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Abstrat

We analyze quantum orretions to rigid spinning strings inAdS

5

�S

5

. The one-loop worldsheet

quantum orretion to the string energy is ompared to the �nite-size orretion from the

quantum string Bethe ansatz. Expanding the summands of the string theory energy shift in

the parameter 1=J

2

and subsequently resumming them yields a divergent result. However,

upon zeta-funtion regularisation these results agree with the Bethe ansatz in the �rst three

orders. We also perform an analogous omputation in the limit of large winding number,

whih results in a disagreement with the string Bethe ansatz predition. A similar mismath

is observed numerially. We omment on the possible origin of this disrepany.

�
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1 Introdution

Understanding the quantum spetrum of string theory in AdS

5

� S

5

is an important open

problem. Solving this problem will open up venues for testing the ideas of gauge/string duality

in the genuine stringy regime. It is beoming more and more lear that progress in quantizing

strings on AdS

5

�S

5

is impossible without serious input from the dual N = 4 supersymmetri

Yang-Mills theory (SYM). One idea that has proved extremely useful on the gauge theory side

and ould potentially be applied to AdS strings, is to ompute the spetrum using a Bethe

ansatz. The Bethe ansatz is the standard approah to quantize integrable systems [1℄ and it is

believed that both planar N = 4 SYM and string theory in AdS

5

� S

5

are integrable.

As was observed �rst at one loop [2, 3℄ and then at higher orders in perturbation theory

[4, 5, 6℄, the planar dilatation operator of N = 4 SYM an be identi�ed with a Hamiltonian of

an integrable spin hain

1

. The integrability on the string theory side arises beause the lassial

world-sheet sigma-model admits a Lax representation. For the bosoni redution this almost

immediately follows [10℄ from the integrability of the O(n) model [11℄. The Lax pair for the

full supersymmetri sigma-model in AdS

5

� S

5

[12℄ was onstruted in [13℄.

Beause the lassial equations of motion of the AdS string are integrable, their solutions

an be parameterized by the spetral data of the Lax operator. By reformulating the standard

solution of the spetral problem [14℄ it was shown in [15℄ that the spetral density for the string

moving on the R�S

3

subspae of AdS

5

�S

5

satis�es an integral equation that strikingly resem-

bles the large-volume (thermodynami) limit of the quantum Bethe equations for the spetrum

of the dilatation operator in the dual gauge theory. These results were extended to other setors

[16, 17, 18, 19℄ and eventually to the most general solution inluding world-sheet fermions [20℄.

Of ourse the lassial approximation in the sigma-model is aurate only at strong 't Hooft

oupling (i.e. weak worldsheet oupling). In addition, the Noether harges of the string have

to be large. In order to quantize the string one needs to \undo" the thermodynami limit and

turn the integral equations for the sigma-model into disrete, quantum string Bethe equations.

Suh a disretization was �rst proposed for the su(2) subsetor [21℄, then for other rank-one

setors [22℄ and subsequently for the omplete set of Bethe equations with the psu(2; 2j4) sym-

metry [23℄. The quantum string Bethe equations work remarkably well in several tratable

limits: they have the right lassial limit (by onstrution), reprodue the leading quantum

orretions for the BMN states and yield the orret energies of massive states in the strit

strong-oupling limit.

There are very few expliit alulations for quantum strings in AdS

5

� S

5

. One major

example is string quantization in the plane-wave limit [24℄ whih leads to a solvable string

theory [25℄ and an be understood as quantization around the simplest point-like solution of the

string spinning on S

5

[26℄. The urvature orretions [27℄ to the string states in this bakground

(BMN states) were alulated in [28℄. Frolov-Tseytlin solutions [29, 30℄ generalize this setup to

marosopi strings and it is possible to quantize utuations around these solutions in some

1

Although the dilatation operator is not integrable beyond leading order in the 1=N expansion [4℄, the planar

integrability is still useful in the study of deays of semilassial strings [7℄ and in the omputation of three-

point funtions [8℄. We should also mention that the lassial equations of motion of N = 4 SYM admit a Lax

representation [9℄, but we do not know if this property has anything to do with the quantum integrability of

the planar dilatation operator.
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ases [31, 32, 33, 34℄. For these solutions, the lassial string energies an be ompared to

the anomalous dimensions in the gauge theory (see [30, 35℄ for review), beause the 't Hooft

oupling � ombines with the R-harge J into the BMN oupling 1=J

2

� �=J

2

, whih an

be small even if the 't Hooft oupling is large, provided that the R-harge is large enough. In

partiular, the string ation redues to the e�etve ation of the spin hain in the limit of large

J [36℄. Generially, one �nds that string theory and SYM agree up to two loops and start to

disagree at three loops. For the quantum orretions the omparison has only been done at the

one-loop level [37, 38℄. It would be interesting to understand what happens at higher orders of

perturbation theory.

Our goal is to ompare quantum orretions to marosopi strings with the quantum string

Bethe ansatz at higher loops [21, 22, 23℄. The onjetured quantum string Bethe equations were

rigorously tested at in�nite �, but they an potentially reeive 1=

p

� orretions [21℄. Com-

parison of the quantum string Bethe ansatz to the diret quantum string alulation provides

an expliit hek of whether suh orretions are present at O(1=

p

�) or not. Furthermore,

the string Bethe equations are known to exatly reprodue the �rst two orders of the SYM

perturbation theory independently of J [39℄, and we an just expand the energies omputed

from them in the 't Hooft oupling to �nd the two loop anomalous dimensions in SYM. In this

way we an extend the analysis of [37, 38℄ to two loops.

