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Abstra
t

Higher-order �

0

-
orre
tions are a generi
 feature of type IIB string 
ompa
ti�
ations. In

KKLT-like models of moduli stabilization they provide a me
hanism of breaking the no-

s
ale stru
ture of the volume modulus. We present a model of in
ation driven by the volume

modulus of 
ux 
ompa
ti�
ations of the type IIB superstring. Using the e�e
ts of gaug-

ino 
ondensation on D7-branes and perturbative �

0

-
orre
tions the volume modulus 
an be

stabilized in a s
alar potential whi
h simultaneously 
ontains saddle points providing slow-

roll in
ation with about 130 e-foldings. We 
an a

ommodate the 3-year WMAP data with

a spe
tral index of density 
u
tuations n

s

= 0:93. Our model allows for eternal in
ation

providing the initial 
onditions of slow-roll in
ation.



1 Introdu
tion

String theory at present is the only 
andidate for a uni�ed quantum theory of all intera
-

tions that simultaneously provides for a UV-�nite des
ription of quantum gravity. However,

there is ri
h internal stru
ture already in 10 dimensions and the tremendously large num-

ber of possible 
ompa
ti�
ations to 4d (roughly 10

500

a

ording to a re
ent estimate [1, 2℄).

Thus, we fa
e the formidable task of 
onstru
ting realisti
 4d string va
ua that 
ome as


lose as possible to the stru
tures of the Standard Model. One pressing issue is removing

the massless 
ompa
ti�
ation moduli from the low energy spe
trum of a given string va
-

uum. Re
ently, more general 
ompa
ti�
ation manifolds 
hara
terized by the presen
e of

ba
kground 
uxes [3{22℄ of the higher p-form �eld strengths in string theory have been

studied in this 
ontext. Su
h 
ux 
ompa
ti�
ations 
an stabilize the dilaton and the 
om-

plex stru
ture moduli in type IIB string theory. Non-perturbative e�e
ts su
h as the presen
e

of Dp-branes [23℄ and gaugino 
ondensation were then used by KKLT [24℄ to stabilize the

remaining K�ahler moduli in su
h type IIB 
ux 
ompa
ti�
ations (for related earlier work

in heteroti
 M-theory see [25℄). Simultaneously these va
ua allow for SUSY breaking and

thus the appearan
e of metastable dS

4

-minima with a small positive 
osmologi
al 
onstant

�ne-tuned in dis
rete steps. KKLT [24℄ used the SUSY breaking e�e
ts of an anti-D3-brane

to a
hieve this. Alternatively the e�e
t of D-terms on D7-branes have been 
onsidered in

this 
ontext [26℄.

Con
erning KKLT inspired setups like those mentioned above we may now ask whi
h of

the ingredients used there is least 
ontrolled with respe
t to the 
onstraints of perturbativity

and negligible ba
krea
tions. Clearly, su
h a question arises with the use of anti-D3-branes

as uplifts for given volume-stabilizing AdS minima. The presen
e of either D3-branes or anti-

D3-branes by themselves does not pose a problem. Ea
h kind viewed for itself is a BPS state

that preserves half of the original N = 8 supersymmetries in 4d (N = 2 in 10d), whi
h,

in turn, 
an be arranged to 
ontain the 2 supersymmetries preserved by the Calabi-Yau


ompa
ti�
ation. However, an anti-D3-brane in the presen
e of a 
ompa
t geometry with

D3-branes is non-BPS with respe
t to the supersymmetries preserved by the BPS 
ondition

of the D3-branes. Thus, it breaks SUSY, and it is not 
lear whether this SUSY breaking

is expli
it or has a des
ription in terms of F-term or D-term breaking. If anti-D3-branes

break SUSY expli
itly, the use of the supergravity approximation to 
al
ulate the e�e
t

on the s
alar potential may be questionable. Repla
ing the anti-D3-branes by D-terms on

D7-branes [26℄ is a way to alleviate this problem be
ause this way of SUSY breaking has a

manifestly supersymmetri
 des
ription.

In view of these diÆ
ulties it is appealing that there are further possibilities to provide

uplifting e�e
ts by means of perturbative �

0

-
orre
tions [27℄ (for earlier results see [28℄) in

the type IIB superstring. KKLT have argued that these higher-order 
orre
tions in the string

tension are not relevant in the large volume limit [24℄. The non-perturbative e�e
ts invoked

by KKLT vanish exponentially fast in this limit. In 
ontrast, the perturbative 
orre
tions

usually depend on a power of the volume. This motivates the dis
ussion of these e�e
ts as

an alternative to anti-D3-branes. The �

0

-
orre
tions have re
ently been used to provide a

realization of the simplest KKLT dS-va
ua without using anti D3-branes as the sour
e of

SUSY breaking [29{32℄. Here we will show that in 
ombination with ra
etra
k superpotentials

these stringy 
orre
tions 
an provide also for slow-roll in
ation driven by the KKLT volume

modulus. In
ation in string theory has been studied re
ently by, e.g, using the position of

D3-branes [33, 34℄ or a 
ondensing D-brane ta
hyon [35℄ as the in
aton �eld (for re
ent
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attempts to 
ure the �-problem of supergravity in su
h brane in
ation models see e.g. [36,

37℄) or tuning the original KKLT potential for the KKLT volume modulus T by extending

the superpotential used there to the ra
etra
k type [38, 39℄. The general evolution of the

T -modulus was studied in [40℄ for the KKLT 
ase [24℄ and the modi�ed Kallosh-Linde

model [41℄.

The paper is organized as follows. Se
tion 2 summarizes known �

0

-
orre
tions in type IIB

superstring theory and provides a short dis
ussion of the s
alar potential generated by these


orre
tions. Se
tion 3 dis
usses the uplifting potential provided by �

0

-
orre
tions in terms of

a general limiting 
ase of the form of the uplifting 
ontribution. We show that the KKLT su-

perpotential 
ombined with one or two additive uplifting 
ontributions to the s
alar potential


annot provide for slow-roll in
ation driven by the T -modulus. This result is used afterwards

in Se
t. 4 to motivate the extension of the KKLT 
ase to a superpotential of the ra
etra
k

type. On
e we 
ombine a ra
etra
k superpotential with the �

0

-
orre
tions the T -modulus

a
quires a s
alar potential whi
h stabilizes this �eld at a weakly dS-minimum. Simultane-

ously this s
alar potential 
ontains saddle points whi
h are suÆ
iently 
at to provide for

more than 130 e-foldings of slow-roll in
ation driven by the T -modulus. Se
tion 5 dis
usses

important res
aling properties of the setup. In Se
tion 6 we 
onstru
t a phenomenologi
ally

viable model of T -modulus in
ation along these lines whi
h 
an a

ommodate the 3-year

WMAP data [42℄ of the CMB radiation. It yields primordial density 
u
tuations of the right

magnitude with a spe
tral index of these 
u
tuations n

s

� 0:93. In Se
tion 7 we 
he
k our

numeri
al results within the analyti
al treatment of in
ation on a generi
 saddle point. We

�nd that the in
ationary saddle points of the model allow for eternal topologi
al in
ation.

Finally, we summarize our results in the Con
lusion.

