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Abstract: We extend the boundary-to-bound (B2B) correspondence to incorporate radiative

as well as conservative radiation-reaction effects. We start by deriving a map between the total

change in observables due to gravitational wave emission during hyperbolic-like motion and in

one period of an elliptic-like orbit, which is valid in the adiabatic expansion for non-spinning

as well as aligned-spin configurations. We also discuss the inverse problem of extracting

the associated fluxes from scattering data. Afterwards we demonstrate, to all orders in the

Post-Minkowskian expansion, the link between the radiated energy and the ultraviolet pole in

the radial action in dimensional regularization due to tail effects. This implies, as expected,

that the B2B correspondence for the conservative sector remains unchanged for local-in-time

radiation-reaction tail effects with generic orbits. As a side product, this allows us to read off

the energy flux from the associated pole in the tail Hamiltonian. We show that the B2B map

also holds for non-local-in-time terms, but only in the large-eccentricity limit. Remarkably, we

find that all of the trademark logarithmic contributions to the radial action map unscathed

between generic unbound and bound motion. However, unlike logarithms, other terms due

to non-local effects do not transition smoothly to quasi-circular orbits. We conclude with a

discussion on these non-local pieces. Several checks of the B2B dictionary are displayed using

state-of-the-art knowledge in Post-Newtonian/Minkowskian theory.
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1 Introduction

Motivated by the ‘on-shell’ nature of scattering processes, a boundary-to-bound (B2B) cor-

respondence between observables, such as the deflection angle and periastron advance, was

introduced in [1, 2] for the (strictly) conservative sector. The B2B map connects hyperbolic-

to elliptic-like orbits through analytic continuation of the radial action without resorting to

gauge-dependent objects like the Hamiltonian. With the goal of using Post-Minkowskian

(PM) scattering data — obtained through (quantum) amplitude-based, e.g. [3–18], and (clas-

sical) EFT-based, e.g. [19–33], methodologies — to construct high-precision Post-Newtonian

(PN) waveform models, e.g. [34], the purpose of this paper is to extend the B2B dictionary to

the radiation sector. Radiative effects in the two-body dynamics come in two flavors. Firstly,

there is the obvious loss of energy and angular momentum due to gravitational wave (GW)

emission responsible for the celebrated change in the orbital parameters. There are, however,

also ‘conservative’ radiation-reaction contributions to, for instance, the binding energy. These

arise due to non-linear gravitational effects, such as the GWs getting trapped in the near zone

through scattering off of the background geometry, so-called tail effects, see e.g. [35, 36], or

off of the waves emitted at an earlier time, so-called the (non-linear) memory.1 We study here

the B2B map for both dissipative and conservative radiation-reaction effects.

In principle, the instantaneous dynamics due to dissipation produces various transient

phenomena associated with radiation-reaction forces which cannot be captured by the con-

servative equations of motion, e.g. [37–39]. However, provided the adiabatic expansion holds,

we can evaluate the total loss of energy and angular momentum by integrating the (averaged)

instantaneous flux using the unperturbed (conservative) solution. Here is where the original

B2B dictionary [1, 2] — linking the point of closest approach in a scattering process to the

endpoints of elliptic-like orbits via analytic continuation in the angular momentum and bind-

ing energy — becomes extremely powerful. After taking into account the parity properties

under J → −J of the associated fluxes, we show the following relationships,

∆Eell(J) = ∆Ehyp(J)−∆Ehyp(−J) , ∆Jell(J) = ∆Jhyp(J) + ∆Jhyp(−J) ,

hold between the total radiated (source) energy and angular momentum in a scattering process

and one orbit of elliptic-like motion, valid for non-spinning or aligned-spin configurations.

As we shall see, the analytic continuation also holds in terms of the eccentricity parameter,

which will be useful when performing the B2B map between radiative observables.

Although the above relations already uncover a non-trivial link between radiation effects

for unbound and bound states, to compute the GW phase for generic orbits requires the

(averaged) instantaneous flux. From the point of view of scattering, the inverse problem then

turns into obtaining the flux from the knowledge of the total radiated energy. Following similar

steps as for the Firsov representation discussed in [1, 2], we show here how to reconstruct the

GW flux in an isotropic gauge from the PM expansion of the radiated energy.

