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Abstrat

We disuss the role that higher derivative operators play in �eld theory orbifold ompat-

i�ations on S

1

=Z

2

with loal and non-loal Sherk-Shwarz breaking of supersymmetry.

Integrating out the bulk �elds generates brane-loalised higher derivative ounterterms to

the mass of the brane (or zero-mode of the bulk) salar �eld, identi�ed with the Higgs �eld in

many realisti models. Both Yukawa and gauge interations are onsidered and the one-loop

results found an be used to study the \running" of the salar �eld mass with respet to

the momentum sale in 5D orbifolds. In partiular this allows the study of the behaviour

of the mass under UV saling of the momentum. The relation between supersymmetry

breaking and the presene of higher derivative ounterterms to the mass of the salar �eld

is investigated. This shows that, regardless of the breaking mehanism, (initial) supersym-

metry annot, in general, prevent the emergene of suh operators. Some impliations for

phenomenology of the higher derivative operators are also presented.
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1 Introdution

The physis of extra dimensions is reeiving a strong researh interest in the ontext of e�etive

�eld theory approahes to ompati�ation, sometimes referred to as \�eld theory orbifolds".

While string theory may provide the ultimate desription of ompati�ation, �eld theory orb-

ifolds an also onsistently (re)address interesting issues suh as supersymmetry breaking, the

hierarhy problem, radiative orretions or their experimental signatures. In this work we inves-

tigate the impliations of supersymmetry breaking in 5D �eld theory orbifolds for the one-loop

orretions to the mass of the 4D salar �elds.

An aspet that is somewhat overlooked in reent studies of radiative orretions in gauge

theories on �eld theory orbifolds (see for example [1℄-[9℄), is the role of higher derivative oper-

ators

1

. In general it is thought that suh operators, being higher dimensional, are suppressed

if the sale where they beome relevant is high enough. However, from a 4D point of view the

most natural suh sale is the ompati�ation sale 1=R and, if this is low (TeV sale), suh

operators an have a signi�ant e�et even at low energies. For generality we shall onsider the

role of suh operators in orbifolds with a radius R of an arbitrary value (large or small).

The models that we investigate are 5D N=1 supersymmetri, ompati�ed on S

1

=Z

2

and

the interations are loalised superpotential (in the extra dimension) and gauge interations.

These are standard interations in any higher dimensional theory whih aims to reover after

ompati�ation and at low energies, the Standard Model (SM) or its supersymmetri versions.

Suh interations indue loop orretions to the mass of the zero mode salar �eld (if this is a

bulk �eld) or to that of a brane salar �eld. It is important to note that this �eld is regarded in

many models as the SM Higgs �eld [1℄-[8℄. Therefore suh loop orretions are important for the

hierarhy problem, eletroweak symmetry breaking or running of the mass of the salar �eld.

Reent studies of loop orretions to the mass of the 4D salar �eld showed that radiative

orretions are of type (see for example [1, 3℄)

m

2

�

H

� �

�

2

R

2

; (1)

where � = �1 (+1) when � is the Yukawa (gauge) oupling. As a result one an have radiative

eletroweak symmetry breaking

2

triggered by towers of Kaluza-Klein states of bulk �elds whih

ouple, via the aforementioned interations, to the (zero-mode or brane) salar �eld assoiated

with the Higgs �eld. Note that in the absene of a rigorous mehanism to �x 1=R to low values

(TeV or so) suh results do not provide a solution to the hierarhy problem even at one-loop. But

they open new ways to address these problems and we think this is worth further investigation.

1

For works on this topi see for example [10℄-[13℄.

2

assuming a vanishing mass at the tree level.
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As we shall see shortly, it turns out that the non-renormalisable harater of these theories

beomes apparent earlier than one may like, but with potentially interesting onsequenes. That

means that results like (1) are in general altered by the e�ets of higher derivative operators, in

some ases already at one loop. Their e�et depends on the size of the radius R, but as already

mentioned, here we keep R arbitrary. The result of our one-loop Yukawa orretions shows that

m

2

�

H

(q

2

) = m

2

�

H

(0) + � q

4

R

2

+

1

R

2

O(q

2

R

2

); m

2

�

H

(0) � �

�

2

R

2

; (2)

where � is an (unknown) oeÆient of the higher derivative operator.

Eq.(2) shows that the salar mass depends on both R and 1=R whih

3

we �nd rather in-

teresting. Further, if R is somehow �xed to a large value (inverse TeV sale) to explain a low

mass for the salar without large �ne tuning, the seond term in the �rst equation beomes

more important. Given the unknown oeÆient � of the higher derivative operators, this an

a�et the preditive power of the models. Further diÆulties at onsisteny level may arise for

speial values of this parameter, as we disuss in Setion 4. Conversely, if R is very small (q

2

�xed), the role of higher derivative operators is suppressed, but then the �rst term re-introdues

the quadrati mass sale (hierarhy) problem at one-loop, familiar from the Standard Model.

While this is the general piture, a detail analysis should onsider the O(q

2

R

2

) terms in (2)

whose expression an be omputed in general ases using our tehnial results. Finally, our

alulation an be used to re-address previous studies of the radiative eletroweak symmetry

breaking indued by towers of Kaluza-Klein modes, and to investigate the one-loop running of

the salar mass and its ultraviolet behaviour under the UV saling of the momenta, q

2

! �q

2

.

We investigate whether the presene of higher derivative operators and the above onsider-

ations depend on the way 5D N=1 supersymmetry is broken. This is the main purpose of the

paper. We onsider both loal and non-loal supersymmetry breaking, transmitted to the visible

setor via radiative orretions. The non-loal breaking inludes disrete and ontinuous Sherk-

Shwarz twisted boundary onditions for the bulk �elds. The plan of the paper is as follows:

in Setion 2 we disuss the orbifold ompati�ations and supersymmetry breaking by loal F

terms of a brane �eld at a hidden brane (Setion 2.1) and non-loal breaking (Setion 2.2) by

Sherk-Shwarz boundary onditions. We show that higher derivative operators are generated

as ounterterms for Yukawa but not for gauge interations. It turns out that the presene of

these ounterterms is rather independent of the above ways of supersymmetry breaking and this

is disussed in Setion 3. Some phenomenologial impliations of the higher derivative operators

that are found are disussed in Setion 4. Appendix A ontains formulae relevant for the study

of the running of the salar �eld mass (with the momentum sale), whih may also be used in

other appliations. Appendix B outlines a dimensional analysis needed in Setion 4.

3

Suh dependene of loop orretions on both R and 1=R is familiar in one-loop string orretions (T duality)

suh as those to gauge ouplings [14℄.
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2 Higher derivative ounterterms on S

1

=Z

2

.

On the S

1

=Z

2

orbifold, one an onsider vetor supermultiplets and hypermultiplets. The former

may be desribed in a 4D language as made of vetor super�eld V (�

1

; A

�

) and an adjoint hiral

super�eld �((� + iA

5

)=

p

2; �

2

), where �

1;2

are Weyl fermions, � a real salar and A

�

; A

5

the

5D gauge �eld. The hypermultiplet ontains two hiral super�elds �(�;  ) and �



(�



;  



) with

opposite quantum numbers, and where �; �



are omplex salars and  ;  



are Weyl fermions.

