
*H
EP
-T
H/
05
07
∣8
9*

Revised Version  JHEP 0509 (2005) 051
 AEI-2005-125
 DESY-05-108

 ITEP-TH-49/05
 UUITP-11/05

 ZMP-HH/05-12

ar
X

iv
:h

ep
-t

h/
05

07
18

9 
v5

   
7 

Se
p 

20
06

hep-th/0507189

AEI-2005-125

DESY-05-108

ITEP-TH-49/05

UUITP-11/05

ZMP-HH/05-12

Quantum 
orre
tions to spinning strings in AdS

5

� S

5

and Bethe ansatz: a 
omparative study

Sakura S
h�afer-Nameki

�

, Marija Zamaklar

�

and Konstantin Zarembo


�

�

II. Institut f�ur Theoretis
he Physik der Universit�at Hamburg

Luruper Chaussee 149, 22761 Hamburg, Germany

sakura.s
hafer-nameki�desy.de

�

Zentrum f�ur Mathematis
he Physik, Universit�at Hamburg

Bundesstrasse 55, 20146 Hamburg, Germany

�

Max-Plan
k-Institut f�ur Gravitationsphysik, AEI

Am M�uhlenberg 1, 14476 Golm, Germany

marzam�aei.mpg.de




Department of Theoreti
al Physi
s, Uppsala University

751 08 Uppsala, Sweden

Konstantin.Zarembo�teorfys.uu.se

Abstra
t

We analyze quantum 
orre
tions to rigid spinning strings inAdS

5

�S

5

. The one-loop worldsheet

quantum 
orre
tion to the string energy is 
ompared to the �nite-size 
orre
tion from the

quantum string Bethe ansatz. Expanding the summands of the string theory energy shift in

the parameter 1=J

2

and subsequently resumming them yields a divergent result. However,

upon zeta-fun
tion regularisation these results agree with the Bethe ansatz in the �rst three

orders. We also perform an analogous 
omputation in the limit of large winding number,

whi
h results in a disagreement with the string Bethe ansatz predi
tion. A similar mismat
h

is observed numeri
ally. We 
omment on the possible origin of this dis
repan
y.

�
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1 Introdu
tion

Understanding the quantum spe
trum of string theory in AdS

5

� S

5

is an important open

problem. Solving this problem will open up venues for testing the ideas of gauge/string duality

in the genuine stringy regime. It is be
oming more and more 
lear that progress in quantizing

strings on AdS

5

�S

5

is impossible without serious input from the dual N = 4 supersymmetri


Yang-Mills theory (SYM). One idea that has proved extremely useful on the gauge theory side

and 
ould potentially be applied to AdS strings, is to 
ompute the spe
trum using a Bethe

ansatz. The Bethe ansatz is the standard approa
h to quantize integrable systems [1℄ and it is

believed that both planar N = 4 SYM and string theory in AdS

5

� S

5

are integrable.

As was observed �rst at one loop [2, 3℄ and then at higher orders in perturbation theory

[4, 5, 6℄, the planar dilatation operator of N = 4 SYM 
an be identi�ed with a Hamiltonian of

an integrable spin 
hain

1

. The integrability on the string theory side arises be
ause the 
lassi
al

world-sheet sigma-model admits a Lax representation. For the bosoni
 redu
tion this almost

immediately follows [10℄ from the integrability of the O(n) model [11℄. The Lax pair for the

full supersymmetri
 sigma-model in AdS

5

� S

5

[12℄ was 
onstru
ted in [13℄.

Be
ause the 
lassi
al equations of motion of the AdS string are integrable, their solutions


an be parameterized by the spe
tral data of the Lax operator. By reformulating the standard

solution of the spe
tral problem [14℄ it was shown in [15℄ that the spe
tral density for the string

moving on the R�S

3

subspa
e of AdS

5

�S

5

satis�es an integral equation that strikingly resem-

bles the large-volume (thermodynami
) limit of the quantum Bethe equations for the spe
trum

of the dilatation operator in the dual gauge theory. These results were extended to other se
tors

[16, 17, 18, 19℄ and eventually to the most general solution in
luding world-sheet fermions [20℄.

Of 
ourse the 
lassi
al approximation in the sigma-model is a

urate only at strong 't Hooft


oupling (i.e. weak worldsheet 
oupling). In addition, the Noether 
harges of the string have

to be large. In order to quantize the string one needs to \undo" the thermodynami
 limit and

turn the integral equations for the sigma-model into dis
rete, quantum string Bethe equations.

Su
h a dis
retization was �rst proposed for the su(2) subse
tor [21℄, then for other rank-one

se
tors [22℄ and subsequently for the 
omplete set of Bethe equations with the psu(2; 2j4) sym-

metry [23℄. The quantum string Bethe equations work remarkably well in several tra
table

limits: they have the right 
lassi
al limit (by 
onstru
tion), reprodu
e the leading quantum


orre
tions for the BMN states and yield the 
orre
t energies of massive states in the stri
t

strong-
oupling limit.

There are very few expli
it 
al
ulations for quantum strings in AdS

5

� S

5

. One major

example is string quantization in the plane-wave limit [24℄ whi
h leads to a solvable string

theory [25℄ and 
an be understood as quantization around the simplest point-like solution of the

string spinning on S

5

[26℄. The 
urvature 
orre
tions [27℄ to the string states in this ba
kground

(BMN states) were 
al
ulated in [28℄. Frolov-Tseytlin solutions [29, 30℄ generalize this setup to

ma
ros
opi
 strings and it is possible to quantize 
u
tuations around these solutions in some

1

Although the dilatation operator is not integrable beyond leading order in the 1=N expansion [4℄, the planar

integrability is still useful in the study of de
ays of semi
lassi
al strings [7℄ and in the 
omputation of three-

point fun
tions [8℄. We should also mention that the 
lassi
al equations of motion of N = 4 SYM admit a Lax

representation [9℄, but we do not know if this property has anything to do with the quantum integrability of

the planar dilatation operator.
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ases [31, 32, 33, 34℄. For these solutions, the 
lassi
al string energies 
an be 
ompared to

the anomalous dimensions in the gauge theory (see [30, 35℄ for review), be
ause the 't Hooft


oupling � 
ombines with the R-
harge J into the BMN 
oupling 1=J

2

� �=J

2

, whi
h 
an

be small even if the 't Hooft 
oupling is large, provided that the R-
harge is large enough. In

parti
ular, the string a
tion redu
es to the e�e
tve a
tion of the spin 
hain in the limit of large

J [36℄. Generi
ally, one �nds that string theory and SYM agree up to two loops and start to

disagree at three loops. For the quantum 
orre
tions the 
omparison has only been done at the

one-loop level [37, 38℄. It would be interesting to understand what happens at higher orders of

perturbation theory.