1We will concentrate mostly on tail terms in this paper. We briefly discuss memory corrections in §6.
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In order to complete all the necessary ingredients for accurate waveform modeling we

must also incorporate conservative corrections due to hereditary effects. As it turns out, these

come in different forms since not only they introduce the standard local-in-time interactions,

but are also responsible for non-local-in-time effects [35]. The latter are a trademark of

tail-type contributions and do not appear with memory terms. In combination with the

existence of spurious infrared/ultraviolet divergences in intermediate computations from the

near (potential) and far (radiation) zones, the time non-locality induces a breakdown of the

near/far zone expansion that caused the introduction of several (apparent) ambiguities in

‘traditional’ PN computations [40–45]. These issues, however, are naturally handled within

the EFT approach [46–51], resulting in completely unambiguous answers [52–55]. Yet, because

of a variety of contributions and mixing between zones, the EFT split into potential and

radiation modes can be further decomposed into (generalized) local- and non-local-in-time

effects. The latter separation, which we adopt in this paper, is advantageous when it comes

to applying the B2B dictionary as well as incorporating the true logarithmic corrections to

the binary dynamics.

In order to establish the extension of the B2B correspondence, we start by demonstrating

the universal connection between the energy flux, FE , and the ultraviolet-divergent part of

the tail contribution to the Hamiltonian, Htail, due to radiation modes [26, 27],

Htail(r,p
2)

GE
=
FE(r,p2)

(d− 4)UV
+ · · · ,

which cancels out against an infrared pole arising from the potential region [53]. From here,

and the connection between the effective and radial actions, we conclude that the B2B dic-

tionary remains valid for local-in-time effects. The fact that the latter can be mapped from

unbound to bound motion through the original B2B dictionary is not surprising. After all,

if we shuffle all of the logarithms into the non-local part the remaining pieces can be param-

eterized using the standard PM expansion for the center-of-mass momentum which, using

the manipulations in [1, 2], yield the original B2B relations. What is instructive, however,

is to notice that, due to the universal connection between the flux and the tail Hamiltonian,

or likewise the radiated energy and radial action, the B2B correspondence in the dissipative

sector is intimately linked to the B2B map for conservative local-in-time effects.

The situation changes dramatically for non-local-in time terms. While we can, once again,

resort to an adiabatic expansion in which the hereditary integral is computed over the conser-

vative motion, the resulting dynamical equations vary significantly between hyperbolic-like

motion and generic bound orbits. Nonetheless, we find that the original B2B correspondence

applies [1, 2]

Sr,ell(J) = Sr,hyp(J)− Sr,hyp(−J) ,

for the full radial action, but only in the limit of large angular momentum, also known as the

large-eccentricity limit.
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Unfortunately, the resulting coefficients in the 1/J expansion do not capture generic

terms associated with non-local-in-time effects for e.g. quasi-circular motion. Nevertheless,

not only can we map all of the local-in-time contributions in this fashion, remarkably the

large-eccentricity limit readily accounts for all the leading logarithmic corrections in E , the

(reduced) binding energy, which take on the universal form

S log
r,hyp/ell = −GE

2π
∆Ehyp/ell log |E| ,

and may be obtained through the original B2B (bound) radial action via the scattering

angle [1, 2]. Moreover, we also find the center-of-mass momentum can be reconstructed in

terms of an (effectively local) PM expansion in G/r, which correctly incorporates both local-

in-time as well as non-local-in-time effects proportional to logarithms of the binding energy.

In combination with Firsov’s representation, this allows us to read off all of the associated

coefficients in the 1/J expansion of the radial action to a given PN order [1, 2]. At the

same time, it illustrates how — unlike the intermediate potential-only results — the spurious

factors of log r in the center-of-mass momentum [26] or Hamiltonian [14] do not appear in

the complete (ambiguity-free) dynamics [27].

After demonstrating the existence of an extended B2B correspondence in the radiative

sector,2 we dedicate the penultimate section to various explicit checks of the B2B map using

the state-of-the-art in the PN/PM expansion both for non-spinning and aligned-spin con-

figurations. To the extent of our knowledge, the computations of the total radiated energy

and angular momentum including spin effects using the fluxes obtained in [57] — which we

display here in their full glory — are presented for the first time. While our results for the

conservative sector are completely generic, we restrict ourselves to the well understood local-

and non-local-in-time contributions at 4PN order derived through different methodologies in

[42–45, 52–55], except for logarithmic terms which we incorporate to 6PN order using the

results in [58]. In addition, we have explicitly checked the B2B map applies to the contribu-

tions at 5PN reported in [59] as well as the intermediate results in [60]. We will make a few

comments at the end regarding conservative (local-in-time) memory terms.

The final section of this paper is devoted to a discussion on plausible ways to map generic

non-local-in-time effects from scattering processes to generic bound states. Throughout this

paper we follow the conventions and notation of [1, 2], to which we refer to reader for further

details. We also provide an ancillary file collecting the main expressions presented here.

2An intriguing connection resembling the B2B map was recently discussed in [56]. It would be interesting

to explore whether it also extends to the radiative sector.
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2 Orbital elements

One of the key ideas behind the B2B dictionary is the link between the endpoints of elliptic-

like motion and closest approach in hyperbolic encounters, see Fig. 1. Here we summarize the

correspondence and add also a few additional elements which play an important role later on

when performing the analytic continuation between unbound and bound motion.