The orbifold onditions onsidered are suh as the gauge �eld A

�

has even parity (has a massless

zero mode) to respet the 4D gauge invariane. We onsider the following parity assignments

�(x;�y) = �(x; y); V (x;�y) = V (x; y)

�



(x;�y) = ��



(x; y) �(x;�y) = ��(x; y); (3)

where � an be any of the SM �elds Q;U;D; L;E. As a result, the original 5D N=1 super-

symmetry is broken and the �xed points (y = 0; �R) of the orbifold have a remaining 4D N=1

supersymmetry. Further, we onsider the following loalised interation,

L

4

=

Z

dy Æ(y)

�

�

Z

d

2

�

h

�

t

QU H

u

+ �

b

QDH

d

+ � � �

i

+ h::

�

: (4)

The 5D oupling �

t

= f

5;t

=M

n

�

= (2�R)

n

f

4;t

where f

5;t

(f

4;t

) is the dimensionless 5D (4D), M

�

is the uto� of the theory. In the following Q, U , D super�elds are always bulk �elds and have

mass dimension [Q℄=[U ℄=[D℄=3=2, while the Higgs �eld H

u;d

an be a brane �eld [H

u;d

℄ = 1 if

n = 1 or a bulk �eld

4

[H

u;d

℄ = 3=2, when n = 3=2 (when it also has a H



u;d

partner). The above

spetrum and interations de�ne our minimal model. While this is not phenomenologially

viable, it is suÆient to illustrate the idea of the paper. Moreover the spetrum and interation

onsidered are generi in many detailed models whih reprodue the SM or its supersymmetri

versions. Suh models, for whih our �ndings are relevant, an be found in refs.[1℄ to [8℄.

The purpose of this work is to investigate the orretion to the mass of the brane (or zero-

mode of the bulk) salar �elds �

H

u

, �

H

d

indued

5

by towers of Kaluza-Klein states of Q;U;D

super�elds, via interation (4). Gauge orretions will also be onsidered. Sine similar onsid-

erations apply to both H

u

and H

d

, we shall ompute the one-loop orretion to the massm

�

H

of

�

H

u

, hereafter denoted simply �

H

. To ompute the one-loop orreted m

�

H

one must �rst eval-

uate the spetrum of Kaluza-Klein modes, using eq.(3). However this spetrum also depends on

the mehanism of the further breaking of 4D N=1 supersymmetry whih is then transmitted to

the \visible" setor at y = 0. We shall distinguish two ases disussed separately: I. Loalised

supersymmetry breaking and II. Non-loal supersymmetry breaking.

4

If H

u;d

are bulk �elds they also satisfy a ondition similar to that for � in eq.(3).

5

One needs two Higgs �elds of opposite hyperharge to avoid (quadratially divergent) FI orretions [15℄.
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2.1 Higher derivative operators from loalised supersymmetry breaking.

We onsider that supersymmetry is broken at a distant (hidden) brane loated at y = �R by

L

4

=

Z

dy Æ(y � �R)

�

Z

d

2

� M

2

�

Z + h::

�

; (5)

where Z is a (gauge singlet) brane �eld at y = �R. The bulk �elds Q;U feel the supersymmetry

breaking via the ouplings

L

4

=

Z

dy Æ(y � �R)

�

�

Z

d

4

�

�



Q

M

3

�

Q

y

QZ

y

Z +



U

M

3

�

U

y

U Z

y

Z

��

: (6)

Therefore, when hZi � F

Z

�

2

, the bulk �elds suh as �

Q;U

with non-zero oupling at the y = �R

brane have the spetrum modi�ed. One an show that (for details see for example [3℄)

tan[�Rm

�

M

;n

℄ =



M

2

F

2

Z

M

4

�

M

�

m

�

M

;n

; ) m

�

M

;n

=

�

n+

1

2

�

u

R

; M = Q;U: (7)

With the hoie 

M

� O(1), F

Z

�M

2

�

, and to leading order in 1=(RM

�

), one an set u = 1. This

is usually referred to as \strong" supersymmetry breaking, otherwise u is a series in 1=(RM

�

).

Unlike the �elds �

Q;U

, their fermioni partners  

Q;U

do not ouple to the vev of Z, and their

mass is not hanged by (5). This results in the breaking at y = �R of the remaining 4D N=1

supersymmetry of zero modes. Similarly, the �elds  



Q;U

, �



Q;U

do not ouple to Z (see eq.(3)),

thus their mass spetrum is not a�eted. Finally, the Higgs �eld H

u

(also H

d

) is onsidered to

be a brane �eld, loalised at y = 0, so it does not have tree level interations with the �eld Z.

However, it feels the supersymmetry breaking at y = �R through loops of the bulk �elds Q;U ,

(or Q;D for H

d

) via eq.(4). Therefore the spetrum of the bulk �elds is, using (3), (7)

m

 

M

;k

=

k

R

; k � 0; m

 



M

;k

=

k

R

; k � 1

m

�

M

;k

= u

�

k + r

�

R

�

; k � 0; m

�



M

;k

=

k

R

; k � 1; M � Q;U: (8)

where r

�

= 1=2 and u = 1 for strong supersymmetry breaking. The ase with u 6=1 is disussed

in Setion 3. Finally, the wavefuntion normalisation oeÆients (at y=0) are �

�

M

k

=1, �

 

M

k

=

�

F

M

k

=1=

p

2

Æ

k;0

(k � 0). These results will be used in Setion 2.1.1 to ompute m

�

H

at one-loop.

Finally, let us also onsider the ase of supersymmetry breaking at y = �R with a brane-

loalised gaugino mass on S

1

=Z

2

,

L

4

=

Z

dy Æ(y � �R)

Z

d

2

�

1

(4g

5

)

2



W

M

2

�

Z Tr

h

W

�

W

�

i

+ h:: (9)

Here W

�

ontains gaugino as its lowest omponent. Note that only the even parity gaugino �

1

(see eq.(3)) ouples to Z and feels the supersymmetry breaking at y = �R. Further, �

1

and �

2

5



are oupled through their kineti term. Eq.(9) is the ounterpart of eq.(6) for the gauge ase.

Using the equation of motion one �nds [3℄

tan[�Rm

�

℄ =



W

4M

2

�

F

Z

; (10)

Then, the spetrum of gaugino is

m

�

1

= m

�

2

=

k + �

R

; k 2 Z; (11)

with

� =

1

�

artan

�



W

F

Z

4M

2

�

�

: (12)

This result is used in Setion 2.1.2 for the one-loop gauge orretion to the salar mass m

�

H

.

2.1.1 One-loop mass orretion due to Yukawa interation

In the on-shell formulation, the interation in eq.(4) beomes in omponent �elds [3℄

L

4

=

1

X

k=1

1

X

l=0

(2 f

4;t

)

h

m

�



Q

;k

�

F

Q

k

�

�

U

l

�

 y

Q;k

�

U;l

�

H

+ h::+ (Q$ U)

i

�

1

X

k=0

1

X

l=0

1

X

m=0

(2 f

4;t

)

2

h

�

�

Q

k

�

�

Q

l

(�

F

U

m

)

2

�

y

Q;k

�

Q;l

�

y

H

�

H

+ (Q$ U)

i

�

1

X

k=0

1

X

l=0

(2 f

4;t

)

h

�

 

Q

k

�

 

U

l

 

Q;k

 

U;l

�

H

+ h::

i

: (13)

Note that the sum over k in the �rst line is from k � 1 sine the �eld �



is odd under orbifolding,

eq.(3). If we work on-shell (o�-shell) there are three (two) types of diagrams ontributing to the

mass of brane Higgs �eld �

H

, see Fig. 1. The one-loop ontributions in Eulidean spae are

6

� im

2

�

H

(q

2

)

�

�

�

�

B

= i (2f

4;t

)

2

N



X

k�0; l�0

h

�

F

Q

k

�

�

U

l

i

2

Z

d

d

p

(2�)

d

(�1)(p+ q)

2

�

4�d

((p+ q)

2

+m

2

�



Q

;k

)(p

2

+m

2

�

U

;l

)

+(Q$U)

�im

2

�

H

(q

2

)

�

�

�

�

F

= i (2f

4;t

)

2

N



X

k�0; l�0

h

�

 

Q

k

�

 

U

l

i

2

Z

d

d

p

(2�)

d

2 p:(p+ q) �

4�d

((p+ q)

2

+m

2

 

Q

;k

)(p

2

+m

2

 

U

;l

)

(14)

6

This form of the radiative orretions an be shown to be equivalent to that derived using 5D Green funtions

in mixed positions-momentum spae (omputed in ref.[3℄, eqs.(57), (60), (64)), and evaluated at y = 0. This also

suggests the (brane) loalisation of the orresponding ounterterm, see later.
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φ

φφ
H

U,

H

,QF

l

k

l

k

H

Q,

U,

H

ψ

ψ

φ φ

Figure 1: Diagrams ontributing to the two-point Green funtion of the (brane or zero mode of the bulk)

salar �eld �

H

. For the left diagram one should also add the similar ontribution with Q$ U .

