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Abstrat

Higher-order �

0

-orretions are a generi feature of type IIB string ompati�ations. In

KKLT-like models of moduli stabilization they provide a mehanism of breaking the no-

sale struture of the volume modulus. We present a model of ination driven by the volume

modulus of ux ompati�ations of the type IIB superstring. Using the e�ets of gaug-

ino ondensation on D7-branes and perturbative �

0

-orretions the volume modulus an be

stabilized in a salar potential whih simultaneously ontains saddle points providing slow-

roll ination with about 130 e-foldings. We an aommodate the 3-year WMAP data with

a spetral index of density utuations n

s

= 0:93. Our model allows for eternal ination

providing the initial onditions of slow-roll ination.



1 Introdution

String theory at present is the only andidate for a uni�ed quantum theory of all intera-

tions that simultaneously provides for a UV-�nite desription of quantum gravity. However,

there is rih internal struture already in 10 dimensions and the tremendously large num-

ber of possible ompati�ations to 4d (roughly 10

500

aording to a reent estimate [1, 2℄).

Thus, we fae the formidable task of onstruting realisti 4d string vaua that ome as

lose as possible to the strutures of the Standard Model. One pressing issue is removing

the massless ompati�ation moduli from the low energy spetrum of a given string va-

uum. Reently, more general ompati�ation manifolds haraterized by the presene of

bakground uxes [3{22℄ of the higher p-form �eld strengths in string theory have been

studied in this ontext. Suh ux ompati�ations an stabilize the dilaton and the om-

plex struture moduli in type IIB string theory. Non-perturbative e�ets suh as the presene

of Dp-branes [23℄ and gaugino ondensation were then used by KKLT [24℄ to stabilize the

remaining K�ahler moduli in suh type IIB ux ompati�ations (for related earlier work

in heteroti M-theory see [25℄). Simultaneously these vaua allow for SUSY breaking and

thus the appearane of metastable dS

4

-minima with a small positive osmologial onstant

�ne-tuned in disrete steps. KKLT [24℄ used the SUSY breaking e�ets of an anti-D3-brane

to ahieve this. Alternatively the e�et of D-terms on D7-branes have been onsidered in

this ontext [26℄.

Conerning KKLT inspired setups like those mentioned above we may now ask whih of

the ingredients used there is least ontrolled with respet to the onstraints of perturbativity

and negligible bakreations. Clearly, suh a question arises with the use of anti-D3-branes

as uplifts for given volume-stabilizing AdS minima. The presene of either D3-branes or anti-

D3-branes by themselves does not pose a problem. Eah kind viewed for itself is a BPS state

that preserves half of the original N = 8 supersymmetries in 4d (N = 2 in 10d), whih,

in turn, an be arranged to ontain the 2 supersymmetries preserved by the Calabi-Yau

ompati�ation. However, an anti-D3-brane in the presene of a ompat geometry with

D3-branes is non-BPS with respet to the supersymmetries preserved by the BPS ondition

of the D3-branes. Thus, it breaks SUSY, and it is not lear whether this SUSY breaking

is expliit or has a desription in terms of F-term or D-term breaking. If anti-D3-branes

break SUSY expliitly, the use of the supergravity approximation to alulate the e�et

on the salar potential may be questionable. Replaing the anti-D3-branes by D-terms on

D7-branes [26℄ is a way to alleviate this problem beause this way of SUSY breaking has a

manifestly supersymmetri desription.

In view of these diÆulties it is appealing that there are further possibilities to provide

uplifting e�ets by means of perturbative �

0

-orretions [27℄ (for earlier results see [28℄) in

the type IIB superstring. KKLT have argued that these higher-order orretions in the string

tension are not relevant in the large volume limit [24℄. The non-perturbative e�ets invoked

by KKLT vanish exponentially fast in this limit. In ontrast, the perturbative orretions

usually depend on a power of the volume. This motivates the disussion of these e�ets as

an alternative to anti-D3-branes. The �

0

-orretions have reently been used to provide a

realization of the simplest KKLT dS-vaua without using anti D3-branes as the soure of

SUSY breaking [29{32℄. Here we will show that in ombination with raetrak superpotentials

these stringy orretions an provide also for slow-roll ination driven by the KKLT volume

modulus. Ination in string theory has been studied reently by, e.g, using the position of

D3-branes [33, 34℄ or a ondensing D-brane tahyon [35℄ as the inaton �eld (for reent
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attempts to ure the �-problem of supergravity in suh brane ination models see e.g. [36,

37℄) or tuning the original KKLT potential for the KKLT volume modulus T by extending

the superpotential used there to the raetrak type [38, 39℄. The general evolution of the

T -modulus was studied in [40℄ for the KKLT ase [24℄ and the modi�ed Kallosh-Linde

model [41℄.

The paper is organized as follows. Setion 2 summarizes known �

0

-orretions in type IIB

superstring theory and provides a short disussion of the salar potential generated by these

orretions. Setion 3 disusses the uplifting potential provided by �

0

-orretions in terms of

a general limiting ase of the form of the uplifting ontribution. We show that the KKLT su-

perpotential ombined with one or two additive uplifting ontributions to the salar potential

annot provide for slow-roll ination driven by the T -modulus. This result is used afterwards

in Set. 4 to motivate the extension of the KKLT ase to a superpotential of the raetrak

type. One we ombine a raetrak superpotential with the �

0

-orretions the T -modulus

aquires a salar potential whih stabilizes this �eld at a weakly dS-minimum. Simultane-

ously this salar potential ontains saddle points whih are suÆiently at to provide for

more than 130 e-foldings of slow-roll ination driven by the T -modulus. Setion 5 disusses

important resaling properties of the setup. In Setion 6 we onstrut a phenomenologially

viable model of T -modulus ination along these lines whih an aommodate the 3-year

WMAP data [42℄ of the CMB radiation. It yields primordial density utuations of the right

magnitude with a spetral index of these utuations n

s

� 0:93. In Setion 7 we hek our

numerial results within the analytial treatment of ination on a generi saddle point. We

�nd that the inationary saddle points of the model allow for eternal topologial ination.

Finally, we summarize our results in the Conlusion.