2.1 J → −J
In the original B2B map in [1, 2] for observables in the conservative sector, the endpoints of

a bound orbit, 0 < r− < r+, were shown to be related to the distance of closest approach in

a scattering event, r̃−, via analytic continuation,

r−(J, E) = r̃−(J, E) , (2.1)

r+(J, E) = r̃−(−J, E) ,

with positive (total) angular momentum, J > 0, and negative binding energy, E ≡ E−M
Mν < 0,

respectively, where M = m1 +m2 is the total mass, E the total energy, and ν the symmetric-

mass-ratio. The above relationships are a direct consequence of Firsov’s representation for

the momentum of the incoming particles in the center-of-mass frame, [61]

p̄2 = exp


 2

π

∫ ∞

r|p̄|

χ(b̃c)db̃c√
b̃2c − r2p̄2


 = 1 +

∞∑

i=1

fi(E , L, a±)

(
GM

r

)i
, (2.2)

where p̄2 ≡ p2/p2
∞ with p∞ the incoming momentum at infinity, χ(b̃c) is the scattering angle,

a± = a1 ± a2 with ai the (mass-rescaled) spin parameters, and bc ≡ L/p∞. The (canonical)

orbital angular momentum, L, obeys the relation [62]

L = p∞b+M
Γ− 1

2

(
a+ −

∆

Γ
a−

)
, (2.3)

with b the (covariant) impact parameter. We have also introduced the notation Γ ≡ E/M ,

∆ ≡
√

1− 4ν. From here we obtain

r̃− = bc exp


− 1

π

∫ ∞

bc

χ(b̃c)db̃c√
b̃2c − b2c


 , (2.4)

for the (real and positive) root of the vanishing radial momentum at the point of closest

proximity,

p̄2
r(r̃−) = p̄2(r̃−)− b2c/r̃2

− = 0 . (2.5)

It is straightforward to show a relationship similar to the one implied by (2.1) also applies

for the other (unphysical) root, r̃+ < 0, of the unbound motion; namely

r̃+(J, E) = r̃−(−J, E) , (2.6)

from positive (total) angular momentum J > 0, but this time having both positive binding

energy, E > 0.
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Figure 1: The geometry for unbound and bound motion. See the text for definition of the

various variables.

2.2 e→ −e
From the roots of the radial momentum we can construct the parameters describing the

eccentricity of the orbit,

e =
r+ − r−
r+ + r−

(ellipse) ,

ẽ =
r̃+ − r̃−
r̃+ + r̃−

(hyperbola) .
(2.7)

From the conditions in (2.1) and (2.6) we notice that J → −J implies e → −e, and simi-

larly ẽ → −ẽ. This means, for instance, the B2B relationship between scattering angle and

periastron advance [2]

∆Φ(J, E) = χ(J, E) + χ(−J, E) , (2.8)

may also be written as

∆Φ(e, E) = χ(e, E) + χ(−e, E) , (2.9)

analytically continued to e < 1 and negative binding energies.3 The map involving eccentric-

ities will prove to be useful when studying radiative observables next.

3 Radiative observables

In this section we focus on the total change induced on observables due to GW radiation in a

scattering process and one period of elliptic-like motion. In all cases we will assume the validity

of the adiabatic expansion; namely, that we can evaluate the total change by integrating the

(averaged) fluxes over the solution of the conservative dynamical equations. This will allow

us to use the connection between the orbital elements described above. Moreover, we will

concentrate here either on non-spinning or aligned-spin configurations, such that motion

remains in a plane orthogonal to the total angular momentum.

3We thank M. van de Meent for demonstrating the exact validity of (2.8)-(2.9) for the case of a test body

in a Schwarzschild background (unpublished).
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3.1 J-parity

Let us consider the (averaged) flux, FO(r, E , L, a±), associated with an observable quantity.

The total change may be then written as follows

∆Oell =

∫ Torb

0
FO(r, E , L, a±)dt = 2

∫ r+

r−

FO(r, E , L, a±)
dr

ṙ
,

∆Ohyp =

∫ +∞

−∞
FO(r, E , L, a±)dt = 2

∫ ∞

r̃−

FO(r, E , L, a±)
dr

ṙ
,

(3.1)

for elliptic- and hyperbolic-like motion, respectively. Assuming the validity of an adiabatic

approximation, and using the conservative equations of motion in a quasi-isotropic gauge4

ṙ = 2
∂H

∂p2
pr , (3.2)

with H the Hamiltonian, as well as (see (2.2))

p2
r = p2 − J2/r2 , (3.3)

we arrive at

∆Oell =

∫ r+

r−

(
∂H

∂p2

)−1 FO(r, E , L, a±)√
p2(r, E , L, a±)− J2/r2

dr ,

∆Ohyp =

∫ ∞

r̃−

(
∂H

∂p2

)−1 FO(r, E , L, a±)√
p2(r, E , L, a±)− J2/r2

dr .