2 �

0

-
orre
tions

Higher-order �

0

-
orre
tions whi
h usually lift the no-s
ale stru
ture of the K�ahler potential

of the volume modulus (and generate 1-loop 
orre
tions to the gauge kineti
 fun
tions) are

not known in general. However, there is one known perturbative 
orre
tion [27℄ given by

a higher-derivative 
urvature intera
tion on Calabi-Yau threefolds of non-vanishing Euler

number �. Its relevant bosoni
 part is given as

S

IIB

=

1

2�

2

10

Z

d

10

x

p

�g

s

e

�2�

�

R

s

+ 4 (��)

2

+ �

0

3

�(3)

3 � 2

11

J

0

�

: (1)

Here J

0

denotes the higher-derivative intera
tion [27℄
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�
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�
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N
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N
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�

R

M

0

1

N

0

1

M
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N

1

� � � R

M

0

4

N

0

4

M

4

N

4

whi
h after Calabi-Yau 
ompa
ti�
ation to 4d yields a 
orre
tion to the K�ahler potential of

the volume modulus T [27℄

K = �2 � ln

�

V +

1

2

^

�

�

;

^

� = �e

�3�=2

; � = �

1

2

�(3)�

= �3 � ln

�

T +

�

T

�

| {z }

K

(0)

�2 � ln

 

1 +

^

�

2(2 Re T )

3=2

!

: (2)
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Here the volume modulus T is related to the Calabi-Yau volume V as V = (T +

�

T )

3=2

(see,

e.g., [43℄)

1

. � denotes the Euler number of the Calabi-Yau under 
onsideration whi
h 
an be

of both signs and in its absolute value 
an be at least as large as 2592 [44℄. From the general

expression for the s
alar potential in 4d N = 1 supergravity the potential for the T -modulus

is

V (T ) = e

K

�

K

T

�

T

D

T

WD

�

T

�

W � 3 jW j

2

�

: (3)

This leads to a 
orre
tion to the s
alar potential of T whi
h to O(�

0

3

) reads [27℄

ÆV = �

^

�

(2 Re T )

3=2

V

tree

+

3

8

e

K

(0)

^

�

(2 Re T )

3=2

�

�

�

W + (� � �� )

~

D

�

W

�

�

�

2

(4)

where

~

D

�

W = �

�

W+W�

�

K

(0)

. V

tree

denotes the full s
alar potential for the volumemodulus

T ex
ept the e�e
ts of the �

0

-
orre
tion under dis
ussion.

This 
orre
tion, whi
h breaks the no-s
ale stru
ture of the K�ahler potential of the volume

modulus, 
an be used as a repla
ement for the anti-D3-brane or D-terms on D7-branes to

provide the uplift ne
essary for realizing the KKLT me
hanism. Combining the KKLT ansatz

for the superpotential

W (T ) =W

0

+Ae

�aT

(5)

with the �

0

-
orre
tion is suÆ
ient to realize de Sitter va
ua with all the moduli stabi-

lized [29{32℄. We 
an show now that a 
ombination of the me
hanism of uplifting by �

0

-


orre
tions with a ra
etra
k superpotential generates dS-minima with full moduli stabiliza-

tion. Simultaneously, the same potential 
ontains regions where T -modulus in
ation with

roll-o� into the desired dS-minima is realized. There is no � problem in this setup be
ause

the leading order K�ahler potential of the volume modulus is of the no-s
ale type.

3 Absen
e of T -modulus in
ation in KKLT

Before analyzing the setup sket
hed at the end of the last Se
tion, we should 
larify why the

original KKLT setup with just the superpotential eq. (5) and one uplifting 
orre
tion ÆV

does not allow T -modulus in
ation. For this purpose, note that the types of uplift 
onsidered

so far 
an be written as

ÆV =

D

X

�

: (6)

Here we use that we write the s
alar 
omponent of the 
hiral super�eld T as T j = X + iY .

Stri
tly speaking, the above �

0

-
orre
tion behaves as a mixture of additive and multipli
ative


orre
tions. However, from the general form of the potential it is 
lear that the above �

0

-


orre
tion in the vi
inity of the maximum 
an be written lo
ally in the same additive form

ÆV =

D

X

3=2

; D =

^

�

2

p

2

�

�V

tree

+

3

8

e

K

(0)

�

�

�

W + (� � �� )

~

D

�

W

�

�

�

2

�

�

�

�

�

�

T=T

max

: (7)

Thus, we may 
onsider the following general setup: take the superpotential Eq. (5) to �x

the T -modulus after the 
ux part W

0

has �xed all the non-K�ahler moduli. Add one uplifting

term Eq. (6) with � > 0 being general. Su
h a setup generi
ally generates a maximum in the

1

Here V is de�ned in the Einstein frame [27℄.
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X-dire
tion separating the dS-minimum from in�nity. Sin
e this maximum simultaneously

forms a minimum in the Y -dire
tion, we have the situation that in
ation would have to

start from a saddle point with dire
tion towards the dS-minimum. For this purpose, two

ingredients are ne
essary: �rstly, a de�nition of the slow-roll parameters for a s
alar �eld

with a non-
anoni
ally normalized kineti
 term. Se
ondly, an analysis of the s
alar potential's

stationary points with respe
t to whether slow-roll 
an be satis�ed on the saddle or not.

The equations of motion for non-
anoni
ally normalized s
alar �elds [45{48℄ read

�

�

l

+ 3H

_

�

l

+ �

l

ij

_

�

i

_

�

j

+G

lk

�V

��

k

= 0 ; �

l

ij

= �

1

2

G

lk

�G

ij

��

k

: (8)

For the T -modulus this implies

G

T

�

T

= K

T

�

T

=

3

4X

2

) L

kin

=

3

4X

2

(�

�

X�

�

X + �

�

Y �

�

Y ) (9)

and thus the equations of motion be
ome

�

X + 3H

_

X +

1

X

_

X

2

+

2

3

X

2

�V

�X

= 0

�

Y + 3H

_

Y +

1

X

_

Y

2

+

2

3

X

2

�V

�Y

= 0 : (10)

The slow-roll parameters of, e.g., X are thus given by

�

X

=

X

2

max

3

�

V

0

V

�

2

; �

X

=

2X

2

max

3

V

00

V

(11)

where

0

denotes di�erentiation with respe
t to X.