2 �

0

-orretions

Higher-order �

0

-orretions whih usually lift the no-sale struture of the K�ahler potential

of the volume modulus (and generate 1-loop orretions to the gauge kineti funtions) are

not known in general. However, there is one known perturbative orretion [27℄ given by

a higher-derivative urvature interation on Calabi-Yau threefolds of non-vanishing Euler

number �. Its relevant bosoni part is given as

S

IIB

=

1

2�

2
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Z

d
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x

p

�g

s

e
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whih after Calabi-Yau ompati�ation to 4d yields a orretion to the K�ahler potential of

the volume modulus T [27℄

K = �2 � ln

�

V +

1

2

^

�

�

;

^

� = �e

�3�=2

; � = �

1

2

�(3)�

= �3 � ln

�

T +

�

T

�

| {z }

K

(0)

�2 � ln

 

1 +

^

�

2(2 Re T )

3=2

!

: (2)
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Here the volume modulus T is related to the Calabi-Yau volume V as V = (T +

�

T )

3=2

(see,

e.g., [43℄)

1

. � denotes the Euler number of the Calabi-Yau under onsideration whih an be

of both signs and in its absolute value an be at least as large as 2592 [44℄. From the general

expression for the salar potential in 4d N = 1 supergravity the potential for the T -modulus

is

V (T ) = e

K

�

K

T

�

T

D

T

WD

�

T

�

W � 3 jW j

2

�

: (3)

This leads to a orretion to the salar potential of T whih to O(�

0

3

) reads [27℄

ÆV = �

^

�

(2 Re T )

3=2

V

tree

+

3

8

e

K

(0)

^

�

(2 Re T )

3=2

�

�

�

W + (� � �� )

~

D

�

W

�

�

�

2

(4)

where

~

D

�

W = �

�

W+W�

�

K

(0)

. V

tree

denotes the full salar potential for the volumemodulus

T exept the e�ets of the �

0

-orretion under disussion.

This orretion, whih breaks the no-sale struture of the K�ahler potential of the volume

modulus, an be used as a replaement for the anti-D3-brane or D-terms on D7-branes to

provide the uplift neessary for realizing the KKLT mehanism. Combining the KKLT ansatz

for the superpotential

W (T ) =W

0

+Ae

�aT

(5)

with the �

0

-orretion is suÆient to realize de Sitter vaua with all the moduli stabi-

lized [29{32℄. We an show now that a ombination of the mehanism of uplifting by �

0

-

orretions with a raetrak superpotential generates dS-minima with full moduli stabiliza-

tion. Simultaneously, the same potential ontains regions where T -modulus ination with

roll-o� into the desired dS-minima is realized. There is no � problem in this setup beause

the leading order K�ahler potential of the volume modulus is of the no-sale type.

3 Absene of T -modulus ination in KKLT

Before analyzing the setup skethed at the end of the last Setion, we should larify why the

original KKLT setup with just the superpotential eq. (5) and one uplifting orretion ÆV

does not allow T -modulus ination. For this purpose, note that the types of uplift onsidered

so far an be written as

ÆV =

D

X

�

: (6)

Here we use that we write the salar omponent of the hiral super�eld T as T j = X + iY .

Stritly speaking, the above �

0

-orretion behaves as a mixture of additive and multipliative

orretions. However, from the general form of the potential it is lear that the above �

0

-

orretion in the viinity of the maximum an be written loally in the same additive form

ÆV =

D

X

3=2

; D =

^

�

2

p

2

�

�V

tree

+

3

8

e

K

(0)

�

�

�

W + (� � �� )

~

D

�

W

�

�

�

2

�

�

�

�

�

�

T=T

max

: (7)

Thus, we may onsider the following general setup: take the superpotential Eq. (5) to �x

the T -modulus after the ux part W

0

has �xed all the non-K�ahler moduli. Add one uplifting

term Eq. (6) with � > 0 being general. Suh a setup generially generates a maximum in the

1

Here V is de�ned in the Einstein frame [27℄.
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X-diretion separating the dS-minimum from in�nity. Sine this maximum simultaneously

forms a minimum in the Y -diretion, we have the situation that ination would have to

start from a saddle point with diretion towards the dS-minimum. For this purpose, two

ingredients are neessary: �rstly, a de�nition of the slow-roll parameters for a salar �eld

with a non-anonially normalized kineti term. Seondly, an analysis of the salar potential's

stationary points with respet to whether slow-roll an be satis�ed on the saddle or not.

The equations of motion for non-anonially normalized salar �elds [45{48℄ read

�

�

l

+ 3H

_

�

l

+ �

l

ij

_

�

i

_

�

j

+G

lk

�V

��

k

= 0 ; �

l

ij

= �

1

2

G

lk

�G

ij

��

k

: (8)

For the T -modulus this implies

G

T

�

T

= K

T

�

T

=

3

4X

2

) L

kin

=

3

4X

2

(�

�

X�

�

X + �

�

Y �

�

Y ) (9)

and thus the equations of motion beome

�

X + 3H

_

X +

1

X

_

X

2

+

2

3

X

2

�V

�X

= 0

�

Y + 3H

_

Y +

1

X

_

Y

2

+

2

3

X

2

�V

�Y

= 0 : (10)

The slow-roll parameters of, e.g., X are thus given by

�

X

=

X

2

max

3

�

V

0

V

�

2

; �

X

=

2X

2

max

3

V

00

V

(11)

where

0

denotes di�erentiation with respet to X.

The next step is to analyze the salar potential. Inluding the uplift this follows from

Eq. (3) to be

V (T ) =

1

4X

2

�

2aA

2

e

�2aX

�

1 +

1

3

aX

�

+ 2aAW

0

e

�aX

os(aY )

�

+

D

X

�

: (12)

The extrema of this potential are determined by the onditions �

X

V = �

Y

V = 0. The

Y -ondition

�V

�Y

= 0 = �

a

2

A

2X

2

e

�2aX

W

0

sin(aY ) ) Y

extr

= 0 for:AW

0

< 0 (13)

implies that all extrema in X are found along the diretion Y = 0 with repliations at

Y =

2�n

a

8n 2Z. The extremal points are determined then by

�V

�X

= 0

, 0 �

3�D

aA

X

2��

+

3

2

W

0

� �(X) +A�

2

(X) ; �(X) = aXe

�aX

(14)

where we used the regime of large volume

aX � 1 ; X � 1 ) aA�

A

X

�

W

0

X

;

A

X

e

�aX

�

W

0

X

(15)
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in order to trust the use of the e�etive potential. Expanding the solutions to this quadrati

equation in X

2��

D=W

2

0

� 1 up to O

�

X

2��

max

D

W

2

0

�

leads to two extrema at

aX

max

e

�aX

max

X

2��

max

= �

2�D

aAW

0

; aX

min

e

�aX

min

= �

3W

0

2A

(16)

as long as AW

0

< 0, whih a posteriori justi�es the use of this ondition in extremizing the

potential in Y above. Thus, the slow roll parameters of the saddle are

�

X;saddle

= 0 ; �

X;saddle

=

2

3

X

2

max

1

V

�

2

V

�X

2

�

�

�

�

X=X

max

;Y=0

= �

2

3

�aX

max

: (17)

Thus, we have � � 1 only if �

<

�

0:1 (for whih no known realization exists) or aX

max

<

�

1,

whih violates the large volume and perturbativity assumptions. Slow-roll ination with the

T -modulus on the saddle point of this most simple lass of KKLT-like setups does not work.