Here d=4�� (�!0), N



is the number of olours, � is the sale introdued by the DR sheme,

q

2

is the external momentum and the two double sums extend to in�nity. The index B; (F )

stands for bosoni (fermioni) ontributions. One then uses the spetrum (8) and oeÆients �

given after this equation, perform the integrals over p in DR, then the double sums, to �nd

� m

2

�

H

(q

2

)

�

�

�

�

B

= (2f

4;t

)

2

N



X

k�0; l�0

1

2

Æ

k;0

Z

d

d

p

(2�)

d

(�2)(p+ q)

2

�

4�d

((p+ q)

2

+ k

2

=R

2

)(p

2

+ (l + 1=2)

2

=R

2

)

= �

(2f

4;t

)

2

�

�

2 (4�R)

2

N



Z

1

0

dx

�

2� �=2

�

J

2

[1=2; 0; ℄+ q

2

R

2

(1� x)

2

J

1

[1=2; 0; ℄

�

�m

2

�

H

(q

2

)

�

�

�

�

F

= (2f

4;t

)

2

N



X

k�0; l�0

1

2

Æ

k;0

1

2

Æ

l;0

Z

d

d

p

(2�)

d

2 p:(p+ q) �

4�d

((p+ q)

2

+ k

2

=R

2

)(p

2

+ l

2

=R

2

)

=

(2f

4;t

)

2

�

�

2 (4�R)

2

N



Z

1

0

dx

�

2� �=2

�

J

2

[0; 0; ℄+ q

2

R

2

x(x� 1)J

1

[0; 0; ℄

�

; (15)

where �

�

� (2��R)

�

. The funtions J

1;2

have the following de�nition and leading behaviour in �

J

j

[

1

; 

2

; ℄ �

X

k

1

;k

2

2Z

Z

1

0

dt

t

j��=2

e

�� t (+a

1

(k

1

+

1

)

2

+a

2

(k

2

+

2

)

2

)

=

(�� )

j

j

p

a

1

a

2

�

2

�

�

+ O(�

0

); j=1; 2:

a

1

= (1� x); a

2

= x;  = x(1� x) q

2

R

2

: (16)

For a omplete expression of the funtions J

1;2

see the Appendix, eqs.(A-1) to (A-3) and (A-11)

to (A-15). It is important to notie that the leading (divergent) behaviour of J

1;2

depends on 

and a

1

; a

2

but is independent of 

1

, 

2

. The dependene on  is very important, sine it is only

for  � q

2

R

2

6= 0 i.e. non-zero external momentum that one is able to \see" the poles of J

1;2

.

After adding the bosoni and fermioni ontributions in (15), one �nds

7



� m

2

�

H

(q

2

) =

(2f

4;t

)

2

2 (4�R)

2

N



�

Z

1

0

dx (2=�)

h

J

2

[0; 0; ℄� J

2

[1=2; 0; ℄

i

+ �

�

(q

2

R

2

)

Z

1

0

dx

h

x (x� 1)J

1

[0; 0; ℄� (1� x)

2

J

1

[1=2; 0; ℄

i

�

(17)

with  as in (16). Note that if q

2

= 0 the seond line above is absent, so m

2

�

H

(q

2

= 0) is given

by the �rst line alone. Further, in the di�erene J

2

[0; 0; ℄� J

2

[1=2; 0; ℄ the divergent part

q

4

R

2

=� in eah J

2

anels away to give a one-loop �nite m

2

�

H

(0) � 1=R

2

. This anellation is

ensured by the equal number of bosoni and fermioni degrees of freedom, enfored by the initial

supersymmetry. Using the leading behaviour of the funtions J

1;2

we �nd

m

2

�

H

(q

2

) = m

2

�

H

(0)�

(2f

4;t

)

2

2

8

N



(q

4

R

2

)

�

1

�

+ ln(2�R�)

�

+

1

R

2

O(q

2

R

2

) (18)

where the �-dependent term in the square braket shows the regularisation sheme dependene

indued by �

�

. The �nite part O(q

2

R

2

) an be evaluated from the seond line in (17) using

eqs.(A-2), (A-3) in the Appendix to give the full running of the mass wrt momentum sale q

2

.

Eq.(18) shows the presene in the sum of bosoni and fermioni ontributions, of a pole

multiplied by quarti dependene on (external momentum) q, originating from the two J

1

's.

The result is that the one loop salar mass is not �nite and has a UV divergene similar to that

anelled by (initial) supersymmetry in the J

2

dependent part. Therefore one must add in the

ation a higher derivative ounterterm

7

to m

2

�

H

(realling that �

H

is a brane �eld)

Z

d

4

x d

2

� d

2

��

2

t

H

y

u

2H

u

�f

2

4;t

Z

d

4

xR

2

�

y

H

2

2

�

H

+ ::: (19)

The presene of the UV divergene and of orresponding higher derivative ounterterm shows

that, although the initial theory was supersymmetri, its non-renormalisable harater is never-

theless manifest through a ounterterm generated by the large number (multipliity) of Kaluza-

Klein modes whih ontribute to m

�

H

.

In Table 1 we provided a general dimensional analysis for when higher derivative ounterterms

an arise from a loalised superpotential. The table shows the number of loops in perturbation

theory at whih suh ounterterms an be generated, by assuming that any of the �elds in the

superpotential an be bulk or brane �elds. This information an be used in realisti orbifold

models, to avoid suh operators at low orders in perturbation theory.

7

This result is similar to that in [13℄ whih had instead 5D N=1 supersymmetry broken to N=0 on S

1

=(Z

2

�Z

0

2

).

8



[Q℄ [U ℄ [H

u

℄ [�℄ # (no. of loops)

3/2 (bulk) 3/2 (bulk) 1 (brane) -1 n = 1

3/2 1 3/2 -1 n = 1

3/2 3/2 3/2 -3/2 n = 1

3/2 1 1 -1/2 n = 2

1 1 3/2 -1/2 n = 3

Table 1: This is an estimate of the number of loops n when higher derivative operators may be generated.

The loalised superpotential

R

dy Æ(y) d

2

� �QUH

u

with Q;U;H

u

as brane/bulk �elds generates higher

derivative ounterterms to the salar zero mode of H

u

(if a bulk �eld) or salar omponent of H

u

(if a

brane �eld). An example is

R

d

4

� (�

2

)

n

H

u

2H

u

. The table is a dimensional estimate of the number of

loops when this ounterterm arises loated at y = 0, in funtion of the nature (bulk/brane) of the �elds.