Our goal is to 
ompare quantum 
orre
tions to ma
ros
opi
 strings with the quantum string

Bethe ansatz at higher loops [21, 22, 23℄. The 
onje
tured quantum string Bethe equations were

rigorously tested at in�nite �, but they 
an potentially re
eive 1=

p

� 
orre
tions [21℄. Com-

parison of the quantum string Bethe ansatz to the dire
t quantum string 
al
ulation provides

an expli
it 
he
k of whether su
h 
orre
tions are present at O(1=

p

�) or not. Furthermore,

the string Bethe equations are known to exa
tly reprodu
e the �rst two orders of the SYM

perturbation theory independently of J [39℄, and we 
an just expand the energies 
omputed

from them in the 't Hooft 
oupling to �nd the two loop anomalous dimensions in SYM. In this

way we 
an extend the analysis of [37, 38℄ to two loops.

Let us brie
y review the 
lassi
al string 
on�gurations that we shall study. The one-loop

quantum 
orre
tions were 
omputed for two 
lasses of string solutions { for 
ir
ular strings

rotating in S

5

with two independent angular momenta [31, 32℄ and for 
ir
ular strings spinning

in AdS

3

and rotating around S

5

[33℄. The �rst 
ase is plagued by instabilities [29, 31℄ and for

this reason we shall 
on
entrate on strings moving in AdS

3

�S

1

� AdS

5

�S

5

[40℄ (throughout

the paper, we shall adopt the 
onventions of [33℄). The relevant part of the AdS

5

� S

5

metri


in global 
oordinates is

ds

2

= � 
osh

2

� dt

2

+ d�

2

+ sinh

2

� d�

2

+ d�

2

; (1.1)

where the �rst three terms are the metri
 of AdS

3

and � is the angle of a big 
ir
le in S

5

. The


ir
ular string solution has the following form

� = 
onst ; t = ��; � =

p

�

2

+ k

2

� + k�; � =

p

�

2

+ k

2

� +m�; (1.2)

where

r

2

1

� sinh

2

� =

S

p

�

2

+ k

2

; (1.3)

E =

�S

p

�

2

+ k

2

+ �; (1.4)

2�E � �

2

= 2

p

�

2

+ k

2

S + J

2

+m

2

; (1.5)

kS +mJ = 0: (1.6)

Global 
harges of the string (the energy E, the spin S, and the angular momentum J) 
ombine

with the string tension into the following \dimensionless" ratios, whi
h stay �nite in the 
lassi
al

(�!1, J !1, S !1) limit [30℄:

E =

E

p

�

; S =

S

p

�

; J =

J

p

�

: (1.7)

3



Thus 1=

p

� or 1=J 
an be used inter
hangeably as the loop 
ounting parameters in the sigma-

model. In addition, at any given order in 1=J one 
an further expand in the BMN 
oupling

1=J

2

= �=J

2

. In this way one re
overs the two-loop perturbative SYM results.

In se
tion 2 we review the string theory 
omputation and evaluate the energy shift, at

leading order in 1=J and at the �rst three orders in 1=J

2

. Although the exa
t energy shift

is �nite, individual terms of the 1=J expansion diverge. To render the results �nite we use a

parti
ular pres
ription, the zeta-fun
tion regularization.

In se
tion 3 we 
ompute the energy shift from the quantum string Bethe ansatz, again

perturbatively in 1=J . Unlike in the string theory 
al
ulation, the 1=J expansion is manifestly

�nite. However, the resulting expressions agree with the zeta-regularized string energy shift at

third order in perturbation theory.

In se
tion 4 we 
al
ulate the energy shift in the non-perturbative regime (i.e., small J ) of

large winding number. The energy shift is �nite on both sides in this 
ase. We �nd a 
lear

dis
repan
y between the Bethe ansatz and the string 
al
ulation. In se
tion 5, we present

numeri
al results whi
h support the analyti
al eviden
e for the dis
repan
y.

We dis
uss our results in se
tion 6. Various te
hni
al details are 
olle
ted in the appendi
es.

2 Quantum 
orre
tions in string theory

2.1 Energy shift

The semi
lassi
al string quantization of [33℄ yields the following 
orre
tion to the 
lassi
al

energy (1.4)

ÆE

string

= ÆE

(0)

+ ÆE

os


: (2.1)

Here the zero-mode 
ontribution is given by

ÆE

(0)

=

1

2�

�

4� + 2�+ 2

q

�

2

+ (1 + r

2

1

)k

2

� 8

p




2

+ a

2

�

: (2.2)

The os
illator part has the following form

ÆE

os


=

1

�

1

X

n=1

�

4

p

n

2

+ �

2

+ 2

p

n

2

+ �

2

� 4

p

(n+ 
)

2

+ �

2

� 4

p

(n� 
)

2

+ �

2

+

1

2

4

X

I=1

sign(C

(n)

I

)!

I;n

�

;

(2.3)

where the last term is the 
ontribution of the sl(2)-modes, whi
h are the four solutions of the

quarti
 equation

(!

2

� n

2

)

2

+ 4r

2

1

�

2

!

2

� 4(1 + r

2

1

)

�

p

�

2

+ k

2

! � kn

�

2

= 0: (2.4)
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The �rst line 
orresponds to the transverse and fermioni
 modes. The various parameters are

de�ned as

� =

p

J

2

�m

2

� =

r

�

2

+ �

2

2

r

2

1

=

�

2

� 2m

2

� �

2

2k

2

= �

m

k

J

p

�

2

+ k

2


 =

1

2

�

�

1 +

2k

2

(1 + r

2

1

)

�

2

� �

2

�

s

�

2

� �

2

� 2k

2

r

2

1

2(�

2

+ k

2

)

:

(2.5)

The sign fa
tors are determined from

C

(n)

I

= (!

2

I;n

� n

2

)

Y

J 6=I

(!

I

� !

J

): (2.6)

It is possible to perform a partial summation of the series (2.3). The series is absolutely


onvergent, be
ause the summand de
reases as 1=n

2

at n ! 1. Therefore one 
an sum ea
h

frequen
y separately by regularizing the divergen
es; one adds and subtra
ts terms of the form




1

n+ 


2

=n before separating various frequen
ies. This does not 
hange the result, be
ause ea
h

partial sum is again absolutely 
onvergent. The basi
 sum is

1

X

n=1

�

p

(n+ 
)

2

+ �

2

+

p

(n� 
)

2

+ �

2

� 2n�

�

2

n

�

= 


2

�

p




2

+ �

2

+ F (f
g; �); (2.7)

where f
g denotes the fra
tional part of 
 and the fun
tion F (�; �) is de�ned by the following

integral representation

F (�; �) �

p

�

2

+ �

2

� �

2

+ �

2

Z

1

0

d�

e

�

� 1

�

2J

1

(��)

��


osh�� � 1

�

: (2.8)

Using this result we �nd

ÆE

os


=

1

�

"

2F (0; �) + F (0; �)� 4F (f
g; �)� 2� � �� 4


2

+ 4

p




2

+ �

2

+

1

2

1

X

n=1

4

X

I=1

�

signC

(n)

I

!

I;n

� n �

�

2

2n

�

#

: (2.9)

The last sum 
an be seen to absolutely 
onverge if we use the asymptoti
 values of the fre-

quen
ies !