Note that this ondition orresponds to the fat that the single uplift ÆV already by itself

has �

ÆV

= 2=3 �X

2

ÆV

00

=ÆV = 2�(1 +�)=3 � 1 for �� 1. Thus ÆV in general has to behave

nearly like a onstant in order to generate a suÆiently at maximum of V .

We an extend this analysis immediately to the ase of two additive uplifts given by

ÆV

2

=

D

1

X

�

1

+

D

2

X

�

2

; �

1

; �

2

> 0 : (18)

(Suh a ontribution might arise, e.g., if more than one �

0

-orretion to the K�ahler potential

is inluded and loally written in the above form, see Eq. (7). Unfortunately, none are known

besides the one of [27℄.) Without loss of generality we may assume �

1

< �

2

. Then there are

two ases.

In one situation we have both D

1

and D

2

positive implying that ÆV

2

dereases stritly

monotonially: ÆV

0

2

< 0 and ÆV

00

2

> 0 8X > 0. This leads bak to the above result with just

one uplift and thus to Eq. (17) but with � replaed by some linear ombination 

1

�

1

+

2

�

2

2

[�

1

; �

2

℄ where 

1

+ 

2

= 1 with 0 < 

1

; 

2

< 1.

The other and more interesting ase is to have D

1

> 0 and D

2

< 0. Then D

2

=X

�

2

is

negative and stritly monotonially inreasing for all X > 0 while D

1

=X

�

1

is positive and

stritly monotonially dereasing. Further, sine we assumed �

1

< �

2

we have lim

x!0

ÆV =

�1. Therefore ÆV

2

has exatly one zero and one global maximum within (0;1). At the

maximum �

max

ÆV

2

= 0. As we noted above ÆV

2

has to behave nearly like a onstant in order to

provide a suÆiently at maximum of V . This is realized lose to the maximum of ÆV

2

if we

tune �

max

ÆV

2

� 1. Using X

max

determined by ÆV

0

2

(X

max

) = 0 we arrive at

�

max

ÆV

2

= �

2

3

� �

1

�

2

(1 + �

1

) : (19)

Requiring �

max

� 1 leads to either �

1

� 1 or �

2

� 1.

The other three subases are either uninteresting or equivalent to the former ase: If we

hange both the relative minus sign of D

1

, D

2

and the hierarhy of �

1

, �

2

we are bak to

the former ase with exhanged labels (1$ 2). If we hange just one of them we get a ÆV

2

whih has a global minimum with negative potential instead of the desired maximum with

positive potential.

In onlusion we annot tune the maximum of the KKLT potential Eq. (12) suÆiently

at by replaing its one additive uplift by a ontribution of the type of Eq. (18).
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4 T -modulus ination with �

0

-orretions

The above result fores us to look for other minimal extensions of the setup whih may lead

to saddle points with suÆiently small negative urvature. In the literature [38℄ a raetrak

extension of the KKLT superpotential in ombination with an anti-D3-brane was used to

onstrut an inationary saddle point.

We will show now that we an generate inationary saddle points using the following

setup: the superpotential is given by

W (T ) = W

0

+Ae

�aT

+Be

�bT

: (20)

Departing from [38℄ the uplift of the two degenerate AdS-minima present in the orre-

sponding salar potential will now be provided by the �

0

-orreted no-sale breaking K�ahler

potential of Eq. (2)

K = �3 � ln

�

T +

�

T

�

� 2 � ln

 

1 +

^

�

2(2 Re T )

3=2

!

(21)

This indues the ontribution Eq. (4) to the salar potential. We do not introdue an anti-

D3-brane.

The analysis of the inationary properties of the salar potential given by this setup

follows losely the lines of [38℄. The di�erenes (besides using the �

0

-orretion instead of an

anti-D3-brane) we will enounter when looking at the struture of the minima and saddle

points present in the �

0

-orreted salar potential.

Assume now that the ux ontribution W

0

has stabilized the dilaton � in a minimum

given by

~

D

�

W = 0. Then the resulting salar potential an be written as

V (T ) =

 

1�

^

�

(2 Re T )

3=2

!

V

tree

+

3

8

e

K

(0)

^

�

(2 Re T )

3=2

jW j

2

(22)

where

K

(0)

= �3 ln(T +

�

T ) : (23)

V

tree

denotes the salar potential indued by the above superpotential. It is given as

V

tree

(X;Y ) =

e

�2(a+b)X

6X

2

n

AB [3(a+ b) + 2abX℄ e

(a+b)X

os[(a� b)Y ℄

+aA

�

3

�

A+W

0

e

aX

os(aY )

�

+ aAX

�

e

2bX

+bB

�

3

�

B +W

0

e

bX

os(bY )

�

+ bBX

�

e

2aX

o

: (24)

Finally, jW j

2

reads

jW j

2

= W

2

0

+A

2

e

�2aX

+B

2

e

�2bX

+ 2AW

0

e

�aX

os(aY ) + 2BW

0

e

�bX

os(bY )

+2ABe

�(a+b)X

os[(a� b)Y ℄ : (25)

Compared to an anti-D3-brane uplift, the struture of this salar potential is hanged

onsiderably, sine, as noted before, the �

0

-uplift an only be written loally as a purely

additive ontribution of the type D=X

�

. Prior to uplifting we have a saddle at Y = 0 whih
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Figure 1: The salar potential of T -modulus with �

0

-orretion for a generi hoie of

parameters. Clearly visible are the three minima onneted by two o�-X-axis saddle points.

onnets the two degenerateAdS-minima at Y

(1)

min

= �Y

(2)

min

6= 0 of the salar potential indued

by the above superpotential. This saddle is rather at and extended in X and Y . Therefore,

unlike an anti-D3-brane uplift, the �

0

-ontribution will not just lift the two minima to V > 0

while leaving the form of the saddle pratially unhanged. The �

0

-orretion will uplift and

deform the initial saddle at Y = 0 as well as it lifts the two degenerate AdS-minima.