2.1.2 One-loop gauge orretion to a brane salar mass

Let us now onsider the one-loop gauge ontribution to the mass m

�

H

of the brane salar �

H

loated at y = 0, assumed to be harged under a U(1) group. This is indued by the ation (9)

and in the following we use eqs.(10) to (12). In the dimensional regularisation with d = 4 � �,

bosoni (gauge) and fermioni (gauginos) ontributions to the salar self-energy at nonzero

external momentum q

2

, are respetively

� im

2

�

H

(q

2

)

�

�

�

B

= (�i) 4 g

2

4

�

4�d

X

n2Z

Z

d

d

p

(2�)

d

p:(q + p)

(p

2

+ n

2

=R

2

)(q + p)

2

(20)

and

� im

2

�

H

(q

2

)

�

�

�

F

= i 4 g

2

4

�

4�d

X

n2Z

Z

d

d

p

(2�)

d

p:(q + p)

(p

2

+ (n+ �)

2

=R

2

)(q + p)

2

: (21)

Then, we �nd the one-loop orretions as

m

2

�

H

(q

2

)

�

�

�

B

=

g

2

4

(��R)

�

4�

3

R

2

Z

1

0

dx

�

�

2�

�

2

�

G

2

[0; ℄� �x(1� x) q

2

R

2

G

1

[0; ℄

�

(22)

and

m

2

�

H

(q

2

)

�

�

�

F

= �

g

2

4

(��R)

�

4�

3

R

2

Z

1

0

dx

�

�

2�

�

2

�

G

2

[�; ℄� �x(1� x) q

2

R

2

G

1

[�; ℄

�

(23)

with  � x(1� x)q

2

R

2

and we introdued

9



G

j

[�; ℄�

X

n2Z

Z

1

0

dt

t

j��=2

e

��t[+�(n+�)

2

℄

; j = 1; 2; � = x: (24)

After some alulations one obtains [30℄

G

1

[�; ℄ = � ln

�

�

�

�

2 sin �(�+ i

q

=� )

�

�

�

�

2

;

G

2

[�; ℄ =

4�

2



3=2

3 �

1=2

+

�

(� )

1=2

Li

2

�

e

2i�(�+i

p

=� )

�

+

�

2�

Li

3

�

e

2i�(�+i

p

=� )

�

+ ::

�

(25)

where ; � > 0 and Li

�

(x) =

P

k�1

x

k

=k

�

. Although these expressions are �nite (no poles in

�), whenever one removes a mode from the series, poles arise and this justi�es keeping the �

dependene expliit in their de�nition eq.(24).

Therefore, the resulting one-loop orretion for the brane salar is given by

m

2

�

H

(q

2

) = m

2

�

H

(q

2

)

�

�

�

B

+m

2

�

H

(q

2

)

�

�

�

F

=

g

2

4

2�

3

R

2

Z

1

0

dx

�

G

2

[0; ℄� G

2

[�; ℄

�

�

g

2

4

4�

2

R

2

(q

2

R

2

)

Z

1

0

dx x(1� x)

�

G

1

[0; ℄� G

1

[�; ℄

�

: (26)

This result an be further simpli�ed, but for our purpose it is enough to notie that it is �nite

(has no poles in �). Therefore we onlude that no higher derivative ounterterms are generated

at the one-loop level. We note that the momentum-independent mass orretion is given by

m

2

�

H

(0) =

g

2

4

4�

4

R

2

�

�[3℄�

1

2

�

Li

3

(e

2i��

) + ::

�

�

(27)

This result agrees with the one obtained by hanging the in�nite Kaluza-Klein sum into a ontour

integral [17℄.

Alternatively, one an investigate the gauge orretion by onsidering supergraphs. Given

the presene of subtle di�erenes between omponent and supergraph formalisms

8

we now use

the supergraph formalism to show again that no higher derivative ounterterms are present.

This will on�rm our onlusion obtained in the omponent formalism.

For this purpose we ompute the gauge orretion to the propagator of a (massless) brane

hiral multiplet H in the absene of supersymmetry breaking. To do so we need to onsider

only one supergraph with brane-hiral and bulk-vetor multiplets \running" in the loop [18℄.

We assume that, as in the 4D ase, the soft breaking does not renormalise the propagator of a

8

related to gauge �xing in the WZ gauge in omponent formalism as ompared to super�eld gauge �xing in 5D.

10



massless brane hiral multiplet. With an appropriate gauge �xing term [19℄, i.e. the 5d version

of the super Feynman gauge, the ation for the vetor super�eld is

L

5

=

Z

d

5

xd

2

�d

2

�

� V [�2� �

2

5

℄V: (28)

Thus, the propagator for the bulk vetor multiplet on S

1

=Z

2

satis�es

(�q

2

+ �

2

5

)�

5

(y � y

0

; � � �

0

) = �

1

2

X

n2Z

Æ(y � y

0

� 2�nR) Æ

4

(� � �

0

): (29)

Therefore, for 0 � y � y

0

� �R, the mixed position-momentum propagator is given by

�

5

= �

1

2

G

5

(y; y

0

)Æ

4

(� � �

0

) with G

5

(y; y

0

) =

osh[q (y � y

0

� �R)℄

2 q sinh(�Rq)

: (30)

In partiular, the bosoni part of the propagator at the origin with y = y

0

= 0 is given by

G

5

(0; 0) =

1

2q tanh(�Rq)

=

1

2�R

X

n2Z

1

q

2

+ (n=R)

2

: (31)

We obtain the one-loop gauge orretion to the propagator of the brane hiral multiplet loated

at y = 0 as

�

g

2

5

2�R

Z

d

4

q

(2�)

4

A(q)

�

Z

d

4

� H(�q; �)H(q; �)

�

(32)

where

A(q) = �

4�d

X

n2Z

Z

d

d

k

(2�)

d

1

(q + k)

2

(k

2

+ n

2

=R

2

)

=

1

(4�)

d=2

(��

2

R

2

)

d=2�2

Z

1

0

dx

X

n2Z

Z

1

0

dt

t

d=2�1

e

��t(+xn

2

)

(33)

where  = x(1 � x) q

2

R

2

. Finally, with d = 4 � � and using eqs.(24), (25), one �nds that the

one-loop gauge orretion to the kineti term of the brane salar �

H

(omponent of H) in (32)

has a momentum dependene of type

q

2

A(q) = �

1

(4�)

2

1

(�R)

2

�

4 y

3

3

� �[3℄ + 2 y Li

2

(e

�2y

) + Li

3

(e

�2y

)

�

+O(�); y = �R

q

q

2

: (34)

Sine the above result has no poles in �, we �nd, using this time the supergraph omputation,

that the wave funtion of the brane hiral multiplet is not renormalised. Therefore no higher

derivative ounterterms arise at one-loop order, in agreement with the previous omputation

using the omponent �eld formalism.

11



Finally, let us disuss the possible higher dimensional (derivative) operators whih an be

indued by the gauge orretions at higher loops, along the lines disussed in Table 1. The

orresponding operator for a brane hiral multiplet is

Z

d

4

�(g

2

)

n

�

H2H

with n being the number of loops. Then, given the (mass) dimension of the higher dimensional

gauge oupling, i.e. [g

2

5

℄ = �1 in 5D higher dimensional operators an in priniple be generated

for n = 2 (two-loop). However, for a 6D ase, [g

2

6

℄ = �2, higher derivative operators may in

priniple be generated for n = 1 (one-loop)

9

.

2.2 Higher derivative operators from non-loal Supersymmetry breaking.

So far we have onsidered a brane-loalised supersymmetry breaking, eqs.(5), (6), (9). In the

following we onsider a non-loal supersymmetry breaking mehanism, with: (1) disrete and

(2) ontinuous twisted boundary onditions, whih we examine separately.