The next step is to analyze the s
alar potential. In
luding the uplift this follows from

Eq. (3) to be

V (T ) =

1

4X

2

�

2aA

2

e

�2aX

�

1 +

1

3

aX

�

+ 2aAW

0

e

�aX


os(aY )

�

+

D

X

�

: (12)

The extrema of this potential are determined by the 
onditions �

X

V = �

Y

V = 0. The

Y -
ondition

�V

�Y

= 0 = �

a

2

A

2X

2

e

�2aX

W

0

sin(aY ) ) Y

extr

= 0 for:AW

0

< 0 (13)

implies that all extrema in X are found along the dire
tion Y = 0 with repli
ations at

Y =

2�n

a

8n 2Z. The extremal points are determined then by

�V

�X

= 0

, 0 �

3�D

aA

X

2��

+

3

2

W

0

� �(X) +A�

2

(X) ; �(X) = aXe

�aX

(14)

where we used the regime of large volume

aX � 1 ; X � 1 ) aA�

A

X

�

W

0

X

;

A

X

e

�aX

�

W

0

X

(15)
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in order to trust the use of the e�e
tive potential. Expanding the solutions to this quadrati


equation in X

2��

D=W

2

0

� 1 up to O

�

X

2��

max

D

W

2

0

�

leads to two extrema at

aX

max

e

�aX

max

X

2��

max

= �

2�D

aAW

0

; aX

min

e

�aX

min

= �

3W

0

2A

(16)

as long as AW

0

< 0, whi
h a posteriori justi�es the use of this 
ondition in extremizing the

potential in Y above. Thus, the slow roll parameters of the saddle are

�

X;saddle

= 0 ; �

X;saddle

=

2

3

X

2

max

1

V

�

2

V

�X

2

�

�

�

�

X=X

max

;Y=0

= �

2

3

�aX

max

: (17)

Thus, we have � � 1 only if �

<

�

0:1 (for whi
h no known realization exists) or aX

max

<

�

1,

whi
h violates the large volume and perturbativity assumptions. Slow-roll in
ation with the

T -modulus on the saddle point of this most simple 
lass of KKLT-like setups does not work.

Note that this 
ondition 
orresponds to the fa
t that the single uplift ÆV already by itself

has �

ÆV

= 2=3 �X

2

ÆV

00

=ÆV = 2�(1 +�)=3 � 1 for �� 1. Thus ÆV in general has to behave

nearly like a 
onstant in order to generate a suÆ
iently 
at maximum of V .

We 
an extend this analysis immediately to the 
ase of two additive uplifts given by

ÆV

2

=

D

1

X

�

1

+

D

2

X

�

2

; �

1

; �

2

> 0 : (18)

(Su
h a 
ontribution might arise, e.g., if more than one �

0

-
orre
tion to the K�ahler potential

is in
luded and lo
ally written in the above form, see Eq. (7). Unfortunately, none are known

besides the one of [27℄.) Without loss of generality we may assume �

1

< �

2

. Then there are

two 
ases.

In one situation we have both D

1

and D

2

positive implying that ÆV

2

de
reases stri
tly

monotoni
ally: ÆV

0

2

< 0 and ÆV

00

2

> 0 8X > 0. This leads ba
k to the above result with just

one uplift and thus to Eq. (17) but with � repla
ed by some linear 
ombination 


1

�

1

+


2

�

2

2

[�

1

; �

2

℄ where 


1

+ 


2

= 1 with 0 < 


1

; 


2

< 1.

The other and more interesting 
ase is to have D

1

> 0 and D

2

< 0. Then D

2

=X

�

2

is

negative and stri
tly monotoni
ally in
reasing for all X > 0 while D

1

=X

�

1

is positive and

stri
tly monotoni
ally de
reasing. Further, sin
e we assumed �

1

< �

2

we have lim

x!0

ÆV =

�1. Therefore ÆV

2

has exa
tly one zero and one global maximum within (0;1). At the

maximum �

max

ÆV

2

= 0. As we noted above ÆV

2

has to behave nearly like a 
onstant in order to

provide a suÆ
iently 
at maximum of V . This is realized 
lose to the maximum of ÆV

2

if we

tune �

max

ÆV

2

� 1. Using X

max

determined by ÆV

0

2

(X

max

) = 0 we arrive at

�

max

ÆV

2

= �

2

3

� �

1

�

2

(1 + �

1

) : (19)

Requiring �

max

� 1 leads to either �

1

� 1 or �

2

� 1.

The other three sub
ases are either uninteresting or equivalent to the former 
ase: If we


hange both the relative minus sign of D

1

, D

2

and the hierar
hy of �

1

, �

2

we are ba
k to

the former 
ase with ex
hanged labels (1$ 2). If we 
hange just one of them we get a ÆV

2

whi
h has a global minimum with negative potential instead of the desired maximum with

positive potential.

In 
on
lusion we 
annot tune the maximum of the KKLT potential Eq. (12) suÆ
iently


at by repla
ing its one additive uplift by a 
ontribution of the type of Eq. (18).
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4 T -modulus in
ation with �

0

-
orre
tions

The above result for
es us to look for other minimal extensions of the setup whi
h may lead

to saddle points with suÆ
iently small negative 
urvature. In the literature [38℄ a ra
etra
k

extension of the KKLT superpotential in 
ombination with an anti-D3-brane was used to


onstru
t an in
ationary saddle point.

We will show now that we 
an generate in
ationary saddle points using the following

setup: the superpotential is given by

W (T ) = W

0

+Ae

�aT

+Be

�bT

: (20)

Departing from [38℄ the uplift of the two degenerate AdS-minima present in the 
orre-

sponding s
alar potential will now be provided by the �

0

-
orre
ted no-s
ale breaking K�ahler

potential of Eq. (2)

K = �3 � ln

�

T +

�

T

�

� 2 � ln

 

1 +

^

�

2(2 Re T )

3=2

!

(21)

This indu
es the 
ontribution Eq. (4) to the s
alar potential. We do not introdu
e an anti-

D3-brane.

The analysis of the in
ationary properties of the s
alar potential given by this setup

follows 
losely the lines of [38℄. The di�eren
es (besides using the �

0

-
orre
tion instead of an

anti-D3-brane) we will en
ounter when looking at the stru
ture of the minima and saddle

points present in the �

0

-
orre
ted s
alar potential.

Assume now that the 
ux 
ontribution W

0

has stabilized the dilaton � in a minimum

given by

~

D

�

W = 0. Then the resulting s
alar potential 
an be written as

V (T ) =

 

1�

^

�

(2 Re T )

3=2

!

V

tree

+

3

8

e

K

(0)

^

�

(2 Re T )

3=2

jW j

2

(22)

where

K

(0)

= �3 ln(T +

�

T ) : (23)

V

tree

denotes the s
alar potential indu
ed by the above superpotential. It is given as

V

tree

(X;Y ) =

e

�2(a+b)X

6X

2

n

AB [3(a+ b) + 2abX℄ e

(a+b)X


os[(a� b)Y ℄

+aA

�

3

�

A+W

0

e

aX


os(aY )

�

+ aAX

�

e

2bX

+bB

�

3

�

B +W

0

e

bX


os(bY )

�

+ bBX

�

e

2aX

o

: (24)

Finally, jW j

2

reads

jW j

2

= W

2

0

+A

2

e

�2aX

+B

2

e

�2bX

+ 2AW

0

e

�aX


os(aY ) + 2BW

0

e

�bX


os(bY )

+2ABe

�(a+b)X


os[(a� b)Y ℄ : (25)

Compared to an anti-D3-brane uplift, the stru
ture of this s
alar potential is 
hanged


onsiderably, sin
e, as noted before, the �

0

-uplift 
an only be written lo
ally as a purely

additive 
ontribution of the type D=X

�

. Prior to uplifting we have a saddle at Y = 0 whi
h

7
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Figure 1: The s
alar potential of T -modulus with �

0

-
orre
tion for a generi
 
hoi
e of

parameters. Clearly visible are the three minima 
onne
ted by two o�-X-axis saddle points.


onne
ts the two degenerateAdS-minima at Y

(1)

min

= �Y

(2)

min

6= 0 of the s
alar potential indu
ed

by the above superpotential. This saddle is rather 
at and extended in X and Y . Therefore,

unlike an anti-D3-brane uplift, the �

0

-
ontribution will not just lift the two minima to V > 0

while leaving the form of the saddle pra
ti
ally un
hanged. The �

0

-
orre
tion will uplift and

deform the initial saddle at Y = 0 as well as it lifts the two degenerate AdS-minima.