The shape of the potential arising this way looks the following: The initial saddle point

is at larger volume than the two AdS-minima and the �

0

-orretion sales with an inverse

power of the volume. Therefore, the orretion will raise the AdS-minima faster than the

initial saddle point. This implies that two new saddle points will appear whih separate eah

of the former AdS-minima from the region lose to the former initial saddle point whih

this way beomes a third loal minimum. Therefore, after suÆient uplifting we will have in

general three di�erent loal minima at V � 0 with the properties

X

(1)

min

= X

(2)

min

; Y

(1)

min

= �Y

(2)

min

6= 0 ; X

(3)

min

> X

(1)

min

; Y

(3)

min

= 0 : (26)

Two of them, (1) and (2), are eah onneted to the third one via a saddle point. Fig. 1 shows

this situation for a generi hoie of parameters. The two saddle points have the properties

X

(1)

saddle

= X

(2)

saddle

= X

saddle

; Y

(1)

saddle

= �Y

(2)

saddle

6= 0

and furthermore

X

(1)

min

= X

(2)

min

< X

saddle

< X

(3)

min

: (27)

This struture now allows for a new possibility of tuning the salar potential in order to

�nd suÆiently at saddle points: sine the uplift of the �

0

-orretion sales with a negative

power of X, the two degenerate minima (1) and (2) will get more strongly lifted than the

saddle points onneting them to minimum (3) at Y = 0. This third minimum, in turn, gets

8



even more weakly lifted than the saddle points. Hene, the potential an be tuned in suh

a way that the minimum (3) remains approximately Minkowski while the two degenerate

minima rise as a funtion of the uplift parameter

^

�. Therefore, the saddle between minimum

(3) and, say, minimum (1) has very small negative urvature shortly before minimum (1)

disappears. The total set of parameters available (A;B; a; b;W

0

;

^

�) is large enough to allow

for tuning both the urvature of these saddle points and the vauum energy V (X

(3)

min

) of the

approximate Minkowski minimum (3) to be small enough. For instane, imagine a situation

where a �rst tuning results in a situation with suÆiently small urvature of the above two

saddles and a hierarhy 0 < V (X

(3)

min

)� V

saddle

� V (X

(1)

min

). Then an additional �ne-tuning of

^

� by a small amount Æ

^

� allows for having V (X

(3)

min

) as lose to zero as neessary to aomodate

V (X

(3)

min

) � �

osm:

. This additional tuning will not destroy the atness of the saddle points

sine aording to Eq. (7) the �

0

-orretion ats lose to a given point, i.e. a saddle point,

similar to an additive anti-D3-brane uplift for a very small hange jÆ

^

�j �

^

�.

This mehanism is quite generi for a superpotential onsisting of the ux piee and two

gaugino ondensate ontributions with its two degenerate AdS-minima: it depends mainly

on the hierarhy of the positions in X of the three minima and the two saddles that arise

upon uplifting. Thus, even with further �

0

-orretions we expet this piture to remain

qualitatively the same, though the numerial values will hange.

Firstly, we will show now that a onsiderable �ne-tuning of B is suÆient to get enough

e-foldings of slow-roll ination on the saddle points. As an example, onsider the parameter

hoie

W

0

= �5:55 � 10

�5

; A =

1

50

; B = �3:37461131 � 10

�2

; a =

2�

100

; b =

2�

91

^

� = �

1

2

�(3)e

�3�=2

� ; � = �4209 : (28)

Here we assumed e

�3�=2

= O(1). Then the desired value of

^

� implies that we have to hoose

Calabi-Yau manifolds of large negative Euler number with � = �10

3

: : : � 10

4

whih, in

general, appears to be possible [44℄. For simpliity we set this quantity to unity whih leads

to the above value of �.

Alternatively we an onsider the possibility that the SM lives on a stak of oinident

D3-branes. The 4d gauge oupling on a stak of D3-branes is �

D3

= e

�

=2 [49℄. Phenomeno-

logially �

GUT

= 1=24 and thus e

��

� 12 implying e

�3�=2

� 50. This redues the absolute

value of the Euler number whih is required to get the desired value of

^

�. As a numerial

example let us assume the dilaton �xed at e

�3�=2

= 61. Then we an realize the above ex-

ample for � = �69. Thus, the model does not have to rely on the existene of Calabi-Yaus

with � < �1000. Otherwise, we may hoose j�j smaller whih will move the above struture

of three minima towards smaller X-values. However, in the following disussions we will set

e

�3�=2

= 1 everywhere.

For the example given above we �nd the minimum (3) at approximately

X

(3)

min

= 132:398 ; Y

(3)

min

= 0 (29)

being weakly de Sitter. The other two degenerate minima reside at

X

(1)

min

= X

(2)

min

= 116:724 ; Y

(1)=(2)

min

= �19:431 : (30)

The two saddle points we �nd very lose by at

X

saddle

= X

(1)

saddle

= X

(2)

saddle

= 116:728 ; Y

(1)=(2)

saddle

= �19:428 : (31)
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Figure 2: Evolution of the inaton T = X + iY as a funtion of time measured by the

number of e-folding N .

As a onsisteny hek we may alulate the ratio

^

�

(2X)

3=2

(32)

at the three minima. This ratio is the expansion parameter used in deriving Eq. (22) from

Eq. (21). We �nd

^

�=(2X)

3=2

� 0:5 < 1 for the minimum (3) and

^

�=(2X)

3=2

� 0:7 < 1 for

the other two degenerate minima (1) and (2). This implies that the region around the three

minima still resides in the perturbative regime of the e�etive potential.