(3.4)

Since the Hamiltonian is a function of r, p2, a2
± , and La±, the extension of the B2B dictionary

hinges upon the properties under a “J-parity” transformation: L → −L and a± → −a±, of

the given fluxes

FO(r, E ,−J) = σO FO(r, E , J) , (3.5)

with σO = ±1. By performing the same loop around infinity as in (2.8), we find

∆Oell(J, E) = ∆Ohyp(J, E)− σO∆Ohyp(−J, E) , (3.6)

which, as we discussed earlier, can also be written as

∆Oell(e, E) = ∆Ohyp(e, E)− σO∆Ohyp(−e, E) . (3.7)

These manipulations allow us to relate the total change for several observable quantities

computed in unbound and bound orbits.

4In principle there is also a correction to ṙ proportional to r × ∂H
∂L

. However, it does not contribute to ṙ.
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3.2 Energy

The case of the total radiated energy is the simplest. Firstly, we notice that in an quasi-

isotropic gauge we have

FE(r, E ,−J) = +FE(r, E , J) , (3.8)

for the energy flux, almost trivially since it can be written as a function of r, p2, a2
± and

La±.5 This is not surprising since we expect the flux to be a scalar under J-parity. Following

our previous reasoning we then arrive at [26]

∆Eell(J, E) = ∆Ehyp(J, E)−∆Ehyp(−J, E) ,

∆Eell(e, E) = ∆Ehyp(e, E)−∆Ehyp(−e, E) ,
(3.9)

which was previously observed to hold in [58] (for the J → −J map) with the knowledge of

the PN expansion at the time. We show here that, as expected, it continues to hold for the

recently derived results at 3PN order [63].

3.3 Angular momentum

We can also apply the map to the angular momentum. Being a pseudo-vector, its flux must

transform under J-parity in the same fashion as the angular momentum itself,

FJ(r, E ,−J) = −FJ(r, E , J) . (3.10)

Therefore, the correspondence between elliptic- and hyperbolic-like motion becomes

∆Jell(J, E) = ∆Jhyp(J, E) + ∆Jhyp(−J, E) ,

∆Jell(e, E) = ∆Jhyp(e, E) + ∆Jhyp(−e, E) ,
(3.11)

similarly to that of the periastron advance and scattering angle.

3.4 Inverse problem

For the conservative sector, the Firsov representation in (2.2) allows us to construct a (gauge-

dependent) object to describe the dynamics from the knowledge of the scattering angle. The

main idea is to invert the integral which defines the latter in terms of the radial momentum.

A similar representation can then be shown to exist for the GW flux in terms of the total

radiated energy and angular momentum. For the sake of simplicity we consider the non-

spinning case. Let us stare at the expressions for the total radiated energy,

∆Ehyp =

∫ ∞

r̃−

(
∂H(r,p2)

∂p2

)−1 FE(r, E)√
p2(r, E)− J2/r2

dr

∆Eell =

∫ r+

r−

(
∂H(r,p2)

∂p2

)−1 FE(r, E)√
p2(r, E)− J2/r2

dr

(3.12)

5The existence of this gauge is also connected to the link between the tail Hamiltonian and energy flux.
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Since we are only concerned about the source energy, the associated flux may be expanded

in powers of GM/r,

FE(r, E) =
M

r

∞∑

n=0

F (n)
E (E)

(
GM

r

)n+3

, (3.13)

with F (n)
E (E) (dimensionless) functions of the binding energy, and we chose the starting point

of the sum in hindsight of the leading PN effects. From here, and the fact that the PM

expansion of the Hamiltonian (and its derivatives) can be obtained via scattering data [1–3],

we arrive at an integral involving only the radial motion and some functions of the binding

energy. By performing the integration and expanding in G/J we can then read off the F (n)
E (E)

coefficients directly from the PM expansion of the total radiated energy

∆Ehyp(j, E) =

∞∑

n=0

∆E
(n)
hyp(E)