Let us briey review the lassial string on�gurations that we shall study. The one-loop

quantum orretions were omputed for two lasses of string solutions { for irular strings

rotating in S

5

with two independent angular momenta [31, 32℄ and for irular strings spinning

in AdS

3

and rotating around S

5

[33℄. The �rst ase is plagued by instabilities [29, 31℄ and for

this reason we shall onentrate on strings moving in AdS

3

�S

1

� AdS

5

�S

5

[40℄ (throughout

the paper, we shall adopt the onventions of [33℄). The relevant part of the AdS

5

� S

5

metri

in global oordinates is

ds

2

= � osh

2

� dt

2

+ d�

2

+ sinh

2

� d�

2

+ d�

2

; (1.1)

where the �rst three terms are the metri of AdS

3

and � is the angle of a big irle in S

5

. The

irular string solution has the following form

� = onst ; t = ��; � =

p

�

2

+ k

2

� + k�; � =

p

�

2

+ k

2

� +m�; (1.2)

where

r

2

1

� sinh

2

� =

S

p

�

2

+ k

2

; (1.3)

E =

�S

p

�

2

+ k

2

+ �; (1.4)

2�E � �

2

= 2

p

�

2

+ k

2

S + J

2

+m

2

; (1.5)

kS +mJ = 0: (1.6)

Global harges of the string (the energy E, the spin S, and the angular momentum J) ombine

with the string tension into the following \dimensionless" ratios, whih stay �nite in the lassial

(�!1, J !1, S !1) limit [30℄:

E =

E

p

�

; S =

S

p

�

; J =

J

p

�

: (1.7)
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Thus 1=

p

� or 1=J an be used interhangeably as the loop ounting parameters in the sigma-

model. In addition, at any given order in 1=J one an further expand in the BMN oupling

1=J

2

= �=J

2

. In this way one reovers the two-loop perturbative SYM results.

In setion 2 we review the string theory omputation and evaluate the energy shift, at

leading order in 1=J and at the �rst three orders in 1=J

2

. Although the exat energy shift

is �nite, individual terms of the 1=J expansion diverge. To render the results �nite we use a

partiular presription, the zeta-funtion regularization.

In setion 3 we ompute the energy shift from the quantum string Bethe ansatz, again

perturbatively in 1=J . Unlike in the string theory alulation, the 1=J expansion is manifestly

�nite. However, the resulting expressions agree with the zeta-regularized string energy shift at

third order in perturbation theory.

In setion 4 we alulate the energy shift in the non-perturbative regime (i.e., small J ) of

large winding number. The energy shift is �nite on both sides in this ase. We �nd a lear

disrepany between the Bethe ansatz and the string alulation. In setion 5, we present

numerial results whih support the analytial evidene for the disrepany.

We disuss our results in setion 6. Various tehnial details are olleted in the appendies.

2 Quantum orretions in string theory

2.1 Energy shift

The semilassial string quantization of [33℄ yields the following orretion to the lassial

energy (1.4)

ÆE

string

= ÆE

(0)

+ ÆE

os

: (2.1)

Here the zero-mode ontribution is given by

ÆE

(0)

=

1

2�

�

4� + 2�+ 2

q

�

2

+ (1 + r

2

1

)k

2

� 8

p



2

+ a

2

�

: (2.2)

The osillator part has the following form

ÆE

os

=

1

�

1

X

n=1

�

4

p

n

2

+ �

2

+ 2

p

n

2

+ �

2

� 4

p

(n+ )

2

+ �

2

� 4

p

(n� )

2

+ �

2

+

1

2

4

X

I=1

sign(C

(n)

I

)!

I;n

�

;

(2.3)

where the last term is the ontribution of the sl(2)-modes, whih are the four solutions of the

quarti equation

(!

2

� n

2

)

2

+ 4r

2

1

�

2

!

2

� 4(1 + r

2

1

)

�

p

�

2

+ k

2

! � kn

�

2

= 0: (2.4)
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The �rst line orresponds to the transverse and fermioni modes. The various parameters are

de�ned as

� =

p

J

2

�m

2

� =

r

�

2

+ �

2

2

r

2

1

=

�

2

� 2m

2

� �

2

2k

2

= �

m

k

J

p

�

2

+ k

2

 =

1

2

�

�

1 +

2k

2

(1 + r

2

1

)

�

2

� �

2

�

s

�

2

� �

2

� 2k

2

r

2

1

2(�

2

+ k

2

)

:

(2.5)

The sign fators are determined from

C

(n)

I

= (!

2

I;n

� n

2

)

Y

J 6=I

(!

I

� !

J

): (2.6)

It is possible to perform a partial summation of the series (2.3). The series is absolutely

onvergent, beause the summand dereases as 1=n

2

at n ! 1. Therefore one an sum eah

frequeny separately by regularizing the divergenes; one adds and subtrats terms of the form



1

n+ 

2

=n before separating various frequenies. This does not hange the result, beause eah

partial sum is again absolutely onvergent. The basi sum is

1

X

n=1

�

p

(n+ )

2

+ �

2

+

p

(n� )

2

+ �

2

� 2n�

�

2

n

�

= 

2

�

p



2

+ �

2

+ F (fg; �); (2.7)

where fg denotes the frational part of  and the funtion F (�; �) is de�ned by the following

integral representation

F (�; �) �

p

�

2

+ �

2

� �

2

+ �

2

Z

1

0

d�

e

�

� 1

�

2J

1

(��)

��

osh�� � 1

�

: (2.8)

Using this result we �nd

ÆE

os

=

1

�

"

2F (0; �) + F (0; �)� 4F (fg; �)� 2� � �� 4

2

+ 4

p



2

+ �

2

+

1

2

1

X

n=1

4

X

I=1

�

signC

(n)

I

!

I;n

� n �

�

2

2n

�

#

: (2.9)

The last sum an be seen to absolutely onverge if we use the asymptoti values of the fre-

quenies !

I;n

from [33℄. The asymptoti expansion of F (�; �) in 1=� terminates at the seond

order:

F (�; �) = ��

2

ln

�

e

C�1=2

2

�

�

+

1

6

+O

�

e

��

�

; (2.10)

where C = 0:5772 : : : is the Euler onstant. The dependene on the frational part of  is

therefore non-perturbative in 1=� and thus in 1=J . In partiular it will not be seen in the

numerial alulations in se. 5 whih will be done for suÆiently large values of J .
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2.2 Perturbative expansion

It is hard to �nd a useful integral representation for the sl(2) modes beause of the sign fators

in (2.9). In omputing the perturbative 1=J expansion of the string energy shift we shall follow

a more straightforward approah of evaluating the sum by �rst expanding all the frequenies

in 1=J and then omputing the sum order by order in 1=J . As was already observed in [32℄

this proedure is not so harmless, beause the sum is not uniformly onvergent and modes with

n � J

2

an give a �nite ontribution. This is reeted in super�ial divergenes whih arise

starting from seond order in 1=J

2

. We shall ignore these problems and will use zeta-funtion

regularization to sum the divergent series. This approah might not look well motivated but we

shall �nd a surprising agreement of this naive summation presription with the Bethe ansatz

to third order in 1=J

2

, whih gives us a hint that this presription may be the orret way to

ompute the energy orretion on the string theory side.

