 (1999) 014512; hep-lat/9812344.

32

http://arxiv.org/abs/hep-th/9512116
http://arxiv.org/abs/hep-th/0306150
http://arxiv.org/abs/hep-th/0412082
http://arxiv.org/abs/hep-th/9704153
http://arxiv.org/abs/hep-th/9605229
http://arxiv.org/abs/hep-th/9811238
http://arxiv.org/abs/hep-ph/0412322
http://arxiv.org/abs/hep-ph/0212298
http://arxiv.org/abs/hep-ph/0408301
http://arxiv.org/abs/hep-th/0504105
http://arxiv.org/abs/hep-th/9806034
http://arxiv.org/abs/hep-lat/9812344


[25℄ B. Lu
ini and M. Teper, Phys. Rev. D64, 105019 (2001), hep-lat/0107007.

[26℄ L. Del Debbio, H. Panagopoulos, P. Rossi and E. Vi
ari, JHEP 0201 (2002) 009

[arXiv:hep-th/0111090℄.

[27℄ P. de For
rand, B. Lu
ini, M. Vettorazzo; hep-lat/0409148

[28℄ F. Bursa, M. Teper; hep-lat/0505025.

[29℄ B. Lu
ini, M. Teper and U. Wenger, JHEP 0406:012,2004; hep-lat/0404008.

[30℄ B. Lu
ini, M. Teper, U. Wenger, JHEP 0502 (2005) 033; hep-lat/0502003.

[31℄ P. de For
rand, C.P. Korthals Altes, O. Philipsen, to appear.

[32℄ H. B. Meyer, JHEP 0301 (2003) 048, hep-lat/0209145.

[33℄ H. B. Meyer, JHEP 0401 (2004) 030, hep-lat/0312034.

[34℄ H. B. Meyer, JHEP 0503:064,2005; hep-lat/0412021.

[35℄ T. Applequist, R.D. Pisarski, Phys.Rev.D23,2305,(1981); P. Ginsparg,

Nu
l.Phys.B170,388, (1980). E. Braaten and A. Nieto, Phys. Rev. D 51 (1995)

6990 ;hep-ph/9501375. K. Farakos, K. Kajantie, K. Rummukainen, M. E. Shaposhnikov,

Nu
l.Phys.B425:67, 1994; hep-ph/9404201.

[36℄ S. Z. Huang, M. Lissia, Nu
l.Phys.B438,54,1995; hep-ph/9411293.

[37℄ K. Kajantie, M. Laine, K. Rummukainen, M. Shaposhnikov, Nu
l.Phys.B503:357;

hep-ph/9704416.

[38℄ M. Laine, Y. S
hroeder, hep-ph/0503061.

[39℄ A. Armoni and M. Shifman, Nu
l. Phys. B 664 (2003) 233, hep-th/0304127; A. Armoni

and M. Shifman, Nu
l. Phys.B 671.67 (2003), hep-th/0307020.

[40℄ A. Hanany, M.J. Strassler, A. Za�aroni, Nu
l.Phys B513, 87 (1998), hep-th/9707244; C.P.

Herzog, I. R. Klebanov, Phys. Lett.B526, 388 (2002), hep-th/0111078.

[41℄ C. P. Korthals Altes, A. Kovner, Phys. Rev D62, 096008, 2000; hep-ph/0004052.

[42℄ C. P. Herzog, Phys. Rev.D 66, 065009; hep-th/0205064.

[43℄ D. J. Gross, W. Taylor, Nu
l.Phys.B403:395,1993; hep-th/9303046 .

[44℄ S. Brono�, C. P. Korthals Altes, Phys.Lett.B448:85, 1999; hep-ph/9811243.

[45℄ K. Kajantie, M. Laine, A. Rajantie, K. Rummukainen, M. Tsypin, JHEP 9811:011,1998;

hep-lat/9811004.