I;n

from [33℄. The asymptoti
 expansion of F (�; �) in 1=� terminates at the se
ond

order:

F (�; �) = ��

2

ln

�

e

C�1=2

2

�

�

+

1

6

+O

�

e

��

�

; (2.10)

where C = 0:5772 : : : is the Euler 
onstant. The dependen
e on the fra
tional part of 
 is

therefore non-perturbative in 1=� and thus in 1=J . In parti
ular it will not be seen in the

numeri
al 
al
ulations in se
. 5 whi
h will be done for suÆ
iently large values of J .
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2.2 Perturbative expansion

It is hard to �nd a useful integral representation for the sl(2) modes be
ause of the sign fa
tors

in (2.9). In 
omputing the perturbative 1=J expansion of the string energy shift we shall follow

a more straightforward approa
h of evaluating the sum by �rst expanding all the frequen
ies

in 1=J and then 
omputing the sum order by order in 1=J . As was already observed in [32℄

this pro
edure is not so harmless, be
ause the sum is not uniformly 
onvergent and modes with

n � J

2


an give a �nite 
ontribution. This is re
e
ted in super�
ial divergen
es whi
h arise

starting from se
ond order in 1=J

2

. We shall ignore these problems and will use zeta-fun
tion

regularization to sum the divergent series. This approa
h might not look well motivated but we

shall �nd a surprising agreement of this naive summation pres
ription with the Bethe ansatz

to third order in 1=J

2

, whi
h gives us a hint that this pres
ription may be the 
orre
t way to


ompute the energy 
orre
tion on the string theory side.

Using the pertubative expressions for the mode frequen
ies, whi
h are given in appendix B,

we 
an write the pertubative expression for the energy shift ÆE in powers of 1=J

2

ÆE

string

=

1

X

p=1

ÆE

string

p

J

2p

: (2.11)

It is given by

ÆE

string

1

=

1

2

m(k �m) +

1

2

1

X

n=1

2(k �m)m� n

2

+ n

p

n

2

+ 4m(m� k) ; (2.12)

ÆE

string

2

= �

1

8

m(k �m)(4k

2

� 11km + 3m

2

)

+

1

X

n=1

1

8

�

� 2(k �m)m(4k

2

� 11km + 3m

2

) + 2(3k

2

� 10km+ 5m

2

)n

2

+ n

4

	

�

n(�4(k �m)m(5k

2

� 15km+ 6m

2

) + 2(k � 3m)(3k � 2m)n

2

+ n

4

)

8

p

n

2

+ 4m(m� k)

; (2.13)

ÆE

string

3

=

1

16

(k �m)m(8k

4

� 52k

3

m+ 89k

2

m

2

� 42km

3

+ 5m

4

)

+

1

X

n=1

1

16

f2(k �m)m(8k

4

� 52k

3

m+ 89k

2

m

2

� 42km

3

+ 5m

4

)

�(15k

4

� 128k

3

m+ 279k

2

m

2

� 202km

3

+ 44m

4

)n

2

�(15k

2

� 38km+ 19m

2

)n

4

� n

6

g

+

1

16(n

2

+ 4m(m� k))

3=2

�

�

4(k �m)

2

m

2

(45k

4

� 324k

3

m+ 621k

2

m

2

� 370km

3

+ 60m

4

)n

�2(k �m)m(53k

4

� 481k

3

m+ 1083k

2

m

2

� 815km

3

+ 192m

4

)n

3

+(15k

4

� 218k

3

m+ 603k

2

m

2

� 556km

3

+ 164m

4

)n

5

+(15k

2

� 44km + 25m

2

)n

7

+ n

9

	

: (2.14)

We shall 
ompare this expression to the energy shift 
al
ulated using the Bethe ansatz in the

next se
tion.
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3 Bethe ansatz

3.1 Classi
al limit

Classi
al solutions for the string moving in AdS

3

�S

1

are uniquely spe
i�ed by the spe
tral data

of the Lax operator. One 
an introdu
e the spe
tral density �(x) de�ned on a set of intervals

C

I

= (a

I

; b

I

). The spe
tral density satis�es a singular integral equation [16℄

2�

Z

dy

�(y)

x� y

= 2�k

I

� 2�

�

J +m

x� 1

+

J �m

x+ 1

�

; x 2 C

I

: (3.1)

This 
an be 
alled the 
lassi
al Bethe equation, as su
h type of equations arise in the thermo-

dynami
 limit of quantum Bethe equations.

In addition, the density obeys a set of normalization 
onditions

Z

dx

�(x)

x

= �2�m; (3.2)

Z

dx

�(x)

x

2

= 2�(E � S � J ); (3.3)

Z

dx �(x) = 2�(E + S � J ): (3.4)

Here 2�m is the total world-sheet momentumwhi
h must be quantized be
ause of the periodi


boundary 
onditions on the world-sheet 
oordinates.

We shall 
onsider the simplest solutions of (3.1) with only one 
ut C = (a; b) whi
h 
or-

responds to the 
ir
ular string (1.2). There is only one mode number k in this 
ase. This

simpli�
ation is 
ru
ial and allows us to rewrite the integral equation (3.1) as an algebrai


equation for the resolvant

G(x) =

Z

dy

�(y)

x� y

: (3.5)

The normalization 
onditions for the density (3.2){(3.4) be
ome boundary 
onditions for G(x)

G(0) = 2�m; (3.6)

G

0

(0) = �2�(E � S �J ); (3.7)

lim

z!1

zG(z) = 2�(E + S � J ): (3.8)

Multiplying both sides of (3.1) by �(x)=(z � x) and integrating over x we �nd

G

2

(z)� 2�

�

k � 2

J z +m

z

2

� 1

�

G(z)� 2�

�

J +m

z � 1

G(1) +

J �m

z + 1

G(�1)

�

= 0: (3.9)

The boundary 
onditions (3.6){(3.8) 
an be used to eliminate G(�1) from this equation. Ex-

panding (3.9) at z = 0 and z =1 we get

kS +mJ = 0; (3.10)
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in a

ord with [40℄, and

(J �m)G(�1) = ��k(E + S � J )� �m(k +m): (3.11)

The 
ondition (3.10) imposes rationality on the spins and requires the integers k and m to have

opposite signs. We shall assume for de�niteness that m > 0 and k < 0.

Plugging (3.11) ba
k into (3.9) we get

G

2

(z)� 2�

�

k � 2

J z +m

z

2

� 1

�

G(z) +

4�

2

z

2

� 1

[k(E + S � J )z �m(k +m)℄ = 0: (3.12)

The solution of this quadrati
 equation is

G(z) = �

�

k � 2

J z +m

z

2

� 1

�

+

�

p

P (z)

z

2

� 1

; (3.13)

where

P (z) = k

2

z

4

� 4k(E + S)z

3

+ 2(2J

2

+ 2m

2

� k

2

)z

2

+ 4k(E � S)z + k

2

: (3.14)

The resolvant determines the density through the dis
ontinuity on the 
ut

G(x+ i0)�G(x � i0) = 2�i�(x); x 2 C; (3.15)

and we �nd

�(x) =

p

�P (x)

x

2

� 1

: (3.16)

We need one extra 
ondition to express the energy in terms of the spin and the angular

momentum. This 
ondition 
annot arise from equation (3.9). Instead one should look more


losely at the stru
ture of the density �(x). For general values of the energy, the angular

momentum and the spin, the density is real on two 
uts, whereas we have assumed that the

solution has only one 
ut. This 
an be made 
onsistent by requiring that the dis
riminant of

the quarti
 polynomial (3.14) is zero, then P (z) has one double root (�g.1)