1

jn+3
,

∆Eell(j, E) = ∆Ehyp(j, E)−∆Ehyp(−j, E) ,

(3.14)

with j ≡ J/(GM2ν). The final expressions, however, are rather cumbersome and not par-

ticularly illuminating (see ancillary file). Here we quote only the first two orders, obtained

using the known PM results for the conservative sector [22],

MπξF (0)
E =

2Γν∆E
(0)
hyp

(γ2 − 1)
,

MπξF (1)
E =

3πΓ2ν∆E
(1)
hyp

4 (γ2 − 1)3/2
−

2∆E
(0)
hypν

3

(γ2 − 1)2 Γ6ξ2

[
(γ − 1)3

(
10γ3 − 10γ2 − 9γ + 5

)
ν2

+ 4
(
5γ5 − 8γ4 + γ3 + 4γ2 − 3γ + 1

)
ν + 8γ4 − 4γ2 − 1

]
,

(3.15)

with

ξ ≡ E1E2/E
2 , Ea ≡

√
p2
∞ +m2

a , p2
∞ =

Mν

Γ
(γ2 − 1) , γ ≡ 1 + E +

ν

2
E2 , (3.16)

and provide an explicit derivation at 3PM in §5. A similar reasoning applies to the angular

momentum. As we shall see shortly, the coefficients in the PM expansion in (3.13) can be

also read off from the imprint of radiation-reaction effects in the conservative dynamics.

4 Conservative radiation-reaction

As it is well known hereditary back-reaction effects contribute to the conservative regime of

the dynamics, e.g. [36, 52]. In this section we discuss the extension of the B2B dictionary to

conservative radiation-reaction effects.
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Figure 2: Universal ultraviolet structure of the hereditary effects (in the far zone) at leading

order in the GEω expansion. The wavy and (doubly) solid lines represent the gravitational

field and binary system, respectively. The latter is described by the (near zone) stress-energy

tensor Tµν . Only tail terms contribute to the (ultraviolet) divergence [36]. The ellipses

contain finite terms in the d→ 4 limit. See [64] for more details.

4.1 Universality

As it was shown some time ago in [64], the tail correction to the GW amplitude becomes

|Asrc +Atail|2 = (1 + 2πGEω)|Asrc|2 +O
(
(GEω)2

)
, (4.1)

at leading order in the (GEω) expansion in the far zone. The (source) amplitude, Asrc,

defined by

iAsrc(ω,k) = − i
2
ε?ij(k)T ij(ω,k) , (4.2)

depends upon the near-zone pseudo stress-energy tensor (including also the binding poten-

tial modes), T ij(ω,k), as well as the polarization tensor, εij(k). The above relation is a

consequence of the link depicted in Fig. 2.6

At the same time we have a conservative contribution to the effective action, Stail
eff ≡

− 1
2π

∫ +∞
−∞ Htaildt, with Htail the tail Hamiltonian, shown in Fig. 3. As discussed in [52,

65], the main difference between retarded and Feynman propagators involves the choice of

i0+ prescription, yielding a result with a left-over integral over dω involving either

1

(d− 4)

(√
−(ω2 + i0+)

)(d−4)
(Feynman) , or

1

(d− 4)

(√
−(ω + i0+)2

)(d−4)
(Retarded) ,

(4.3)

in dimensional regularization in d dimensions. It is straightforward to show that the difference

in the derivation in either case only affects the imaginary (dissipative) part. Indeed, the

associated factor of iπ (versus iπ signω) is required from the optical theorem,

Im Fig 3 =
1

2

∫
dΓtail

dω
dω (Feynman) , (4.4)

6This is sometimes written in terms of so-called “radiative” multipole moments associated with the (long-

wavelength) expansion of T ij(ω,k) in powers of k.
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Figure 3: Correction to the effective action due to the leading tail effect. The wavy line is

the (on-shell) radiation mode while the background geometry is sourced by the total energy

represented by the dashed line. The causal routing features retarded propagators, see [52] for

more details.

in order to match the integrated rate of graviton emission, Γtail, due to the tail effect. At the

same time, after multiplying by the phase space measure on both sides of (4.1), we find

dΓtail

dω
= 2πGE

dEsrc

dω
+O(GEω)2) , (4.5)

where ωdΓsrc/dω ≡ dEsrc/dω is the source energy spectrum. This implies,

Im Fig 3 = GEπ

∫
dEsrc

dω
dω (Feynman) . (4.6)

Since the factor of iπ is intimately connected to the ultraviolet pole (as well as logarithmic

correction) in the real part of the effective action, whose residue is unaffected by the choice

of propagators, we conclude the leading conservative contribution from the tail effect to the

effective action must take on the following universal form:

Fig 3 = −GE
∫
dEsrc

dω

(
1

(d− 4)UV
+ log

ω2

µ2
− iπsignω + · · ·

)
dω (Retarded) . (4.7)

Notice that, while we work at leading order in the tail expansion in the radiation region, the

expression in (4.7) enters at all PM orders due to O(GN ) corrections from the near zone to

the source energy flux. From here we conclude

Stail
eff,hyp = − GE

(d− 4)UV
∆Ehyp(J, E) + · · · , (4.8)

evaluated on hyperbolic orbits. The above expressions connect the total radiated energy to

the ultraviolet pole in the effective action due to tail effects. As we shall see, this universal

relation can be used to extend the B2B dictionary to the conservative sector, and vice versa.