33

http://arxiv.org/abs/hep-lat/0107007
http://arxiv.org/abs/hep-th/0111090
http://arxiv.org/abs/hep-lat/0409148
http://arxiv.org/abs/hep-lat/0505025
http://arxiv.org/abs/hep-lat/0404008
http://arxiv.org/abs/hep-lat/0502003
http://arxiv.org/abs/hep-lat/0209145
http://arxiv.org/abs/hep-lat/0312034
http://arxiv.org/abs/hep-lat/0412021
http://arxiv.org/abs/hep-ph/9501375
http://arxiv.org/abs/hep-ph/9404201
http://arxiv.org/abs/hep-ph/9411293
http://arxiv.org/abs/hep-ph/9704416
http://arxiv.org/abs/hep-ph/0503061
http://arxiv.org/abs/hep-th/0304127
http://arxiv.org/abs/hep-th/0307020
http://arxiv.org/abs/hep-th/9707244
http://arxiv.org/abs/hep-th/0111078
http://arxiv.org/abs/hep-ph/0004052
http://arxiv.org/abs/hep-th/0205064
http://arxiv.org/abs/hep-th/9303046
http://arxiv.org/abs/hep-ph/9811243
http://arxiv.org/abs/hep-lat/9811004


[46℄ A. Rajantie, Nu
l. Phys.B 501, 521; hep-ph/9702255.

[47℄ C.P. Korthals altes, A. Rajantie, in preparation.

[48℄ P. Giovannangeli, Phys.Lett.B585:144, 2004; hep-ph/0312307; hep-ph/0506318.

[49℄ D. Diakonov, V.Yu. Petrov, Phys.Lett.B224:131, 1989; D. Diakonov and V. Petrov, J.

Exp. Theor. Phys. 92 (2001) 905 [arXiv:hep-th/0008035℄.

[50℄ F. V. Gubarev, Phys. Rev. D 69 (2004) 114502 [arXiv:hep-lat/0309023℄. B. Broda,

arXiv:math-ph/0012035. D. Diakonov and V. Petrov, J. Exp. Theor. Phys. 92 (2001)

905 [arXiv:hep-th/0008035℄.

[51℄ G. 't Hooft, Nu
l. Phys. B 72 (1974) 461.

[52℄ E. Witten, Nu
l. Phys. B160, 57 (1979).

[53℄ S. Deldar, Phys. Rev. D62, 034509 (2000), hep-lat/9911008; G. S. Bali, Phys. Rev. D62,

114503 (2000), hep-lat/0006022.

[54℄ N. A. Campbell, I. H. Jorysz and C. Mi
hael, Phys. Lett. B 167 (1986) 91.

[55℄ F. E. Close and N. A. Tornqvist, J. Phys. G 28 (2002) R249 [arXiv:hep-ph/0204205℄.

[56℄ S. R. Das, Rev. Mod. Phys. 59 (1987) 235.

[57℄ M. Lues
her and P. Weisz, JHEP 07, 049 (2002), hep-lat/0207003.

[58℄ H. B. Meyer, arXiv:hep-th/0506034.

[59℄ K. G. Wilson, Phys. Rev. D 10 (1974) 2445.

[60℄ M. Lus
her and U. Wol�, Nu
l. Phys. B339, 222 (1990).

[61℄ N. Cabibbo, E. Marinari, Phys. Lett. B119(1982) 387

[62℄ K. Fabri
ius, O. Haan, Phys. Lett B143 (1984) 459;

A.D. Kennedy, B.J. Pendleton, Phys. Lett., 156B (1985) 393

[63℄ S.L. Adler, Phys. Rev. D 23 (1981) 2901

Appendix A

In this appendix we brie
y indi
ate the group theory needed to get from a given Young tableau

(de�ning the irredu
ible representation R) the 
orresponding highest weight and the value of

the quadrati
 Casimir. In what follows we suppose a representation to be irredu
ible without

mentioning so. We 
hoose the Y

k

as follows:

Y

k

=

1

N

diag(k; k; : : : ; k

| {z }

N�k times

; k �N; k �N; : : : ; k �N

| {z }

k times

): (63)
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Let the Young tableau have n

1

boxes in the �rst row, n

2

in the se
ond row, et
. . . Then one


an de�ne the non-negative numbers w

l

= n

l

� n

l+1

. Now the highest weight matrix for the

Young tableau is de�ned through the Y

k

matri
es:

H

R

=

N�1

X

l=1

w

l

Y

l

: (64)

For example, for the totally antisymmetri
 tableau of k boxes in one 
olumn we have H

R

= Y

k

.

For the totally symmetri
 tableau with all k boxes in one rowH

R

= kL

1

. Note that the stability

group of Y

k

(the subgroup of SU(N) matri
es 
ommuting with Y

k

) is SU(k)�SU(N�k)�U(1).