P (
) = 0; P

0

(
) = 0 : (3.17)

These two equations determine the dependen
e of the energy on the angular momenta, E =

E(S;J ), in a parametri
 form and are equivalent to (1.4), (1.5) upon the identi�
ation

� = �

k

2

�

1




� 


�

: (3.18)

3.2 Quantum 
orre
tions

If the integral equation (3.1) is interpreted as the 
lassi
al limit of some Bethe equations

2

, the

density �(x) has the meaning of an asymptoti
 distribution of Bethe roots in the limit when

2

Bethe ansatz only works for integrable systems, so here we must assume quantum intergrability of the

world-sheet sigma-model. There are indeed some indi
ations that integrability is not destroyed by quantum


orre
tions [41℄.
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Figure 1: Graph of the quarti
 polynomial �P (z) (the ordering of the zeroes is a < b < 
).

their number (naturally identi�ed with the spin S of the quantum string state) be
omes in�nite

�(x) =

4�

p

�

S

X

k=1

x

2

k

x

2

k

� 1

Æ(x� x

k

): (3.19)

The normalization fa
tor 2�=

p

� is the 
oupling 
onstant of the world-sheet sigma-model. The


lassi
al (weak-
oupling) limit 
orresponds to �!1. Be
ause S s
ales with

p

� a

ording to

(1.7), the 
lassi
al limit 
oin
ides with the thermodynami
 limit, in whi
h the number of roots

be
omes in�nite.

Our starting point are the quantum Bethe equations proposed in [22, 23℄

3

�

x

+

k

x

�

k

�

J

=

Y

j 6=k

x

�

k

� x

+

j

x

+

k

� x

�

j

1�

1

x

�

k

x

+

j

1�

1

x

+

k

x

�

j

0

�

1�

1

x

�

k

x

+

j

1 �

1

x

+

k

x

+

j

1 �

1

x

+

k

x

�

j

1�

1

x

�

k

x

�

j

1

A

i

p

�(u

k

�u

j

)

2�

; (3.20)

where

4

u

k

= x

k

+

1

x

k

(3.21)

and

x

�

k

+

1

x

�

k

= u

k

�

2�i

p

�

: (3.22)

These equations redu
e to (3.1) in the thermodynami
 limit when

p

�; J; S ! 1. Our goal

will be to 
ompute the leading-order quantum 
orre
tion to the 
lassi
al Bethe equations.

It might seem that (3.20) 
an only give rise to even powers of 1=

p

�, sin
e the equations

are invariant under

p

� ! �

p

�. Nevertheless the odd powers of 1=

p

� arise in the expansion

and the leading quantum 
orre
tion is O(1=

p

�) for the following reason. The Bethe roots x

k

3

Although the quantum string 
an 
u
tuate in all dire
tions in AdS

5

� S

5

, the quantum string Bethe

equations have the same number of degrees of freedom as in the pure sl(2) se
tor. On the gauge theory side

di�erent se
tors do not talk to ea
h other be
ause operators with di�erent quantum numbers do not mix [42℄,

but it is not a priori 
lear why various se
tors 
an be separated on the string theory side (see [43℄ for a more

detailed dis
ussion of this issue).

4

Our notation di�ers from that of [23℄ by a res
aling of x

k

and u

k

: x

k

! x

k

p

�=4�, u

k

! u

k

p

�=4�.
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ondense into 
uts in the thermodynami
 limit su
h that the distan
e between nearby roots

goes to zero. But the simultaneous limit of �!1 and x

k+1

� x

k

! 0 is singular in the Bethe

equations and this singularity gives rise to a lo
al anomaly [44℄. The anomaly 
an
els at the

leading order [45℄, but 
ontributes to the 1=

p

� quantum 
orre
tion [37, 38℄. We shall 
al
ulate

the anomaly dire
tly from the Bethe equations (3.20). The 
al
ulations are rather 
ompli
ated

and the details are given in appendix A. The resulting equation for the resolvant di�ers from

(3.12) by a 
orre
tion term

G

2

(z)� 2�

�

k � 2

J z +m

z

2

� 1

�

G(z) +

4�

2

z

2

� 1

�

k(E + S � J )z �m(k +m)

�

+

4�

p

�

z

2

z

2

� 1

Z

dx

�

0

(x)��(x) 
oth��(x)

z � x

= 0: (3.23)

Solving this quadrati
 equation we �nd a density whi
h is of the form (3.16), where the

fun
tion P (z) obtains a 
orre
tion

ÆP (z) =

4�

p

�

z

2

(1� z

2

)

�

2

Z

dx

�

0

(x)��(x) 
oth��(x)

z � x

: (3.24)

The energy 
an be found as before, from the requirement that there is only one 
ut present

P (
 + Æ
) + ÆP (
+ Æ
) = 0; P

0

(
+ Æ
) + ÆP

0

(
+ Æ
) = 0: (3.25)

Expanding the �rst equation to linear order we get

�P (
)

�E

ÆE +

�P (
)

�


Æ
+ ÆP (
) = 0: (3.26)

Taking into a

ount that �P (
)=�
 = 0 we �nd

ÆE = �

ÆP (
)

�P (
)=�E

: (3.27)

For �P=�E we get from (3.14)

�P (
)

�E

= �4k
(


2

� 1): (3.28)

Res
aling ba
k to the physi
al energy we obtain

ÆE

Bethe

=




�k

Z

dx

�

0

(x)��(x) 
oth��(x)

x� 


: (3.29)

We 
an also introdu
e

~�(x) =

1

�

Z

��(x)

0

d�� 
oth � : (3.30)

Then integration by parts in (3.29) yields

ÆE

Bethe

=




�k

Z

dx

~�(x)

(x� 
)

2

: (3.31)
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Let us see how the one-loop SYM result [37, 38℄ is re
overed. From (3.17), (3.14) we �nd

that 
 = �k=(2J ) at large J . Inserting this into (3.31) and res
aling x ! 4�J x, we get for

the energy shift at the leading order in 1=J

ÆE

Bethe

1

= �

1

8�

2

J

2

Z

dx

~�(x)

x

2

; (3.32)

in agreement with [37℄.

To perturbatively evaluate the integral (3.29), we shall need to expand various parameters


hara
terizing the 
lassi
al string 
on�guration in a power series in 1=J . In parti
ular, we need

to �nd the zeroes of the quarti
 polynomial P (x). Re
all that P (x) de�ned in (3.14) 
an be

fa
torized as

P (x) = (x� a)(x� b)(x� 
)

2

; (3.33)

For our sign 
hoi
e (m > 0, k < 0), the roots are ordered as a < b < 
.

The zeroes a; b; 
 admit an expansion in

1

J

. Solving (3.17) perturbatively in 1=J we get


 = �

k

2J

+

k

8J

3

(2m

2

� 4mk + k

2

)

+

k

16J

5

(�3m

4

+ 16m

3

k � 23m

2

k

2

+ 10mk

3

� k

4

) +O

�

1

J

7

�

; (3.34)

E =

�

1�

m

k

�

J +

1

2J

m(m� k)�

1

8J

3

m(m� k)(m

2

� 3mk + k

2

)

+

1

16J

5

m(m� k)(m

4

� 7m

3

k + 13m

2

k

2

� 7mk

3

+ k

4

) +O

�

1

J

7

�

: (3.35)

The expression (3.35) agrees with the perturbative expansion of the 
lassi
al string energy


omputed in [33℄.