We may now alulate the Hesse matrix of urvatures

H =

�

�

2

V

�X

2

�

2

V

�X�Y

�

2

V

�X�Y

�

2

V

�Y

2

�

(33)

diagonalize it and alulate from it the matrix of slow-roll parameters on one of the saddle

points to yield

H

�

=

2

3

X

2

saddle

H

diag

�

�

1222:83 0

0 �0:069

�

: (34)

Therefore, on these two saddle points, slow-roll ination an take plae if the T -modulus

starts from the saddle with initial onditions �ne-tuned to some amount. For example, for

initial onditions given by

X

0

= X

(1)

saddle

+ 10

�6

; Y

0

= Y

(1)

saddle

;

_

X

0

=

_

Y

0

= 0 (35)

we get slow-roll ination with some 130 e-foldings and rolling-o� into the dS-minimum (3)

of our world, as seen in Fig. 2. Here the equations of motion for the T -modulus Eq. (10)

have been rewritten using

10



Tmin
H1L=116.724+ä 19.431

Tsaddle
H1L=116.728+ä 19.428

Figure 3: Contour plot of the potential lose to the saddle point (1) and the evolution of the

inaton trajetory (thik line) in �eld spae. The loal minimum (1) and the saddle point

(1) are indiated. The ontour lines urving away from the starting point of the inaton

learly indiate the saddle point nature of this region. The long thin ellipse in the upper left

enloses the loal minimum (1).

�

�t

= H

�

�N

; from the FRW sale fator R(t) = e

Ht

= e

N

H

2

=

1

3

�

3

4X

2

(

_

X

2

+

_

Y

2

) + V (X;Y )

�

=

1

3

V (X;Y ) �

�

1�

X

02

+ Y

02

4X

2

�

�1

(36)

to yield [38℄

X

00

= �

�

1�

X

02

+ Y

02

4X

2

��

3X

0

+ 2X

2

1

V

�V

�X

�

+

X

02

� Y

02

X

Y

00

= �

�

1�

X

02

+ Y

02

4X

2

��

3Y

0

+ 2X

2

1

V

�V

�Y

�

+

2X

0

Y

0

X

(37)

and

0

denotes �=�N . The struture of the potential and the initial part of the inaton

trajetory in �eld spae lose to the saddle point an be found in Fig. 3.

The Hubble parameter at the saddle point

H

saddle

=

r

1

3

V

saddle

� 10

�9

(38)

is muh smaller than the initial �ne-tuning of the inaton on the saddle. Thus, the salar

�eld utuations generated during ination being of order H=2� = O(10

�10

) here [51℄ will

not destroy the slow-roll motion of the �eld.

We should mention here that by stronger �ne-tuning in the potential the slow-roll param-

eter � of the saddle points an be made muh smaller than in the above numerial example.
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In this ase, the amount of �ne-tuning in the initial onditions of the inaton neessary to

ahieve suÆiently many e-foldings an be relaxed. Thus, we may trade �ne-tuning of the

initial onditions for �ne-tuning of the potential.

Fine-tuning of the potential may be aeptable if we onsider the extremely large number

of vaua the landsape ontains. This large number allows us to think of the parameters of the

potential as being sanned suÆiently �nely aross the landsape. In this view we also have

no problem with the severe �ne-tuning already present in the potential. Sine the potential

arises from a raetrak superpotential we naturally expet a �ne-tuning in the parameters

if we balane the exponential ontributions of the raetrak type to get at saddle points.

In the above example the parameter B was �ne-tuned on the level of about 10

�8

whih an

be ompared with the raetrak model of [38℄ where a �ne-tuning of about 10

�4

: : :10

�3

was needed to obtain suÆient slow-roll ination. Sine the number of vaua in the string

landsape is roughly 10

500

[1,2℄ we expet a muh higher level of �ne-tuning allowed by the

landsape.

Finally, we have the fat that within the string landsape the potential is tuned disretely

by the uxes. We may onsider this as an advantage ompared to purely �eld theoreti

ination models, where the potential an be �ne-tuned ontinuously in its parameters.

5 Resaling properties

The setup under disussion has ertain saling properties whih are similar to those of the

salar potential of [38℄. jW j

2

ontains aording to Eq. (25) a, b, and X;Y only in the

ombinations aX, aY , bX, and bY while in V

tree

(see Eq. (24)) eah term also has a fator

of either a=X

2

or b=X

2

. Consider the resaling

T ! �T ; a!

a

�

; b!

b

�

;

^

� ! �

3=2

^

� for: � > 0 (39)

where we leave the values of W

0

, A and B unhanged. Then the potential Eq. (22) itself

resales as

V !

V

�

3

: (40)

Thus, the whole struture of the three minima and two saddle points found above shifts

along the X-axis. In the resaled model the stationary points reside at

X

0(i)

saddle/min/max

= � �X

(i)

saddle/min/max

Y

0(i)

saddle/min/max

= � � Y

(i)

saddle/min/max

(41)

respetively. The eigenvalues of the slow-roll parameter matrix H

�

are invariant under this

resaling. This is lear from Eq.s (11) and (34) sine the saling �

j

! �

�1

�

j

(j = X;Y )

implies (V

0

=V )

2

! �

�2

(V

0

=V )

2

and V

00

=V ! �

�2

V

00

=V . Here

0

denotes a derivative with

respet to either X or Y . The power spetrum of density utuations generated during

ination

P

R

=

1

24�

2

V

�

(42)

sales upon the transformation Eq. (39) as P

R

! �

�3

P

R

.
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Note further that A, B and W

0

appear in both Eq. (24) and (25) only as polynomial

produts of degree two. A resaling

T ! �T ; a!

a

�

; b!

b

�

;

^

� ! �

3=2

^

� ; A! �

3=2

A ; B ! �

3=2

B ; W

0

! �

3=2

W

0

for: � > 0 (43)

implies then that besides � and � also the full salar potential is invariant V ! V . Therefore,

the transformation Eq. (43) leaves the density utuation power spetrum unhanged.

We will rely heavily on these saling properties of the model in the next Setion where

we will searh for a phenomenologially viable set of model parameters.

6 Experimental onstraints and signatures

A realisti model of ination has to generate a nearly sale-invariant power spetrum of

density utuations of the right magnitude. The �ne-tuning of B we hose in Setion 4 was

suÆient in order to obtain more than the required 60 e-foldings of slow-roll ination. In

general this �rst step of �ne-tuning does not guarantee the density utuations at the COBE

normalization point at N � 80, i.e., about 55 e-foldings before the end of ination, to be

small enough or to have a spetral index n

s

� 1.

Therefore, we have to perform an additional �ne-tuning: Using the resaling properties

of the previous Setion we have to shift the relevant part of the salar potential along the

X-axis in order to searh for a region where the density utuations beome small enough.

And we need an additional �ne-tuning in B to get saddle points with a slow-roll parameter

� small enough for a viable n

s

. By tuning of B and the use of the resalings given in the

Eq.s (39) and (43) we �nd a new set of parameters

W

0

= �

37

46

� 10

�6

; A =

1

3450

; B = �

14672223067

3 � 10

13

a =

2�

100

�

69

10

�

2=3

; b =

2�

91

�

69

10

�

2=3

;

^

� = �

1

2

�(3)� ; � = �610 : (44)

Here we have assumed as before e

�3�=2

= 1 for simpliity.