2.2.1 Disrete Sherk-Shwarz twists.

First, let us impose that the 5D �elds aquire under a 2�R shift, a phase whih is the R-parity

harge of these �elds. The ation of the R-parity operator is

Z

2;R

Q(x; y; �) = �Q(x; y;��); Z

2;R

Q



(x; y; �) = �Q



(x; y;��);

Z

2;R

H(x; y; �) = H(x; y;��); Z

2;R

H



(x; y; �) = H



(x; y;��);

Z

2;R

V (x; y; �) = V (x; y;��); Z

2;R

�(x; y; �) = �(x; y;��) (35)

One also has a ondition for U; U



super�elds similar to that for Q;Q



. The ondition for H;H



stands for both H

u;d

; H



u;d

and applies only if these �elds are bulk �elds. Eqs.(35), (3) give the

spetrum relevant for our purpose

m

 

M

;k

=

k

R

; k � 0; m

 



M

;k

=

k

R

; k � 1

m

�

M

;k

=

k + 1=2

R

; k � 0; m

�



M

;k

=

k + 1=2

R

; k � 0; M = Q;U: (36)

and �

F

M

k

= �

�

M

k

= 1 and �

 

M

k

= 1=

p

2

Æ

k;0

. Also if the Higgs �eld is a bulk �eld, m

�

H;k

= k=R

(k � 0) and m

�

H



;k

= k=R (k � 1). Finally m

A

�

;k

= k=R, m

�

1;2;k

= (k + 1=2)=R (k � 0).

Note that the spetrum on the orbifold S

1

=Z

2

with the R-parity (35) has similarities with

that in the ase of S

1

=(Z

2

� Z

0

2

) orbifold (see for example [4℄) with the Z

0

2

identi�ed with a

9

A omponent �eld omputation on T

2

=Z

2

shows that one-loop gauge orretion to the self-energy of a brane

salar is �nite [20℄. The agreement of this result with that using a supergraph approah is studied elsewhere [16℄.

12



Z

2;R

Sherk-Shwarz breaking of supersymmetry. As a result the one-loop orreted m

�

H

(q

2

)

is expeted to be similar to that in S

1

=(Z

2

� Z

0

2

) studied in

10

[13℄. This similarity is only

present when onsidering interations from one �xed point, and breaks down when overlapping

interations from di�erent �xed points are inluded, as an happen at higher loops.

The ation is similar to that in eq.(13) with the remark that the �rst sum over k starts from

k = 0. With this information we an ompute the one-loop orretions to the mass of the salar

omponent �

H

of H

u

, or of its zero mode if H

u

is a bulk �eld. One has in this ase a result

similar to eq.(14), but note that the wavefuntion oeÆients �

F

M

and the spetrum (m

�



Q

) have

hanged. In Eulidean spae

� im

2

�

H

(q

2

)

�

�

�

�

B

= �i f

2

t

N



X

k�0; l�0

h

�

F

Q

k

�

�

U

l

i

2

Z

d

d

p

(2�)

4

2 (p+ q)

2

�

4�d

((p+ q)

2

+m

2

�



Q

;k

)(p

2

+m

2

�

U

;l

)

;

�im

2

�

H

(q

2

)

�

�

�

�

F

= i f

2

t

N



X

k�0; l�0

h

�

 

Q

k

�

 

U

l

i

2

Z

d

d

p

(2�)

4

2 p:(p+ q) �

4�d

((p+ q)

2

+m

2

 

Q

;k

)(p

2

+m

2

 

U

;l

)

; (37)

with the notation f

t

� 2

n

f

4;t

, where n = 1 (n = 3=2) is H

u

is a brane (bulk) �eld

11

. In the

�rst equation we used that the masses of �

Q

, �



Q

, �

U

, �



U

are all equal, and this explains the

presene of a fator 2 in the numerator of the integrand.

The alulation of eq.(37) with replaements (36), proeeds as in Setion 2.1.1 (see also [13℄).

After adding the bosoni and fermioni ontributions, one obtains

�m

2

�

H

(q

2

) =

f

2

t

16�

3

R

2

N



Z

1

0

dx

h

J

2

[0; 0; ℄� J

2

[1=2; 1=2; ℄

i

+

f

2

t

32 �

2

�

�

N



q

2

Z

1

0

dx

h

x(x� 1)J

1

[0; 0; ℄� (1�x)

2

J

1

[1=2; 1=2; ℄

i

(38)

The terms involving J

j

[1=2; 1=2; ℄, j = 1; 2 aount for the bosoni ontribution, while J

j

[0; 0; ℄

aount for the fermioni part. The funtions J

1;2

are given in eq.(16). Comparing (38) to (17)

one noties a similar struture, but there is a di�erene in the arguments of J

1;2

in the two

equations. Sine the pole struture of J

1;2

[

1

; 

2

; ℄ does not depend on the arguments 

1

, 

2

, the

disussion of the UV divergenes is not hanged from that of eq.(17). Eqs.(38), (16) give again

m

2

�

H

(q

2

) = m

2

�

H

(0)�

f

2

t

2

8

N



q

4

R

2

�

1

�

+ ln(2�R�)

�

+

1

R

2

O(q

2

R

2

) (39)

10

For the ompleteness of our analysis we inlude this ase here in detail.

11

If H

u

is a bulk �eld, the above orretion refers to its zero mode salar.

13



where O(q

2

R

2

) terms are due to J

1

funtions and an be evaluated numerially using the full

expression of J

1

given in the Appendix. The above result looks similar to that in (18), but the

exat expression of m

2

�

H

(q

2

) is di�erent due to J

1

's of di�erent arguments. The ounterterm

has then the struture (when H

u

is a bulk �eld)

Z

d

4

x dy

Z

d

2

� d

2

� Æ(y)�

2

t

H

y

u

2H

u

� f

2

t

Z

d

4

xR

2

X

n;p�0

�

y

H;n

2

2

�

H;p

� f

2

t

Z

d

4

xR

2

�

y

H;0

2

2

�

H;0

+ � � � (40)

with [�

t

℄ = �3=2. If H

u

is a brane �eld instead ([H

u

℄ = 1 and [�

t

℄ = �1), the ounterterm reads

Z

d

4

x d

2

� d

2

� �

2

t

H

y

u

2H

u

�f

2

t

Z

d

4

xR

2

�

y

H

2

2

�

H

+ ::: (41)

2.2.2 Continuous Sherk-Shwarz twists.

Instead of a disrete twist eq.(35), in this Setion we impose ontinuous twists on bulk �elds by

using the SU(2)

R

global symmetry. The SU(2)

R

ation under y ! y + 2�R is

 

�

1

�

2

!

(x; y + 2�R) = e

�2�i!�

2

 

�

1

�

2

!

(x; y); (42)

A

N

(x; y + 2�R) = A

N

(x; y); N = �; 5: (43)

 

�

M

�

y

M

!

(x; y + 2�R) = e

�2�i!�

2

 

�

M

�

y

M

!

(x; y); (44)

 

 

M

 

y

M

!

(x; y + 2�R) =

 

 

M

 

y

M

!

(x; y); M � Q;U: (45)

where (�

M

; �



M

) and ( 

M

;  



M

) are bulk quark multiplets, M = Q;U . If we also allow the Higgs

multiplet(s) to live in the bulk, its boundary ondition is

 

�

H

�

y

H

!

(x; y + 2�R) = e

�2�i!�

2

 

�

H

�

y

H

!

(x; y); (46)

 

 

H

 

y

H

!

(x; y + 2�R) = �

 

 

H

 

y

H

!

(x; y) (47)

where we note that the higgsinos aquire only a phase of R-parity beause it is a singlet under

SU(2)

R

. (If there are two Higgs multiplets in the bulk, one an also use SU(2)

H

avor symmetry

to impose boundary onditions [5℄).
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The squarks (also the Higgs salars if they are bulk �elds) with a ontinuous Sherk-Shwarz

phase have the mode expansion given by

 

�

�

y

!

(x; y) =

1

p

2�R

1

X

n=�1

u

n

(y)'

n

(x) (48)

where

u

n

= e

�i!�

2

y=R

 

os(ny=R)

sin(ny=R)

!

(49)

and (2�M

2

n

)'

n

(x) = 0 withM

2

n

= (n+!)

2

=R

2

. Here we note that the orthogonality is de�ned

for eigenstates of SU(2)

R

doublet as

1

2�R

Z

2�R

0

dy (u

n

(y))

y

u

m

(y) = Æ

nm

: (50)

The spetrum of the bulk �elds is

m

 

M

;k

=

k

R

; k � 0; m

 



M

;k

=

k

R

; k � 1; (51)

m

�

M

;k

= m

�



M

;k

=

k + !