3.3 Mode expansion

Our starting point is (3.29), whi
h 
an be written as a 
ontour integral, be
ause the integrand

has a square-root bran
h 
ut along the 
ontour of integration. If we introdu
e the fun
tion

f(z) =

p

P (z)

z

2

� 1

; (3.36)

the energy shift be
omes

ÆE

Bethe

=




k

I

C

ab

dz

2�i

f

0

(z)f(z) 
ot(�f(z))

z � 


; (3.37)

where the integration 
ontour C

ab

en
ir
les the 
ut 
lo
kwise. We 
an use the following series

representation for 
ot�f(z)


ot(�) =

1

�

+ 2�

1

X

n=1

1

�

2

� n

2

�

2

: (3.38)
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Inserting this into the 
ontour integral we obtain

ÆE

Bethe

=




k

I

C

ab

dz

f

0

(z)

(z � 
)

+

2


k

1

X

n=1

I

C

ab

dz

f

0

(z)f

2

(z)

(z � 
)(f

2

(z)� n

2

)

: (3.39)

The only singularities of the integrands outside the 
ontour of integration are poles and the

integrals 
an be 
al
ulated by evaluating the residues. The integrand in the �rst term has poles

at z = 
 and z = �1. The poles of the se
ond term are at z = �1 and at z = z

n

, where the

z

n

's are solutions of

f(z

n

) = �n ; n 2 N : (3.40)

Squaring this equation we �nd that z

n

's are the roots of the quarti
 equation

P (z) = n

2

(z

2

� 1)

2

: (3.41)

It 
an be shown that the 
u
tuation energies around the 
lassi
al solution are determined by

the same equation, in a

ord with the general relationship between 
u
tuations [46℄ and �nite-

size 
orre
tions for Bethe ansatz [48℄. The residues at z = �1 are rather 
ompli
ated, but the

residues at z = z

n

are easy to evaluate

Res

z=z

n

=




k

�

n�

n

z

n

� 


�

: (3.42)

The sign �

n

of the residue is the same as the sign in the equation f(z

n

) = �n and 
an be

determined by analyzing (3.41) with the help of (3.33)

�

n

=

(

+1 for z 2 [�1; a℄[ [�1; 
℄ [ [1;1℄

�1 for z 2 [b;�1℄ [ [
; 1℄ :

(3.43)

3.4 Perturbative expansion and 
omparison to string theory

We have evaluated the residues in (3.39) perturbatively in 1=J . The 
al
ulations are lengthy

and are given in appendix C. We also 
he
ked that the �rst two orders are reprodu
ed by a

dire
t expansion of the integral (3.31). Unlike the string sum over modes, its Bethe 
ounterpart

is manifestly �nite at ea
h order of the perturbative expansion. This might indi
ate that our

method of 
omputing the series over string modes breaks down at two loops (see also the

dis
ussion in [32℄). However, if we 
ompare the zeta-regularized sum (2.12), (2.13) and (2.14)

with the Bethe ansatz, we �nd 
omplete agreement! We 
he
ked this up to the third order

ÆE

Bethe

p

= ÆE

string

p

; p = 1; 2; 3: (3.44)

The agreement at the �rst two orders implies that the string energy shifts agree with the �nite-

size 
orre
tions to the anomalous dimensions at two loops in the SYM theory. At three loops,

the string Bethe ansatz that was our starting point, di�ers from the gauge Bethe ansatz [47℄

whi
h 
omputes the anomalous dimensions.

The agreement between the Bethe ansatz and the dire
t string 
al
ulation is rather spe
ta
-

ular. The initial expressions look too 
ompli
ated for this to be a pure a

ident. Nevertheless,
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the string and the Bethe 
al
ulation have a di�erent status. The Bethe ansatz energy shift

is automati
ally �nite order by order in 1=J . On the string side we en
ountered divergen
es

despite the 
omplete, unexpanded energy shift being �nite. No doubt, there should be a better

way to approa
h the weak-
oupling (large J ) limit on the string side.

4 Limit of large winding number

Be
ause of the divergen
es in the naive 1=J expansion of the string sum, it would be desirable

to do an independent test whi
h avoids the 
onvergen
e issues mentioned earlier. One option

is to evaluate the energy shifts numeri
ally. This is done in the next se
tion. Here we 
onsider

a parti
ular regime, the limit of large winding number (jkj � 1), in whi
h the energy shifts


an be 
al
ulated analyti
ally

5

. In this limit J , E and m stay �nite, but the spin goes to zero:

S � 1. The string remains ma
ros
opi
 in this limit, sin
e it winds the big 
ir
le of S

5

, but in

AdS

5

the string shrinks to zero size (
f. (1.3)). We will have to assume that J =jkj � 1, whi
h

means that there is no overlap with the perturbative regime we have dis
ussed so far. In fa
t,

the energy shift turns out to depend on 1=J =

p

�=J rather than 1=J

2

in the large-k limit,

and it is not possible to 
ompare string quantum 
orre
tions to perturbative SYM theory in

this regime.

The details of the string 
al
ulation are given in appendix D. The result is

ÆE =

2F

�

0;

p

J

2

�m

2

�

+ 2F (0;J +m)� 4F

�

f

jkj

2

g;

p

J (J +m)

�

J +m

+

p

mJ + (J +m) ln

p

J +m

p

J +

p

m

�m; (4.1)

where the fun
tion F (�; �) is de�ned in (2.8). A pe
uliar property of this result is the depen-

den
e on the fra
tional part of k=2, whi
h means that the large-k limit of the string energy

shift depends on whether the winding number k is even or odd. This e�e
t probably arises

be
ause of the k-dependent �eld rede�nition of the world-sheet fermions whi
h was used to �nd

the spe
trum of 
u
tuations [31, 32, 33℄. This kind of irregularity does not arise in the Bethe

ansatz, and also in the zeta-regularized large-J expansion.