This model ontains again the two inationary saddle points. However, their negative

urvature eigenvalue is now redued and yields a slow-roll parameter � = �0:0064. Solving

the equations of motion for this resaled model with initial onditions given by

X

0

= X

(1)

saddle

+

�

69

10

�

�2=3

� 2:7 � 10

�4

; Y

0

= Y

(1)

saddle

;

_

X

0

=

_

Y

0

= 0 (45)

leads again to about 137 e-foldings of ination with the X and Y �elds behaving very similar

to the �rst ase shown in Fig. 2.

Now alulate again the magnitude of the density utuations at the COBE normalization

point. The result at about 55 e-foldings before the end of ination orresponding to N � 80

is now

�

Æ�

�

�

k

0

� 2 � 10

�5

(46)

yielding the orret magnitude.
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Figure 4: The deviation of the spetral index from unity n

s

�1 as a funtion of the number

of e-foldings N . The COBE normalization point sits at about 55 e-foldings before the end

of ination, i.e., here at N � 80.

Next, the spetral index is given by

n

s

= 1 +

d lnP

R

(k)

d ln k

�

�

�

�

k=RH

= 1 + 2

d ln(Æ�=�)

d ln k

�

�

�

�

k=RH

(47)

evaluated as usual at horizon rossing. Note that here we an replae d ln k ' dN beause k

is evaluated at horizon rossing k = RH � He

N

. Then we arrive at

n

s

= 1 + 2

d ln(Æ�=�)

dN

(48)

whih results in the urve shown in Fig. 4.

The spetral index at the COBE normalization point therefore yields a value of

n

s

� 0:93 (49)

whih is at 1� onsistent with the ombined 3-year WMAP + SDSS galaxy survey result

n

s

= 0:948

+0:015

�0:018

[42℄ (the 3-year WMAP data alone give n

s

= 0:951

+0:015

�0:019

). However, the

numerial value of n

s

whih we give here is a result of the limited parameter spae explored

and does not imply a strit upper bound on n

s

in the model. For omparison with the 3-year

WMAP data we give in addition the tensor-salar ratio r = 12:4 � � and the running spetral

index dn

s

=d ln k = �16�� + 24�

2

+ 2�

2

in

(where �

2

in

= (2X

2

=3)

2

� V

0

V

000

=V

2

). We �nd at

N = 80 the values � � 3 � 10

�14

, � � �0:035 and �

2

in

� �7 � 10

�4

. Thus, we have negligible

tensor ontributions r � 4 � 10

�13

and very small running dn

s

=d ln k � �0:0014.

Note that for the parameters hosen the resaling plaes the post-inationary 4d dS-

minimum of our universe at X

(3)

min

= 36:53 and Y

(3)

min

= 0. Thus, the 4d gauge oupling on a

stak of D7-branes in this dS minimum is given by � � 1=X

(3)

min

� 1=37. This is not far from

the phenomenologial requirement � � 1=24 allowing a onstrution of the Standard Model

on a stak of interseting D7-branes. Therefore we have now both possibilities to plae the

Standard Model on staks of D3-branes or D7-branes.
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7 Eternal saddle point ination

A hek of the above numerial results is warranted. Therefore, we should study the equations

of motion Eq. (10) of the non-anonially normalized �eld T in suh KKLT-like setups in the

viinity of a saddle point. For simpliity just onentrate on the equation of motion for the

X-omponent. Next assume that the saddle point at X

s

is tahyoni with negative urvature

in the X-diretion. Then in its viinity the potential an be approximated by

V (X) = V

s

�

1

2

jV

00

s

j(X �X

s

)

2

: (50)

Here

0

denotes di�erentiation with respet to X. For a anonially normalized salar �eld the

properties of ination aused by the salar �eld rolling down from the saddle point have been

studied in [50℄. Following the lines of the analysis given there, we �rst rewrite the equation

of motion for X in terms of the �eld � = X �X

s

. The �eld will roll down from the saddle

into a loal minimum with jX

min

�X

s

j << X

s

. Thus, � obeys

�

�+ 3H

_

�+

1

X

s

_

�

2

�

2

3

X

2

s

jV

00

s

j� = 0 : (51)

Using the ansatz

�(t) = �

0

e

!t

(52)

this beomes

!

2

+ 3H! +

!

2

�

X

s

�

2

3

X

2

s

jV

00

s

j = 0 : (53)

Sine we will analyze a regime where the Hubble parameter is still dominated by the potential

energy of � and � is very slowly moving, one may assume !

2

�� X

s

. We will justify this in

the end. Now let us fous on the exponentially growing solution given by

! =

3

2

H

 

�1 +

r

1 +

8

9

X

2

s

jV

00

s

j

3H

2

!

= H � j�

s

j (54)

where the slow-roll parameter is again de�ned as above

j�

s

j =

2

3

X

2

s

jV

00

s

j

V

s

: (55)

As a hek of the approximation made, we may plug in the simple example of KKLT disussed

in Set. 3. We have from there j�

s

j =

4

3

aX

s

and V

s

�

D

X

2

s

. Thus

! = Hj�

s

j �

4

3

p

3

a

p

D

X

s

� 10

�9

� X

s

; for: a � 0:1 and X

s

� 130 D � 10

�12

(56)

whih satis�es the assumption !

2

� � X

s

a posteriori (the value of the �eld at the end of

ination is at most �

end

= O(10) in the KKLT example above).

Denoting now the value of �eld at the time where ination ends with �

�

we an derive

the number of e-foldings in this fast-roll ination sheme as given by

N =

1

j�

s

j

ln

�

�

�

�

0

�

: (57)
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The �nal value �

�

here is determined either by the fat that the potential and thus the Hubble

onstant have dereased signi�antly (this works if the potential is very well desribed by

the quadrati approximation even for large �) or that at �

�

we have reahed j�j = O(10).

The last ondition arises from Eq. (57). For j�j = 6 : : : 10 even a very large ratio �

�

=�

0

�

M

p

=M

EW

� 10

17

does not generate more than about 10 additional e-foldings.

As a hek of the numerial results of the last Setion we may apply now these results.