So the totally antisymmetri
 representation with k squares has a highest weight with this

stability group. All other representations with k squares have di�erent stability groups.

We de�ne one more diagonal N �N matrix by:

2Y � 2

N�1

X

l=1

Y

l

= diag(N � 1; N � 3; ::::;�N + 1): (65)

The quadrati
 Casimir operator C

2

(N; k; fw

l

g) � C

2

(R) is de�ned by summing the square of

all generators T

a

in the representation R. The result is

P

T

2

a

= C

2

(R)1

R

, where 1

R

is the unit

matrix in R and C

2

(R) is a 
-number (normalization is [T

a

; T

b

℄ = if

ab


T




; f

ab


f

b
d

= NÆ

ad

).

Then the quadrati
 Casimir equals:

C

2

(R) =

1

2

(Tr fH

2

R

g+ 2Tr fY H

R

g): (66)

The quadrati
 Casimir for the fundamental representation is C

F

=

(N

2

�1)

2N

. The Casimir for

the antisymmetri
 representation is then

C

2

(R = AS) = C

F

k(N � k)

(N � 1)

; (67)

and for the symmetri
 representation it is:

C

2

(R = SS) = C

F

k(N + k)

(N + 1)

: (68)

To derive these relations one needs the inner produ
t of two Y matri
es:

Tr fY

k

Y

l

g =

1

N

(min(k; l)N � kl): (69)

One 
an show that for �xed k � N the antisymmetri
 Casimir is the minimal one.

Finally we give the relation between the Y

k

matri
es and the Chevalley basis H

k;k+1

=

diag(0; 0; 0; ::::1;�1; 0; :::0), Y

N;N+1

� Y

N;1

. We introdu
e the matri
es y

k

, with y

1

� NY

1

. y

2

follows from y

1

by a 
y
li
 permutation of the diagonal elements: the �rst be
omes the se
ond

and so forth. y

3

follows from y

2

the same way. We keep doing this until we have rea
hed y

N

,

y

N+1

= y

1

. The sum of all the y

k

vanishes. The Y

k

are related to the y

k

by:

NY

k

=

k

X

l=1

y

l

: (70)
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Then:

1

2

y

1

= (N � 1)H

12

+ (N � 2)H

23

+ (N � 3)H

34

+ :::::+ 1:H

N�1N

+ 0:H

N1

1

2

y

2

= 0:H

12

+ (N � 1)H

23

+ (N � 2)H

34

+ :::::+ 2:HN � 1N + 1:H

N1

1

2

y

3

= 1:H

12

+ 0:H

23

+ (N � 1)H

34

+ :::::+ 3:HN � 1N + 2:H

N1

The general term is:

1

2

y

k

= (k�2)H

12

+(k�3)H

23

+ :::+0:H

kk�1

+(N �1)H

kk

+ ::::+kH

N�1N

+(k�1)H

N1

: (71)

Note the diagonal translation invarian
e of the 
oeÆ
ient matrix M relating the N y

k

to the

N H

l;l+1

.

Evaluate the �rst diagonal element of the r.h.s. in Eq. 70, using the matrix M above. It

equals, be
ause of the relative sign in the non-zero elements of H

12

and H

N1

, the di�eren
e of

the �rst 
olumn and the last 
olumn of M , up and in
luding the �rst k rows of M . Be
ause of

the translation invarian
e only the di�eren
eM

11

�M

kN

= N�k survives. The se
ond diagonal

element equals M

k1

�M

12

= N �k. This goes on till we rea
h the 
oeÆ
ientM

kk�1

= 0. Then

there is a jump to M

k;k+1

= N � 1, and the diagonal elements be
ome �k. So we reprodu
ed

the matrix NY

k

in Eq. 70. The 
harges NY

k

lie on the root latti
e spanned by the H

ll+1

.

Appendix B

The derivation of Eq. 34 is based on simple properties of the quantum-me
hani
al SU(N)

rotator in an external �eld. We reprodu
e it here in a form that should render its origins 
lear.

We are interested in the Wilson line between two points x(s

1

) and x(s

2

), the line between

the two points being parametrized by s. The line is the ordered produ
t (from right to left) in

some irredu
ible representation R

0

with highest weight H

0

of unitary matri
es with dimension

d

R

0

:

W (s

f

; s

i

) = P exp

�

ig

Z

s

f

s

i

A

s

ds

�

: (72)

Here A

s

=

d~x

ds

:

~

A the proje
tion of

~

A on the line.