5

In the narrow sense, we are just 
omparing two mathemati
al expressions { the string one-loop 
orre
tions

(2.1){(2.3) and the �nite-size 
orre
tion from the Bethe ansatz (3.29). Ea
h is a well-de�ned fun
tion of the

parameters k, m and J . If the two expressions agree (or disagree), they must agree (disagree) at all values of

the parameters, in parti
ular if one of the parameters (k in this 
ase) takes its extreme value. From this point

of view the limit of large k is just a simplifying assumption that allows us to 
al
ulate ÆE

String

and ÆE

Bethe

expli
itly in some 
orner of the parameter spa
e. On the other hand, not only the 
lassi
al energy of the string,

but also the quantum 
orre
tion to it stays �nite in the large-k limit. This probably means that the limit of

large winding (or small spin) is well-de�ned for this type of string solutions and it would be very interesting

to study this limit further. The winding number in that, more general setting should be mu
h larger than the

res
aled quantities E and J , but should be mu
h smaller than

p

� (and thus E and J) in order not to interfere

with the loop expansion of the sigma-model.
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4.1 Bethe ansatz 
al
ulation

We begin with the 
lassi
al limit. To take the large-k limit it is 
onvenient to rewrite (3.14) in

the two equivalent forms

P (x) = k

2

(x

2

� 1)

2

� 4kEx(x

2

� 1) + 4mJ x(x� 1)

2

+ 4(J �m)

2

x

2

: (4.2)

The �rst two terms blow up in the k !1 limit unless x is 
lose to 1 or �1. The roots of P ,

a, b and 
, thus lie in the vi
inity of �1. Changing the variables to

x = �1 +

v

k

; (4.3)

and taking the limit k !1, we get

P (x) = 4v

2

� 8Ev + 4(J �m)

2

; at x!�1: (4.4)

Thus two of the roots of P (x) lie near 1 and two lie near �1. The double root should lie at

x � 1, from whi
h we �nd

E = J +m (4.5)

and


 = 1�

E

jkj

: (4.6)

Solving (4.4) near x = �1, we �nd the endpoints of the 
ut

�

b

a

�

= �1�

�
p

J �

p

m

�

2

jkj

: (4.7)

We see that the 
ut shrinks to a very small size, whereas the density a

ording to (3.2)-(3.4) is

still normalized to O(1). Thus the density is highly peaked near �1. Indeed, from (3.16) and

(4.4) we �nd

�(x) =

jkj

v

q

2 (J +m) v � v

2

� (J �m)

2

: (4.8)

The integral (3.31) 
an be easily evaluated in the k !1 limit. Be
ause the density is large,


osh � in (3.30) 
an be approximated by 1, and thus

~� =

�

2

�

2

; at �!1: (4.9)

We thus get from (3.31)

ÆE

Bethe

=

1

8k

Z

dx �

2

(x): (4.10)

Using dx = dv=jkj and the expli
it expression (4.8) for the density, we �nd

ÆE

Bethe

=

p

mJ �

J +m

2

ln

p

J +

p

m

p

J �

p

m

: (4.11)

This 
learly disagrees with the string theory 
al
ulation (4.1), in parti
ular the Bethe ansatz

result has a regular dependen
e on k. We shall see this dis
repan
y also in the numeri
al


al
ulations. Let us also note that even though the expli
it 
omputation in this se
tion was

done in the simplifying large k limit, the deviations between the Bethe ansatz and the string

theory 
omputation are also observed numeri
ally for �nite values of the parameter k (see

�gure 3 in the next se
tion).
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Figure 2: Energy shifts (ÆE) � J

2

for J = 5:::50 ; m = 3 ; k = �2, Bethe vs. semi-
lassi
al

string.

5 Numeri
al evaluation of energy shifts

In this se
tion we numeri
ally 
ompare 
orre
tions to the energy of the 
ir
ular string ob-

tained by the semi
lassi
al quantization (2.3) and the one dedu
ed from the proposed quantum

string Bethe equation (3.29). Both evaluations of the sums are done for various values of the

parameters.

We �rst 
onsider the large-J limit. From �gure 2 we see that both fun
tions have the same

leading order behaviour, in agreement with the earlier analyti
 results. Next, we try to extra
t

the 
oeÆ
ients of the 1=J

2

expansion of the energy shift numeri
ally. In pra
ti
e, numeri
ally


omputing higher order e�e
ts is hard, sin
e it requires a high numeri
al pre
ision and stability.

Yet, by using high pre
ision numeri
al evaluations let us try to extra
t the �rst subleading

(1=J

2

) 
orre
tion from the exa
t semi
lassi
al expression (2.3) and 
ompare it with the zeta-

fun
tion regularized result (2.13). Subtra
ting the analyti
 one-loop pie
e (2.12) from the

numeri
al expression for the semi
lassi
al energy shift (2.3) leads to very unstable numeri
al

results, given in table 5.1.

m=3.0 , k=-2 :

J 50 100 150 200 250

(ÆE

string

� ÆE

1

)� J

2

1041 620 -82 -1066 -2329

J 300 350 400 450 500

(ÆE

string

� ÆE

1

)� J

2

-3871 -5693 - 7794 -10174 - 12831

(5.1)

This should be 
ompared to the zeta-fun
tion regularized two-loop result (2.13) for the same

values of m and k whi
h gives

ÆE

2

= 393:375 : (5.2)

The numeri
al stability is greatly improved, if instead of subtra
ting the analyti
 one-loop

result (2.12), we use the asymptoti
 numeri
al value for the energy shift (obtained for J = 10

3

)

ÆE

string

asymptot

= �77:781 : (5.3)
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Figure 3: Energy shifts (ÆE) � J

2

for J = 3 ; m = 2 ; �k = (40:::1). The upper 
urve is the

string 
al
ulation. The lower 
urve is the predi
tion of the Bethe ansatz.

The results are given in table (5.4). We see that it is mu
h less 
u
tuating 
ompared to the

result in table (5.1). The deviations from the 
onstant value, may be attributed to higher

orders in 1=J

2

and insuÆ
ient numeri
al pre
ision. The average value from the table (5.4) is

di�erent from the regularized two-loop result (5.2), but the numeri
s is rather unstable and we


annot draw any de�nite 
on
lusions at this point be
ause of insuÆ
ient numeri
al a

ura
y.

m=3.0 , k=-2 ;

J 50 100 150 200 250

(ÆE

string

� ÆE

asymptot

)� J

2

1170 1167 1147 1120 1087

J 300 350 400 450 500

(ÆE

string

� ÆE

asymptot

)� J

2

1048 1004 952 896 835

(5.4)

We get mu
h better a

ura
y if we look at a �nite value of J and vary k at �xed m and

J . We shall take J = 3 and m = 2 and vary k from �40 to �1. The results are given in

�gure 3. The upper 
urve is the semi
lassi
al string 
omputation, the lower 
urve is 
omputed

from the Bethe ansatz

6

. We see that both the semi
lassi
al and the Bethe energy shifts tend

asymptoti
ally to 
onstant but di�erent values, whi
h are in good numeri
al agreement with

the analyti
 
al
ulations in the previous se
tion. Here our numeri
al pre
ision is suÆ
ient to

dis
riminate the two results.

6 Con
lusions

We have 
ompared quantum 
orre
tion to the energy of ma
ros
opi
 rigid strings in AdS

5

�S

5

with the �nite-size 
orre
tions to the quantum string Bethe ansatz. Taken at fa
e value, the

two results disagree, but an interpretation of this dis
repan
y is un
lear to us. If we do the

string 
al
ulation in a more naive way by �rst expanding 
u
tuation frequen
ies in 1=J and

6

By that we mean numeri
al integration in (3.29). Dire
t numeri
al solution of the dis
rete Bethe equations

with subsequent extrapolation to the thermodynami
 limit requires substantially more involved 
al
ulations.
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then summing the series over string modes, the straightforward zeta-regularized expansion in

1=J

2

agrees with the Bethe ansatz to the �rst three orders. Perhaps the sum over frequen
ies

on the string side should be rede�ned su
h that it automati
ally reprodu
es zeta-regularized

1=J expansion. The methods used to evaluate related sums in the 
ontext of plane-wave string

theory [49℄ 
an be helpful to implement su
h zeta-fun
tion pres
ription. On the other hand the

sum is �nite and well-de�ned as it stands and there are no apparent regularization ambiguities.