The shape of the potential arising this way looks the following: The initial saddle point

is at larger volume than the two AdS-minima and the �

0

-
orre
tion s
ales with an inverse

power of the volume. Therefore, the 
orre
tion will raise the AdS-minima faster than the

initial saddle point. This implies that two new saddle points will appear whi
h separate ea
h

of the former AdS-minima from the region 
lose to the former initial saddle point whi
h

this way be
omes a third lo
al minimum. Therefore, after suÆ
ient uplifting we will have in

general three di�erent lo
al minima at V � 0 with the properties

X

(1)

min

= X

(2)

min

; Y

(1)

min

= �Y

(2)

min

6= 0 ; X

(3)

min

> X

(1)

min

; Y

(3)

min

= 0 : (26)

Two of them, (1) and (2), are ea
h 
onne
ted to the third one via a saddle point. Fig. 1 shows

this situation for a generi
 
hoi
e of parameters. The two saddle points have the properties

X

(1)

saddle

= X

(2)

saddle

= X

saddle

; Y

(1)

saddle

= �Y

(2)

saddle

6= 0

and furthermore

X

(1)

min

= X

(2)

min

< X

saddle

< X

(3)

min

: (27)

This stru
ture now allows for a new possibility of tuning the s
alar potential in order to

�nd suÆ
iently 
at saddle points: sin
e the uplift of the �

0

-
orre
tion s
ales with a negative

power of X, the two degenerate minima (1) and (2) will get more strongly lifted than the

saddle points 
onne
ting them to minimum (3) at Y = 0. This third minimum, in turn, gets

8



even more weakly lifted than the saddle points. Hen
e, the potential 
an be tuned in su
h

a way that the minimum (3) remains approximately Minkowski while the two degenerate

minima rise as a fun
tion of the uplift parameter

^

�. Therefore, the saddle between minimum

(3) and, say, minimum (1) has very small negative 
urvature shortly before minimum (1)

disappears. The total set of parameters available (A;B; a; b;W

0

;

^

�) is large enough to allow

for tuning both the 
urvature of these saddle points and the va
uum energy V (X

(3)

min

) of the

approximate Minkowski minimum (3) to be small enough. For instan
e, imagine a situation

where a �rst tuning results in a situation with suÆ
iently small 
urvature of the above two

saddles and a hierar
hy 0 < V (X

(3)

min

)� V

saddle

� V (X

(1)

min

). Then an additional �ne-tuning of

^

� by a small amount Æ

^

� allows for having V (X

(3)

min

) as 
lose to zero as ne
essary to a

omodate

V (X

(3)

min

) � �


osm:

. This additional tuning will not destroy the 
atness of the saddle points

sin
e a

ording to Eq. (7) the �

0

-
orre
tion a
ts 
lose to a given point, i.e. a saddle point,

similar to an additive anti-D3-brane uplift for a very small 
hange jÆ

^

�j �

^

�.

This me
hanism is quite generi
 for a superpotential 
onsisting of the 
ux pie
e and two

gaugino 
ondensate 
ontributions with its two degenerate AdS-minima: it depends mainly

on the hierar
hy of the positions in X of the three minima and the two saddles that arise

upon uplifting. Thus, even with further �

0

-
orre
tions we expe
t this pi
ture to remain

qualitatively the same, though the numeri
al values will 
hange.

Firstly, we will show now that a 
onsiderable �ne-tuning of B is suÆ
ient to get enough

e-foldings of slow-roll in
ation on the saddle points. As an example, 
onsider the parameter


hoi
e

W

0

= �5:55 � 10

�5

; A =

1

50

; B = �3:37461131 � 10

�2

; a =

2�

100

; b =

2�

91

^

� = �

1

2

�(3)e

�3�=2

� ; � = �4209 : (28)

Here we assumed e

�3�=2

= O(1). Then the desired value of

^

� implies that we have to 
hoose

Calabi-Yau manifolds of large negative Euler number with � = �10

3

: : : � 10

4

whi
h, in

general, appears to be possible [44℄. For simpli
ity we set this quantity to unity whi
h leads

to the above value of �.

Alternatively we 
an 
onsider the possibility that the SM lives on a sta
k of 
oin
ident

D3-branes. The 4d gauge 
oupling on a sta
k of D3-branes is �

D3

= e

�

=2 [49℄. Phenomeno-

logi
ally �

GUT

= 1=24 and thus e

��

� 12 implying e

�3�=2

� 50. This redu
es the absolute

value of the Euler number whi
h is required to get the desired value of

^

�. As a numeri
al

example let us assume the dilaton �xed at e

�3�=2

= 61. Then we 
an realize the above ex-

ample for � = �69. Thus, the model does not have to rely on the existen
e of Calabi-Yaus

with � < �1000. Otherwise, we may 
hoose j�j smaller whi
h will move the above stru
ture

of three minima towards smaller X-values. However, in the following dis
ussions we will set

e

�3�=2

= 1 everywhere.

For the example given above we �nd the minimum (3) at approximately

X

(3)

min

= 132:398 ; Y

(3)

min

= 0 (29)

being weakly de Sitter. The other two degenerate minima reside at

X

(1)

min

= X

(2)

min

= 116:724 ; Y

(1)=(2)

min

= �19:431 : (30)

The two saddle points we �nd very 
lose by at

X

saddle

= X

(1)

saddle

= X

(2)

saddle

= 116:728 ; Y

(1)=(2)

saddle

= �19:428 : (31)

9
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Figure 2: Evolution of the in
aton T = X + iY as a fun
tion of time measured by the

number of e-folding N .

As a 
onsisten
y 
he
k we may 
al
ulate the ratio

^

�

(2X)

3=2

(32)

at the three minima. This ratio is the expansion parameter used in deriving Eq. (22) from

Eq. (21). We �nd

^

�=(2X)

3=2

� 0:5 < 1 for the minimum (3) and

^

�=(2X)

3=2

� 0:7 < 1 for

the other two degenerate minima (1) and (2). This implies that the region around the three

minima still resides in the perturbative regime of the e�e
tive potential.