The Wilson loop is 
ovariantly 
onstant along the 
urve L, �

s

W

y

(s; s

i

) � igW

y

A

s

= 0, so

along the loop one 
an write the ve
tor potential as a pure gauge

A

s

=

�1

ig

U�

s

U

y

(73)

with U = W (s; s

i

)U

i

with U

i

an arbitrary SU(N) matrix. So the loop be
omes in the repre-

sentation R

0

the unitary matrix :

D

R

0

(U

f

U

y

i

): (74)

We 
lose the Wilson loop ( so s

f

and s

i

represent the same point) and take the tra
e of Eq. 74.

The main result of this appendix is:
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� The sum over all irredu
ible representations of the normalized tra
e of the Wilson loop

is the group average of the propagator of the SU(N) rotator with Hamiltonian H in the

external �eld H

0

, Eq. 82.

� Then a spe
ial limit of the path integral version of this propagator, Eq. 86, is nothing

but Eq. 34.

To de�ne the Hamiltonian we start with the generators l

a

of the group SU(N). They a
t

as left multipli
ation on the Hilbert spa
e de�ned on the group manifold, with kets jUi, U an

SU(N) element. The generators obey the 
ommutation relations

[l

a

; l

b

℄ = if

ab


l




; with f

ab


f

a

0

b


= NÆ

aa

0

: (75)

The N � 1 diagonal generators l

d

are denoted by the suÆx d, whereas a general generator

is denoted by indi
es a.

Likewise we 
an de�ne the generators r

a

of right multipli
ation.

The state spa
e of kets j
 > is has an 
omplete orthogonal basis 
onsisting of all the

irredu
ible representations D

R

(
)

l;r

, and the orthogonality relations read:

Z

d
 D

R

k;l

(
)D

R

0

m;n

(


y

) =

1

d

R

0

Æ

R;R

0

Æ

k;n

Æ

l;m

: (76)

The dimension of the representation R equals Tr fD

R

(1)g = d

R

. We de�ne kets and bras

jR; l; ri with the property:

h
jR; l; ri = D

R

(
)

l;r

: (77)

From Eq. 76 one sees that the norm of su
h kets is d

�1

R

.

The Hamiltonian is de�ned in terms of the left multipli
ation generators as:

H =

1

2I

�

X

a

l

2

a

�

X

d

l

2

d

+

X

d

(l

d

�

1

2

H

0

d

)

2

�

: (78)

The last term represents the 
oupling of the rotator to the highest weight H

0

written in


omponent form H

0

=

P

d

H

0

d

�

d

2

, whi
h gives a Zeeman e�e
t for the energy levels in any

representation R.

Write

P

a

l

2

a

= C

2

(R) for the value of the quadrati
 Casimir in R and denote l for the N �1

diagonal quantum numbers l

d

in D(
)

l;r

. Similarly the N � 1 diagonal right multipli
ation

generators have quantum numbers, denoted by r. Then one has for the eigenvalues E

0

of this

Hamiltonian:

E

0

(R; l) =

1

2I

(C

2

(R) �

X

d

l

2

d

) +

1

2I

X

d

(l

d

�

1

2

H

0

d

)

2

: (79)

Let us �nd the 
orresponding Lagrangian L . De�ne the angular velo
ities from the spe
ial

unitary matri
es S:

V

a

= i Tr fS�

s

S

y

�

a

g: (80)

Then:

L =

I

2

X

a

V

2

a

+

1

2

X

d

V

d

H

0

d

: (81)
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This Lagrangian gives the Hamiltonian in terms of the 
anoni
al momenta J

a

=

�L

�V

a

. There

is a subtlety: upon quantization we have the generators of left and right SU(N) rotations,

related by the adjoint representation. The question is then to whi
h the J's do 
orrespond.

This question is only relevant for the linear term,sin
e the quadrati
 term is invariant under

the adjoint. A short 
al
ulation shows that the left generators 
orrespond to the J's.

Let us now prove the following relation between the 
hara
ters of the group and the inte-

grated propagator of the SU(N) symmetri
 top:

Z

d
 h
U

f

j exp fi(s

f

� s

i

)Hg j
U

i

i

=

X

R;l

Tr fD

R

(U

f

U

y

i

)g exp

h

i(s

f

� s

i

)E

0

(R; l)

i

: (82)

On the r.h.s. we integrate over SU(N) matri
es 
, with the measure normalized to 1.