The number of e-foldings there is given by Eq. (57) in terms of the initial deviation of the

inaton �eld from the saddle point �

0

, the �nal value �

�

when ination ends and the saddle

urvature in its tahyoni diretion �

s

as

N =

1

j�

s

j

ln

�

�

�

�

0

�

: (58)

Now in the �rst example of the last Setion �

0

= 10

�6

(see above). Further, we have j�

s

j =

0:069. It remains to determine �

�

as the end point of the inationary phase. For this purpose

we have to analyze the potential V (X(N); Y (N)) along the inationary trajetory above and

to alulate the �-values along the trajetory. We �nd that when the T -modulus has moved

to a distane of about 0:01 from the saddle, � � �10 whih means that ination e�etively

ends there. Plugging this now in the above formula we obtain

N =

1

j�

s

j

ln

�

�

�

�

0

�

� 133 : (59)

This is suÆiently lose to the purely numerial results above, whih indiates that the

numerial solution is stable and losely resembles the true one.

Note that in this model eah of the two rather at saddle points still onnets two minima

((1) and (3) or (2) and (3), respetively). In suh a situation, where a suÆiently at saddle

point onnets two minima along a ertain diretion in �eld spae, ination may also arise

from inating topologial defets, namely, domain walls [52℄. It is therefore tempting to

speulate that besides slow-roll ination also eternal topologial ination arises on the saddles

onstruted here, whih would relieve the question of �ne-tuning the initial onditions of the

inaton [38,53℄. The original literature [52,53℄ uses a saddle point onneting two degenerate

minima in deriving the onditions for topologial ination: the saddle urvature has to be

small enough that �

saddle

� 1, whih orresponds to domain walls whose wall thikness is

large ompared to their gravitational radius. As an illustration onsider the example of stati

domain walls of the Z

2

-symmetri theory

L =

1

2

(�

�

�)

2

� V (�) ; V (�) =

�

4

(�

2

� �

2

)

2

(60)

whih are given by the solution

�

wall

(x) = � tanh

�

r

�

2

�x

�

(61)

for a wall in the yz plane. The thikness of the wall Æ is determined by the equilibrium of

gradient and potential energy density as

�

grad

j

x�Æ

�

�

2

Æ

2

� �

pot

= V (0) � ��

4

) Æ �

1

�

p

�

: (62)
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Figure 5: A highly asymmetri double-well salar potential as it is realized along the inaton

trajetories in the previous Setion. �V and �

2

are exaggerated ompared to the values in

the atual model.

The gravitational radius of the wall is R = 2M

wall

� 8��Æ

3

=3 where the energy density

is � = ��

4

=2 (the sum of the potential energy density and the gradient energy density).

Gravitational e�ets beome important one the gravitational radius exeeds the wall thik-

ness, i.e, for

Æ < R ) � >

3

4�

(63)

in Plank units. If we alulate the slow-roll parameter � at the enter of the wall the

result is �

x=0

= V

00

(0)=V (0) = 4=�

2

. Requiring � < 1 therefore orresponds to the previous

'importane of gravity' ondition. The above stati wall solution would never inate sine

the potential and gradient energy density are of the same order near the wall. However, if

ination started in a small path of spae-time with � = 0 then the utuations Æ� � H

with wavelength H

�1

generated after eah time intervalH

�1

have a gradient energy � H

4

�

V

2

<< V as long as V << 1 in the wall. In this ase, an initially inating wall whih ful�lls

Eq. 63 will ontinue to inate forever near to the wall enter [52,53℄.

This analysis is valid in the symmetri potential of the example above. In the ases under

onsideration in the last Setion the saddles onnet two highly non-degenerate minima

V

(1)

saddle

� V

(1)

min

V

(1)

saddle

=

�V

V

(1)

saddle

�

V

(1)

saddle

� V

(3)

min

V

(1)

saddle

� 1 : (64)

Fortunately, we an extend the above analysis to this situation. For simpliity we will ren-

der the problem again one-dimensional. This is possible by looking at the salar potential

along the ination trajetories of the examples of the previous Setion. This e�etively one-

dimensional potential then looks like the one shown in Fig. 5.

In this potential, too, there will be a domain wall like solution �

wall

with the properties

�

wall

:

8

<

:

lim

x!�1

�

wall

= �

2

< 0

lim

x!1

�

wall

= �

1

> 0

�

wall

(x = 0) = 0

: (65)
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This solution is no longer symmetri under x ! �x. In partiular, it an be desribed by

two wall thikness parameters Æ

1

and Æ

2

for x > 0 and x < 0, respetively. For x < 0 the

gradient energy of the wall has to ompensate just the small potential energy di�erene �V

between the �-maximum and the minimum at � = �

2

< 0. The gradient energy at x > 0,

however, ompensates for the full potential V

0

of the �-maximum. Thus, we get from the

equilibrium of potential and gradient energy the relations

Æ

1

�

�

1

p

V

0

; Æ

2

�

j�

2

j

p

�V

: (66)

The wall beomes dominated by gravity if Æ

1

+ Æ

2

< R � �(Æ

1

+ Æ

2

)

3

whih results in a

ondition

Æ

1

+ Æ

2

>

1

p

V

0

� H

�1

: (67)

For, e.g., Æ

2

> Æ

1

this is essentially Eq. (63). If in addition V

0

� 1 holds, a single path of

size � H

�1

, whih is �lled initially with a �eld � � 0 with utuations Æ�� H, will beome

the 4d dS ore of an exponentially expanding wall as noted above already.

Note that the high-lying minimum also gives rise to a fast expanding dS spae-time.

However, sine the potential energy of the maximumalways exeeds the high-lying minimum,

the spae-time in the ore of the wall with the �eld on the maximumwill expand faster than

that of the high-lying minimum.

One the �eld starts to roll down towards the post-inationary minimum (3) with a very

small osmologial onstant V

(3)

min

� 0 a bubble of the new vauum given by the minimum

(3) is formed. Even without gravity the bubble would expand sine the energy density of

the vauum inside the bubble is smaller than outside the bubble where it is given by the

minimum (1) on the other side of the saddle point [54℄. For this thin-wall ase without

gravity the bubble wall would still be given by a kink solution of the form of Eq. (65).

However, the wall position would now be given by x = 0 = R�R

0

with R =

p

j~r(t)j

2

� 

2

t

2

whih desribes a bubble wall whih expands with nearly the speed of light shortly after it

is born [54℄.

