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Abstra
t

We dis
uss the role that higher derivative operators play in �eld theory orbifold 
ompa
t-

i�
ations on S

1

=Z

2

with lo
al and non-lo
al S
herk-S
hwarz breaking of supersymmetry.

Integrating out the bulk �elds generates brane-lo
alised higher derivative 
ounterterms to

the mass of the brane (or zero-mode of the bulk) s
alar �eld, identi�ed with the Higgs �eld in

many realisti
 models. Both Yukawa and gauge intera
tions are 
onsidered and the one-loop

results found 
an be used to study the \running" of the s
alar �eld mass with respe
t to

the momentum s
ale in 5D orbifolds. In parti
ular this allows the study of the behaviour

of the mass under UV s
aling of the momentum. The relation between supersymmetry

breaking and the presen
e of higher derivative 
ounterterms to the mass of the s
alar �eld

is investigated. This shows that, regardless of the breaking me
hanism, (initial) supersym-

metry 
annot, in general, prevent the emergen
e of su
h operators. Some impli
ations for

phenomenology of the higher derivative operators are also presented.
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1 Introdu
tion

The physi
s of extra dimensions is re
eiving a strong resear
h interest in the 
ontext of e�e
tive

�eld theory approa
hes to 
ompa
ti�
ation, sometimes referred to as \�eld theory orbifolds".

While string theory may provide the ultimate des
ription of 
ompa
ti�
ation, �eld theory orb-

ifolds 
an also 
onsistently (re)address interesting issues su
h as supersymmetry breaking, the

hierar
hy problem, radiative 
orre
tions or their experimental signatures. In this work we inves-

tigate the impli
ations of supersymmetry breaking in 5D �eld theory orbifolds for the one-loop


orre
tions to the mass of the 4D s
alar �elds.

An aspe
t that is somewhat overlooked in re
ent studies of radiative 
orre
tions in gauge

theories on �eld theory orbifolds (see for example [1℄-[9℄), is the role of higher derivative oper-

ators

1

. In general it is thought that su
h operators, being higher dimensional, are suppressed

if the s
ale where they be
ome relevant is high enough. However, from a 4D point of view the

most natural su
h s
ale is the 
ompa
ti�
ation s
ale 1=R and, if this is low (TeV s
ale), su
h

operators 
an have a signi�
ant e�e
t even at low energies. For generality we shall 
onsider the

role of su
h operators in orbifolds with a radius R of an arbitrary value (large or small).

The models that we investigate are 5D N=1 supersymmetri
, 
ompa
ti�ed on S

1

=Z

2

and

the intera
tions are lo
alised superpotential (in the extra dimension) and gauge intera
tions.

These are standard intera
tions in any higher dimensional theory whi
h aims to re
over after


ompa
ti�
ation and at low energies, the Standard Model (SM) or its supersymmetri
 versions.

Su
h intera
tions indu
e loop 
orre
tions to the mass of the zero mode s
alar �eld (if this is a

bulk �eld) or to that of a brane s
alar �eld. It is important to note that this �eld is regarded in

many models as the SM Higgs �eld [1℄-[8℄. Therefore su
h loop 
orre
tions are important for the

hierar
hy problem, ele
troweak symmetry breaking or running of the mass of the s
alar �eld.

Re
ent studies of loop 
orre
tions to the mass of the 4D s
alar �eld showed that radiative


orre
tions are of type (see for example [1, 3℄)

m

2

�

H

� �

�

2

R

2

; (1)

where � = �1 (+1) when � is the Yukawa (gauge) 
oupling. As a result one 
an have radiative

ele
troweak symmetry breaking

2

triggered by towers of Kaluza-Klein states of bulk �elds whi
h


ouple, via the aforementioned intera
tions, to the (zero-mode or brane) s
alar �eld asso
iated

with the Higgs �eld. Note that in the absen
e of a rigorous me
hanism to �x 1=R to low values

(TeV or so) su
h results do not provide a solution to the hierar
hy problem even at one-loop. But

they open new ways to address these problems and we think this is worth further investigation.

1

For works on this topi
 see for example [10℄-[13℄.

2

assuming a vanishing mass at the tree level.
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As we shall see shortly, it turns out that the non-renormalisable 
hara
ter of these theories

be
omes apparent earlier than one may like, but with potentially interesting 
onsequen
es. That

means that results like (1) are in general altered by the e�e
ts of higher derivative operators, in

some 
ases already at one loop. Their e�e
t depends on the size of the radius R, but as already

mentioned, here we keep R arbitrary. The result of our one-loop Yukawa 
orre
tions shows that

m

2

�

H

(q

2

) = m

2

�

H

(0) + � q

4

R

2

+

1

R

2

O(q

2

R

2

); m

2

�

H

(0) � �

�

2

R

2

; (2)

where � is an (unknown) 
oeÆ
ient of the higher derivative operator.

Eq.(2) shows that the s
alar mass depends on both R and 1=R whi
h

3

we �nd rather in-

teresting. Further, if R is somehow �xed to a large value (inverse TeV s
ale) to explain a low

mass for the s
alar without large �ne tuning, the se
ond term in the �rst equation be
omes

more important. Given the unknown 
oeÆ
ient � of the higher derivative operators, this 
an

a�e
t the predi
tive power of the models. Further diÆ
ulties at 
onsisten
y level may arise for

spe
ial values of this parameter, as we dis
uss in Se
tion 4. Conversely, if R is very small (q

2

�xed), the role of higher derivative operators is suppressed, but then the �rst term re-introdu
es

the quadrati
 mass s
ale (hierar
hy) problem at one-loop, familiar from the Standard Model.

While this is the general pi
ture, a detail analysis should 
onsider the O(q

2

R

2

) terms in (2)

whose expression 
an be 
omputed in general 
ases using our te
hni
al results. Finally, our


al
ulation 
an be used to re-address previous studies of the radiative ele
troweak symmetry

breaking indu
ed by towers of Kaluza-Klein modes, and to investigate the one-loop running of

the s
alar mass and its ultraviolet behaviour under the UV s
aling of the momenta, q

2

! �q

2

.

We investigate whether the presen
e of higher derivative operators and the above 
onsider-

ations depend on the way 5D N=1 supersymmetry is broken. This is the main purpose of the

paper. We 
onsider both lo
al and non-lo
al supersymmetry breaking, transmitted to the visible

se
tor via radiative 
orre
tions. The non-lo
al breaking in
ludes dis
rete and 
ontinuous S
herk-

S
hwarz twisted boundary 
onditions for the bulk �elds. The plan of the paper is as follows:

in Se
tion 2 we dis
uss the orbifold 
ompa
ti�
ations and supersymmetry breaking by lo
al F

terms of a brane �eld at a hidden brane (Se
tion 2.1) and non-lo
al breaking (Se
tion 2.2) by

S
herk-S
hwarz boundary 
onditions. We show that higher derivative operators are generated

as 
ounterterms for Yukawa but not for gauge intera
tions. It turns out that the presen
e of

these 
ounterterms is rather independent of the above ways of supersymmetry breaking and this

is dis
ussed in Se
tion 3. Some phenomenologi
al impli
ations of the higher derivative operators

that are found are dis
ussed in Se
tion 4. Appendix A 
ontains formulae relevant for the study

of the running of the s
alar �eld mass (with the momentum s
ale), whi
h may also be used in

other appli
ations. Appendix B outlines a dimensional analysis needed in Se
tion 4.

3

Su
h dependen
e of loop 
orre
tions on both R and 1=R is familiar in one-loop string 
orre
tions (T duality)

su
h as those to gauge 
ouplings [14℄.
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2 Higher derivative 
ounterterms on S

1

=Z

2

.

On the S

1

=Z

2

orbifold, one 
an 
onsider ve
tor supermultiplets and hypermultiplets. The former

may be des
ribed in a 4D language as made of ve
tor super�eld V (�

1

; A

�

) and an adjoint 
hiral

super�eld �((� + iA

5

)=

p

2; �

2

), where �

1;2

are Weyl fermions, � a real s
alar and A

�

; A

5

the

5D gauge �eld. The hypermultiplet 
ontains two 
hiral super�elds �(�;  ) and �




(�




;  




) with

opposite quantum numbers, and where �; �




are 
omplex s
alars and  ;  




are Weyl fermions.