Using the pertubative expressions for the mode frequenies, whih are given in appendix B,

we an write the pertubative expression for the energy shift ÆE in powers of 1=J

2

ÆE

string

=

1

X

p=1

ÆE

string

p

J

2p

: (2.11)

It is given by

ÆE

string

1

=

1

2

m(k �m) +

1

2

1

X

n=1

2(k �m)m� n

2

+ n

p

n

2

+ 4m(m� k) ; (2.12)

ÆE

string

2

= �

1

8

m(k �m)(4k

2

� 11km + 3m

2

)

+

1

X

n=1

1

8

�

� 2(k �m)m(4k

2

� 11km + 3m

2

) + 2(3k

2

� 10km+ 5m

2

)n

2

+ n

4

	

�

n(�4(k �m)m(5k

2

� 15km+ 6m

2

) + 2(k � 3m)(3k � 2m)n

2

+ n

4

)

8

p

n

2

+ 4m(m� k)

; (2.13)

ÆE

string

3

=

1

16

(k �m)m(8k

4

� 52k

3

m+ 89k

2

m

2

� 42km

3

+ 5m

4

)

+

1

X

n=1

1

16

f2(k �m)m(8k

4

� 52k

3

m+ 89k

2

m

2

� 42km

3

+ 5m

4

)

�(15k

4

� 128k

3

m+ 279k

2

m

2

� 202km

3

+ 44m

4

)n

2

�(15k

2

� 38km+ 19m

2

)n

4

� n

6

g

+

1

16(n

2

+ 4m(m� k))

3=2

�

�

4(k �m)

2

m

2

(45k

4

� 324k

3

m+ 621k

2

m

2

� 370km

3

+ 60m

4

)n

�2(k �m)m(53k

4

� 481k

3

m+ 1083k

2

m

2

� 815km

3

+ 192m

4

)n

3

+(15k

4

� 218k

3

m+ 603k

2

m

2

� 556km

3

+ 164m

4

)n

5

+(15k

2

� 44km + 25m

2

)n

7

+ n

9

	

: (2.14)

We shall ompare this expression to the energy shift alulated using the Bethe ansatz in the

next setion.
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3 Bethe ansatz

3.1 Classial limit

Classial solutions for the string moving in AdS

3

�S

1

are uniquely spei�ed by the spetral data

of the Lax operator. One an introdue the spetral density �(x) de�ned on a set of intervals

C

I

= (a

I

; b

I

). The spetral density satis�es a singular integral equation [16℄

2�

Z

dy

�(y)

x� y

= 2�k

I

� 2�

�

J +m

x� 1

+

J �m

x+ 1

�

; x 2 C

I

: (3.1)

This an be alled the lassial Bethe equation, as suh type of equations arise in the thermo-

dynami limit of quantum Bethe equations.

In addition, the density obeys a set of normalization onditions

Z

dx

�(x)

x

= �2�m; (3.2)

Z

dx

�(x)

x

2

= 2�(E � S � J ); (3.3)

Z

dx �(x) = 2�(E + S � J ): (3.4)

Here 2�m is the total world-sheet momentumwhih must be quantized beause of the periodi

boundary onditions on the world-sheet oordinates.

We shall onsider the simplest solutions of (3.1) with only one ut C = (a; b) whih or-

responds to the irular string (1.2). There is only one mode number k in this ase. This

simpli�ation is ruial and allows us to rewrite the integral equation (3.1) as an algebrai

equation for the resolvant

G(x) =

Z

dy

�(y)

x� y

: (3.5)

The normalization onditions for the density (3.2){(3.4) beome boundary onditions for G(x)

G(0) = 2�m; (3.6)

G

0

(0) = �2�(E � S �J ); (3.7)

lim

z!1

zG(z) = 2�(E + S � J ): (3.8)

Multiplying both sides of (3.1) by �(x)=(z � x) and integrating over x we �nd

G

2

(z)� 2�

�

k � 2

J z +m

z

2

� 1

�

G(z)� 2�

�

J +m

z � 1

G(1) +

J �m

z + 1

G(�1)

�

= 0: (3.9)

The boundary onditions (3.6){(3.8) an be used to eliminate G(�1) from this equation. Ex-

panding (3.9) at z = 0 and z =1 we get

kS +mJ = 0; (3.10)

7



in aord with [40℄, and

(J �m)G(�1) = ��k(E + S � J )� �m(k +m): (3.11)

The ondition (3.10) imposes rationality on the spins and requires the integers k and m to have

opposite signs. We shall assume for de�niteness that m > 0 and k < 0.

Plugging (3.11) bak into (3.9) we get

G

2

(z)� 2�

�

k � 2

J z +m

z

2

� 1

�

G(z) +

4�

2

z

2

� 1

[k(E + S � J )z �m(k +m)℄ = 0: (3.12)

The solution of this quadrati equation is

G(z) = �

�

k � 2

J z +m

z

2

� 1

�

+

�

p

P (z)

z

2

� 1

; (3.13)

where

P (z) = k

2

z

4

� 4k(E + S)z

3

+ 2(2J

2

+ 2m

2

� k

2

)z

2

+ 4k(E � S)z + k

2

: (3.14)

The resolvant determines the density through the disontinuity on the ut

G(x+ i0)�G(x � i0) = 2�i�(x); x 2 C; (3.15)

and we �nd

�(x) =

p

�P (x)

x

2

� 1

: (3.16)

We need one extra ondition to express the energy in terms of the spin and the angular

momentum. This ondition annot arise from equation (3.9). Instead one should look more

losely at the struture of the density �(x). For general values of the energy, the angular

momentum and the spin, the density is real on two uts, whereas we have assumed that the

solution has only one ut. This an be made onsistent by requiring that the disriminant of

the quarti polynomial (3.14) is zero, then P (z) has one double root (�g.1)

P () = 0; P

0

() = 0 : (3.17)