Without gravity, this expanding bubble would �nally onvert all spae-time in the vauum

state of the minimum (1) to the one of minimum (3). However, as we onsider the ase of

a thik wall dominated by gravity whih possesses a fast inating ore, this over-roll of the

outside spae-time in the vauum state of the minimum(1) annot happen. This is due to the

fat that the ore of the wall expands exponentially fast. While the interior side of the wall

of the bubble of the vauum (3) when viewed from inside reedes with nearly the speed of

light its outer side reedes exponentially fast. Therefore, the interior side of the wall reedes

exponentially fast from its outer side, and the bubble an never onvert all of the outside

spae-time into the vauum inside the bubble. The proesses inside the wall are deoupled

from the physis inside and outside the bubble due to the de Sitter horizon formed by the

exponential expansion of the wall's ore. Thus, one the appropriate onditions are satis�ed,

eternal topologial ination may take plae inside a thik wall dominated by gravity even if

the wall forms an expanding bubble due to non-degenerate minima of the potential.

Now we onentrate on the quantum utuations of the salar �eld � inside the inating

ore of the wall. For ination to get started repeatedly within the wall there must be a

region lose to the �-maximumwhere the dS quantum utuations of � dominate its lassial

evolution [52, 53℄. Initially we have

�

� � 0 and thus the slow-roll equation of motion of the
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non-anonially normalized �eld � governs the lassial dynamis lose to the �-maximum

_

� = �

2X

2

s

3

V

0

(�)

3H

: (68)

Now lose the �-maximum we an use Eq. (50) to arrive at

_

� = H�

s

� : (69)

Within the time interval �t = H

�1

the �eld moves lassially by

Æ�

lass

= �

s

� : (70)

Simultaneously it reeives a ontribution from quantum utuations

Æ�

quant

� H : (71)

The quantum utuations dominate the lassial motion (whih drives the �eld down into

the minima) for

� < �

�

with : �

�

�

H

�

s

: (72)

If now �

�

� Æ�

quant

� H there is a region lose to � = 0 at the enter of the wall where the

dS quantum utuations of � an jump the �eld many times before eventually passing �

�

from where the �eld moves lassially. Therefore, within this region the �eld will jump over

and again arbitrarily lose to � = 0 thus starting inationary pathes without end. Plugging

in �

�

in �

�

� Æ�

quant

� H leads to the ondition

�

s

� 1 (73)

the slow-roll ondition.

Therefore, a highly asymmetri double-well potential shows eternal topologial ination

provided that 1) the slow-roll onditions hold on the maximum, 2) on the maximum V

0

� 1,

and 3) the 'gravity domination' ondition Eq. (67) holds. We apply these onditions now to

the realisti example (the 2

nd

one) of the previous Setion. There we have V

0

= O(10

�20

)� 1

and �

s

= 0:0064� 1. In terms of the above notation we have further �

2

� �10

�4

, �

1

� 20,

and �V � 10

�14

V

0

. This implies

Æ

1

� 10

11

>

1

p

V

0

; Æ

2

� 10

13

>

1

p

V

0

(74)

whih satis�es Eq. (67). Therefore, the ination model of the previous Setion has the prop-

erty of eternal topologial ination on its saddle points.

The initial probability of reating spae-time regions where T is lose to the saddle points

of its potential is exponentially small. However, the inationary regions, whih are seeded by

eternal topologial ination, dominate the volume of 4d spae-time after ination beause

of the exponential growth. Therefore, the post-inationary volume fration of the universe

whih is in the vauum given by the 4d dS minimum of T -modulus will be large [55℄. This

resolves the problem of �ne-tuning the initial onditions for the slow-roll inationary phase

whih we otherwise would have in the model of the previous Setion [38℄ (see also the reent

disussion in [56℄).
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As a last omment, we note that the osmologial overshoot problem [57℄ as well as the

problem of moduli destabilization at high temperatures [58℄ under ertain onditions are

absent in our model. In order to see this look at the �nal 4d dS minimum of presumably our

world at X

(3)

min

(see the previous Set. for the notation). If our universe originated via eternal

topologial ination on one of the saddle points of the salar potential at, e.g., X

(1)

saddle

then

the reheating temperature after rolling down into the 4d dS minimum at X

(3)

min

annot exeed

T

max

reh

� (V

(1)

saddle

)

1=4

: (75)

The post-inationary minimum at X

(3)

min

, however, is separated from X !1 by a maximum

in X. The potential of this maximum V

barrier

in our model is given by

V

barrier

� 3V

(1)

saddle

: (76)

Thus, neither reheating nor the kineti energy of the T -modulus rolling down from the saddle

point an drive the �eld over the barrier.

8 Conlusion

In this paper we analyze phenomenologial aspets of higher-order �

0

-orretions in the on-

text of moduli stabilizing ux ompati�ations of the type IIB superstring. We disuss the

inationary properties of the volume modulus in the original KKLT setup. In the simplest

lass of these models - onsisting of the ux superpotential, the ontribution of one gaugino

ondensate on a stak of D7-branes, and a single additive uplifting potential of a general in-

verse power-law form - slow-roll ination ending in the KKLT dS-minimumannot our. We

study �

0

-orretions whih are higher-order urvature orretions and thus higher-dimension

operators appearing in the K�ahler potential of the e�etive ation. We demonstrate that the

generi ability of these higher-dimension operators to lift stable AdS

4

type IIB string vaua

to the desired metastable dS-minima for the T modulus (the volume modulus) an also be

used to provide slow-roll ination using the same T modulus. Suh a setup has no �-problem

beause the leading order K�ahler potential for the T modulus is of the no-sale type. We

onstrut a onrete model using uxes and a raetrak superpotential whih upon inlusion

of the �

0

-orretions yields T -modulus ination on saddle points of the potential with some

130 e-foldings. At the end of ination the T -modulus rolls from the saddle point down into

a dS-minimum with a small positive osmologial onstant where the modulus is stabilized.

The model has ertain saling properties allowing us to shift the inationary region of the

potential to di�erent values of the real part of T while leaving the inationary properties of

the saddle points invariant. We argue that these saddle points might be generially present

if raetrak superpotentials and �

0

-orretions are both taken into aount. The model an

aommodate the 3-year WMAP data of the CMB radiation. It yields primordial density

utuations of the right magnitude with a spetral index of these utuations n

s

� 0:93.

We point out that eternal topologial ination ours in the model whih removes the �ne-

tuning problem of inationary initial onditions. Finally, we omment on the osmologial

overshoot problem and the destabilization of the moduli at high temperatures. These e�ets

are absent in the fration of the universe whih is seeded by topologial eternal ination in
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our model.
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