The orbifold 
onditions 
onsidered are su
h as the gauge �eld A

�

has even parity (has a massless

zero mode) to respe
t the 4D gauge invarian
e. We 
onsider the following parity assignments

�(x;�y) = �(x; y); V (x;�y) = V (x; y)

�




(x;�y) = ��




(x; y) �(x;�y) = ��(x; y); (3)

where � 
an be any of the SM �elds Q;U;D; L;E. As a result, the original 5D N=1 super-

symmetry is broken and the �xed points (y = 0; �R) of the orbifold have a remaining 4D N=1

supersymmetry. Further, we 
onsider the following lo
alised intera
tion,

L

4

=

Z

dy Æ(y)

�

�

Z

d

2

�

h

�

t

QU H

u

+ �

b

QDH

d

+ � � �

i

+ h:
:

�

: (4)

The 5D 
oupling �

t

= f

5;t

=M

n

�

= (2�R)

n

f

4;t

where f

5;t

(f

4;t

) is the dimensionless 5D (4D), M

�

is the 
uto� of the theory. In the following Q, U , D super�elds are always bulk �elds and have

mass dimension [Q℄=[U ℄=[D℄=3=2, while the Higgs �eld H

u;d


an be a brane �eld [H

u;d

℄ = 1 if

n = 1 or a bulk �eld

4

[H

u;d

℄ = 3=2, when n = 3=2 (when it also has a H




u;d

partner). The above

spe
trum and intera
tions de�ne our minimal model. While this is not phenomenologi
ally

viable, it is suÆ
ient to illustrate the idea of the paper. Moreover the spe
trum and intera
tion


onsidered are generi
 in many detailed models whi
h reprodu
e the SM or its supersymmetri


versions. Su
h models, for whi
h our �ndings are relevant, 
an be found in refs.[1℄ to [8℄.

The purpose of this work is to investigate the 
orre
tion to the mass of the brane (or zero-

mode of the bulk) s
alar �elds �

H

u

, �

H

d

indu
ed

5

by towers of Kaluza-Klein states of Q;U;D

super�elds, via intera
tion (4). Gauge 
orre
tions will also be 
onsidered. Sin
e similar 
onsid-

erations apply to both H

u

and H

d

, we shall 
ompute the one-loop 
orre
tion to the massm

�

H

of

�

H

u

, hereafter denoted simply �

H

. To 
ompute the one-loop 
orre
ted m

�

H

one must �rst eval-

uate the spe
trum of Kaluza-Klein modes, using eq.(3). However this spe
trum also depends on

the me
hanism of the further breaking of 4D N=1 supersymmetry whi
h is then transmitted to

the \visible" se
tor at y = 0. We shall distinguish two 
ases dis
ussed separately: I. Lo
alised

supersymmetry breaking and II. Non-lo
al supersymmetry breaking.

4

If H

u;d

are bulk �elds they also satisfy a 
ondition similar to that for � in eq.(3).

5

One needs two Higgs �elds of opposite hyper
harge to avoid (quadrati
ally divergent) FI 
orre
tions [15℄.
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2.1 Higher derivative operators from lo
alised supersymmetry breaking.

We 
onsider that supersymmetry is broken at a distant (hidden) brane lo
ated at y = �R by

L

4

=

Z

dy Æ(y � �R)

�

Z

d

2

� M

2

�

Z + h:
:

�

; (5)

where Z is a (gauge singlet) brane �eld at y = �R. The bulk �elds Q;U feel the supersymmetry

breaking via the 
ouplings

L

4

=

Z

dy Æ(y � �R)

�

�

Z

d

4

�

�




Q

M

3

�

Q

y

QZ

y

Z +




U

M

3

�

U

y

U Z

y

Z

��

: (6)

Therefore, when hZi � F

Z

�

2

, the bulk �elds su
h as �

Q;U

with non-zero 
oupling at the y = �R

brane have the spe
trum modi�ed. One 
an show that (for details see for example [3℄)

tan[�Rm

�

M

;n

℄ =




M

2

F

2

Z

M

4

�

M

�

m

�

M

;n

; ) m

�

M

;n

=

�

n+

1

2

�

u

R

; M = Q;U: (7)

With the 
hoi
e 


M

� O(1), F

Z

�M

2

�

, and to leading order in 1=(RM

�

), one 
an set u = 1. This

is usually referred to as \strong" supersymmetry breaking, otherwise u is a series in 1=(RM

�

).

Unlike the �elds �

Q;U

, their fermioni
 partners  

Q;U

do not 
ouple to the vev of Z, and their

mass is not 
hanged by (5). This results in the breaking at y = �R of the remaining 4D N=1

supersymmetry of zero modes. Similarly, the �elds  




Q;U

, �




Q;U

do not 
ouple to Z (see eq.(3)),

thus their mass spe
trum is not a�e
ted. Finally, the Higgs �eld H

u

(also H

d

) is 
onsidered to

be a brane �eld, lo
alised at y = 0, so it does not have tree level intera
tions with the �eld Z.

However, it feels the supersymmetry breaking at y = �R through loops of the bulk �elds Q;U ,

(or Q;D for H

d

) via eq.(4). Therefore the spe
trum of the bulk �elds is, using (3), (7)

m

 

M

;k

=

k

R

; k � 0; m

 




M

;k

=

k

R

; k � 1

m

�

M

;k

= u

�

k + r

�

R

�

; k � 0; m

�




M

;k

=

k

R

; k � 1; M � Q;U: (8)

where r

�

= 1=2 and u = 1 for strong supersymmetry breaking. The 
ase with u 6=1 is dis
ussed

in Se
tion 3. Finally, the wavefun
tion normalisation 
oeÆ
ients (at y=0) are �

�

M

k

=1, �

 

M

k

=

�

F

M

k

=1=

p

2

Æ

k;0

(k � 0). These results will be used in Se
tion 2.1.1 to 
ompute m

�

H

at one-loop.

Finally, let us also 
onsider the 
ase of supersymmetry breaking at y = �R with a brane-

lo
alised gaugino mass on S

1

=Z

2

,

L

4

=

Z

dy Æ(y � �R)

Z

d

2

�

1

(4g

5

)

2




W

M

2

�

Z Tr

h

W

�

W

�

i

+ h:
: (9)

Here W

�


ontains gaugino as its lowest 
omponent. Note that only the even parity gaugino �

1

(see eq.(3)) 
ouples to Z and feels the supersymmetry breaking at y = �R. Further, �

1

and �

2

5



are 
oupled through their kineti
 term. Eq.(9) is the 
ounterpart of eq.(6) for the gauge 
ase.

Using the equation of motion one �nds [3℄

tan[�Rm

�

℄ =




W

4M

2

�

F

Z

; (10)

Then, the spe
trum of gaugino is

m

�

1

= m

�

2

=

k + �

R

; k 2 Z; (11)

with

� =

1

�

ar
tan

�




W

F

Z

4M

2

�

�

: (12)

This result is used in Se
tion 2.1.2 for the one-loop gauge 
orre
tion to the s
alar mass m

�

H

.

2.1.1 One-loop mass 
orre
tion due to Yukawa intera
tion

In the on-shell formulation, the intera
tion in eq.(4) be
omes in 
omponent �elds [3℄

L

4

=

1

X

k=1

1

X

l=0

(2 f

4;t

)

h

m

�




Q

;k

�

F

Q

k

�

�

U

l

�


 y

Q;k

�

U;l

�

H

+ h:
:+ (Q$ U)

i

�

1

X

k=0

1

X

l=0

1

X

m=0

(2 f

4;t

)

2

h

�

�

Q

k

�

�

Q

l

(�

F

U

m

)

2

�

y

Q;k

�

Q;l

�

y

H

�

H

+ (Q$ U)

i

�

1

X

k=0

1

X

l=0

(2 f

4;t

)

h

�

 

Q

k

�

 

U

l

 

Q;k

 

U;l

�

H

+ h:
:

i

: (13)

Note that the sum over k in the �rst line is from k � 1 sin
e the �eld �




is odd under orbifolding,

eq.(3). If we work on-shell (o�-shell) there are three (two) types of diagrams 
ontributing to the

mass of brane Higgs �eld �

H

, see Fig. 1. The one-loop 
ontributions in Eu
lidean spa
e are

6

� im

2

�

H

(q

2

)

�

�

�

�

B

= i (2f

4;t

)

2

N




X

k�0; l�0

h

�

F

Q

k

�

�

U

l

i

2

Z

d

d

p

(2�)

d

(�1)(p+ q)

2

�

4�d

((p+ q)

2

+m

2

�




Q

;k

)(p

2

+m

2

�

U

;l

)

+(Q$U)

�im

2

�

H

(q

2

)

�

�

�

�

F

= i (2f

4;t

)

2

N




X

k�0; l�0

h

�

 

Q

k

�

 

U

l

i

2

Z

d

d

p

(2�)

d

2 p:(p+ q) �

4�d

((p+ q)

2

+m

2

 

Q

;k

)(p

2

+m

2

 

U

;l

)

(14)

6

This form of the radiative 
orre
tions 
an be shown to be equivalent to that derived using 5D Green fun
tions

in mixed positions-momentum spa
e (
omputed in ref.[3℄, eqs.(57), (60), (64)), and evaluated at y = 0. This also

suggests the (brane) lo
alisation of the 
orresponding 
ounterterm, see later.
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φ

φφ
H

U,

H

,QF

l

k

l

k

H

Q,

U,

H

ψ

ψ

φ φ

Figure 1: Diagrams 
ontributing to the two-point Green fun
tion of the (brane or zero mode of the bulk)

s
alar �eld �

H

. For the left diagram one should also add the similar 
ontribution with Q$ U .