We may now 
al
ulate the Hesse matrix of 
urvatures

H =

�

�

2

V

�X

2

�

2

V

�X�Y

�

2

V

�X�Y

�

2

V

�Y

2

�

(33)

diagonalize it and 
al
ulate from it the matrix of slow-roll parameters on one of the saddle

points to yield

H

�

=

2

3

X

2

saddle

H

diag

�

�

1222:83 0

0 �0:069

�

: (34)

Therefore, on these two saddle points, slow-roll in
ation 
an take pla
e if the T -modulus

starts from the saddle with initial 
onditions �ne-tuned to some amount. For example, for

initial 
onditions given by

X

0

= X

(1)

saddle

+ 10

�6

; Y

0

= Y

(1)

saddle

;

_

X

0

=

_

Y

0

= 0 (35)

we get slow-roll in
ation with some 130 e-foldings and rolling-o� into the dS-minimum (3)

of our world, as seen in Fig. 2. Here the equations of motion for the T -modulus Eq. (10)

have been rewritten using

10



Tmin
H1L=116.724+ä 19.431

Tsaddle
H1L=116.728+ä 19.428

Figure 3: Contour plot of the potential 
lose to the saddle point (1) and the evolution of the

in
aton traje
tory (thi
k line) in �eld spa
e. The lo
al minimum (1) and the saddle point

(1) are indi
ated. The 
ontour lines 
urving away from the starting point of the in
aton


learly indi
ate the saddle point nature of this region. The long thin ellipse in the upper left

en
loses the lo
al minimum (1).

�

�t

= H

�

�N

; from the FRW s
ale fa
tor R(t) = e

Ht

= e

N

H

2

=

1

3

�

3

4X

2

(

_

X

2

+

_

Y

2

) + V (X;Y )

�

=

1

3

V (X;Y ) �

�

1�

X

02

+ Y

02

4X

2

�

�1

(36)

to yield [38℄

X

00

= �

�

1�

X

02

+ Y

02

4X

2

��

3X

0

+ 2X

2

1

V

�V

�X

�

+

X

02

� Y

02

X

Y

00

= �

�

1�

X

02

+ Y

02

4X

2

��

3Y

0

+ 2X

2

1

V

�V

�Y

�

+

2X

0

Y

0

X

(37)

and

0

denotes �=�N . The stru
ture of the potential and the initial part of the in
aton

traje
tory in �eld spa
e 
lose to the saddle point 
an be found in Fig. 3.

The Hubble parameter at the saddle point

H

saddle

=

r

1

3

V

saddle

� 10

�9

(38)

is mu
h smaller than the initial �ne-tuning of the in
aton on the saddle. Thus, the s
alar

�eld 
u
tuations generated during in
ation being of order H=2� = O(10

�10

) here [51℄ will

not destroy the slow-roll motion of the �eld.

We should mention here that by stronger �ne-tuning in the potential the slow-roll param-

eter � of the saddle points 
an be made mu
h smaller than in the above numeri
al example.

11



In this 
ase, the amount of �ne-tuning in the initial 
onditions of the in
aton ne
essary to

a
hieve suÆ
iently many e-foldings 
an be relaxed. Thus, we may trade �ne-tuning of the

initial 
onditions for �ne-tuning of the potential.

Fine-tuning of the potential may be a

eptable if we 
onsider the extremely large number

of va
ua the lands
ape 
ontains. This large number allows us to think of the parameters of the

potential as being s
anned suÆ
iently �nely a
ross the lands
ape. In this view we also have

no problem with the severe �ne-tuning already present in the potential. Sin
e the potential

arises from a ra
etra
k superpotential we naturally expe
t a �ne-tuning in the parameters

if we balan
e the exponential 
ontributions of the ra
etra
k type to get 
at saddle points.

In the above example the parameter B was �ne-tuned on the level of about 10

�8

whi
h 
an

be 
ompared with the ra
etra
k model of [38℄ where a �ne-tuning of about 10

�4

: : :10

�3

was needed to obtain suÆ
ient slow-roll in
ation. Sin
e the number of va
ua in the string

lands
ape is roughly 10

500

[1,2℄ we expe
t a mu
h higher level of �ne-tuning allowed by the

lands
ape.

Finally, we have the fa
t that within the string lands
ape the potential is tuned dis
retely

by the 
uxes. We may 
onsider this as an advantage 
ompared to purely �eld theoreti


in
ation models, where the potential 
an be �ne-tuned 
ontinuously in its parameters.

5 Res
aling properties

The setup under dis
ussion has 
ertain s
aling properties whi
h are similar to those of the

s
alar potential of [38℄. jW j

2


ontains a

ording to Eq. (25) a, b, and X;Y only in the


ombinations aX, aY , bX, and bY while in V

tree

(see Eq. (24)) ea
h term also has a fa
tor

of either a=X

2

or b=X

2

. Consider the res
aling

T ! �T ; a!

a

�

; b!

b

�

;

^

� ! �

3=2

^

� for: � > 0 (39)

where we leave the values of W

0

, A and B un
hanged. Then the potential Eq. (22) itself

res
ales as

V !

V

�

3

: (40)

Thus, the whole stru
ture of the three minima and two saddle points found above shifts

along the X-axis. In the res
aled model the stationary points reside at

X

0(i)

saddle/min/max

= � �X

(i)

saddle/min/max

Y

0(i)

saddle/min/max

= � � Y

(i)

saddle/min/max

(41)

respe
tively. The eigenvalues of the slow-roll parameter matrix H

�

are invariant under this

res
aling. This is 
lear from Eq.s (11) and (34) sin
e the s
aling �

j

! �

�1

�

j

(j = X;Y )

implies (V

0

=V )

2

! �

�2

(V

0

=V )

2

and V

00

=V ! �

�2

V

00

=V . Here

0

denotes a derivative with

respe
t to either X or Y . The power spe
trum of density 
u
tuations generated during

in
ation

P

R

=

1

24�

2

V

�

(42)

s
ales upon the transformation Eq. (39) as P

R

! �

�3

P

R

.

12



Note further that A, B and W

0

appear in both Eq. (24) and (25) only as polynomial

produ
ts of degree two. A res
aling

T ! �T ; a!

a

�

; b!

b

�

;

^

� ! �

3=2

^

� ; A! �

3=2

A ; B ! �

3=2

B ; W

0

! �

3=2

W

0

for: � > 0 (43)

implies then that besides � and � also the full s
alar potential is invariant V ! V . Therefore,

the transformation Eq. (43) leaves the density 
u
tuation power spe
trum un
hanged.

We will rely heavily on these s
aling properties of the model in the next Se
tion where

we will sear
h for a phenomenologi
ally viable set of model parameters.

6 Experimental 
onstraints and signatures

A realisti
 model of in
ation has to generate a nearly s
ale-invariant power spe
trum of

density 
u
tuations of the right magnitude. The �ne-tuning of B we 
hose in Se
tion 4 was

suÆ
ient in order to obtain more than the required 60 e-foldings of slow-roll in
ation. In

general this �rst step of �ne-tuning does not guarantee the density 
u
tuations at the COBE

normalization point at N � 80, i.e., about 55 e-foldings before the end of in
ation, to be

small enough or to have a spe
tral index n

s

� 1.

Therefore, we have to perform an additional �ne-tuning: Using the res
aling properties

of the previous Se
tion we have to shift the relevant part of the s
alar potential along the

X-axis in order to sear
h for a region where the density 
u
tuations be
ome small enough.

And we need an additional �ne-tuning in B to get saddle points with a slow-roll parameter

� small enough for a viable n

s

. By tuning of B and the use of the res
alings given in the

Eq.s (39) and (43) we �nd a new set of parameters

W

0

= �

37

46

� 10

�6

; A =

1

3450

; B = �

14672223067

3 � 10

13

a =

2�

100

�

69

10

�

2=3

; b =

2�

91

�

69

10

�

2=3

;

^

� = �

1

2

�(3)� ; � = �610 : (44)

Here we have assumed as before e

�3�=2

= 1 for simpli
ity.