To prove this, insert the set of intermediate states jR; l; r > from Eq. 77 into the l.h.s. :

Z

d
 h
U

f

j exp fi(s

f

� s

i

)Hg j
U

i

i

=

Z

d


X

R;l;r

d

R

h
U

f

jR; l; ri exp

h

i(s

f

� s

i

)E

0

(R; l)

i

hR; l; rj
U

i

i: (83)

The right index r 
an be summed over, and using Eq. 77 one �nds:

X

r

h
U

f

jR; l; rihR; l; rj
U

i

i = D

R

(
U

f

(
U

i

)

y

)

l;l

: (84)

Integration over 
 gives, for �xed l, using Eq. 76:

Z

d
 D

R

(
U

f

(
U

i

)

y

)

l;l

=

1

d

R

Tr fD

R

(U

f

U

y

i

)g (85)

Plug this result into the r.h.s. of Eq. 83, and we have the main result Eq. 82.

Now we want to proje
t out from the main result the representation R

0

. This is done by

letting I ! 0 in the energy exponent and determining the minimum of E

0

(R;m). One su
h

minimum is realized by

1

2

H

0

d

= m

d

and C

2

(R) = C

2

(R

0

).

So the sum over all irredu
ible representations R in Eq. 82 redu
es in this limit to the

representation R

0

singled out by the its 
orresponding highest weight H

0

.

Stri
tly speaking there is only one minimum when H

0

is the weight of the fundamental

representation, or of any of the representations 
orresponding to a fully antisymmetri
 Young

tableau. The reason is that for �xed N -ality C

2

(R) takes its minimum value for R being fully

antisymmetri
.

For higher representations, like e.g. in SU(2) with weight j

0

( the number of boxes in the

Young tableau), there is the representation R = j

0

� 1, with m = j

0

� 1, that minimizes E

0

as well. This is why in the original work [49℄ the asymmetri
 top was taken, to provide an

independent inertia in front of the Zeeman splitting in Eq. 79 and taking them independently to

zero. So from now on the irrep R

0

stands for one of the totally antisymmetri
 representations.
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Of 
ourse the result 
ontains the rapidly varying phase fa
tor

exp

"

i(s

f

� s

i

)

E

0

(R

0

;H

0

)

2I

#

= exp

�

i(s

f

� s

i

)

�

C

2

(R

0

)�

1

2

Tr fH

2

0

g

�

=2I

�

� F (R

0

):

A

ording to appendix A the value in this minimum is C

2

(R

0

)�

1

2

Tr fH

2

0

g =

P

N�1

l=1

w

l

(N�l)lN

with w

l

the weights de�ned by the Young diagram of R

0

. This same fa
tor F (R

0

) appears also

in front of the path integral trans
ription of the matrix element:

h
U

f

j exp fi(s

f

� s

i

)Hg j
U

i

i = F (R

0

)

Z


U

i


U

f

DS(s) exp

�

�i

Z

dsL

�

(86)

with L as in Eq. 81. This formula, together with the fa
t that the left generators in the matrix

element are 
orre
tly represented by the path integral 
an be proved straightforwardly. We

introdu
e the periodi
 
u
tuation variable 
(s) with 
(s

i;f

) = 
 and transform the 
u
tuation

variable S in Eq. 86:

S(s) = 
(s)U(s) with D
 = DS: (87)

The path integral now be
omes:

Z







D
(s) exp

�

�i

Z

dsL

�

(88)

with L as in Eq. 81, but with the substitution Eq. 87 in the angular velo
ities V

a

in (80):

V

a

= Tr f
(s)U(s)�

s

(
(s)U(s))

y

�

a

g

= Tr

n�


(s)(U(s)�

s

U(s)

y

)
(s)

y

+ 
(s)�

s


(s)

y

�

�

a

o

: (89)

Finally use Eq. 73 to write the angular velo
ity as the gauge transformed potential A

s

:

V

a

= Tr

n�


(s)(�igA

s

)
(s)

y

+ 
(s)�

s


(s)

y

�

�

a

o

= Tr

n�


(s)r

s


(s)

y

�

�

a

o

: (90)

Remember r

s


(s)

y

=

d~x

ds

:(

~

� � ig

~

A)
(s)

y

.