Here d=4�� (�!0), N




is the number of 
olours, � is the s
ale introdu
ed by the DR s
heme,

q

2

is the external momentum and the two double sums extend to in�nity. The index B; (F )

stands for bosoni
 (fermioni
) 
ontributions. One then uses the spe
trum (8) and 
oeÆ
ients �

given after this equation, perform the integrals over p in DR, then the double sums, to �nd

� m

2

�

H

(q

2

)

�

�

�

�

B

= (2f

4;t

)

2

N




X

k�0; l�0

1

2

Æ

k;0

Z

d

d

p

(2�)

d

(�2)(p+ q)

2

�

4�d

((p+ q)

2

+ k

2

=R

2

)(p

2

+ (l + 1=2)

2

=R

2

)

= �

(2f

4;t

)

2

�

�

2 (4�R)

2

N




Z

1

0

dx

�

2� �=2

�

J

2

[1=2; 0; 
℄+ q

2

R

2

(1� x)

2

J

1

[1=2; 0; 
℄

�

�m

2

�

H

(q

2

)

�

�

�

�

F

= (2f

4;t

)

2

N




X

k�0; l�0

1

2

Æ

k;0

1

2

Æ

l;0

Z

d

d

p

(2�)

d

2 p:(p+ q) �

4�d

((p+ q)

2

+ k

2

=R

2

)(p

2

+ l

2

=R

2

)

=

(2f

4;t

)

2

�

�

2 (4�R)

2

N




Z

1

0

dx

�

2� �=2

�

J

2

[0; 0; 
℄+ q

2

R

2

x(x� 1)J

1

[0; 0; 
℄

�

; (15)

where �

�

� (2��R)

�

. The fun
tions J

1;2

have the following de�nition and leading behaviour in �

J

j

[


1

; 


2

; 
℄ �

X

k

1

;k

2

2Z

Z

1

0

dt

t

j��=2

e

�� t (
+a

1

(k

1

+


1

)

2

+a

2

(k

2

+


2

)

2

)

=

(��
 )

j

j

p

a

1

a

2

�

2

�

�

+ O(�

0

); j=1; 2:

a

1

= (1� x); a

2

= x; 
 = x(1� x) q

2

R

2

: (16)

For a 
omplete expression of the fun
tions J

1;2

see the Appendix, eqs.(A-1) to (A-3) and (A-11)

to (A-15). It is important to noti
e that the leading (divergent) behaviour of J

1;2

depends on 


and a

1

; a

2

but is independent of 


1

, 


2

. The dependen
e on 
 is very important, sin
e it is only

for 
 � q

2

R

2

6= 0 i.e. non-zero external momentum that one is able to \see" the poles of J

1;2

.

After adding the bosoni
 and fermioni
 
ontributions in (15), one �nds

7



� m

2

�

H

(q

2

) =

(2f

4;t

)

2

2 (4�R)

2

N




�

Z

1

0

dx (2=�)

h

J

2

[0; 0; 
℄� J

2

[1=2; 0; 
℄

i

+ �

�

(q

2

R

2

)

Z

1

0

dx

h

x (x� 1)J

1

[0; 0; 
℄� (1� x)

2

J

1

[1=2; 0; 
℄

i

�

(17)

with 
 as in (16). Note that if q

2

= 0 the se
ond line above is absent, so m

2

�

H

(q

2

= 0) is given

by the �rst line alone. Further, in the di�eren
e J

2

[0; 0; 
℄� J

2

[1=2; 0; 
℄ the divergent part

q

4

R

2

=� in ea
h J

2


an
els away to give a one-loop �nite m

2

�

H

(0) � 1=R

2

. This 
an
ellation is

ensured by the equal number of bosoni
 and fermioni
 degrees of freedom, enfor
ed by the initial

supersymmetry. Using the leading behaviour of the fun
tions J

1;2

we �nd

m

2

�

H

(q

2

) = m

2

�

H

(0)�

(2f

4;t

)

2

2

8

N




(q

4

R

2

)

�

1

�

+ ln(2�R�)

�

+

1

R

2

O(q

2

R

2

) (18)

where the �-dependent term in the square bra
ket shows the regularisation s
heme dependen
e

indu
ed by �

�

. The �nite part O(q

2

R

2

) 
an be evaluated from the se
ond line in (17) using

eqs.(A-2), (A-3) in the Appendix to give the full running of the mass wrt momentum s
ale q

2

.

Eq.(18) shows the presen
e in the sum of bosoni
 and fermioni
 
ontributions, of a pole

multiplied by quarti
 dependen
e on (external momentum) q, originating from the two J

1

's.

The result is that the one loop s
alar mass is not �nite and has a UV divergen
e similar to that


an
elled by (initial) supersymmetry in the J

2

dependent part. Therefore one must add in the

a
tion a higher derivative 
ounterterm

7

to m

2

�

H

(re
alling that �

H

is a brane �eld)

Z

d

4

x d

2

� d

2

��

2

t

H

y

u

2H

u

�f

2

4;t

Z

d

4

xR

2

�

y

H

2

2

�

H

+ ::: (19)

The presen
e of the UV divergen
e and of 
orresponding higher derivative 
ounterterm shows

that, although the initial theory was supersymmetri
, its non-renormalisable 
hara
ter is never-

theless manifest through a 
ounterterm generated by the large number (multipli
ity) of Kaluza-

Klein modes whi
h 
ontribute to m

�

H

.

In Table 1 we provided a general dimensional analysis for when higher derivative 
ounterterms


an arise from a lo
alised superpotential. The table shows the number of loops in perturbation

theory at whi
h su
h 
ounterterms 
an be generated, by assuming that any of the �elds in the

superpotential 
an be bulk or brane �elds. This information 
an be used in realisti
 orbifold

models, to avoid su
h operators at low orders in perturbation theory.

7

This result is similar to that in [13℄ whi
h had instead 5D N=1 supersymmetry broken to N=0 on S

1

=(Z

2

�Z

0

2

).

8



[Q℄ [U ℄ [H

u

℄ [�℄ # (no. of loops)

3/2 (bulk) 3/2 (bulk) 1 (brane) -1 n = 1

3/2 1 3/2 -1 n = 1

3/2 3/2 3/2 -3/2 n = 1

3/2 1 1 -1/2 n = 2

1 1 3/2 -1/2 n = 3

Table 1: This is an estimate of the number of loops n when higher derivative operators may be generated.

The lo
alised superpotential

R

dy Æ(y) d

2

� �QUH

u

with Q;U;H

u

as brane/bulk �elds generates higher

derivative 
ounterterms to the s
alar zero mode of H

u

(if a bulk �eld) or s
alar 
omponent of H

u

(if a

brane �eld). An example is

R

d

4

� (�

2

)

n

H

u

2H

u

. The table is a dimensional estimate of the number of

loops when this 
ounterterm arises lo
ated at y = 0, in fun
tion of the nature (bulk/brane) of the �elds.

2.1.2 One-loop gauge 
orre
tion to a brane s
alar mass

Let us now 
onsider the one-loop gauge 
ontribution to the mass m

�

H

of the brane s
alar �

H

lo
ated at y = 0, assumed to be 
harged under a U(1) group. This is indu
ed by the a
tion (9)

and in the following we use eqs.(10) to (12). In the dimensional regularisation with d = 4 � �,

bosoni
 (gauge) and fermioni
 (gauginos) 
ontributions to the s
alar self-energy at nonzero

external momentum q

2

, are respe
tively

� im

2

�

H

(q

2

)

�

�

�

B

= (�i) 4 g

2

4

�

4�d

X

n2Z

Z

d

d

p

(2�)

d

p:(q + p)

(p

2

+ n

2

=R

2

)(q + p)

2

(20)

and

� im

2

�

H

(q

2

)

�

�

�

F

= i 4 g

2

4

�

4�d

X

n2Z

Z

d

d

p

(2�)

d

p:(q + p)

(p

2

+ (n+ �)

2

=R

2

)(q + p)

2

: (21)

Then, we �nd the one-loop 
orre
tions as

m

2

�

H

(q

2

)

�

�

�

B

=

g

2

4

(��R)

�

4�

3

R

2

Z

1

0

dx

�

�

2�

�

2

�

G

2

[0; 
℄� �x(1� x) q

2

R

2

G

1

[0; 
℄

�

(22)

and

m

2

�

H

(q

2

)

�

�

�

F

= �

g

2

4

(��R)

�

4�

3

R

2

Z

1

0

dx

�

�

2�

�

2

�

G

2

[�; 
℄� �x(1� x) q

2

R

2

G

1

[�; 
℄

�

(23)

with 
 � x(1� x)q

2

R

2

and we introdu
ed

9



G

j

[�; 
℄�

X

n2Z

Z

1

0

dt

t

j��=2

e

��t[
+�(n+�)

2

℄

; j = 1; 2; � = x: (24)

After some 
al
ulations one obtains [30℄

G

1

[�; 
℄ = � ln

�

�

�

�

2 sin �(�+ i

q


=� )

�

�

�

�

2

;

G

2

[�; 
℄ =

4�

2




3=2

3 �

1=2

+

�

(� 
)

1=2

Li

2

�

e

2i�(�+i

p


=� )

�

+

�

2�

Li

3

�

e

2i�(�+i

p


=� )

�

+ 
:
:

�

(25)

where 
; � > 0 and Li

�

(x) =

P

k�1

x

k

=k

�

. Although these expressions are �nite (no poles in

�), whenever one removes a mode from the series, poles arise and this justi�es keeping the �

dependen
e expli
it in their de�nition eq.(24).