This model 
ontains again the two in
ationary saddle points. However, their negative


urvature eigenvalue is now redu
ed and yields a slow-roll parameter � = �0:0064. Solving

the equations of motion for this res
aled model with initial 
onditions given by

X

0

= X

(1)

saddle

+

�

69

10

�

�2=3

� 2:7 � 10

�4

; Y

0

= Y

(1)

saddle

;

_

X

0

=

_

Y

0

= 0 (45)

leads again to about 137 e-foldings of in
ation with the X and Y �elds behaving very similar

to the �rst 
ase shown in Fig. 2.

Now 
al
ulate again the magnitude of the density 
u
tuations at the COBE normalization

point. The result at about 55 e-foldings before the end of in
ation 
orresponding to N � 80

is now

�

Æ�

�

�

k

0

� 2 � 10

�5

(46)

yielding the 
orre
t magnitude.
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Figure 4: The deviation of the spe
tral index from unity n

s

�1 as a fun
tion of the number

of e-foldings N . The COBE normalization point sits at about 55 e-foldings before the end

of in
ation, i.e., here at N � 80.

Next, the spe
tral index is given by

n

s

= 1 +

d lnP

R

(k)

d ln k

�

�

�

�

k=RH

= 1 + 2

d ln(Æ�=�)

d ln k

�

�

�

�

k=RH

(47)

evaluated as usual at horizon 
rossing. Note that here we 
an repla
e d ln k ' dN be
ause k

is evaluated at horizon 
rossing k = RH � He

N

. Then we arrive at

n

s

= 1 + 2

d ln(Æ�=�)

dN

(48)

whi
h results in the 
urve shown in Fig. 4.

The spe
tral index at the COBE normalization point therefore yields a value of

n

s

� 0:93 (49)

whi
h is at 1� 
onsistent with the 
ombined 3-year WMAP + SDSS galaxy survey result

n

s

= 0:948

+0:015

�0:018

[42℄ (the 3-year WMAP data alone give n

s

= 0:951

+0:015

�0:019

). However, the

numeri
al value of n

s

whi
h we give here is a result of the limited parameter spa
e explored

and does not imply a stri
t upper bound on n

s

in the model. For 
omparison with the 3-year

WMAP data we give in addition the tensor-s
alar ratio r = 12:4 � � and the running spe
tral

index dn

s

=d ln k = �16�� + 24�

2

+ 2�

2

in


(where �

2

in


= (2X

2

=3)

2

� V

0

V

000

=V

2

). We �nd at

N = 80 the values � � 3 � 10

�14

, � � �0:035 and �

2

in


� �7 � 10

�4

. Thus, we have negligible

tensor 
ontributions r � 4 � 10

�13

and very small running dn

s

=d ln k � �0:0014.

Note that for the parameters 
hosen the res
aling pla
es the post-in
ationary 4d dS-

minimum of our universe at X

(3)

min

= 36:53 and Y

(3)

min

= 0. Thus, the 4d gauge 
oupling on a

sta
k of D7-branes in this dS minimum is given by � � 1=X

(3)

min

� 1=37. This is not far from

the phenomenologi
al requirement � � 1=24 allowing a 
onstru
tion of the Standard Model

on a sta
k of interse
ting D7-branes. Therefore we have now both possibilities to pla
e the

Standard Model on sta
ks of D3-branes or D7-branes.
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7 Eternal saddle point in
ation

A 
he
k of the above numeri
al results is warranted. Therefore, we should study the equations

of motion Eq. (10) of the non-
anoni
ally normalized �eld T in su
h KKLT-like setups in the

vi
inity of a saddle point. For simpli
ity just 
on
entrate on the equation of motion for the

X-
omponent. Next assume that the saddle point at X

s

is ta
hyoni
 with negative 
urvature

in the X-dire
tion. Then in its vi
inity the potential 
an be approximated by

V (X) = V

s

�

1

2

jV

00

s

j(X �X

s

)

2

: (50)

Here

0

denotes di�erentiation with respe
t to X. For a 
anoni
ally normalized s
alar �eld the

properties of in
ation 
aused by the s
alar �eld rolling down from the saddle point have been

studied in [50℄. Following the lines of the analysis given there, we �rst rewrite the equation

of motion for X in terms of the �eld � = X �X

s

. The �eld will roll down from the saddle

into a lo
al minimum with jX

min

�X

s

j << X

s

. Thus, � obeys

�

�+ 3H

_

�+

1

X

s

_

�

2

�

2

3

X

2

s

jV

00

s

j� = 0 : (51)

Using the ansatz

�(t) = �

0

e

!t

(52)

this be
omes

!

2

+ 3H! +

!

2

�

X

s

�

2

3

X

2

s

jV

00

s

j = 0 : (53)

Sin
e we will analyze a regime where the Hubble parameter is still dominated by the potential

energy of � and � is very slowly moving, one may assume !

2

�� X

s

. We will justify this in

the end. Now let us fo
us on the exponentially growing solution given by

! =

3

2

H

 

�1 +

r

1 +

8

9

X

2

s

jV

00

s

j

3H

2

!

= H � j�

s

j (54)

where the slow-roll parameter is again de�ned as above

j�

s

j =

2

3

X

2

s

jV

00

s

j

V

s

: (55)

As a 
he
k of the approximation made, we may plug in the simple example of KKLT dis
ussed

in Se
t. 3. We have from there j�

s

j =

4

3

aX

s

and V

s

�

D

X

2

s

. Thus

! = Hj�

s

j �

4

3

p

3

a

p

D

X

s

� 10

�9

� X

s

; for: a � 0:1 and X

s

� 130 D � 10

�12

(56)

whi
h satis�es the assumption !

2

� � X

s

a posteriori (the value of the �eld at the end of

in
ation is at most �

end

= O(10) in the KKLT example above).

Denoting now the value of �eld at the time where in
ation ends with �

�

we 
an derive

the number of e-foldings in this fast-roll in
ation s
heme as given by

N =

1

j�

s

j

ln

�

�

�

�

0

�

: (57)
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The �nal value �

�

here is determined either by the fa
t that the potential and thus the Hubble


onstant have de
reased signi�
antly (this works if the potential is very well des
ribed by

the quadrati
 approximation even for large �) or that at �

�

we have rea
hed j�j = O(10).

The last 
ondition arises from Eq. (57). For j�j = 6 : : : 10 even a very large ratio �

�

=�

0

�

M

p

=M

EW

� 10

17

does not generate more than about 10 additional e-foldings.

As a 
he
k of the numeri
al results of the last Se
tion we may apply now these results.