The �nal form of the Wilson loop in the irrep R

0

and with highest weight H

0

follows from

Eq. 81, 82 and 86:

W

R

0

= lim

I!0

Z

D
 exp

"

�i

I

2

I

ds

X

a

V

2

a

�

I

ds Tr

(

H

0

(


~

r �

d~x

ds




y

)

)#

: (91)

The line integral on the r.h.s. 
an be easily transformed into a surfa
e integral, be
ause it

now involves the gauge transform average of potential proje
ted on the highest weight, i.e. an

Abelian potential. The surfa
e S bounded by the loop L is 
overed by a set of nested loops

L(r) with L(r = 0) = L and L(r = 1) shrunk to a point. Then, in an obvious notation:

�

I

L

ds Tr fH

0

(
r

s




y

)g

=

Z

1

0

dr �

r

I

ds Tr fH

0


r

s




y

g (92)

=

Z

1

0

dr

I

ds Tr

n

H

0

�

�

rs

r

r


r

s




y

) + �

rs


r

r

r

s




y

�o

whi
h gives then Eq. 34, using the 
ommutator [r

r

;r

s

℄ = �igF

r;s

. The gauge transform in

the last expression is now extended to all of the surfa
e S and beyond. This surfa
e is of 
ourse

arbitrary, apart from its boundary.
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Appendix C

We give the expli
it form of our Polyakov loops with N -ality k. Let P (x; y; t) �

Q

L=a

n=1

~

U

x

(x+

na; y; t), where

~

U

x

(x) stands either for the original link variable U

x

(x) or a fuzzy [29℄ version

of it with the same gauge transformation properties. Then our operators are [25℄

O

(k)

(t) =

a

L

y

X

m

O

(k)

(x; y +ma; t) (93)

where the operator O

(k)

is one of

k = 2 :

1

N

Tr fP

2

g

1

N

2

(Tr fPg)

2

(94)

k = 3 :

1

N

Tr fP

3

g

1

N

3

(Tr fPg)

3

1

N

2

Tr fP

2

gTr fPg (95)

k = 4 :

1

N

Tr fP

4

g

1

N

4

(Tr fPg)

4

1

N

2

(Tr fP

2

g)

2

(96)

1

N

2

Tr fP

3

gTr fPg

1

N

3

Tr fP

2

g(Tr fPg)

2

;

where the argument of P is the same as that of O

(k)

in Eq. 93. The 
orrelation fun
tions we

measure are hO

(k)

(0)(O

(k)

(t))

�

i.
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I:� = 115:0 k = 1 k = 2 k = 3 k = 4

V = 24� 28� 24

L = 24 1.536(19) 2.67(13) / /

II:� = 115:0 k = 1 k = 2 k = 3 k = 4

V = 16� 20� 24

L = 16 1.0075(31)

�

1.729(30) 2.216(66) 2.32(12)

L = 20 1.2787(33)

�

2.174(59) 2.55(23) 3.04(33)

III:� = 115:0 k = 1 k = 2 k = 3 k = 4

V = 12� 16� 24

L = 12 0.7338(38)

�

1.275(24) 1.680(27) 1.789(36)

L = 16 0.9980(45)

�

1.702(28) 2.157(52) 2.423(93)

IV: � = 138:0 k = 1 k = 2 k = 3 k = 4

V = 20� 24� 24

L = 20 0.808(10) 1.436(15) 1.826(20) 1.985(29)

L = 24 0.991(13) 1.745(20) 2.214(42) 2.28(11)

V: � = 138:0 k = 1 k = 2 k = 3 k = 4

V = 16� 20� 24

L = 16 0.6348(58) 1.1580(96) 1.464(12) 1.540(15)

L = 20 0.8253(75) 1.462(15) 1.845(19) 1.937(29)

VI:� = 172:5 k = 1 k = 2 k = 3 k = 4

V = 24� 28� 36

L = 24 0.5869(32) 1.0260(82) 1.303(18) 1.401(19)

L = 28 0.6961(58) 1.242(12) 1.564(34) 1.576(57)

VII:� = 172:5 k = 1 k = 2 k = 3 k = 4

V = 20� 24� 36

L = 20 0.4883(31) 0.8939(65) 1.109(12) 1.213(18)

L = 24 0.5878(43) 1.042(16) 1.308(23) 1.381(22)