Therefore, the resulting one-loop 
orre
tion for the brane s
alar is given by

m

2

�

H

(q

2

) = m

2

�

H

(q

2

)

�

�

�

B

+m

2

�

H

(q

2

)

�

�

�

F

=

g

2

4

2�

3

R

2

Z

1

0

dx

�

G

2

[0; 
℄� G

2

[�; 
℄

�

�

g

2

4

4�

2

R

2

(q

2

R

2

)

Z

1

0

dx x(1� x)

�

G

1

[0; 
℄� G

1

[�; 
℄

�

: (26)

This result 
an be further simpli�ed, but for our purpose it is enough to noti
e that it is �nite

(has no poles in �). Therefore we 
on
lude that no higher derivative 
ounterterms are generated

at the one-loop level. We note that the momentum-independent mass 
orre
tion is given by

m

2

�

H

(0) =

g

2

4

4�

4

R

2

�

�[3℄�

1

2

�

Li

3

(e

2i��

) + 
:
:

�

�

(27)

This result agrees with the one obtained by 
hanging the in�nite Kaluza-Klein sum into a 
ontour

integral [17℄.

Alternatively, one 
an investigate the gauge 
orre
tion by 
onsidering supergraphs. Given

the presen
e of subtle di�eren
es between 
omponent and supergraph formalisms

8

we now use

the supergraph formalism to show again that no higher derivative 
ounterterms are present.

This will 
on�rm our 
on
lusion obtained in the 
omponent formalism.

For this purpose we 
ompute the gauge 
orre
tion to the propagator of a (massless) brane


hiral multiplet H in the absen
e of supersymmetry breaking. To do so we need to 
onsider

only one supergraph with brane-
hiral and bulk-ve
tor multiplets \running" in the loop [18℄.

We assume that, as in the 4D 
ase, the soft breaking does not renormalise the propagator of a

8

related to gauge �xing in the WZ gauge in 
omponent formalism as 
ompared to super�eld gauge �xing in 5D.

10



massless brane 
hiral multiplet. With an appropriate gauge �xing term [19℄, i.e. the 5d version

of the super Feynman gauge, the a
tion for the ve
tor super�eld is

L

5

=

Z

d

5

xd

2

�d

2

�

� V [�2� �

2

5

℄V: (28)

Thus, the propagator for the bulk ve
tor multiplet on S

1

=Z

2

satis�es

(�q

2

+ �

2

5

)�

5

(y � y

0

; � � �

0

) = �

1

2

X

n2Z

Æ(y � y

0

� 2�nR) Æ

4

(� � �

0

): (29)

Therefore, for 0 � y � y

0

� �R, the mixed position-momentum propagator is given by

�

5

= �

1

2

G

5

(y; y

0

)Æ

4

(� � �

0

) with G

5

(y; y

0

) =


osh[q (y � y

0

� �R)℄

2 q sinh(�Rq)

: (30)

In parti
ular, the bosoni
 part of the propagator at the origin with y = y

0

= 0 is given by

G

5

(0; 0) =

1

2q tanh(�Rq)

=

1

2�R

X

n2Z

1

q

2

+ (n=R)

2

: (31)

We obtain the one-loop gauge 
orre
tion to the propagator of the brane 
hiral multiplet lo
ated

at y = 0 as

�

g

2

5

2�R

Z

d

4

q

(2�)

4

A(q)

�

Z

d

4

� H(�q; �)H(q; �)

�

(32)

where

A(q) = �

4�d

X

n2Z

Z

d

d

k

(2�)

d

1

(q + k)

2

(k

2

+ n

2

=R

2

)

=

1

(4�)

d=2

(��

2

R

2

)

d=2�2

Z

1

0

dx

X

n2Z

Z

1

0

dt

t

d=2�1

e

��t(
+xn

2

)

(33)

where 
 = x(1 � x) q

2

R

2

. Finally, with d = 4 � � and using eqs.(24), (25), one �nds that the

one-loop gauge 
orre
tion to the kineti
 term of the brane s
alar �

H

(
omponent of H) in (32)

has a momentum dependen
e of type

q

2

A(q) = �

1

(4�)

2

1

(�R)

2

�

4 y

3

3

� �[3℄ + 2 y Li

2

(e

�2y

) + Li

3

(e

�2y

)

�

+O(�); y = �R

q

q

2

: (34)

Sin
e the above result has no poles in �, we �nd, using this time the supergraph 
omputation,

that the wave fun
tion of the brane 
hiral multiplet is not renormalised. Therefore no higher

derivative 
ounterterms arise at one-loop order, in agreement with the previous 
omputation

using the 
omponent �eld formalism.
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Finally, let us dis
uss the possible higher dimensional (derivative) operators whi
h 
an be

indu
ed by the gauge 
orre
tions at higher loops, along the lines dis
ussed in Table 1. The


orresponding operator for a brane 
hiral multiplet is

Z

d

4

�(g

2

)

n

�

H2H

with n being the number of loops. Then, given the (mass) dimension of the higher dimensional

gauge 
oupling, i.e. [g

2

5

℄ = �1 in 5D higher dimensional operators 
an in prin
iple be generated

for n = 2 (two-loop). However, for a 6D 
ase, [g

2

6

℄ = �2, higher derivative operators may in

prin
iple be generated for n = 1 (one-loop)

9

.

2.2 Higher derivative operators from non-lo
al Supersymmetry breaking.

So far we have 
onsidered a brane-lo
alised supersymmetry breaking, eqs.(5), (6), (9). In the

following we 
onsider a non-lo
al supersymmetry breaking me
hanism, with: (1) dis
rete and

(2) 
ontinuous twisted boundary 
onditions, whi
h we examine separately.

2.2.1 Dis
rete S
herk-S
hwarz twists.

First, let us impose that the 5D �elds a
quire under a 2�R shift, a phase whi
h is the R-parity


harge of these �elds. The a
tion of the R-parity operator is

Z

2;R

Q(x; y; �) = �Q(x; y;��); Z

2;R

Q




(x; y; �) = �Q




(x; y;��);

Z

2;R

H(x; y; �) = H(x; y;��); Z

2;R

H




(x; y; �) = H




(x; y;��);

Z

2;R

V (x; y; �) = V (x; y;��); Z

2;R

�(x; y; �) = �(x; y;��) (35)

One also has a 
ondition for U; U




super�elds similar to that for Q;Q




. The 
ondition for H;H




stands for both H

u;d

; H




u;d

and applies only if these �elds are bulk �elds. Eqs.(35), (3) give the

spe
trum relevant for our purpose

m

 

M

;k

=

k

R

; k � 0; m

 




M

;k

=

k

R

; k � 1

m

�

M

;k

=

k + 1=2

R

; k � 0; m

�




M

;k

=

k + 1=2

R

; k � 0; M = Q;U: (36)

and �

F

M

k

= �

�

M

k

= 1 and �

 

M

k

= 1=

p

2

Æ

k;0

. Also if the Higgs �eld is a bulk �eld, m

�

H;k

= k=R

(k � 0) and m

�

H




;k

= k=R (k � 1). Finally m

A

�

;k

= k=R, m

�

1;2;k

= (k + 1=2)=R (k � 0).

Note that the spe
trum on the orbifold S

1

=Z

2

with the R-parity (35) has similarities with

that in the 
ase of S

1

=(Z

2

� Z

0

2

) orbifold (see for example [4℄) with the Z

0

2

identi�ed with a

9

A 
omponent �eld 
omputation on T

2

=Z

2

shows that one-loop gauge 
orre
tion to the self-energy of a brane

s
alar is �nite [20℄. The agreement of this result with that using a supergraph approa
h is studied elsewhere [16℄.
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Z

2;R

S
herk-S
hwarz breaking of supersymmetry. As a result the one-loop 
orre
ted m

�

H

(q

2

)

is expe
ted to be similar to that in S

1

=(Z

2

� Z

0

2

) studied in

10

[13℄. This similarity is only

present when 
onsidering intera
tions from one �xed point, and breaks down when overlapping

intera
tions from di�erent �xed points are in
luded, as 
an happen at higher loops.