The number of e-foldings there is given by Eq. (57) in terms of the initial deviation of the

in
aton �eld from the saddle point �

0

, the �nal value �

�

when in
ation ends and the saddle


urvature in its ta
hyoni
 dire
tion �

s

as

N =

1

j�

s

j

ln

�

�

�

�

0

�

: (58)

Now in the �rst example of the last Se
tion �

0

= 10

�6

(see above). Further, we have j�

s

j =

0:069. It remains to determine �

�

as the end point of the in
ationary phase. For this purpose

we have to analyze the potential V (X(N); Y (N)) along the in
ationary traje
tory above and

to 
al
ulate the �-values along the traje
tory. We �nd that when the T -modulus has moved

to a distan
e of about 0:01 from the saddle, � � �10 whi
h means that in
ation e�e
tively

ends there. Plugging this now in the above formula we obtain

N =

1

j�

s

j

ln

�

�

�

�

0

�

� 133 : (59)

This is suÆ
iently 
lose to the purely numeri
al results above, whi
h indi
ates that the

numeri
al solution is stable and 
losely resembles the true one.

Note that in this model ea
h of the two rather 
at saddle points still 
onne
ts two minima

((1) and (3) or (2) and (3), respe
tively). In su
h a situation, where a suÆ
iently 
at saddle

point 
onne
ts two minima along a 
ertain dire
tion in �eld spa
e, in
ation may also arise

from in
ating topologi
al defe
ts, namely, domain walls [52℄. It is therefore tempting to

spe
ulate that besides slow-roll in
ation also eternal topologi
al in
ation arises on the saddles


onstru
ted here, whi
h would relieve the question of �ne-tuning the initial 
onditions of the

in
aton [38,53℄. The original literature [52,53℄ uses a saddle point 
onne
ting two degenerate

minima in deriving the 
onditions for topologi
al in
ation: the saddle 
urvature has to be

small enough that �

saddle

� 1, whi
h 
orresponds to domain walls whose wall thi
kness is

large 
ompared to their gravitational radius. As an illustration 
onsider the example of stati


domain walls of the Z

2

-symmetri
 theory

L =

1

2

(�

�

�)

2

� V (�) ; V (�) =

�

4

(�

2

� �

2

)

2

(60)

whi
h are given by the solution

�

wall

(x) = � tanh

�

r

�

2

�x

�

(61)

for a wall in the yz plane. The thi
kness of the wall Æ is determined by the equilibrium of

gradient and potential energy density as

�

grad

j

x�Æ

�

�

2

Æ

2

� �

pot

= V (0) � ��

4

) Æ �

1

�

p

�

: (62)
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Figure 5: A highly asymmetri
 double-well s
alar potential as it is realized along the in
aton

traje
tories in the previous Se
tion. �V and �

2

are exaggerated 
ompared to the values in

the a
tual model.

The gravitational radius of the wall is R = 2M

wall

� 8��Æ

3

=3 where the energy density

is � = ��

4

=2 (the sum of the potential energy density and the gradient energy density).

Gravitational e�e
ts be
ome important on
e the gravitational radius ex
eeds the wall thi
k-

ness, i.e, for

Æ < R ) � >

3

4�

(63)

in Plan
k units. If we 
al
ulate the slow-roll parameter � at the 
enter of the wall the

result is �

x=0

= V

00

(0)=V (0) = 4=�

2

. Requiring � < 1 therefore 
orresponds to the previous

'importan
e of gravity' 
ondition. The above stati
 wall solution would never in
ate sin
e

the potential and gradient energy density are of the same order near the wall. However, if

in
ation started in a small pat
h of spa
e-time with � = 0 then the 
u
tuations Æ� � H

with wavelength H

�1

generated after ea
h time intervalH

�1

have a gradient energy � H

4

�

V

2

<< V as long as V << 1 in the wall. In this 
ase, an initially in
ating wall whi
h ful�lls

Eq. 63 will 
ontinue to in
ate forever near to the wall 
enter [52,53℄.

This analysis is valid in the symmetri
 potential of the example above. In the 
ases under


onsideration in the last Se
tion the saddles 
onne
t two highly non-degenerate minima

V

(1)

saddle

� V

(1)

min

V

(1)

saddle

=

�V

V

(1)

saddle

�

V

(1)

saddle

� V

(3)

min

V

(1)

saddle

� 1 : (64)

Fortunately, we 
an extend the above analysis to this situation. For simpli
ity we will ren-

der the problem again one-dimensional. This is possible by looking at the s
alar potential

along the in
ation traje
tories of the examples of the previous Se
tion. This e�e
tively one-

dimensional potential then looks like the one shown in Fig. 5.

In this potential, too, there will be a domain wall like solution �

wall

with the properties

�

wall

:

8

<

:

lim

x!�1

�

wall

= �

2

< 0

lim

x!1

�

wall

= �

1

> 0

�

wall

(x = 0) = 0

: (65)

17



This solution is no longer symmetri
 under x ! �x. In parti
ular, it 
an be des
ribed by

two wall thi
kness parameters Æ

1

and Æ

2

for x > 0 and x < 0, respe
tively. For x < 0 the

gradient energy of the wall has to 
ompensate just the small potential energy di�eren
e �V

between the �-maximum and the minimum at � = �

2

< 0. The gradient energy at x > 0,

however, 
ompensates for the full potential V

0

of the �-maximum. Thus, we get from the

equilibrium of potential and gradient energy the relations

Æ

1

�

�

1

p

V

0

; Æ

2

�

j�

2

j

p

�V

: (66)

The wall be
omes dominated by gravity if Æ

1

+ Æ

2

< R � �(Æ

1

+ Æ

2

)

3

whi
h results in a


ondition

Æ

1

+ Æ

2

>

1

p

V

0

� H

�1

: (67)

For, e.g., Æ

2

> Æ

1

this is essentially Eq. (63). If in addition V

0

� 1 holds, a single pat
h of

size � H

�1

, whi
h is �lled initially with a �eld � � 0 with 
u
tuations Æ�� H, will be
ome

the 4d dS 
ore of an exponentially expanding wall as noted above already.

Note that the high-lying minimum also gives rise to a fast expanding dS spa
e-time.

However, sin
e the potential energy of the maximumalways ex
eeds the high-lying minimum,

the spa
e-time in the 
ore of the wall with the �eld on the maximumwill expand faster than

that of the high-lying minimum.

On
e the �eld starts to roll down towards the post-in
ationary minimum (3) with a very

small 
osmologi
al 
onstant V

(3)

min

� 0 a bubble of the new va
uum given by the minimum

(3) is formed. Even without gravity the bubble would expand sin
e the energy density of

the va
uum inside the bubble is smaller than outside the bubble where it is given by the

minimum (1) on the other side of the saddle point [54℄. For this thin-wall 
ase without

gravity the bubble wall would still be given by a kink solution of the form of Eq. (65).

However, the wall position would now be given by x = 0 = R�R

0

with R =

p

j~r(t)j

2

� 


2

t

2

whi
h des
ribes a bubble wall whi
h expands with nearly the speed of light shortly after it

is born [54℄.