Table 1: The masses of 
ux-tubes of di�erent N -alities. Values followed by a

�

were extra
ted

from simulations employing a one-level algorithm. In addition, a � = 138 run on a 32�32�36

latti
e was done with am

k=1

= 1:3347(49) and am

k=2

= 2:326(49).
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� = 115:0 � = 138:0 � = 172:5

a

p

�

1

0.2558(6) 0.2059(6) 0.1582(12)




1

0.624(78) 0.67(12) 0.27(19)

�

2

=�

1

j

L=1

1.690(52) 1.709(37) 1.695(45)

�

3

=�

1

j

L=1

2.01(12) 2.162(72) 2.175(88)

�

4

=�

1

j

L=1

2.28(20) 2.31(11) 2.08(12)

Table 2: Top: the fundamental string tension and the string 
orre
tion 
oeÆ
ient (to be


ompared with the bosoni
 string value 


b

= �=6 ' 0:5236. Bottom: the ratios of k-torelon

masses, extrapolated to L = 1 assuming 1=L

2


orre
tions at three di�erent latti
e spa
ings.

The 
ontinuum limit a! 0 of these ratios are given in se
tion 6.2.3.

� = 115:0 k = 2 k = 3 k = 4

L = 12 1.694(33) 2.213(36) 2.352(49)

L = 16 1.688(28) 2.141(51) 2.319(91)

L = 20 1.686(46) 1.98(18) 2.35(26)

L = 24 1.728(84) / /

Mean 1.692(28) 2.184(36) 2.349(49)

� = 138:0 k = 2 k = 3 k = 4

L = 16 1.782(22) 2.239(28) 2.352(32)

L = 20 1.749(24) 2.208(31) 2.356(42)

L = 24 1.744(30) 2.207(51) 2.27(11)

L = 32 1.734(37)

Mean 1.744(24)

�

2.222(28) 2.349(32)

� = 172:5 k = 2 k = 3 k = 4

L = 20 1.786(18) 2.202(28) 2.404(44)

L = 24 1.732(17) 2.177(33) 2.317(35)

L = 28 1.763(23) 2.195(28) 2.230(84)

Mean 1.743(17)

�

2.195(28) 2.304(35)

�

Table 3: The e�e
tive ratios of k-string tensions, 
orre
ted for �nite-length e�e
ts assum-

ing Eq. (61) with bosoni
 string 
oeÆ
ient; at three di�erent latti
e spa
ings. The values at

di�erent L are �tted by a 
onstant to give the 'mean' value. The mean values were obtained

by averaging values at all L, ex
ept for those appearing with an asterisk

�

, where the shortest

torelon was dropped. The 
ontinuum limit a! 0 of these ratios are given in se
tion 6.2.3.
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m

�

k=2

1

2

(m

k=2

+m

�

k=2

) 2m

k=1

II: L = 16 2.122(60) 1.932(33) 2.015(6)

L = 20 2.49(25) 2.33(13) 2.557(6)

III: L = 12 1.677(37) 1.476(23) 1.468(4)

L = 16 2.244(75) 1.973(42) 1.996(9)

IV: L = 20 1.886(24) 1.661(17) 1.62(2)

L = 24 2.245(59) 1.995(31) 1.981(3)

V: L = 16 1.380(39) 1.272(23) 1.27(1)

L = 20 1.72(10) 1.598(54) 1.65(2)

VI: L = 24 1.328(15) 1.181(9) 1.174(6)

L = 28 1.672(31) 1.457(16) 1.39(1)

VII: L = 20 1.109(28) 1.002(14) 0.977(6)

L = 24 1.296(22) 1.174(10) 1.176(8)

Table 4: The �rst-ex
ited k = 2 torelon mass. The roman numbers refer to the di�erent runs

whose parameters are given in Tab. 1.
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Figure 4: The linei
 mass of spatial torelons in the k = 1 and k = 2 se
tors at � = 138. The

inter
ept on the verti
al axis yields the string tension.
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Figure 5: Final analysis: the extrapolation of the string tension ratios to in�nite string length

(only the �lled points are in
luded in the extrapolation). The result of the extrapolation is

shown beyond the verti
al axis.
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Figure 7: Top: the binding energy of k-strings per unit length, in units of �

1

and res
aled by

a fa
tor N , as a fun
tion of N . Bottom: the string tension ratio

�

k=N=2

�

1

, res
aled by a fa
tor

2

N

. The latti
e data for SU(4) and SU(6) is taken from[25℄.
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