R

; k 2 Z; (M � Q;U): (52)

m

 

H

;k

= m

 



H

;k

=

k + 1=2

R

; k � 0; (53)

m

�

H

;k

= m

�



H

;k

=

k + !

R

; k 2 Z; (54)

and �

F

k

= �

�

k

= 1=

p

2 and �

 

k

= 1=

p

2

Æ

k;0

. Finally, for gauginos one has thatm

�

1;2

;k

= (k+!)=R,

(k 2 Z). We note that the zero mode of a bulk Higgs salar aquires a tree-level mass of !=R. In

this ase, the one-loop Yukawa orretion must be larger than this tree-level mass for eletroweak

symmetry breaking [6℄. However, if the Higgs multiplet is a brane �eld, suh situation is avoided,

and one an still assume that there is no tree-level Higgs mass.

The ation is in this ase similar to that in eq.(13) exept that the sums over k and l should

be taken over the whole set of integer numbers. Then the one-loop mass orretions are

� im

2

�

H

(q

2

)

�

�

�

�

B

= �i f

2

t

N



X

k2Z; l2Z

h

�

F

Q

k

�

�

U

l

i

2

Z

d

d

p

(2�)

4

2 (p+ q)

2

�

4�d

((p+ q)

2

+m

2

�



Q

;k

)(p

2

+m

2

�

U

;l

)

;

�im

2

�

H

(q

2

)

�

�

�

�

F

= i f

2

t

N



X

k�0; l�0

h

�

 

Q

k

�

 

U

l

i

2

Z

d

d

p

(2�)

4

2 p:(p+ q) �

4�d

((p+ q)

2

+m

2

 

Q

;k

)(p

2

+m

2

 

U

;l

)

: (55)

15



Adding the bosoni and fermioni ontributions, one obtains the one-loop mass orretion as

�m

2

�

H

(q

2

) =

f

2

t

16�

3

R

2

N



Z

1

0

dx

h

J

2

[0; 0; ℄� J

2

[!; !; ℄

i

+

f

2

t

32 �

2

�

�

N



q

2

Z

1

0

dx

h

x(x� 1)J

1

[0; 0; ℄� (1�x)

2

J

1

[!; !; ℄

i

: (56)

Therefore we �nd again

m

2

�

H

(q

2

) = m

2

�

H

(0)�

f

2

t

2

8

N



q

4

R

2

�

1

�

+ ln(2�R�)

�

+

1

R

2

O(q

2

R

2

) (57)

where O(q

2

R

2

) terms are �-independent, are due to the two J

1

funtions in (56) and an be

evaluated numerially using eqs.(A-2), (A-3). Higher derivative ounterterms are again required,

and the same arguments as in eq.(40), (41) apply.

In this setion we onsidered so far Yukawa orretions only. Regarding the gauge orretion,

in both ases of disrete and ontinuous Sherk-Shwarz twists, the spetrum and brane oupling

of gaugino are the same as in the loal supersymmetry breaking. Hene the resulting one-loop

orretion to a brane salar mass is the same [17℄ as before, eqs. (26) and (27).

3 Further remarks on higher derivative ounterterms.

In this setion we disuss further the origin of the higher derivative ounterterms and their

relation to the loal and non-loal harater of supersymmetry breaking of Setions 2.1, 2.2.

Let us reall �rst that the radiative orretion to the salar mass from the Kaluza-Klein

modes has the general struture given by (58) below. This equation is just a generalisation of

eqs.(14) (15), (37), (55) for m

�

H

, all reovered for partiular values of wavefuntion oeÆients

�

1;2

= 1; 2 and of \mass shifts" 

1;2

. After a long alulation one obtains

12

(d = 4� �)

E(q

2

) �

X

k

1

�0; k

2

�0

�

�

1

2

�

Æ

k

1

;0

�

�

2

2

�

Æ

k

2

;0

Z

d

d

p

(2�)

d

� p

2

+ � (p:q) +  q

2

+ Æ

[(q + p)

2

+ (k

2

+ 

2

)

2

=R

2

℄ [ p

2

+ (k

1

+ 

1

)

2

u

2

=R

2

℄

=

1

(4�)

2

2

�

�

�

Æ + q

2

( � �=2)

��



1

�

�

1

� 1

2

��



2

�

�

2

� 1

2

�

�

�u

6R

2

�

u 

1

�



2

�

�

2

� 1

2

��

1 + 3

1

(1� �

1

) + 2

2

1

�

+ (

1

$

2

; �

1

$�

2

; u!

1

u

)

�

�

�

�

2

32u

Æ q

2

R

2

+

�

2

2

8

u

(�� 4� + 8) q

4

R

2

� �

+ O(�

0

): (58)

12

To derive eq.(58) one an use the method outlined in Appendix C of ref.[13℄.
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This result is omputed in the DR sheme and as usual, � is a regulator of both the integral and

the double series in front of it; � is thus a genuine 6D regulator rather than a 4D one

13

. One

�rstly performs the momentum integral to obtain a double series whose summand (funtion of

k

1

; k

2

) has powers involving � and is multiplied by Gamma funtions of �-dependent argument.

The series are analytially ontinued and their leading ontribution to O(�

0

) is obtained. Finally

one takes aount of the Gamma funtions and �nds the above result

14

. Note that the sums in

(58) are restrited to positive integers only, unlike the expressions of J

1;2

used previously and

whih involve double sums over Z. The motivation and the advantage of using eq.(58) is that

(unlike the analysis using J

1;2

) it will allow us to see expliitly how quadrati divergenes anel.

The divergenes in (58) are: q

2

=� whih aount for wave funtion renormalisation, the terms

1=(R

2

�) whih aount for quadrati divergenes and �nally, the terms q

4

R

2

=� whih aount

for quarti divergenes (higher derivative ounterterms).

We an now apply the result (58) to the alulations in Setions 2.1 and 2.2 to disuss

the origin of the higher derivative operators and of other divergenes present. For the ase in

Setion 2.1.1 for the ontribution in the �rst line of eqs.(14), (15) one has

Bosoni part : �

1

= 2; �

2

= 1; � = 2;  = 1; 

1

= 1=2; 

2

= 0:

Fermioni part : �

1

= 1; �

2

= 1; � = 1;  = 0; 

1

= 0; 

2

= 0: (59)

while for the ase in Setion 2.2.1, eq.(37) one has

Bosoni part : �

1

= 2; �

2

= 2; � = 2;  = 1; 

1

= 1=2; 

2

= 1=2:

Fermioni part : �

1

= 1; �

2

= 1; � = 1;  = 0; 

1

= 0; 

2

= 0: (60)

In both ases � = 1, u = 1, Æ = 0.

Finally, for the ase in Setion 2.2.2 with a ontinuous Sherk-Shwarz phase, one has the

same expression for the fermioni part as in (60), but the bosoni part is given by

1

4

�

E

�

q

2

; 

1

= 

2

= !

�

+ E

�

q

2

; 

1

= !; 

2

= 1� !

�

+ E

�

q

2

; 

1

= 1� !; 

2

= !

�

+ E

�

q

2

; 

1

= 

2

= 1� !

�

�

(61)

where �

1

=�

2

=2; �=2; =1 and �=1; u=1; Æ=0 in eah term. Eah ontribution E in (61) has

quadrati divergenes 1=(R

2

�), as seen from eq.(58). However they anel in the sum of the �rst

two terms (of arguments 

2

= ! and 

2

= 1�!) and also in the sum of the last two terms. This

is essentially due to summing over the whole set Z of modes in eq.(48). Given the above values

13

If the series in eq.(58) were restrited to a �nite number of modes then � would at as a 4D regulator only.