The a
tion is similar to that in eq.(13) with the remark that the �rst sum over k starts from

k = 0. With this information we 
an 
ompute the one-loop 
orre
tions to the mass of the s
alar


omponent �

H

of H

u

, or of its zero mode if H

u

is a bulk �eld. One has in this 
ase a result

similar to eq.(14), but note that the wavefun
tion 
oeÆ
ients �

F

M

and the spe
trum (m

�




Q

) have


hanged. In Eu
lidean spa
e

� im

2

�

H

(q

2

)

�

�

�

�

B

= �i f

2

t

N




X

k�0; l�0

h

�

F

Q

k

�

�

U

l

i

2

Z

d

d

p

(2�)

4

2 (p+ q)

2

�

4�d

((p+ q)

2

+m

2

�




Q

;k

)(p

2

+m

2

�

U

;l

)

;

�im

2

�

H

(q

2

)

�

�

�

�

F

= i f

2

t

N




X

k�0; l�0

h

�

 

Q

k

�

 

U

l

i

2

Z

d

d

p

(2�)

4

2 p:(p+ q) �

4�d

((p+ q)

2

+m

2

 

Q

;k

)(p

2

+m

2

 

U

;l

)

; (37)

with the notation f

t

� 2

n

f

4;t

, where n = 1 (n = 3=2) is H

u

is a brane (bulk) �eld

11

. In the

�rst equation we used that the masses of �

Q

, �




Q

, �

U

, �




U

are all equal, and this explains the

presen
e of a fa
tor 2 in the numerator of the integrand.

The 
al
ulation of eq.(37) with repla
ements (36), pro
eeds as in Se
tion 2.1.1 (see also [13℄).

After adding the bosoni
 and fermioni
 
ontributions, one obtains

�m

2

�

H

(q

2

) =

f

2

t

16�

3

R

2

N




Z

1

0

dx

h

J

2

[0; 0; 
℄� J

2

[1=2; 1=2; 
℄

i

+

f

2

t

32 �

2

�

�

N




q

2

Z

1

0

dx

h

x(x� 1)J

1

[0; 0; 
℄� (1�x)

2

J

1

[1=2; 1=2; 
℄

i

(38)

The terms involving J

j

[1=2; 1=2; 
℄, j = 1; 2 a

ount for the bosoni
 
ontribution, while J

j

[0; 0; 
℄

a

ount for the fermioni
 part. The fun
tions J

1;2

are given in eq.(16). Comparing (38) to (17)

one noti
es a similar stru
ture, but there is a di�eren
e in the arguments of J

1;2

in the two

equations. Sin
e the pole stru
ture of J

1;2

[


1

; 


2

; 
℄ does not depend on the arguments 


1

, 


2

, the

dis
ussion of the UV divergen
es is not 
hanged from that of eq.(17). Eqs.(38), (16) give again

m

2

�

H

(q

2

) = m

2

�

H

(0)�

f

2

t

2

8

N




q

4

R

2

�

1

�

+ ln(2�R�)

�

+

1

R

2

O(q

2

R

2

) (39)

10

For the 
ompleteness of our analysis we in
lude this 
ase here in detail.

11

If H

u

is a bulk �eld, the above 
orre
tion refers to its zero mode s
alar.

13



where O(q

2

R

2

) terms are due to J

1

fun
tions and 
an be evaluated numeri
ally using the full

expression of J

1

given in the Appendix. The above result looks similar to that in (18), but the

exa
t expression of m

2

�

H

(q

2

) is di�erent due to J

1

's of di�erent arguments. The 
ounterterm

has then the stru
ture (when H

u

is a bulk �eld)

Z

d

4

x dy

Z

d

2

� d

2

� Æ(y)�

2

t

H

y

u

2H

u

� f

2

t

Z

d

4

xR

2

X

n;p�0

�

y

H;n

2

2

�

H;p

� f

2

t

Z

d

4

xR

2

�

y

H;0

2

2

�

H;0

+ � � � (40)

with [�

t

℄ = �3=2. If H

u

is a brane �eld instead ([H

u

℄ = 1 and [�

t

℄ = �1), the 
ounterterm reads

Z

d

4

x d

2

� d

2

� �

2

t

H

y

u

2H

u

�f

2

t

Z

d

4

xR

2

�

y

H

2

2

�

H

+ ::: (41)

2.2.2 Continuous S
herk-S
hwarz twists.

Instead of a dis
rete twist eq.(35), in this Se
tion we impose 
ontinuous twists on bulk �elds by

using the SU(2)

R

global symmetry. The SU(2)

R

a
tion under y ! y + 2�R is

 

�

1

�

2

!

(x; y + 2�R) = e

�2�i!�

2

 

�

1

�

2

!

(x; y); (42)

A

N

(x; y + 2�R) = A

N

(x; y); N = �; 5: (43)

 

�

M

�


y

M

!

(x; y + 2�R) = e

�2�i!�

2

 

�

M

�


y

M

!

(x; y); (44)

 

 

M

 


y

M

!

(x; y + 2�R) =

 

 

M

 


y

M

!

(x; y); M � Q;U: (45)

where (�

M

; �




M

) and ( 

M

;  




M

) are bulk quark multiplets, M = Q;U . If we also allow the Higgs

multiplet(s) to live in the bulk, its boundary 
ondition is

 

�

H

�


y

H

!

(x; y + 2�R) = e

�2�i!�

2

 

�

H

�


y

H

!

(x; y); (46)

 

 

H

 


y

H

!

(x; y + 2�R) = �

 

 

H

 


y

H

!

(x; y) (47)

where we note that the higgsinos a
quire only a phase of R-parity be
ause it is a singlet under

SU(2)

R

. (If there are two Higgs multiplets in the bulk, one 
an also use SU(2)

H


avor symmetry

to impose boundary 
onditions [5℄).
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The squarks (also the Higgs s
alars if they are bulk �elds) with a 
ontinuous S
herk-S
hwarz

phase have the mode expansion given by

 

�

�


y

!

(x; y) =

1

p

2�R

1

X

n=�1

u

n

(y)'

n

(x) (48)

where

u

n

= e

�i!�

2

y=R

 


os(ny=R)

sin(ny=R)

!

(49)

and (2�M

2

n

)'

n

(x) = 0 withM

2

n

= (n+!)

2

=R

2

. Here we note that the orthogonality is de�ned

for eigenstates of SU(2)

R

doublet as

1

2�R

Z

2�R

0

dy (u

n

(y))

y

u

m

(y) = Æ

nm

: (50)

The spe
trum of the bulk �elds is

m

 

M

;k

=

k

R

; k � 0; m

 




M

;k

=

k

R

; k � 1; (51)

m

�

M

;k

= m

�




M

;k

=

k + !

R

; k 2 Z; (M � Q;U): (52)

m

 

H

;k

= m

 




H

;k

=

k + 1=2

R

; k � 0; (53)

m

�

H

;k

= m

�




H

;k

=

k + !

R

; k 2 Z; (54)

and �

F

k

= �

�

k

= 1=

p

2 and �

 

k

= 1=

p

2

Æ

k;0

. Finally, for gauginos one has thatm

�

1;2

;k

= (k+!)=R,

(k 2 Z). We note that the zero mode of a bulk Higgs s
alar a
quires a tree-level mass of !=R. In

this 
ase, the one-loop Yukawa 
orre
tion must be larger than this tree-level mass for ele
troweak

symmetry breaking [6℄. However, if the Higgs multiplet is a brane �eld, su
h situation is avoided,

and one 
an still assume that there is no tree-level Higgs mass.

The a
tion is in this 
ase similar to that in eq.(13) ex
ept that the sums over k and l should

be taken over the whole set of integer numbers. Then the one-loop mass 
orre
tions are

� im

2

�

H

(q

2

)

�

�

�

�

B

= �i f

2

t

N




X

k2Z; l2Z

h

�

F

Q

k

�

�

U

l

i

2

Z

d

d

p

(2�)

4

2 (p+ q)

2

�

4�d

((p+ q)

2

+m

2

�




Q

;k

)(p

2

+m

2

�

U

;l

)

;

�im

2

�

H

(q

2

)

�

�

�

�

F

= i f

2

t

N




X

k�0; l�0

h

�

 

Q

k

�

 

U

l

i

2

Z

d

d

p

(2�)

4

2 p:(p+ q) �

4�d

((p+ q)

2

+m

2

 

Q

;k

)(p

2

+m

2

 

U

;l

)

: (55)
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Adding the bosoni
 and fermioni
 
ontributions, one obtains the one-loop mass 
orre
tion as

�m

2

�

H

(q

2

) =

f

2

t

16�

3

R

2

N




Z

1

0

dx

h

J

2

[0; 0; 
℄� J

2

[!; !; 
℄

i

+

f

2

t

32 �

2

�

�

N




q

2

Z

1

0

dx

h

x(x� 1)J

1

[0; 0; 
℄� (1�x)

2

J

1

[!; !; 
℄

i

: (56)

Therefore we �nd again

m

2

�

H

(q

2

) = m

2

�

H

(0)�

f

2

t

2

8

N




q

4

R

2

�

1

�

+ ln(2�R�)

�

+

1

R

2

O(q

2

R

2

) (57)

where O(q

2

R

2

) terms are �-independent, are due to the two J

1

fun
tions in (56) and 
an be

evaluated numeri
ally using eqs.(A-2), (A-3). Higher derivative 
ounterterms are again required,

and the same arguments as in eq.(40), (41) apply.