These two equations determine the dependene of the energy on the angular momenta, E =

E(S;J ), in a parametri form and are equivalent to (1.4), (1.5) upon the identi�ation

� = �

k

2

�

1



� 

�

: (3.18)

3.2 Quantum orretions

If the integral equation (3.1) is interpreted as the lassial limit of some Bethe equations

2

, the

density �(x) has the meaning of an asymptoti distribution of Bethe roots in the limit when

2

Bethe ansatz only works for integrable systems, so here we must assume quantum intergrability of the

world-sheet sigma-model. There are indeed some indiations that integrability is not destroyed by quantum

orretions [41℄.
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Figure 1: Graph of the quarti polynomial �P (z) (the ordering of the zeroes is a < b < ).

their number (naturally identi�ed with the spin S of the quantum string state) beomes in�nite

�(x) =

4�

p

�

S

X

k=1

x

2

k

x

2

k

� 1

Æ(x� x

k

): (3.19)

The normalization fator 2�=

p

� is the oupling onstant of the world-sheet sigma-model. The

lassial (weak-oupling) limit orresponds to �!1. Beause S sales with

p

� aording to

(1.7), the lassial limit oinides with the thermodynami limit, in whih the number of roots

beomes in�nite.

Our starting point are the quantum Bethe equations proposed in [22, 23℄

3

�

x

+

k

x

�

k

�

J

=

Y

j 6=k

x

�

k

� x

+

j

x

+

k

� x

�

j

1�

1

x

�

k

x

+

j

1�

1

x

+

k

x

�

j

0

�

1�

1

x

�

k

x

+

j

1 �

1

x

+

k

x

+

j

1 �

1

x

+

k

x

�

j

1�

1

x

�

k

x

�

j

1

A

i

p

�(u

k

�u

j

)

2�

; (3.20)

where

4

u

k

= x

k

+

1

x

k

(3.21)

and

x

�

k

+

1

x

�

k

= u

k

�

2�i

p

�

: (3.22)

These equations redue to (3.1) in the thermodynami limit when

p

�; J; S ! 1. Our goal

will be to ompute the leading-order quantum orretion to the lassial Bethe equations.

It might seem that (3.20) an only give rise to even powers of 1=

p

�, sine the equations

are invariant under

p

� ! �

p

�. Nevertheless the odd powers of 1=

p

� arise in the expansion

and the leading quantum orretion is O(1=

p

�) for the following reason. The Bethe roots x

k

3

Although the quantum string an utuate in all diretions in AdS

5

� S

5

, the quantum string Bethe

equations have the same number of degrees of freedom as in the pure sl(2) setor. On the gauge theory side

di�erent setors do not talk to eah other beause operators with di�erent quantum numbers do not mix [42℄,

but it is not a priori lear why various setors an be separated on the string theory side (see [43℄ for a more

detailed disussion of this issue).

4

Our notation di�ers from that of [23℄ by a resaling of x

k

and u

k

: x

k

! x

k

p

�=4�, u

k

! u

k

p

�=4�.

9



ondense into uts in the thermodynami limit suh that the distane between nearby roots

goes to zero. But the simultaneous limit of �!1 and x

k+1

� x

k

! 0 is singular in the Bethe

equations and this singularity gives rise to a loal anomaly [44℄. The anomaly anels at the

leading order [45℄, but ontributes to the 1=

p

� quantum orretion [37, 38℄. We shall alulate

the anomaly diretly from the Bethe equations (3.20). The alulations are rather ompliated

and the details are given in appendix A. The resulting equation for the resolvant di�ers from

(3.12) by a orretion term

G

2

(z)� 2�

�

k � 2

J z +m

z

2

� 1

�

G(z) +

4�

2

z

2

� 1

�

k(E + S � J )z �m(k +m)

�

+

4�

p

�

z

2

z

2

� 1

Z

dx

�

0

(x)��(x) oth��(x)

z � x

= 0: (3.23)

Solving this quadrati equation we �nd a density whih is of the form (3.16), where the

funtion P (z) obtains a orretion

ÆP (z) =

4�

p

�

z

2

(1� z

2

)

�

2

Z

dx

�

0

(x)��(x) oth��(x)

z � x

: (3.24)

The energy an be found as before, from the requirement that there is only one ut present

P ( + Æ) + ÆP (+ Æ) = 0; P

0

(+ Æ) + ÆP

0

(+ Æ) = 0: (3.25)

Expanding the �rst equation to linear order we get

�P ()

�E

ÆE +

�P ()

�

Æ+ ÆP () = 0: (3.26)

Taking into aount that �P ()=� = 0 we �nd

ÆE = �

ÆP ()

�P ()=�E

: (3.27)

For �P=�E we get from (3.14)

�P ()

�E

= �4k(

2

� 1): (3.28)

Resaling bak to the physial energy we obtain

ÆE

Bethe

=



�k

Z

dx

�

0

(x)��(x) oth��(x)

x� 

: (3.29)

We an also introdue

~�(x) =

1

�

Z

��(x)

0

d�� oth � : (3.30)

Then integration by parts in (3.29) yields

ÆE

Bethe

=



�k

Z

dx

~�(x)

(x� )

2

: (3.31)
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Let us see how the one-loop SYM result [37, 38℄ is reovered. From (3.17), (3.14) we �nd

that  = �k=(2J ) at large J . Inserting this into (3.31) and resaling x ! 4�J x, we get for

the energy shift at the leading order in 1=J

ÆE

Bethe

1

= �

1

8�

2

J

2

Z

dx

~�(x)

x

2

; (3.32)

in agreement with [37℄.

To perturbatively evaluate the integral (3.29), we shall need to expand various parameters

haraterizing the lassial string on�guration in a power series in 1=J . In partiular, we need

to �nd the zeroes of the quarti polynomial P (x). Reall that P (x) de�ned in (3.14) an be

fatorized as

P (x) = (x� a)(x� b)(x� )

2

; (3.33)

For our sign hoie (m > 0, k < 0), the roots are ordered as a < b < .