Without gravity, this expanding bubble would �nally 
onvert all spa
e-time in the va
uum

state of the minimum (1) to the one of minimum (3). However, as we 
onsider the 
ase of

a thi
k wall dominated by gravity whi
h possesses a fast in
ating 
ore, this over-roll of the

outside spa
e-time in the va
uum state of the minimum(1) 
annot happen. This is due to the

fa
t that the 
ore of the wall expands exponentially fast. While the interior side of the wall

of the bubble of the va
uum (3) when viewed from inside re
edes with nearly the speed of

light its outer side re
edes exponentially fast. Therefore, the interior side of the wall re
edes

exponentially fast from its outer side, and the bubble 
an never 
onvert all of the outside

spa
e-time into the va
uum inside the bubble. The pro
esses inside the wall are de
oupled

from the physi
s inside and outside the bubble due to the de Sitter horizon formed by the

exponential expansion of the wall's 
ore. Thus, on
e the appropriate 
onditions are satis�ed,

eternal topologi
al in
ation may take pla
e inside a thi
k wall dominated by gravity even if

the wall forms an expanding bubble due to non-degenerate minima of the potential.

Now we 
on
entrate on the quantum 
u
tuations of the s
alar �eld � inside the in
ating


ore of the wall. For in
ation to get started repeatedly within the wall there must be a

region 
lose to the �-maximumwhere the dS quantum 
u
tuations of � dominate its 
lassi
al

evolution [52, 53℄. Initially we have

�

� � 0 and thus the slow-roll equation of motion of the
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non-
anoni
ally normalized �eld � governs the 
lassi
al dynami
s 
lose to the �-maximum

_

� = �

2X

2

s

3

V

0

(�)

3H

: (68)

Now 
lose the �-maximum we 
an use Eq. (50) to arrive at

_

� = H�

s

� : (69)

Within the time interval �t = H

�1

the �eld moves 
lassi
ally by

Æ�


lass

= �

s

� : (70)

Simultaneously it re
eives a 
ontribution from quantum 
u
tuations

Æ�

quant

� H : (71)

The quantum 
u
tuations dominate the 
lassi
al motion (whi
h drives the �eld down into

the minima) for

� < �

�

with : �

�

�

H

�

s

: (72)

If now �

�

� Æ�

quant

� H there is a region 
lose to � = 0 at the 
enter of the wall where the

dS quantum 
u
tuations of � 
an jump the �eld many times before eventually passing �

�

from where the �eld moves 
lassi
ally. Therefore, within this region the �eld will jump over

and again arbitrarily 
lose to � = 0 thus starting in
ationary pat
hes without end. Plugging

in �

�

in �

�

� Æ�

quant

� H leads to the 
ondition

�

s

� 1 (73)

the slow-roll 
ondition.

Therefore, a highly asymmetri
 double-well potential shows eternal topologi
al in
ation

provided that 1) the slow-roll 
onditions hold on the maximum, 2) on the maximum V

0

� 1,

and 3) the 'gravity domination' 
ondition Eq. (67) holds. We apply these 
onditions now to

the realisti
 example (the 2

nd

one) of the previous Se
tion. There we have V

0

= O(10

�20

)� 1

and �

s

= 0:0064� 1. In terms of the above notation we have further �

2

� �10

�4

, �

1

� 20,

and �V � 10

�14

V

0

. This implies

Æ

1

� 10

11

>

1

p

V

0

; Æ

2

� 10

13

>

1

p

V

0

(74)

whi
h satis�es Eq. (67). Therefore, the in
ation model of the previous Se
tion has the prop-

erty of eternal topologi
al in
ation on its saddle points.

The initial probability of 
reating spa
e-time regions where T is 
lose to the saddle points

of its potential is exponentially small. However, the in
ationary regions, whi
h are seeded by

eternal topologi
al in
ation, dominate the volume of 4d spa
e-time after in
ation be
ause

of the exponential growth. Therefore, the post-in
ationary volume fra
tion of the universe

whi
h is in the va
uum given by the 4d dS minimum of T -modulus will be large [55℄. This

resolves the problem of �ne-tuning the initial 
onditions for the slow-roll in
ationary phase

whi
h we otherwise would have in the model of the previous Se
tion [38℄ (see also the re
ent

dis
ussion in [56℄).
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As a last 
omment, we note that the 
osmologi
al overshoot problem [57℄ as well as the

problem of moduli destabilization at high temperatures [58℄ under 
ertain 
onditions are

absent in our model. In order to see this look at the �nal 4d dS minimum of presumably our

world at X

(3)

min

(see the previous Se
t. for the notation). If our universe originated via eternal

topologi
al in
ation on one of the saddle points of the s
alar potential at, e.g., X

(1)

saddle

then

the reheating temperature after rolling down into the 4d dS minimum at X

(3)

min


annot ex
eed

T

max

reh

� (V

(1)

saddle

)

1=4

: (75)

The post-in
ationary minimum at X

(3)

min

, however, is separated from X !1 by a maximum

in X. The potential of this maximum V

barrier

in our model is given by

V

barrier

� 3V

(1)

saddle

: (76)

Thus, neither reheating nor the kineti
 energy of the T -modulus rolling down from the saddle

point 
an drive the �eld over the barrier.

8 Con
lusion

In this paper we analyze phenomenologi
al aspe
ts of higher-order �

0

-
orre
tions in the 
on-

text of moduli stabilizing 
ux 
ompa
ti�
ations of the type IIB superstring. We dis
uss the

in
ationary properties of the volume modulus in the original KKLT setup. In the simplest


lass of these models - 
onsisting of the 
ux superpotential, the 
ontribution of one gaugino


ondensate on a sta
k of D7-branes, and a single additive uplifting potential of a general in-

verse power-law form - slow-roll in
ation ending in the KKLT dS-minimum
annot o

ur. We

study �

0

-
orre
tions whi
h are higher-order 
urvature 
orre
tions and thus higher-dimension

operators appearing in the K�ahler potential of the e�e
tive a
tion. We demonstrate that the

generi
 ability of these higher-dimension operators to lift stable AdS

4

type IIB string va
ua

to the desired metastable dS-minima for the T modulus (the volume modulus) 
an also be

used to provide slow-roll in
ation using the same T modulus. Su
h a setup has no �-problem

be
ause the leading order K�ahler potential for the T modulus is of the no-s
ale type. We


onstru
t a 
on
rete model using 
uxes and a ra
etra
k superpotential whi
h upon in
lusion

of the �

0

-
orre
tions yields T -modulus in
ation on saddle points of the potential with some

130 e-foldings. At the end of in
ation the T -modulus rolls from the saddle point down into

a dS-minimum with a small positive 
osmologi
al 
onstant where the modulus is stabilized.

The model has 
ertain s
aling properties allowing us to shift the in
ationary region of the

potential to di�erent values of the real part of T while leaving the in
ationary properties of

the saddle points invariant. We argue that these saddle points might be generi
ally present

if ra
etra
k superpotentials and �

0

-
orre
tions are both taken into a

ount. The model 
an

a

ommodate the 3-year WMAP data of the CMB radiation. It yields primordial density


u
tuations of the right magnitude with a spe
tral index of these 
u
tuations n

s

� 0:93.

We point out that eternal topologi
al in
ation o

urs in the model whi
h removes the �ne-

tuning problem of in
ationary initial 
onditions. Finally, we 
omment on the 
osmologi
al

overshoot problem and the destabilization of the moduli at high temperatures. These e�e
ts

are absent in the fra
tion of the universe whi
h is seeded by topologi
al eternal in
ation in
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our model.
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