In this se
tion we 
onsidered so far Yukawa 
orre
tions only. Regarding the gauge 
orre
tion,

in both 
ases of dis
rete and 
ontinuous S
herk-S
hwarz twists, the spe
trum and brane 
oupling

of gaugino are the same as in the lo
al supersymmetry breaking. Hen
e the resulting one-loop


orre
tion to a brane s
alar mass is the same [17℄ as before, eqs. (26) and (27).

3 Further remarks on higher derivative 
ounterterms.

In this se
tion we dis
uss further the origin of the higher derivative 
ounterterms and their

relation to the lo
al and non-lo
al 
hara
ter of supersymmetry breaking of Se
tions 2.1, 2.2.

Let us re
all �rst that the radiative 
orre
tion to the s
alar mass from the Kaluza-Klein

modes has the general stru
ture given by (58) below. This equation is just a generalisation of

eqs.(14) (15), (37), (55) for m

�

H

, all re
overed for parti
ular values of wavefun
tion 
oeÆ
ients

�

1;2

= 1; 2 and of \mass shifts" 


1;2

. After a long 
al
ulation one obtains

12

(d = 4� �)

E(q

2

) �

X

k

1

�0; k

2

�0

�

�

1

2

�

Æ

k

1

;0

�

�

2

2

�

Æ

k

2

;0

Z

d

d

p

(2�)

d

� p

2

+ � (p:q) + 
 q

2

+ Æ

[(q + p)

2

+ (k

2

+ 


2

)

2

=R

2

℄ [ p

2

+ (k

1

+ 


1

)

2

u

2

=R

2

℄

=

1

(4�)

2

2

�

�

�

Æ + q

2

(
 � �=2)

��




1

�

�

1

� 1

2

��




2

�

�

2

� 1

2

�

�

�u

6R

2

�

u 


1

�




2

�

�

2

� 1

2

��

1 + 3


1

(1� �

1

) + 2


2

1

�

+ (


1

$


2

; �

1

$�

2

; u!

1

u

)

�

�

�

�

2

32u

Æ q

2

R

2

+

�

2

2

8

u

(�� 4� + 8
) q

4

R

2

� �

+ O(�

0

): (58)

12

To derive eq.(58) one 
an use the method outlined in Appendix C of ref.[13℄.
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This result is 
omputed in the DR s
heme and as usual, � is a regulator of both the integral and

the double series in front of it; � is thus a genuine 6D regulator rather than a 4D one

13

. One

�rstly performs the momentum integral to obtain a double series whose summand (fun
tion of

k

1

; k

2

) has powers involving � and is multiplied by Gamma fun
tions of �-dependent argument.

The series are analyti
ally 
ontinued and their leading 
ontribution to O(�

0

) is obtained. Finally

one takes a

ount of the Gamma fun
tions and �nds the above result

14

. Note that the sums in

(58) are restri
ted to positive integers only, unlike the expressions of J

1;2

used previously and

whi
h involve double sums over Z. The motivation and the advantage of using eq.(58) is that

(unlike the analysis using J

1;2

) it will allow us to see expli
itly how quadrati
 divergen
es 
an
el.

The divergen
es in (58) are: q

2

=� whi
h a

ount for wave fun
tion renormalisation, the terms

1=(R

2

�) whi
h a

ount for quadrati
 divergen
es and �nally, the terms q

4

R

2

=� whi
h a

ount

for quarti
 divergen
es (higher derivative 
ounterterms).

We 
an now apply the result (58) to the 
al
ulations in Se
tions 2.1 and 2.2 to dis
uss

the origin of the higher derivative operators and of other divergen
es present. For the 
ase in

Se
tion 2.1.1 for the 
ontribution in the �rst line of eqs.(14), (15) one has

Bosoni
 part : �

1

= 2; �

2

= 1; � = 2; 
 = 1; 


1

= 1=2; 


2

= 0:

Fermioni
 part : �

1

= 1; �

2

= 1; � = 1; 
 = 0; 


1

= 0; 


2

= 0: (59)

while for the 
ase in Se
tion 2.2.1, eq.(37) one has

Bosoni
 part : �

1

= 2; �

2

= 2; � = 2; 
 = 1; 


1

= 1=2; 


2

= 1=2:

Fermioni
 part : �

1

= 1; �

2

= 1; � = 1; 
 = 0; 


1

= 0; 


2

= 0: (60)

In both 
ases � = 1, u = 1, Æ = 0.

Finally, for the 
ase in Se
tion 2.2.2 with a 
ontinuous S
herk-S
hwarz phase, one has the

same expression for the fermioni
 part as in (60), but the bosoni
 part is given by

1

4

�

E

�

q

2

; 


1

= 


2

= !

�

+ E

�

q

2

; 


1

= !; 


2

= 1� !

�

+ E

�

q

2

; 


1

= 1� !; 


2

= !

�

+ E

�

q

2

; 


1

= 


2

= 1� !

�

�

(61)

where �

1

=�

2

=2; �=2; 
=1 and �=1; u=1; Æ=0 in ea
h term. Ea
h 
ontribution E in (61) has

quadrati
 divergen
es 1=(R

2

�), as seen from eq.(58). However they 
an
el in the sum of the �rst

two terms (of arguments 


2

= ! and 


2

= 1�!) and also in the sum of the last two terms. This

is essentially due to summing over the whole set Z of modes in eq.(48). Given the above values

13

If the series in eq.(58) were restri
ted to a �nite number of modes then � would a
t as a 4D regulator only.

14

In a similar way one 
an also �nd the �nite, O(�

0

) terms of (58).
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of 


1;2

; �

1;2

, for all 
ases 
onsidered in eq.(59), (60), (61), one 
on
ludes that the 
oeÆ
ient of

the quadrati
 divergen
es 1=(R

2

�) vanishes separately for the bosons and fermions. Note that

the values of 


i

= 0; 1=2 are spe
ial for in that 
ase (with 
orresponding values of �

i

), E alone

has no quadrati
 divergen
e.

For the origin of higher derivative operators it is important to noti
e that the 
oeÆ
ient of

q

4

R

2

=� term is independent of 


1;2

and also of �

1;2

. Note that 


1;2

whi
h enter the mass formulae

for the Kaluza-Klein states are in fa
t set by the boundary 
onditions for the hypermultiplets

with respe
t to the 
ompa
t dimension. Therefore, this 
oeÆ
ient is independent of the phase

that hypermultiplet �elds have with respe
t to this dimension and, to some extent

15

, on the way

supersymmetry is broken. The 
oeÆ
ient of q

4

R

2

=� depends only on �; �; 
, whi
h in turn

are 
ontrolled by the nature (fermioni
/bosoni
) of the 
omponent �elds (via their propagator

in momentum spa
e). Te
hni
ally, the term q

4

R

2

=� is stri
tly the result of the presen
e of two

sums in front of the integral (58), over terms with k

i

6= 0; i = 1; 2: (this explains the absen
e

of su
h divergen
es and 
orresponding higher dimensional 
ounterterms in the 4D theory

16

of

zero-modes, k

i

= 0). Therefore, divergent terms q

4

R

2

=� 
an be avoided at one-loop provided

that there is only one bulk propagator (see Table 1 for details when this 
an happen).

With these 
onsiderations one 
on
ludes that the presen
e of q

4

R

2

=� and thus of the higher

derivative 
ounterterms is related to the multipli
ity of the modes. Su
h operators are then due

to the non-renormalisability of the models - initial supersymmetry 
annot prote
t against their

emergen
e as 
ounterterms, regardless of the way supersymmetry is broken. Our analysis also

shows that su
h operators are most relevant in models with low 
ompa
ti�
ation s
ales, when

their e�e
ts are less suppressed, see eqs.(19), (41).

Finally, note the presen
e of a u dependen
e of the 
oeÆ
ient of q

4

R

2

=� in (58), whi
h is

present in the 
ase of brane-lo
alised supersymmetry breaking (see Se
tion 2.1). This signals

some dependen
e between this supersymmetry breaking me
hanism and the 
oeÆ
ient of the

higher derivative operators. No su
h dependen
e appears for the dis
rete or 
ontinuous S
herk-

S
hwarz me
hanism.