Another possible explanation of the dis
repan
y is that the string Bethe equations re
eive

non-trivial 1=

p

� 
orre
tions. We 
annot dis
riminate between these two possibilities at present.

Studying other 
lasses of string solutions will be 
ertainly helpful to resolve this puzzle. We

should �rst of all mention stable 
ir
ular strings on S

5

whi
h were analyzed both in string

theory [31℄ and using the Bethe ansatz [50℄.
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Appendix A Cal
ulation of anomaly

In this appendix the anomaly term is derived from the quantum string Bethe equations (3.20).

The following integral representation turns out to be useful

ln

f(x

+

1

; : : : ; x

+

S

;x

�

1

; : : : ; x

�

S

)

f(x

1

; : : : ; x

S

;x

1

; : : : ; x

S

)

= i

Z
2�

p

�

0

d"

1

f

S

X

k=1

�

x

+2

k

x

+2

k

� 1

�f

�x

+

k

�

x

� 2

k

x

� 2

k

� 1

�f

�x

�

k

�

; (A.1)

where f is an arbitrary fun
tion and

x

�

k

+

1

x

�

k

= u

k

� i" ; (A.2)

under the integral (x

�

k

on the left-hand-side is de�ned in (3.22)). This representation singles

out a parti
ular bran
h of the logarithm, so when we write the Bethe equations (3.20) in

the logarithmi
 form, we should introdu
e an arbitrary phase whi
h parameterizes di�erent
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bran
hes of the logarithm
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An important property of this terrible-looking equation is the symmetrywith respe
t to "!�",

whi
h means that the dire
t strong-
oupling expansion starts from order O(1=�). The only

sour
e of 1=

p

� 
orre
tions is the �rst sum over j, in whi
h terms with j � k be
ome singular

in the "! 0 limit. The 
ontribution of these terms is the anomaly. In the remaining terms we


an take the limit "! 0 dire
tly

4�Jx
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x

2
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� 1

+
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+
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� x

+

j

#

= 2�k; (A.4)

where we have used the equality

u

k

� u

j

=

(x

k

� x

j

)(x

k

x

j

� 1)

x

k

x

j

:

The next step is to multiply both sides of (A.4) by 1=(z � x

k

) and sum over k. Be
ause of

the anti-symmetry in k and j, in the double sums 1=(z � x

k

) 
an be repla
ed by

1

z � x

k

!

1

2

�

1

z � x

k

�

1

z � x

j

�

=

x

k

� x

j

2(z � x

k

)(z � x

j

)

:

Now we 
an disentangle the \normal" 
ontribution of j � k �

p

� from the lo
al \anomalous"


ontribution of j � k �

p

�. In the latter 
ase

x

j+n

� x

j

+

4�x

2

j

n

p

�(x

2

j

� 1)�(x

j

)

; (A.5)
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a

ording to the de�nition of the density in (3.19). Also,

x

�

j+n

� x
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+
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2
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2
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� 1

 

4�n
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��(x
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(A.6)

and
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� x
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� 1 = �

2i"

4�n

p

��(x

j

)

� 2i"

:

Separating the long-distan
e 
ontributions from the short-distan
e ones we �nd, after some


al
ulations
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where

G(z) =

4�

p

�

X

k

x

2

k

x

2

k

� 1

1

z � x

k

: (A.8)

The asymptoti
s of (A.7) at z !1 shows that the 
ondition (3.10) does not re
eive quan-

tum 
orre
tions. Performing the summation in the anomaly term and 
hanging the integration

variable to � =

p

��"=2 we �nally get

G

2

(z)� 2�

�

k � 2

J z +m
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2

� 1

�
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4�
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4�

p

�

z

2

z

2

� 1

Z
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~�(x)

z � x

= 0; (A.9)

where ~�(x) is de�ned in (3.30). The form of the anomaly used in the main text is obtained

after integrating by parts and taking into a

ount that

~�

0

= �

0

�� 
oth�� : (A.10)

Appendix B Details of string theory 
omputation

B.1 Contribution of sl(2) modes

The main diÆ
ulty in evaluating the energy from the string theory is the sum over the roots

of the quarti
 polynomial (2.4)

ÆE

sl(2)

=

X

I

sign(C

(n)

I

)!

I;n

: (B.1)

The quarti
 equation is equivalently given by

!

4

+ a

2

!

2

+ a

1

! + a

0

= 0 ; (B.2)
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where
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In parti
ular, the absen
e of the 
ubi
 term implies

P
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I;n

= 0. The roots 
an be written
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and y

1

is a real root of the dis
riminant 
ubi
 equation
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That is
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(B.8)

Furthermore, we need to address the issue of the signs in front of the frequen
ies. If we

take all square roots with positive sign, it is 
lear that for a generi
 n and J there are two

possibilities for the relative ordering of the frequen
ies !

I

I : !

4

< !

3

< !

2

< !

1

(B.9)

II : !

4

< !

2

< !

3

< !

1

: (B.10)

In order to dis
riminate these, 
onsider the large J � n limit. The asymptoti
s are !

1

�

�!

4

� 2J and so (!

2

� n

2

) > 0. Hen
e,

sign(C

(n)

1;B

) = +1 ; sign(C

(n)

4;B

) = �1 : (B.11)

On the other hand, in the same limit we have !

2

� �!

3

� n=2J and thus (!

2

� n

2

) < 0,

wherefore

sign(C

(n)

2;B

) = �1 ; sign(C

(n)

3;B

) = +1 : (B.12)
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Hen
e, in the large J limit the eigenvalues are ordered as in the �rst 
ase in (B.9). Note that

the ordering of !

I

n

as a fun
tion of n keeping J �xed does not 
hange, i.e., the roots do not

\
ross" (see �gure 5).

Using (B.11) and (B.12) the expression for ÆE

sl(2)

in the large J limit 
an be simpli�ed to
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: (B.13)

In summary, to 
ompute ÆE

sl(2)

one only needs to determine the sum over the 
ombination

D

n

+ F

n

.

B.2 Perturbative expansion of modes

The 
ombination of sl(2) modes, D

n

+ F

n

, has the following expansion in 1=J
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(B.14)

The other terms, i.e., the transverse and fermioni
 terms, are as follows

ÆE �

ÆE

sl(2)

2�

=

X

n

�

�(k �m)

2

� n

2

�

1

J

2

+

1

16

�

(k �m)

2

(k

2

� 42km � 7m

2

) + 8(3k

2

� 10km+ 5m

2

)n

2

+ 4n

4

�

1

J

4

+

1

128

�

� (k �m)

2

(k

4

� 232k

3

m+ 962k

2

m

2

� 80km

3

� 11m

4

)

� 4(15k

4

� 260k

3

m+ 594k

2

m

2

� 340km

3

+ 23m

4

)n

2

� 16(15k

2

� 38km + 19m

2

)n

4

� 16n

6

�

1

J

6

:

(B.15)
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Note the three-loop term, where the expression at order n

2

has a di�erent stru
ture from the

one in (B.14).