14

In a similar way one an also �nd the �nite, O(�

0

) terms of (58).
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of 

1;2

; �

1;2

, for all ases onsidered in eq.(59), (60), (61), one onludes that the oeÆient of

the quadrati divergenes 1=(R

2

�) vanishes separately for the bosons and fermions. Note that

the values of 

i

= 0; 1=2 are speial for in that ase (with orresponding values of �

i

), E alone

has no quadrati divergene.

For the origin of higher derivative operators it is important to notie that the oeÆient of

q

4

R

2

=� term is independent of 

1;2

and also of �

1;2

. Note that 

1;2

whih enter the mass formulae

for the Kaluza-Klein states are in fat set by the boundary onditions for the hypermultiplets

with respet to the ompat dimension. Therefore, this oeÆient is independent of the phase

that hypermultiplet �elds have with respet to this dimension and, to some extent

15

, on the way

supersymmetry is broken. The oeÆient of q

4

R

2

=� depends only on �; �; , whih in turn

are ontrolled by the nature (fermioni/bosoni) of the omponent �elds (via their propagator

in momentum spae). Tehnially, the term q

4

R

2

=� is stritly the result of the presene of two

sums in front of the integral (58), over terms with k

i

6= 0; i = 1; 2: (this explains the absene

of suh divergenes and orresponding higher dimensional ounterterms in the 4D theory

16

of

zero-modes, k

i

= 0). Therefore, divergent terms q

4

R

2

=� an be avoided at one-loop provided

that there is only one bulk propagator (see Table 1 for details when this an happen).

With these onsiderations one onludes that the presene of q

4

R

2

=� and thus of the higher

derivative ounterterms is related to the multipliity of the modes. Suh operators are then due

to the non-renormalisability of the models - initial supersymmetry annot protet against their

emergene as ounterterms, regardless of the way supersymmetry is broken. Our analysis also

shows that suh operators are most relevant in models with low ompati�ation sales, when

their e�ets are less suppressed, see eqs.(19), (41).

Finally, note the presene of a u dependene of the oeÆient of q

4

R

2

=� in (58), whih is

present in the ase of brane-loalised supersymmetry breaking (see Setion 2.1). This signals

some dependene between this supersymmetry breaking mehanism and the oeÆient of the

higher derivative operators. No suh dependene appears for the disrete or ontinuous Sherk-

Shwarz mehanism.

4 Phenomenologial impliations: living with ghosts?

The presene of higher derivative operators in the ation of the salar �eld �

H

has impliations

for phenomenology. Their investigation is however diÆult sine theories with higher derivative

operators an bring in more fundamental problems, suh as unitarity violation, non-loality

e�ets, the presene of additional ghost �elds, and for these reasons suh theories were less

15

see disussion in the last paragraph of this setion.

16

This is unlike the ase of 1=(R

2

�) divergenes to whih all modes inluding k

i

= 0 ontribute.
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popular in the past (for some studies of suh theories see for example [21℄-[27℄). Therefore the

phenomenologial onsiderations below should be taken with due are.

In the presene of higher derivative operators, new �elds (ghosts) are present. To see this, let

us write the propagator of �

H

in the presene of the higher derivative operator found in eqs.(19),

(40), (41): L

4

= �� R

2

�

H

2

2

�

H

+ � � �, where � is an arbitrary onstant (assumed positive for

the onvergene of the partition funtion); if �

H

is a bulk �eld, we refer to its zero-mode only.

The propagator of �

H

hanges then into

1

��R

2

p

4

+ p

2

�m

2

=

1

(1� 4 � R

2

m

2

)

1

2

�

1

p

2

�m

2

�

�

1

p

2

�m

2

+

�

(62)

with

m

2

�

=

1

2 �R

2

h

1� (1� 4 � R

2

m

2

)

1

2

i

(63)

The seond term in the rhs of (62) has the \wrong" sign, thus it signals the presene in the

model of a ghost �eld of mass m

+

. Here m

2

is the one-loop indued massm

2

�

H

(0) of �

H

plus the

tree level ontribution (if any), and m

2

�

is its value orreted by the higher derivative operator,

but ignoring loop orretions O(q

2

R

2

) of eq.(2) at q

2

=m

2

�

. In funtion of the supersymmetry

breaking mehanism whih ontrols the oeÆients 

1;2

in (16), one may have m

2

�

H

(0) < 0 and

thus eletroweak symmetry breaking (assuming no tree level mass is present). With m

2

< 0,

� > 0 then m

2

+

> 0 and m

2

�

< 0, and the symmetry breaking may be maintained.

In the following we require that m

2

+

> M

2

�

, i.e. the ghost mass m

+

is larger than the uto�

M

�

of our 5D theory, whih for an e�etive theory approah as ours seems a natural requirement.

We then study its impliations for m

2

�

. For this purpose we use a dimensional analysis [28, 29℄

to obtain perturbativity onstraints on M

�

, eqs.(B-15), (B-16), by requiring the e�etive gauge

and Yukawa ouplings be less than unity. The result is

M

�

<

12�

2

Æ

1

g

2

4

R

; M

�

<

12�

2

Æ

�

Æ

16 �

2

f

2=(p�1)

4;t

�

p�1

p

1

R

: (64)

The �rst (seond) bound is from gauge (Yukawa) interation. Here p = 2 (p = 3) if the Higgs

�eld is a brane (bulk) �eld; Æ is a fator equal to N for SU(N) gauge group, taking aount of

number of degrees of freedom present in loops [28℄. Further, one imposes the �rst ondition in

the equation below, solves it for � whih is then used to evaluate the hange in m

2

�

, to �nd:

m

2

+

= M

2

�;u

; ) � =

 �

2

� � sgn (m

2

)



2

�

4

; �

�

=

1

sgn (m

2

)  �

2

=� � 1

(65)

Here M

�;u

is upper bound of M

�

in (64), � is the fator multiplying 1=R in M

�;u

, � = jm

2

jR

2

,

sgn(x) is +1 (�1) for x> 0 (x< 0), and �

�

is the variation of m

2

�

relative to m

2

. One should
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then take  > 1 but  � O(1) may still satisfy m

2

+

> M

2

�

. We onsider now the Yukawa

orretion only and take

17

Æ = 3 for SU(3)



, m

2

< 0 and f

4;t

' 1 for whih � � 0:1. This gives

for  = 1, � = 0:03(0:12) and �

�

= �0:3% (�1:2%) for p = 2 (3). Therefore the oeÆient of

the higher derivative ounterterm must be very small and its orretion to the salar �eld mass

is negligible. A value  = 1=4 would give � = 0:13(0:53), �

�

= �1:3% (�4:8%) for p = 2 (3),

thus �

�

is mildly hanged. Note that this disussion ignored the additional terms (O(q

2

R

2

)) at

q

2

= m

2

�

. For the impliations on the physial mass of the salar �eld and its dependene on the

parameter � one must atually evaluate the minimum of the one-loop potential omputed in the

presene of suh operators, whih is beyond the purpose of this work. Finally, if the ondition

m

2

+

> M

2

�

is not satis�ed, the presene of the ghost pole in the e�etive theory with the uto�

sale M

�

requires further theoretial investigation

18

.

5 Conlusions.

In this work we addressed the role that higher derivative operators play in the study of radiative

orretions to the mass of the (Higgs) salar �eld in 5DN=1 supersymmetri models ompati�ed

on S

1

=Z

2

. This is an important issue beause it addresses how physis assoiated with ompat

dimensions deouples at low energies q

2

� 1=R

2

, how these operators ontrol the running of the

salar �eld mass aross q

2

� 1=R

2

, and the UV behaviour of the mass under the saling of the

momenta to q

2

� 1=R

2

. Our tehnial results an be applied to a large lass of orbifold models

whih investigate suh one-loop e�ets from the bulk �elds.