4 Phenomenologi
al impli
ations: living with ghosts?

The presen
e of higher derivative operators in the a
tion of the s
alar �eld �

H

has impli
ations

for phenomenology. Their investigation is however diÆ
ult sin
e theories with higher derivative

operators 
an bring in more fundamental problems, su
h as unitarity violation, non-lo
ality

e�e
ts, the presen
e of additional ghost �elds, and for these reasons su
h theories were less

15

see dis
ussion in the last paragraph of this se
tion.

16

This is unlike the 
ase of 1=(R

2

�) divergen
es to whi
h all modes in
luding k

i

= 0 
ontribute.
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popular in the past (for some studies of su
h theories see for example [21℄-[27℄). Therefore the

phenomenologi
al 
onsiderations below should be taken with due 
are.

In the presen
e of higher derivative operators, new �elds (ghosts) are present. To see this, let

us write the propagator of �

H

in the presen
e of the higher derivative operator found in eqs.(19),

(40), (41): L

4

= �� R

2

�

H

2

2

�

H

+ � � �, where � is an arbitrary 
onstant (assumed positive for

the 
onvergen
e of the partition fun
tion); if �

H

is a bulk �eld, we refer to its zero-mode only.

The propagator of �

H


hanges then into

1

��R

2

p

4

+ p

2

�m

2

=

1

(1� 4 � R

2

m

2

)

1

2

�

1

p

2

�m

2

�

�

1

p

2

�m

2

+

�

(62)

with

m

2

�

=

1

2 �R

2

h

1� (1� 4 � R

2

m

2

)

1

2

i

(63)

The se
ond term in the rhs of (62) has the \wrong" sign, thus it signals the presen
e in the

model of a ghost �eld of mass m

+

. Here m

2

is the one-loop indu
ed massm

2

�

H

(0) of �

H

plus the

tree level 
ontribution (if any), and m

2

�

is its value 
orre
ted by the higher derivative operator,

but ignoring loop 
orre
tions O(q

2

R

2

) of eq.(2) at q

2

=m

2

�

. In fun
tion of the supersymmetry

breaking me
hanism whi
h 
ontrols the 
oeÆ
ients 


1;2

in (16), one may have m

2

�

H

(0) < 0 and

thus ele
troweak symmetry breaking (assuming no tree level mass is present). With m

2

< 0,

� > 0 then m

2

+

> 0 and m

2

�

< 0, and the symmetry breaking may be maintained.

In the following we require that m

2

+

> M

2

�

, i.e. the ghost mass m

+

is larger than the 
uto�

M

�

of our 5D theory, whi
h for an e�e
tive theory approa
h as ours seems a natural requirement.

We then study its impli
ations for m

2

�

. For this purpose we use a dimensional analysis [28, 29℄

to obtain perturbativity 
onstraints on M

�

, eqs.(B-15), (B-16), by requiring the e�e
tive gauge

and Yukawa 
ouplings be less than unity. The result is

M

�

<

12�

2

Æ

1

g

2

4

R

; M

�

<

12�

2

Æ

�

Æ

16 �

2

f

2=(p�1)

4;t

�

p�1

p

1

R

: (64)

The �rst (se
ond) bound is from gauge (Yukawa) intera
tion. Here p = 2 (p = 3) if the Higgs

�eld is a brane (bulk) �eld; Æ is a fa
tor equal to N for SU(N) gauge group, taking a

ount of

number of degrees of freedom present in loops [28℄. Further, one imposes the �rst 
ondition in

the equation below, solves it for � whi
h is then used to evaluate the 
hange in m

2

�

, to �nd:

m

2

+

= 
M

2

�;u

; ) � =


 �

2

� � sgn (m

2

)




2

�

4

; �

�

=

1

sgn (m

2

) 
 �

2

=� � 1

(65)

Here M

�;u

is upper bound of M

�

in (64), � is the fa
tor multiplying 1=R in M

�;u

, � = jm

2

jR

2

,

sgn(x) is +1 (�1) for x> 0 (x< 0), and �

�

is the variation of m

2

�

relative to m

2

. One should

19



then take 
 > 1 but 
 � O(1) may still satisfy m

2

+

> M

2

�

. We 
onsider now the Yukawa


orre
tion only and take

17

Æ = 3 for SU(3)




, m

2

< 0 and f

4;t

' 1 for whi
h � � 0:1. This gives

for 
 = 1, � = 0:03(0:12) and �

�

= �0:3% (�1:2%) for p = 2 (3). Therefore the 
oeÆ
ient of

the higher derivative 
ounterterm must be very small and its 
orre
tion to the s
alar �eld mass

is negligible. A value 
 = 1=4 would give � = 0:13(0:53), �

�

= �1:3% (�4:8%) for p = 2 (3),

thus �

�

is mildly 
hanged. Note that this dis
ussion ignored the additional terms (O(q

2

R

2

)) at

q

2

= m

2

�

. For the impli
ations on the physi
al mass of the s
alar �eld and its dependen
e on the

parameter � one must a
tually evaluate the minimum of the one-loop potential 
omputed in the

presen
e of su
h operators, whi
h is beyond the purpose of this work. Finally, if the 
ondition

m

2

+

> M

2

�

is not satis�ed, the presen
e of the ghost pole in the e�e
tive theory with the 
uto�

s
ale M

�

requires further theoreti
al investigation

18

.

5 Con
lusions.

In this work we addressed the role that higher derivative operators play in the study of radiative


orre
tions to the mass of the (Higgs) s
alar �eld in 5DN=1 supersymmetri
 models 
ompa
ti�ed

on S

1

=Z

2

. This is an important issue be
ause it addresses how physi
s asso
iated with 
ompa
t

dimensions de
ouples at low energies q

2

� 1=R

2

, how these operators 
ontrol the running of the

s
alar �eld mass a
ross q

2

� 1=R

2

, and the UV behaviour of the mass under the s
aling of the

momenta to q

2

� 1=R

2

. Our te
hni
al results 
an be applied to a large 
lass of orbifold models

whi
h investigate su
h one-loop e�e
ts from the bulk �elds.

The intera
tions 
onsidered were lo
alised superpotentials and gauge intera
tions. Although

the models are rather minimal, the multiplet stru
ture and the intera
tions 
onsidered are

generi
 in any realisti
 higher dimensional extensions of the SM or its supersymmetri
 versions.

It was found that Yukawa intera
tions, unlike gauge 
orre
tions, 
an generate higher derivative


ounterterms to the s
alar �eld mass even at the one-loop level.

The work examined 
losely the relationship of the higher derivative operators with the way

supersymmetry breaking was transmitted to the visible se
tor. The supersymmetry breaking

s
enarios addressed were lo
al supersymmetry breaking by the F-term of a gauge singlet �eld

lo
alised at a hidden brane (�xed point) and also non-lo
al breaking via S
herk-S
hwarz (dis-


rete/
ontinuous) boundary 
onditions. In the 
ase of lo
al breaking, this e�e
t is transmitted

via radiative 
orre
tions to the s
alar �eld, asso
iated with the Higgs �eld. Su
h 
orre
tions, due

to the 
ompa
t dimension, are indu
ed by the bulk �elds whi
h feel the supersymmetry breaking

at the hidden brane. The se
ond 
ase, of non-lo
al supersymmetry breaking, 
onsidered super-

symmetry breaking by dis
rete and 
ontinuous S
herk-S
hwarz twists of the bulk �elds by using

17

These 
orrespond to the model with dis
rete S
herk-S
hwarz supersymmetry breaking dis
ussed above.

18

for a dis
ussion see [25℄.
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the SU(2)

R

symmetry of the multiplet 
ontent.

Our analysis showed that in all these 
ases of supersymmetry breaking the emergen
e of

higher derivative 
ounterterms to the mass of the s
alar �eld is very similar and has little or no

dependen
e on the details of the breaking me
hanism 
onsidered. This is the main result of the

paper. At the te
hni
al level this means that the 
oeÆ
ient of these operators is independent

of the boundary 
onditions for the bulk �elds. As a result these operators seem to be a generi


presen
e in orbifold 
ompa
ti�
ations and initial supersymmetry 
annot prote
t against their

presen
e, in some 
ases even at the one-loop level. This result is ultimately due to the non-

renormalisable 
hara
ter of the theory and may also raise questions on the power of initial 5D

supersymmetry in maintaining a mild UV behaviour in the 
ompa
ti�ed theory.