The zeroes a; b;  admit an expansion in

1

J

. Solving (3.17) perturbatively in 1=J we get

 = �

k

2J

+

k

8J

3

(2m

2

� 4mk + k

2

)

+

k

16J

5

(�3m

4

+ 16m

3

k � 23m

2

k

2

+ 10mk

3

� k

4

) +O

�

1

J

7

�

; (3.34)

E =

�

1�

m

k

�

J +

1

2J

m(m� k)�

1

8J

3

m(m� k)(m

2

� 3mk + k

2

)

+

1

16J

5

m(m� k)(m

4

� 7m

3

k + 13m

2

k

2

� 7mk

3

+ k

4

) +O

�

1

J

7

�

: (3.35)

The expression (3.35) agrees with the perturbative expansion of the lassial string energy

omputed in [33℄.

3.3 Mode expansion

Our starting point is (3.29), whih an be written as a ontour integral, beause the integrand

has a square-root branh ut along the ontour of integration. If we introdue the funtion

f(z) =

p

P (z)

z

2

� 1

; (3.36)

the energy shift beomes

ÆE

Bethe

=



k

I

C

ab

dz

2�i

f

0

(z)f(z) ot(�f(z))

z � 

; (3.37)

where the integration ontour C

ab

enirles the ut lokwise. We an use the following series

representation for ot�f(z)

ot(�) =

1

�

+ 2�

1

X

n=1

1

�

2

� n

2

�

2

: (3.38)
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Inserting this into the ontour integral we obtain

ÆE

Bethe

=



k

I

C

ab

dz

f

0

(z)

(z � )

+

2

k

1

X

n=1

I

C

ab

dz

f

0

(z)f

2

(z)

(z � )(f

2

(z)� n

2

)

: (3.39)

The only singularities of the integrands outside the ontour of integration are poles and the

integrals an be alulated by evaluating the residues. The integrand in the �rst term has poles

at z =  and z = �1. The poles of the seond term are at z = �1 and at z = z

n

, where the

z

n

's are solutions of

f(z

n

) = �n ; n 2 N : (3.40)

Squaring this equation we �nd that z

n

's are the roots of the quarti equation

P (z) = n

2

(z

2

� 1)

2

: (3.41)

It an be shown that the utuation energies around the lassial solution are determined by

the same equation, in aord with the general relationship between utuations [46℄ and �nite-

size orretions for Bethe ansatz [48℄. The residues at z = �1 are rather ompliated, but the

residues at z = z

n

are easy to evaluate

Res

z=z

n

=



k

�

n�

n

z

n

� 

�

: (3.42)

The sign �

n

of the residue is the same as the sign in the equation f(z

n

) = �n and an be

determined by analyzing (3.41) with the help of (3.33)

�

n

=

(

+1 for z 2 [�1; a℄[ [�1; ℄ [ [1;1℄

�1 for z 2 [b;�1℄ [ [; 1℄ :

(3.43)

3.4 Perturbative expansion and omparison to string theory

We have evaluated the residues in (3.39) perturbatively in 1=J . The alulations are lengthy

and are given in appendix C. We also heked that the �rst two orders are reprodued by a

diret expansion of the integral (3.31). Unlike the string sum over modes, its Bethe ounterpart

is manifestly �nite at eah order of the perturbative expansion. This might indiate that our

method of omputing the series over string modes breaks down at two loops (see also the

disussion in [32℄). However, if we ompare the zeta-regularized sum (2.12), (2.13) and (2.14)

with the Bethe ansatz, we �nd omplete agreement! We heked this up to the third order

ÆE

Bethe

p

= ÆE

string

p

; p = 1; 2; 3: (3.44)

The agreement at the �rst two orders implies that the string energy shifts agree with the �nite-

size orretions to the anomalous dimensions at two loops in the SYM theory. At three loops,

the string Bethe ansatz that was our starting point, di�ers from the gauge Bethe ansatz [47℄

whih omputes the anomalous dimensions.

The agreement between the Bethe ansatz and the diret string alulation is rather speta-

ular. The initial expressions look too ompliated for this to be a pure aident. Nevertheless,

12



the string and the Bethe alulation have a di�erent status. The Bethe ansatz energy shift

is automatially �nite order by order in 1=J . On the string side we enountered divergenes

despite the omplete, unexpanded energy shift being �nite. No doubt, there should be a better

way to approah the weak-oupling (large J ) limit on the string side.

4 Limit of large winding number

Beause of the divergenes in the naive 1=J expansion of the string sum, it would be desirable

to do an independent test whih avoids the onvergene issues mentioned earlier. One option

is to evaluate the energy shifts numerially. This is done in the next setion. Here we onsider

a partiular regime, the limit of large winding number (jkj � 1), in whih the energy shifts

an be alulated analytially

5

. In this limit J , E and m stay �nite, but the spin goes to zero:

S � 1. The string remains marosopi in this limit, sine it winds the big irle of S

5

, but in

AdS

5

the string shrinks to zero size (f. (1.3)). We will have to assume that J =jkj � 1, whih

means that there is no overlap with the perturbative regime we have disussed so far. In fat,

the energy shift turns out to depend on 1=J =

p

�=J rather than 1=J

2

in the large-k limit,

and it is not possible to ompare string quantum orretions to perturbative SYM theory in

this regime.

The details of the string alulation are given in appendix D. The result is

ÆE =

2F

�

0;

p

J

2

�m

2

�

+ 2F (0;J +m)� 4F

�

f

jkj

2

g;

p

J (J +m)

�

J +m

+

p

mJ + (J +m) ln

p

J +m

p

J +

p

m

�m; (4.1)

where the funtion F (�; �) is de�ned in (2.8). A peuliar property of this result is the depen-

dene on the frational part of k=2, whih means that the large-k limit of the string energy

shift depends on whether the winding number k is even or odd. This e�et probably arises

beause of the k-dependent �eld rede�nition of the world-sheet fermions whih was used to �nd

the spetrum of utuations [31, 32, 33℄. This kind of irregularity does not arise in the Bethe

ansatz, and also in the zeta-regularized large-J expansion.