The interations onsidered were loalised superpotentials and gauge interations. Although

the models are rather minimal, the multiplet struture and the interations onsidered are

generi in any realisti higher dimensional extensions of the SM or its supersymmetri versions.

It was found that Yukawa interations, unlike gauge orretions, an generate higher derivative

ounterterms to the salar �eld mass even at the one-loop level.

The work examined losely the relationship of the higher derivative operators with the way

supersymmetry breaking was transmitted to the visible setor. The supersymmetry breaking

senarios addressed were loal supersymmetry breaking by the F-term of a gauge singlet �eld

loalised at a hidden brane (�xed point) and also non-loal breaking via Sherk-Shwarz (dis-

rete/ontinuous) boundary onditions. In the ase of loal breaking, this e�et is transmitted

via radiative orretions to the salar �eld, assoiated with the Higgs �eld. Suh orretions, due

to the ompat dimension, are indued by the bulk �elds whih feel the supersymmetry breaking

at the hidden brane. The seond ase, of non-loal supersymmetry breaking, onsidered super-

symmetry breaking by disrete and ontinuous Sherk-Shwarz twists of the bulk �elds by using

17

These orrespond to the model with disrete Sherk-Shwarz supersymmetry breaking disussed above.

18

for a disussion see [25℄.

20



the SU(2)

R

symmetry of the multiplet ontent.

Our analysis showed that in all these ases of supersymmetry breaking the emergene of

higher derivative ounterterms to the mass of the salar �eld is very similar and has little or no

dependene on the details of the breaking mehanism onsidered. This is the main result of the

paper. At the tehnial level this means that the oeÆient of these operators is independent

of the boundary onditions for the bulk �elds. As a result these operators seem to be a generi

presene in orbifold ompati�ations and initial supersymmetry annot protet against their

presene, in some ases even at the one-loop level. This result is ultimately due to the non-

renormalisable harater of the theory and may also raise questions on the power of initial 5D

supersymmetry in maintaining a mild UV behaviour in the ompati�ed theory.

The phenomenologial impliations of the presene of higher derivative operators in the

ation of the salar �eld were briey investigated. It was found that the requirement that the

5D e�etive theory be weakly oupled together with the ghost �eld mass be larger than the

5D e�etive uto� lead to small orretions on the salar �eld mass in the ation. This an

hange dramatially when any of these onstraints is relaxed. To evaluate the physial mass one

is required to ompute the one-loop orreted salar potential in the presene in the ation of

higher derivative operators. Suh alulation requires however a prior and more omprehensive

study of the theories with higher derivative operators at the quantum level, whih is beyond our

purpose.

Our study is also important beause other approahes to ompati�ation like string theory

urrently shed little light on suh issues. The reason for this is that in string theory one omputes

the salar potential (vauum energy), derived at zero external momenta. Its seond derivative

giving a salar mass annot then reover a momentum dependene (\running") of the latter.

We are thus on�ned to study these higher derivative operators in the framework of �eld theory

orbifolds. The situation is very similar to the ase of one-loop orretions to the gauge ouplings,

where again the role of higher derivative operators annot be disussed in (on-shell) string loop

orretions, but an be evaluated onsistently in the ontext of �eld theory orbifolds [10, 11, 12℄.
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Appendix

A Series of Integrals in the DR sheme.

The funtions J

1;2

used in eqs.(16), (17), (38), (56) are, up to a re-de�nition of �,

J

p

[

1

; 

2

; ℄ �

X

n

1

;n

2

2Z

Z

1

0

dt

t

p+�

e

�� t [ +a

1

(n

1

+

1

)

2

+a

2

(n

2

+

2

)

2

℄

; a

1;2

> 0;  � 0; p = 1; 2: (A-1)

The expressions given below for J

p

, p = 1; 2 generalise results quoted in Appendix B of [13℄ valid

only for the ase =a

1;2

� 1 and whih are inluded here for ompleteness. Using the method in

Appendix B of [30℄ one has that, if 0 � =a

1

< 1

J

1

[

1

; 

2

; ℄ =

�

p

a

1

a

2

1

�

+

�

p

a

1

a

2

ln

h

4� a

1

e

+ (�



1

)+ (��



1

)

i

+ 2�u

h

1

6

+�
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1

�

�

=a

1

+ �

2



1

�

1

2

i

�

X

n

1

2Z

ln

�

�

�
1� e

�2� (n

1

)

�

�

�

2

+

p

� u

1

X

p�1

�[p+1=2℄

(p+1)!

�

�

a

1

�

p+1
�

�[2p+1; 1+�
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with u�

p
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with the notation

(n

1

) =

1

p

a

2

[z(n

1

)℄

1

2

� i 

2

;

z(n

1

) = + a

1

(n

1

+ 

1

)

2

: (A-4)

Here �[z; a℄ is the Hurwitz Zeta funtion, �[z; a℄ =

P

n�0

(n + a)

�z

, Re z > 1,a 6= 0;�1;�2; � � �,

and  (x) = d=dx ln �[x℄. Eqs.(A-2), (A-3) depend on the frational part of 

1;2

de�ned by
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� [
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℄ 2 Z. Finally, K
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is the modi�ed Bessel funtion [31℄
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whih is strongly suppressed at large argument.
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used in the text. Above we used the Dedekind Eta funtion
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whih has the properties
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In the following we provide the results for J
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� 1 the pole struture is similar:
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For the simpler ase � 1,
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with �

n

1

= u jn

1

+ 1=2j.

B Upper bounds on M

�

from Dimensional Analysis.

We derive the upper bounds on the uto� M

�

, used in the text, eqs.(64). For this purpose, we

�rst outline the general dimensional analysis performed in [28℄ (Setion 3.2) and [29℄ (Setion 3).

We then apply it to our ase to derive upper bounds on M

�

from perturbativity onstraints.

The ation in D dimensions (for orbifolds with y

i

�xed points) has the form
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where � ( ) is a bulk (brane) �eld, respetively. One an assume anonial kineti terms in (B-1)

and then resale these �elds to their dimensionless ounterparts
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whereM

�

is the uto� sale; l

D

is a suppression fator whih aounts for angular integrations of

loop orretions in D dimensions l

D

= (4�)

D=2

�(D=2) whih grows rapidly with D, and Æ is the

multipliity of �elds in loop diagrams for non-Abelian groups, for example Æ = N for SU(N),

Æ = 8 for SO(10). Using eq.(B-2) in eq.(B-1) gives
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where

^

L

bulk

;

^

L

i

only ontain dimensionless ouplings and �elds. If all ouplings in

^

L

bulk

;

^

L

i

are

of order 1, all loops are of the same order of magnitude. The theory with

^

L

bulk

;

^

L

i

remains

weakly oupled if these dimensionless e�etive ouplings remain smaller than unity [28, 29℄.
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Let us apply this result to (bulk) gauge interations. The relation between the D dimensional

gauge oupling and the 4D gauge oupling is

V
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(B-4)

where V
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is the volume of extra dimensions. From the resaled ovariant derivative,
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we identify the dimensionless parameter orresponding to the gauge oupling as
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The above ondition for perturbativity imposes the bound on the uto� as
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Let us now onsider a brane-loalized interation
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where 	 (�) is a brane (Z

2

even bulk) multiplet respetively. Under the resaling
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the brane ation beomes
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In partiular, for the superpotential for the Yukawa interation
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where p is the number of bulk �elds present in the Yukawa interation, and f

4;t

is the 4D

oupling. Then, the rede�ned superpotential is given by
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This ondition gives the bound on M
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We now apply eqs.(B-7), (B-14) to our 5D models, to derive bounds on the 5D uto� M

�

.

Eq.(B-7) gives
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: (B-15)

Eq. (B-14) beomes for the 5D ase
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where p = 2; 3. Eqs.(B-15), (B-16) were used in the text, eqs.(64).
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