The phenomenologi
al impli
ations of the presen
e of higher derivative operators in the

a
tion of the s
alar �eld were brie
y investigated. It was found that the requirement that the

5D e�e
tive theory be weakly 
oupled together with the ghost �eld mass be larger than the

5D e�e
tive 
uto� lead to small 
orre
tions on the s
alar �eld mass in the a
tion. This 
an


hange dramati
ally when any of these 
onstraints is relaxed. To evaluate the physi
al mass one

is required to 
ompute the one-loop 
orre
ted s
alar potential in the presen
e in the a
tion of

higher derivative operators. Su
h 
al
ulation requires however a prior and more 
omprehensive

study of the theories with higher derivative operators at the quantum level, whi
h is beyond our

purpose.

Our study is also important be
ause other approa
hes to 
ompa
ti�
ation like string theory


urrently shed little light on su
h issues. The reason for this is that in string theory one 
omputes

the s
alar potential (va
uum energy), derived at zero external momenta. Its se
ond derivative

giving a s
alar mass 
annot then re
over a momentum dependen
e (\running") of the latter.

We are thus 
on�ned to study these higher derivative operators in the framework of �eld theory

orbifolds. The situation is very similar to the 
ase of one-loop 
orre
tions to the gauge 
ouplings,

where again the role of higher derivative operators 
annot be dis
ussed in (on-shell) string loop


orre
tions, but 
an be evaluated 
onsistently in the 
ontext of �eld theory orbifolds [10, 11, 12℄.
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Appendix

A Series of Integrals in the DR s
heme.

The fun
tions J

1;2

used in eqs.(16), (17), (38), (56) are, up to a re-de�nition of �,

J

p

[


1

; 


2

; 
℄ �

X

n

1

;n

2

2Z

Z

1

0

dt

t

p+�

e

�� t [ 
+a

1

(n

1

+


1

)

2

+a

2

(n

2

+


2

)

2

℄

; a

1;2

> 0; 
 � 0; p = 1; 2: (A-1)

The expressions given below for J

p

, p = 1; 2 generalise results quoted in Appendix B of [13℄ valid

only for the 
ase 
=a

1;2

� 1 and whi
h are in
luded here for 
ompleteness. Using the method in

Appendix B of [30℄ one has that, if 0 � 
=a

1

< 1

J

1

[


1

; 


2

; 
℄ =

�


p

a

1

a

2

1

�

+

�


p

a

1

a

2

ln
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4� a

1
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+ (�




1

)+ (��




1

)

i

+ 2�u
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1

6

+�
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1

�

�
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1

+ �

2




1

�

1

2

i

�

X

n

1

2Z

ln

�

�

�
1� e

�2� 
(n

1

)

�

�

�

2

+

p

� u

1

X

p�1

�[p+1=2℄

(p+1)!

�

�


a

1

�

p+1
�

�[2p+1; 1+�




1

℄+�[2p+1; 1��




1

℄

�

; (A-2)

with u�

p

a

1

=a

2

, 
=0:577216::. If 
=a

1

�1, one has the same pole in �, but di�erent �nite part:

J

1

[


1

; 


2

; 
℄ =

�


p

a

1

a

2

1

�

+

�


p

a

1

a

2

ln

h

4� 
 e
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�

X

n

1

2Z

ln

�

�

�
1�e

�2� 
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1
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�

�

�
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�
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1
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2�~n
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)
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2

�

; (A-3)

with the notation


(n

1

) =

1

p

a

2

[z(n

1

)℄

1

2

� i 


2

;

z(n

1

) = 
+ a

1

(n

1

+ 


1

)

2

: (A-4)

Here �[z; a℄ is the Hurwitz Zeta fun
tion, �[z; a℄ =

P

n�0

(n + a)

�z

, Re z > 1,a 6= 0;�1;�2; � � �,

and  (x) = d=dx ln �[x℄. Eqs.(A-2), (A-3) depend on the fra
tional part of 


1;2

de�ned by

�




i

� 


i

� [


i

℄ with 0��




i

<1, [


i

℄ 2 Z. Finally, K

n

is the modi�ed Bessel fun
tion [31℄
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Z

1

0

dx x

��1

e

�bx

p

�ax

�p

=

2

p

�

a

b

�

�

2p

K

�
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p

a b); Re(b); Re(a) > 0 (A-5)

with

K

1

[x℄ = e

�x
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�

2x

�

1 +

3

8x

�

15

128x

2

+O(1=x

3

)

�

(A-6)

whi
h is strongly suppressed at large argument.

One also �nds that, if 
� 1
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1
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(A-7)

used in the text. Above we used the Dedekind Eta fun
tion

�(�) � e

�i�=12

Y

n�1

(1� e

2i�� n

);

�(�1=�) =

p

�i � �(�); �(� + 1) = e

i�=12

�(�); (A-8)

and the Ja
obi Theta fun
tion #

1

[31℄
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whi
h has the properties

#
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(�j�) (A-10)
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In the following we provide the results for J

2

[


1

; 


2

; 
℄ whose 
al
ulation is almost identi
al.
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If 
=a

1

� 1 the pole stru
ture is similar:
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For the simpler 
ase 
� 1,
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with �
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with �

n

1

= u jn

1

+ 1=2j.

B Upper bounds on M

�

from Dimensional Analysis.

We derive the upper bounds on the 
uto� M

�

, used in the text, eqs.(64). For this purpose, we

�rst outline the general dimensional analysis performed in [28℄ (Se
tion 3.2) and [29℄ (Se
tion 3).

We then apply it to our 
ase to derive upper bounds on M

�

from perturbativity 
onstraints.

The a
tion in D dimensions (for orbifolds with y

i

�xed points) has the form

L = L

bulk

(�) +

X

i

Æ

D�4

(y � y

i

)L

i

(�;  

i

) (B-1)

where � ( ) is a bulk (brane) �eld, respe
tively. One 
an assume 
anoni
al kineti
 terms in (B-1)

and then res
ale these �elds to their dimensionless 
ounterparts

^

�,

^

 and also the derivatives as

�(x; y) =
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D�2
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l
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!

1
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4
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!
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^

 

i

(x); � =M

�

^

�; (B-2)

whereM

�

is the 
uto� s
ale; l

D

is a suppression fa
tor whi
h a

ounts for angular integrations of

loop 
orre
tions in D dimensions l

D

= (4�)

D=2

�(D=2) whi
h grows rapidly with D, and Æ is the

multipli
ity of �elds in loop diagrams for non-Abelian groups, for example Æ = N for SU(N),

Æ = 8 for SO(10). Using eq.(B-2) in eq.(B-1) gives

L =

M

D

�

l

D

=Æ

^

L
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(

^
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X
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): (B-3)

where

^

L

bulk

;

^

L

i

only 
ontain dimensionless 
ouplings and �elds. If all 
ouplings in

^

L

bulk

;

^

L

i

are

of order 1, all loops are of the same order of magnitude. The theory with

^

L

bulk

;

^

L

i

remains

weakly 
oupled if these dimensionless e�e
tive 
ouplings remain smaller than unity [28, 29℄.
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Let us apply this result to (bulk) gauge intera
tions. The relation between the D dimensional

gauge 
oupling and the 4D gauge 
oupling is

V

D�4

g

2

D

=

1

g

2

4

(B-4)

where V

D�4

is the volume of extra dimensions. From the res
aled 
ovariant derivative,
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2

^
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; (B-5)

we identify the dimensionless parameter 
orresponding to the gauge 
oupling as

g

2

e�

� g

2

D

M

D�4

�

l

D

=Æ

< 1: (B-6)

The above 
ondition for perturbativity imposes the bound on the 
uto� as

M

�

<

�

l

D

=Æ
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2

4
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D�4

�

1

D�4

(B-7)

Let us now 
onsider a brane-lo
alized intera
tion

L

F

=

Z

d

2

�W (�;	) + h:
: (B-8)

where 	 (�) is a brane (Z

2

even bulk) multiplet respe
tively. Under the res
aling
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the brane a
tion be
omes

L

F

=

M

4

�

l

4

=Æ

Z
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�

^

W (

^
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^

	) + h:
:: (B-10)

In parti
ular, for the superpotential for the Yukawa intera
tion

W = �

t

H

u

QU
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t

= V

p=2

D�4

f

4;t

(B-11)

where p is the number of bulk �elds present in the Yukawa intera
tion, and f

4;t

is the 4D


oupling. Then, the rede�ned superpotential is given by
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^

H

u

^
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^
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(B-12)
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where
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This 
ondition gives the bound on M

�

M

�
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"

(l
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p

(l
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=Æ)

1�p
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1
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(B-14)

We now apply eqs.(B-7), (B-14) to our 5D models, to derive bounds on the 5D 
uto� M

�

.

Eq.(B-7) gives

M

�

<

12 �

2

Æ g

2

4

1

R

: (B-15)

Eq. (B-14) be
omes for the 5D 
ase

M

�

<

12�

2

Æ

�

Æ

16�

2

f

2=(p�1)

4;t

�

p�1

p

1

R

(B-16)

where p = 2; 3. Eqs.(B-15), (B-16) were used in the text, eqs.(64).
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