Furthermore, expanding the zero mode part of the energy shift (2.2) in 1=J we obtain
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(B.16)

We shall now 
ombine these terms and obtain the energy shifts up to third order in perturbation

theory.

B.3 First and Se
ond order

The �rst and se
ond order terms in the 1=J

2

expansion of the energy shift (2.1) are
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The large n behaviour of the summand in ÆE

os


1

is 1=n

2

, whi
h ensures that the energy shift at

�rst order is �nite. In the se
ond order term the summand has asymptoti
s
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Thus, there is an anomalous pie
es, whi
h needs to be regularized. Applying zeta-fun
tion

regularization the regularized energy reads
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Combining the zero-mode energy shift with the os
illator 
ontribution, we obtain in summary

that at order 1=J

2

and 1=J

4

the shift is

ÆE
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(B.20)

B.4 Third order

Further expanding the string theory result for the 
ontributions of the os
illators to the energy

up to third order, i.e., order 1=J

6

, yields
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The sum is again divergent as the large n behaviour of the summand in (B.21) is

(ÆE
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(B.22)

We again apply zeta-fun
tion regularization. In the present 
ase, we need to evaluate the

Riemann zeta fun
tion �(s) =

P

1

n=1

1=n

s

at s = �2; 0. The values 
an be 
al
ulated by writing

the zeta-fun
tion as

�(s) =

1

1� 2

1�s

1

X

n=0

1

2

n+1

n

X

k=0

(�1)

k

�

n

k

�

(k + 1)

�s

; (B.23)

and evaluating the inner sum �rst. This results for k > 1 in

�(�k + 1) = �

B

k

k

; (B.24)
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where B

k

are the Bernoulli numbers. Now B

3

= 0 and therefore only �(0) gives a non-vanishing


ontribution, namely �(0) = �1=2. The regularized 
ontribution from the os
illators to the zero

modes is thus

(ÆE

os
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)
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where the dots indi
ate the non-zero mode 
ontributions, with the terms in (B.22) subtra
ted.

Combining all terms, we arrive at the third order energy shift as 
omputed from the string

theory side
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We shall see subsequently, that this regularized energy shift agrees with the predi
tion from

the Bethe ansatz.

Appendix C Details of Bethe ansatz 
omputation

C.1 Zero-modes

The zero mode integral is

ÆE

(0)

=
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I
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ab
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f

0

(z)

(z � 
)

: (C.1)

By deforming the 
ontour to in�nity, we pi
k up the residues at z = 
 and z = �1.

Combining these residues and subsequently expanding them in 1=J by making use of (3.34),

yields
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(C.2)

Comparison to the string theory result, whi
h were 
omputed in the previous se
tion shows

that up to third order in the 1=J

2

perturbation expansion, the zero-mode terms (C.2) agree

with the ones of the zeta-fun
tion regularized expressions on the string side.
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C.2 Non-zero modes

The non-zero mode 
ontributions 
ome from the sum in (3.38) and are

ÆE
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Again, deforming the 
ontour to in�nity, we pi
k up (possibly non-trivial) residues at z = 
,

z =1, z = �1 as well as z = z

n

, where z

n

were de�ned in (3.40).

The residues at z = 
 and z = 1 vanish. The residue at z = z

n

was evaluated in (3.42).

In order to expand this in 1=J , one �rst needs to solve (3.41) perturbatively for z

n

(note that

there are two roots z

n

ea
h for positive n and for negative n).

The expansion of (3.42) yields up to third order
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Finally, there are the residues at z = �1, whi
h 
ontribute to the n-independent terms of

the summands ÆE

(n)
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Putting the residues in (C.4) and (C.5) together we obtain
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The 
omplete energy shift is then

ÆE = ÆE

(0)

+

1

X

n=1

ÆE

(n)

; (C.7)

where the various terms are written out in (C.2) and (C.6).

In summary, the Bethe result agrees with the string results (B.20), (B.26) in
luding order

1=J

6

.

Appendix D Details of the large k string 
omputa-

tion

We evaluate the energy shift ÆE

string

in the large k limit, for �xed m and J . Again, the

problemati
 part in the 
omputation are the !-dependent terms, for whi
h we are for
ed to use

approximations for �nding the roots in di�erent regions of the parameters.

Note that �rst expanding the summands in (2.2) and (2.3) 1=k before summing them yields

divergent expressions. However, unlike the divergen
es that o

ured in the 1=J expansion at

se
ond and third order in perturbation theory, these divergen
es 
annot be removed, using stan-

dard regularisation pro
edures su
h as zeta-fun
tion regularisation as they 
ontain logarithmi


divergen
es. The origin of this divergen
e is the irregular dependen
e on k of the resummed

expression (2.9).
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Figure 4: Pro�les of the summands for k = 400, k = 100, k = 20 and k = 5, respe
tively, with

(J = 3, m = 2).
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Figure 5: Pro�les of the ! frequen
ies for k = 400; (J = 3, m = 2). The plot on the right hand

side zooms into the plot on the left hand side.

In order to as
ertain what kind of fun
tion we are summing, it is useful to numeri
ally plot

the summands. This is done in �gure 3 for various, mainly large, values of k. Solving (B.2) in

the limit n � jkj ! 1 we �nd, up to O(1=k

2

) 
orre
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These expressions approximate the frequen
ies well enough in the entire range of n, ex
ept for

n � jkj = O(1), where 1=k 
orre
tions to !

2

and !

3

blow up. Solving (B.2) in that region we

�nd

!

1

= 3jkj; (D.3)
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Comparing (D.5) to (D.1), (D.2) we see that !

+

asymptotes !

2

at n � jkj and !

3

at n� jkj,

while !

�

asymptotes !

3

at n� jkj and !

2

at n� jkj. Thus !

2

and !

3

inter
hange at n = jkj

by passing through the singularity.

Computing the sign fa
tors from (2.6) we get

n < jkj : signC

(n)

1

= 1; signC

(n)

2

= �1; signC

(n)

3

= 1; signC

(n)

4

= �1;

n > jkj : signC

(n)

1

= 1; signC

(n)

2

= 1; signC

(n)

3

= �1; signC

(n)

4

= �1;

n � jkj � 1 : signC

(n)

1

= 1; signC

(n)

4

= �1; signC

(n)

�

= �1 :

(D.6)

27



We are now ready to 
ompute the sum over modes. To do that we divide the range of summation

into three parts

(I) 1 � n � jkj � s � 1

(II) jkj � s � n � jkj+ s

(III) jkj+ s+ 1 � n ; (D.7)

where 1� s� jkj. In the regions (I) and (III) the summation of O(1=k) terms 
an be repla
ed

by an integration over x = n=jkj
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Combining this with the expansion of the zero modes
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and (2.9) we obtain
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Sin
e 
 = jkj=2+O(1=k), this expression has a �nite k !1 limit, as was observed numeri
ally.

In order to determine the asymptoti
 values of the 
onstant one needs the expression for 
 with

an O(1=k) a

ura
y
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whi
h implies
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For large enough �, the fun
tion F (�; �) 
an be approximated as in (2.10), and thus the

previous sum 
an be further simpli�ed to
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