5

In the narrow sense, we are just omparing two mathematial expressions { the string one-loop orretions

(2.1){(2.3) and the �nite-size orretion from the Bethe ansatz (3.29). Eah is a well-de�ned funtion of the

parameters k, m and J . If the two expressions agree (or disagree), they must agree (disagree) at all values of

the parameters, in partiular if one of the parameters (k in this ase) takes its extreme value. From this point

of view the limit of large k is just a simplifying assumption that allows us to alulate ÆE

String

and ÆE

Bethe

expliitly in some orner of the parameter spae. On the other hand, not only the lassial energy of the string,

but also the quantum orretion to it stays �nite in the large-k limit. This probably means that the limit of

large winding (or small spin) is well-de�ned for this type of string solutions and it would be very interesting

to study this limit further. The winding number in that, more general setting should be muh larger than the

resaled quantities E and J , but should be muh smaller than

p

� (and thus E and J) in order not to interfere

with the loop expansion of the sigma-model.
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4.1 Bethe ansatz alulation

We begin with the lassial limit. To take the large-k limit it is onvenient to rewrite (3.14) in

the two equivalent forms

P (x) = k

2

(x

2

� 1)

2

� 4kEx(x

2

� 1) + 4mJ x(x� 1)

2

+ 4(J �m)

2

x

2

: (4.2)

The �rst two terms blow up in the k !1 limit unless x is lose to 1 or �1. The roots of P ,

a, b and , thus lie in the viinity of �1. Changing the variables to

x = �1 +

v

k

; (4.3)

and taking the limit k !1, we get

P (x) = 4v

2

� 8Ev + 4(J �m)

2

; at x!�1: (4.4)

Thus two of the roots of P (x) lie near 1 and two lie near �1. The double root should lie at

x � 1, from whih we �nd

E = J +m (4.5)

and

 = 1�

E

jkj

: (4.6)

Solving (4.4) near x = �1, we �nd the endpoints of the ut

�

b

a

�

= �1�

�
p

J �

p

m

�

2

jkj

: (4.7)

We see that the ut shrinks to a very small size, whereas the density aording to (3.2)-(3.4) is

still normalized to O(1). Thus the density is highly peaked near �1. Indeed, from (3.16) and

(4.4) we �nd

�(x) =

jkj

v

q

2 (J +m) v � v

2

� (J �m)

2

: (4.8)

The integral (3.31) an be easily evaluated in the k !1 limit. Beause the density is large,

osh � in (3.30) an be approximated by 1, and thus

~� =

�

2

�

2

; at �!1: (4.9)

We thus get from (3.31)

ÆE

Bethe

=

1

8k

Z

dx �

2

(x): (4.10)

Using dx = dv=jkj and the expliit expression (4.8) for the density, we �nd

ÆE

Bethe

=

p

mJ �

J +m

2

ln

p

J +

p

m

p

J �

p

m

: (4.11)

This learly disagrees with the string theory alulation (4.1), in partiular the Bethe ansatz

result has a regular dependene on k. We shall see this disrepany also in the numerial

alulations. Let us also note that even though the expliit omputation in this setion was

done in the simplifying large k limit, the deviations between the Bethe ansatz and the string

theory omputation are also observed numerially for �nite values of the parameter k (see

�gure 3 in the next setion).
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Figure 2: Energy shifts (ÆE) � J

2

for J = 5:::50 ; m = 3 ; k = �2, Bethe vs. semi-lassial

string.

5 Numerial evaluation of energy shifts

In this setion we numerially ompare orretions to the energy of the irular string ob-

tained by the semilassial quantization (2.3) and the one dedued from the proposed quantum

string Bethe equation (3.29). Both evaluations of the sums are done for various values of the

parameters.

We �rst onsider the large-J limit. From �gure 2 we see that both funtions have the same

leading order behaviour, in agreement with the earlier analyti results. Next, we try to extrat

the oeÆients of the 1=J

2

expansion of the energy shift numerially. In pratie, numerially

omputing higher order e�ets is hard, sine it requires a high numerial preision and stability.

Yet, by using high preision numerial evaluations let us try to extrat the �rst subleading

(1=J

2

) orretion from the exat semilassial expression (2.3) and ompare it with the zeta-

funtion regularized result (2.13). Subtrating the analyti one-loop piee (2.12) from the

numerial expression for the semilassial energy shift (2.3) leads to very unstable numerial

results, given in table 5.1.

m=3.0 , k=-2 :

J 50 100 150 200 250

(ÆE

string

� ÆE

1

)� J

2

1041 620 -82 -1066 -2329

J 300 350 400 450 500

(ÆE

string

� ÆE

1

)� J

2

-3871 -5693 - 7794 -10174 - 12831

(5.1)

This should be ompared to the zeta-funtion regularized two-loop result (2.13) for the same

values of m and k whih gives

ÆE

2

= 393:375 : (5.2)

The numerial stability is greatly improved, if instead of subtrating the analyti one-loop

result (2.12), we use the asymptoti numerial value for the energy shift (obtained for J = 10

3

)

ÆE

string

asymptot

= �77:781 : (5.3)
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Figure 3: Energy shifts (ÆE) � J

2

for J = 3 ; m = 2 ; �k = (40:::1). The upper urve is the

string alulation. The lower urve is the predition of the Bethe ansatz.

The results are given in table (5.4). We see that it is muh less utuating ompared to the

result in table (5.1). The deviations from the onstant value, may be attributed to higher

orders in 1=J

2

and insuÆient numerial preision. The average value from the table (5.4) is

di�erent from the regularized two-loop result (5.2), but the numeris is rather unstable and we

annot draw any de�nite onlusions at this point beause of insuÆient numerial auray.

m=3.0 , k=-2 ;

J 50 100 150 200 250

(ÆE

string

� ÆE

asymptot

)� J

2

1170 1167 1147 1120 1087

J 300 350 400 450 500

(ÆE

string

� ÆE

asymptot

)� J

2

1048 1004 952 896 835

(5.4)

We get muh better auray if we look at a �nite value of J and vary k at �xed m and

J . We shall take J = 3 and m = 2 and vary k from �40 to �1. The results are given in

�gure 3. The upper urve is the semilassial string omputation, the lower urve is omputed

from the Bethe ansatz

6

. We see that both the semilassial and the Bethe energy shifts tend

asymptotially to onstant but di�erent values, whih are in good numerial agreement with

the analyti alulations in the previous setion. Here our numerial preision is suÆient to

disriminate the two results.