4.2 Effective to radial action

In order to use the relation in (4.8) we must first connect the value of the effective action to

the radial action. This can be achieved by using Hamilton-Jacobi’s approach to the motion

with the effective action as the generating functional. By choosing the θ = π/2 plane, going

to the center-of-mass, and isolating conserved quantities, we have

Seff = −E
∫
dt+ J

∫
dϕ+ 2πSr,hyp , (4.9)
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where the radial action evaluated on hyperbolic motion is given by

Sr,hyp =
2

2π

∫ ∞

r̃−

prdr , (4.10)

and the factor of 1/2π added for convenience. Hence, at leading order in the tail expansion,

Stail
r,hyp =

1

2π
Stail

eff,hyp . (4.11)

We can also prove the relationship in (4.11) directly from the definition in (4.10). Let us

start by separating the potential and tail contributions to the square of the center-of-mass

momentum as

p2 = p2
∞ + p2

pot(r, E) + p2
tail(r, E) , (4.12)

such that, to leading order in the tail expansion,

(δpr)tail =
1

2

p2
tail

pr
+ · · · . (4.13)

We can then compute the correction to the radial action,

Stail
r =

1

2π

∫ +∞

−∞
ṙdt (δpr)tail =

1

2π

∫ +∞

−∞
dt

(
∂Hpot

∂p2

)
p2

tail + · · · , (4.14)

where we used (3.2) and Hpot is the Hamiltonian from potential modes. Finally, we must

express the momentum in terms of the tail Hamiltonian. Using the relationship [1],

√
p2 − p2

pot(r, E)− p2
tail(r, E) +m2

1 +
√
p2 − p2

pot(r, E)− p2
tail(r, E) +m2

2 = Hpot +Htail

(4.15)

we have

Htail = −
(
∂Hpot

∂p2

)
p2

tail(r, E) + · · · , (4.16)

hence

Stail
r,hyp = − 1

2π

∫ +∞

−∞
Htail dt =

1

2π
Stail

eff,hyp , (4.17)

at leading order in the tail expansion, yet to all PN orders, as anticipated.

The case of elliptic-like motion is a tad more subtle. It is straightforward to arrive at

the same condition as in (4.7) for the effective action, however, the connection to the radial

action is less direct since the latter involves an integral over a period, whereas the effective

action is integrated between minus and plus infinity. Nevertheless, we can follow the exact

same steps as above using the tail Hamiltonian integrated over only one period of the bound

orbit, thus arriving at a similar relationship as in (4.8)

Stail
r,ell =

2

2π

∫ r+

r−

prdr = − GE

2π(d− 4)UV
∆Eell(J, E) + · · · . (4.18)
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The reader will now immediately realize that the above imply that the pole in the ra-

dial/effective action transforms into a similar pole in the tail Hamiltonian,

Htail(r,p
2)

GE
=
F src
E (r,p2)

(d− 4)UV
+ · · · , (4.19)

from which we can read off the (averaged) flux for generic orbits.

Notice the existence of an isotropic gauge for the local-in-time piece of the tail Hamilto-

nian implies that the flux may be written solely as a function of r and p2 (for non-spinning

bodies). There is, nonetheless, an important difference with the representation in §3.4 re-

garding the variables used to evaluate the flux. While we use (r, E) in §3.4, the derivation

from the tail Hamiltonian involves (r,p2). This difference simply results in a mismatch for

the coefficients of the PM expansion, which can be easily reconstructed from each other.

4.3 Local-in-time

We can now use the B2B map unveiled in (3.9), and following the manipulations in (4.8)-

(4.18), we arrive at

Stail,pole
r,ell (J, E) = Stail,pole

r,hyp (J, E)− Stail,pole
r,hyp (−J, E) . (4.20)

Since the pole contributes to the local-in-time dynamics, we conclude that the latter respects

the original B2B dictionary. Furthermore, by performing a multipole expansion of the tail

contribution to the effective action and using the B2B link for the radiated energy at each

PN order, it is also straightforward to show the B2B correspondence applies to all local-in-

time tail effects. Needless to say, the converse is also manifestly true. Following the steps

described in [1, 2] for all local-in-time contributions to the PM expansion of the center-of-mass

momentum, we find that the B2B map between angle and periastron advance remains valid,

hence the map in (4.20), which in this case would yield (3.9) as a side product.

To complete our discussion of local-in-time effects we must also include conservative mem-

ory contributions. However, despite its radiative origin, these can be described by the stan-

dard Firsov representation, and therefore naturally obeys the original B2B correspondence.

We will add a few comments about isolating the conservative part of the memory in §6.

As a consequence, we find

S loc
r,ell(J, E) = S loc

r,hyp(J, E)− S loc
r,hyp(−J, E) . (4.21)

for all local-in-time dynamics, either from potential, tail or memory effects, and generic orbits.