6 Conlusions

We have ompared quantum orretion to the energy of marosopi rigid strings in AdS

5

�S

5

with the �nite-size orretions to the quantum string Bethe ansatz. Taken at fae value, the

two results disagree, but an interpretation of this disrepany is unlear to us. If we do the

string alulation in a more naive way by �rst expanding utuation frequenies in 1=J and

6

By that we mean numerial integration in (3.29). Diret numerial solution of the disrete Bethe equations

with subsequent extrapolation to the thermodynami limit requires substantially more involved alulations.
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then summing the series over string modes, the straightforward zeta-regularized expansion in

1=J

2

agrees with the Bethe ansatz to the �rst three orders. Perhaps the sum over frequenies

on the string side should be rede�ned suh that it automatially reprodues zeta-regularized

1=J expansion. The methods used to evaluate related sums in the ontext of plane-wave string

theory [49℄ an be helpful to implement suh zeta-funtion presription. On the other hand the

sum is �nite and well-de�ned as it stands and there are no apparent regularization ambiguities.

Another possible explanation of the disrepany is that the string Bethe equations reeive

non-trivial 1=

p

� orretions. We annot disriminate between these two possibilities at present.

Studying other lasses of string solutions will be ertainly helpful to resolve this puzzle. We

should �rst of all mention stable irular strings on S

5

whih were analyzed both in string

theory [31℄ and using the Bethe ansatz [50℄.
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Appendix A Calulation of anomaly

In this appendix the anomaly term is derived from the quantum string Bethe equations (3.20).

The following integral representation turns out to be useful

ln
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; : : : ; x
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; : : : ; x
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where f is an arbitrary funtion and

x

�

k

+

1

x

�

k

= u

k

� i" ; (A.2)

under the integral (x

�

k

on the left-hand-side is de�ned in (3.22)). This representation singles

out a partiular branh of the logarithm, so when we write the Bethe equations (3.20) in

the logarithmi form, we should introdue an arbitrary phase whih parameterizes di�erent
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branhes of the logarithm
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An important property of this terrible-looking equation is the symmetrywith respet to "!�",

whih means that the diret strong-oupling expansion starts from order O(1=�). The only

soure of 1=

p

� orretions is the �rst sum over j, in whih terms with j � k beome singular

in the "! 0 limit. The ontribution of these terms is the anomaly. In the remaining terms we

an take the limit "! 0 diretly
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where we have used the equality
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The next step is to multiply both sides of (A.4) by 1=(z � x

k

) and sum over k. Beause of

the anti-symmetry in k and j, in the double sums 1=(z � x
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Now we an disentangle the \normal" ontribution of j � k �
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� from the loal \anomalous"

ontribution of j � k �
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aording to the de�nition of the density in (3.19). Also,
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Separating the long-distane ontributions from the short-distane ones we �nd, after some

alulations
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The asymptotis of (A.7) at z !1 shows that the ondition (3.10) does not reeive quan-

tum orretions. Performing the summation in the anomaly term and hanging the integration

variable to � =

p

��"=2 we �nally get
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where ~�(x) is de�ned in (3.30). The form of the anomaly used in the main text is obtained

after integrating by parts and taking into aount that
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0

= �
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�� oth�� : (A.10)

Appendix B Details of string theory omputation

B.1 Contribution of sl(2) modes

The main diÆulty in evaluating the energy from the string theory is the sum over the roots

of the quarti polynomial (2.4)
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The quarti equation is equivalently given by
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In partiular, the absene of the ubi term implies
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and y

1

is a real root of the disriminant ubi equation
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Furthermore, we need to address the issue of the signs in front of the frequenies. If we

take all square roots with positive sign, it is lear that for a generi n and J there are two

possibilities for the relative ordering of the frequenies !
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In order to disriminate these, onsider the large J � n limit. The asymptotis are !
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Hene, in the large J limit the eigenvalues are ordered as in the �rst ase in (B.9). Note that

the ordering of !

I

n

as a funtion of n keeping J �xed does not hange, i.e., the roots do not

\ross" (see �gure 5).

Using (B.11) and (B.12) the expression for ÆE
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in the large J limit an be simpli�ed to
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In summary, to ompute ÆE

sl(2)

one only needs to determine the sum over the ombination
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B.2 Perturbative expansion of modes

The ombination of sl(2) modes, D
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, has the following expansion in 1=J
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(B.14)

The other terms, i.e., the transverse and fermioni terms, are as follows

ÆE �

ÆE

sl(2)

2�

=

X

n

�

�(k �m)

2

� n

2

�

1

J

2

+

1

16

�

(k �m)

2

(k

2

� 42km � 7m

2

) + 8(3k

2

� 10km+ 5m

2

)n

2

+ 4n

4

�

1

J

4

+

1

128

�

� (k �m)

2

(k

4

� 232k

3

m+ 962k

2

m

2

� 80km

3

� 11m

4

)

� 4(15k

4

� 260k

3

m+ 594k

2

m

2

� 340km

3

+ 23m

4

)n

2

� 16(15k

2

� 38km + 19m

2

)n

4

� 16n

6

�

1

J

6

:

(B.15)

21



Note the three-loop term, where the expression at order n

2

has a di�erent struture from the

one in (B.14).

Furthermore, expanding the zero mode part of the energy shift (2.2) in 1=J we obtain
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(B.16)

We shall now ombine these terms and obtain the energy shifts up to third order in perturbation

theory.

B.3 First and Seond order

The �rst and seond order terms in the 1=J

2

expansion of the energy shift (2.1) are
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The large n behaviour of the summand in ÆE

os

1

is 1=n
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, whih ensures that the energy shift at

�rst order is �nite. In the seond order term the summand has asymptotis
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Thus, there is an anomalous piees, whih needs to be regularized. Applying zeta-funtion

regularization the regularized energy reads
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Combining the zero-mode energy shift with the osillator ontribution, we obtain in summary

that at order 1=J

2

and 1=J

4

the shift is
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B.4 Third order

Further expanding the string theory result for the ontributions of the osillators to the energy

up to third order, i.e., order 1=J

6

, yields
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The sum is again divergent as the large n behaviour of the summand in (B.21) is
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We again apply zeta-funtion regularization. In the present ase, we need to evaluate the

Riemann zeta funtion �(s) =
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at s = �2; 0. The values an be alulated by writing
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and evaluating the inner sum �rst. This results for k > 1 in
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; (B.24)
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where B

k

are the Bernoulli numbers. Now B

3

= 0 and therefore only �(0) gives a non-vanishing

ontribution, namely �(0) = �1=2. The regularized ontribution from the osillators to the zero

modes is thus

(ÆE

os

3

)

reg

=

1
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n

� � � ; (B.25)

where the dots indiate the non-zero mode ontributions, with the terms in (B.22) subtrated.

Combining all terms, we arrive at the third order energy shift as omputed from the string

theory side

ÆE

string

3

=

1

16

(k �m)m(8k

4

� 52k

3

m+ 89k

2

m

2

� 42km

3

+ 5m

4

)

+

X

n

1

16

f2(k �m)m(8k

4

� 52k

3

m+ 89k

2

m

2

� 42km

3

+ 5m

4

)

� (15k

4

� 128k

3

m+ 279k

2

m

2

� 202km

3

+ 44m

4

)n

2

� (15k

2

� 38km+ 19m

2

)n

4

� n

6

g

+

1

16(n

2

+ 4m(m� k))

3=2

�

4(k �m)

2

m

2

(45k

4

� 324k

3

m+ 621k

2

m

2

� 370km

3

+ 60m

4

)n

� 2(k �m)m(53k

4

� 481k

3

m+ 1083k

2

m

2

� 815km

3

+ 192m

4

)n

3

+ (15k

4

� 218k

3

m+ 603k

2

m

2

� 556km

3

+ 164m

4

)n

5

+ (15k

2

� 44km+ 25m

2

)n

7

+ n

9

	

:

(B.26)

We shall see subsequently, that this regularized energy shift agrees with the predition from

the Bethe ansatz.

Appendix C Details of Bethe ansatz omputation

C.1 Zero-modes

The zero mode integral is

ÆE

(0)

=



k

I

C

ab

dz

f

0

(z)

(z � )

: (C.1)

By deforming the ontour to in�nity, we pik up the residues at z =  and z = �1.

Combining these residues and subsequently expanding them in 1=J by making use of (3.34),

yields

ÆE

(0)

=

1

2

m(k �m)

1

J

2

�

1

8

m(k �m)(4k

2

� 11km+ 3m

2

)

1

J

4

+

1

16

(k �m)m(8k

4

� 52k

3

m+ 89k

2

m

2

� 42km

3

+ 5m

4

)

1

J

6

+O

�

1

J

8

�

:

(C.2)

Comparison to the string theory result, whih were omputed in the previous setion shows

that up to third order in the 1=J

2

perturbation expansion, the zero-mode terms (C.2) agree

with the ones of the zeta-funtion regularized expressions on the string side.
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C.2 Non-zero modes

The non-zero mode ontributions ome from the sum in (3.38) and are
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(C.3)

Again, deforming the ontour to in�nity, we pik up (possibly non-trivial) residues at z = ,

z =1, z = �1 as well as z = z

n

, where z

n

were de�ned in (3.40).

The residues at z =  and z = 1 vanish. The residue at z = z

n

was evaluated in (3.42).

In order to expand this in 1=J , one �rst needs to solve (3.41) perturbatively for z

n

(note that

there are two roots z

n

eah for positive n and for negative n).

The expansion of (3.42) yields up to third order
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Finally, there are the residues at z = �1, whih ontribute to the n-independent terms of

the summands ÆE

(n)
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Putting the residues in (C.4) and (C.5) together we obtain
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(C.6)

The omplete energy shift is then

ÆE = ÆE

(0)

+

1

X

n=1

ÆE

(n)

; (C.7)

where the various terms are written out in (C.2) and (C.6).

In summary, the Bethe result agrees with the string results (B.20), (B.26) inluding order

1=J

6

.

Appendix D Details of the large k string omputa-

tion

We evaluate the energy shift ÆE

string

in the large k limit, for �xed m and J . Again, the

problemati part in the omputation are the !-dependent terms, for whih we are fored to use

approximations for �nding the roots in di�erent regions of the parameters.

Note that �rst expanding the summands in (2.2) and (2.3) 1=k before summing them yields

divergent expressions. However, unlike the divergenes that oured in the 1=J expansion at

seond and third order in perturbation theory, these divergenes annot be removed, using stan-

dard regularisation proedures suh as zeta-funtion regularisation as they ontain logarithmi

divergenes. The origin of this divergene is the irregular dependene on k of the resummed

expression (2.9).
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Figure 4: Pro�les of the summands for k = 400, k = 100, k = 20 and k = 5, respetively, with

(J = 3, m = 2).
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Figure 5: Pro�les of the ! frequenies for k = 400; (J = 3, m = 2). The plot on the right hand

side zooms into the plot on the left hand side.

In order to asertain what kind of funtion we are summing, it is useful to numerially plot

the summands. This is done in �gure 3 for various, mainly large, values of k. Solving (B.2) in

the limit n � jkj ! 1 we �nd, up to O(1=k

2

) orretions
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These expressions approximate the frequenies well enough in the entire range of n, exept for

n � jkj = O(1), where 1=k orretions to !

2

and !

3

blow up. Solving (B.2) in that region we

�nd

!

1

= 3jkj; (D.3)
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Comparing (D.5) to (D.1), (D.2) we see that !

+

asymptotes !

2

at n � jkj and !

3

at n� jkj,

while !

�

asymptotes !

3

at n� jkj and !

2

at n� jkj. Thus !

2

and !

3

interhange at n = jkj

by passing through the singularity.

Computing the sign fators from (2.6) we get
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We are now ready to ompute the sum over modes. To do that we divide the range of summation

into three parts

(I) 1 � n � jkj � s � 1

(II) jkj � s � n � jkj+ s

(III) jkj+ s+ 1 � n ; (D.7)

where 1� s� jkj. In the regions (I) and (III) the summation of O(1=k) terms an be replaed

by an integration over x = n=jkj
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Combining this with the expansion of the zero modes
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and (2.9) we obtain
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Sine  = jkj=2+O(1=k), this expression has a �nite k !1 limit, as was observed numerially.

In order to determine the asymptoti values of the onstant one needs the expression for  with

an O(1=k) auray
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For large enough �, the funtion F (�; �) an be approximated as in (2.10), and thus the

previous sum an be further simpli�ed to
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