Before moving on, let us stress an important point. At first sight the local-in-time

dynamics may appear to include also contributions depending on log r. The latter enters

in the computation of the conservative dynamics involving potential-only modes [54, 55].

In principle, one can readily incorporate these effects in the B2B map of (4.21). However,
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this log r is spurious and is only due to the split into regions.7 There are, nonetheless, crucial

logarithmic corrections to the radial action, but involving instead the binding energy (see

below). Because of these reasons, it has become customary in the PN literature, e.g. [58, 60],

to define the non-local-in-time contribution to the effective action from the (leading) tail as

follows

Snloc
eff ≡ −GE

∫
dEsrc

dω
log(4r2ω2eγE )dω , (4.22)

mixing the logarithmic terms from both potential and radiation modes (The factor of eγE

and log 2 are follow the PN conventions.) In this fashion, all the other pieces are collected as

local-in-time contributions which are thus devoid of any logarithmic correction. As we have

shown in (4.7), the expression in (4.22) retains its universal character in a PM scheme and

therefore it can be generally adopted to describe non-local-in-time effects. We will use this

definition in what follows.

4.4 Large-eccentricity limit

At this point the reader may wonder whether the B2B dictionary can remain valid also for

the non-local-in-time dynamics induced by (4.22). As we demonstrate in what follows, that

is indeed the case. However, there is a major caveat. The B2B map only holds in the limit of

large angular momentum. In order to demonstrate this, we start by re-writing the expression

in (4.22) in terms of a non-local Hamiltonian,

Snloc
r,hyp(J, E) = − 2

2π

∫ ∞

r̃−

Hnloc(r, J, E)
dr

ṙ
. (4.23)

In light of our previous manipulations with the fluxes in §3, and depending on the given

J-parity of Hnloc, it is clear a B2B-type correspondence must apply. Indeed, we find

Hnloc(r, J, E) = +Hnloc(r,−J, E) , (4.24)

in the large J expansion, such that in this particular limit the relation in (4.21) remains the

same for non-local-in-time terms, which implies for the full radial action

S full
r,ell(J, E) = S full

r,hyp(J, E)− S full
r,hyp(−J, E) . (4.25)

The proof of (4.24) proceeds as follows. As discussed in e.g. [58, 60, 66], after truncating

the derivation of the non-local (conservative) Hamiltonian to a given order in the PN/PM

expansion, one can then construct an effectively local counter-part describing the evolution of

the system to the same PN/PM order. Once the effective Hamiltonian evaluated for unbound

motion is known, we can then construct an isotropic gauge in which the latter becomes a

function of r and p2 only, which then fulfills the condition in (4.24). (The condition in (4.24)

is also satisfied for the gauges in which (Hnloc)eff is given as a function of r,p2, p2
r .)

7The spurious nature is also manifest in the lack of factors of log J (or log b’s) in the total unbound radial

action. After noticing that the log J ’s are directly linked to the poles arising in the d → 4 limit, their

disappearance is ultimately rooted in the same cancelation between infrared/ultraviolet divergences.
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4.5 Logarithms

Unlike local effects, non-local tail interactions cause the B2B radial action in the large-

eccentricity limit fail to describe generic bound orbits. In particular, non-local terms yield

different values for hyperbolic-like and (the more phenomenologically relevant case of) quasi-

circular motion. However, somewhat remarkably, the large-eccentricity limit does captures

certain non-local contributions for generic orbits, even those with small eccentricities, no-

tably those involving the (leading) logarithms in the binding energy. These terms inherit the

universal structure in (4.8) and (4.18), yielding (with v∞ ≡
√
γ2 − 1 )

S log
r,hyp/ell

GM2ν
= − Γ

πν

∆Ehyp/ell

M
log |v∞| , (4.26)

which is the left over after the cancelation of logarithms in the angular momentum accom-

panying the IR/UV poles. They can also be shown to appear directly from the scaling with

the velocity of radiation modes, see [26, 27]. Using the map between total radiated energy

in (3.9) the B2B relation in (4.21) is thus manifest. As a result, not only all of the local-in-

time effects may be readily mapped between unbound and bound motion for generic orbits,

also the trademark logarithmic terms. Furthermore, the latter are related by the same B2B

formulae derived in [1, 2].

5 Post-Newtonian/Minkowskian

We provide here extensive evidence for the validity of the extended B2B map within the realm

of the PN and PM expansions. Let us remind the reader of the definitions

ε ≡ −2E = −2

(
E −M
Mν

)
, j ≡ J

GM2ν
, ` ≡ L

GM2ν
, ã± ≡

1

GM
(a1 ± a2) ,

(5.1)

for the reduced binding energy and total, orbital and spin (canonical) angular momentum,

respectively. Finite size effects due to spin are parameterized in terms of the κ± parameters

introduced in [25]. For the sake of notation, we do not distinguish here between e and ẽ for

hyperbolic- and elliptic-like motion. Moreover, for convenience, some of the terms below are

written in terms of the Newtonian eccentricity e2
N ≡ 1+2Ej2 [63]. (Since e = eN + · · · , this is

simply a reshuffling of various coefficients in the 1/j expansion.) To emphasize the PN orders

we will use the following color coding: 0PN, 1PN, 2PN, 3PN, 4PN, 5PN, 6PN.

5.1 Radiated energy

The spin-independent radiated energy due to the source multipole moments (without includ-
ing tail terms) has been computed to 3PN, both for hyperbolic [63] and elliptic [67]. The
results can be written as a function of eN , j, and E as follows

∆Ehyp(j, E) =
M ν2

15

[
850
√

2
√
E

j6
+

2692
√

2E3/2
3j4

+

(
850

j7
+

1464E
j5

+
296E2
j3

)
cos−1

(
− 1

eN

)
(5.2)
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+

√
2E5/2(2506431− 3009160ν)

105(1 + 2Ej2)j4
+
E3/2(182337− 140480ν)

3
√

2(1 + 2Ej2)j6
− 7
√
E(−5763 + 3220ν)

2
√

2(1 + 2Ej2)j8

−2
√

2E7/2(−89907 + 156380ν)

35(1 + 2Ej2)j2
+

(
E
(
33885

2 − 15900ν
)

j7
+
E2
(
46617

7 − 10464ν
)

j5

+
40341

4 − 5635ν

j9
+
E3
(
4786
7 − 888ν

)

j3

)
cos−1

(
− 1

eN

)

+
2
√

2E11/2
(
2039036− 4763297ν + 6219570ν2

)

245(1 + 2Ej2)2
+

√
E
(
29198255− 32514426ν + 6906060ν2

)

168
√

2(1 + 2Ej2)2j10

+
E3/2

(
605244551− 845377092ν + 233615340ν2

)

756
√

2(1 + 2Ej2)2j8
+
E5/2

(
6449654885− 13029505497ν + 4951304820ν2

)

5670
√

2(1 + 2Ej2)2j6

+

√
2E9/2

(
208988912− 6547442643ν + 6196124970ν2

)

19845(1 + 2Ej2)2j2
+
E7/2

(
9310241671− 39312545895ν + 22349042100ν2

)

19845
√

2(1 + 2Ej2)2j4

+

(
5E4
21j3

(
8344− 7179ν + 7770ν2

)
+

1

j11

(
29198255

336
− 774153ν

8
+

82215ν2

4

)

+
E3
j5

(
59900

21
− 219314ν

7
+ 38412ν2

)
+
E
j9

(
11947909

108
− 2838577ν

12
+ 85995ν2

)

+
5E2

252j7
(
736055− 7764219ν + 5348700ν2

)
)

cos−1

(
− 1

eN

)

+
E9/2

2910600
√

2(1 + 2Ej2)3j4

(
388429282846397− 2640

(
58245623491 + 813280797π2

)
ν

+161210743695540ν2 − 51997288820400ν3
)

+
E11/2

1455300
√

2(1 + 2Ej2)3j2

(
84259836657351

−220
(
7446870460 + 5591391687π2

)
ν + 36932569900380ν2 − 18771891415200ν3

)

+
E13/2

2182950
√

2(1 + 2Ej2)3

(
20497310013607− 220

(
−32611235596 + 2325312171π2

)
ν

+10835961651900ν2 − 9517996719000ν3
)

+
E7/2

317520
√

2(1 + 2Ej2)3j6

(
49134463233397

+8
(
−4148934390079 + 7132373325π2

)
ν + 18910687025664ν2 − 4244390811360ν3

)

+
E5/2

151200
√

2(1 + 2Ej2)3j8

(
14498840196199 + 20

(
−622188698008 + 4083668757π2

)
ν

+5075295687000ν2 − 844365060000ν3
)

+
E3/2

302400
√

2(1 + 2Ej2)3j10

(
9133770967709

+1100
(
−8061884522 + 70585641π2

)
ν + 2888074488600ν2 − 371614824000ν3

)

+
E15/2j2

24255
√

2(1 + 2Ej2)3

(
744936393− 5027892760ν + 9355109148ν2 − 10875359880ν3

)

+

√
E
(
153014201249 + 440

(
−361091813 + 3587787π2

)
ν + 43750060200ν2 − 4482324000ν3

)

40320
√

2(1 + 2Ej2)3j12

+
(E2
j9

(
178442872459

30240
− 5

432

(
142791046 + 2595915π2

)
ν +

23677969ν2

12
− 607110ν3

)
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+
E3
j7

(
10364987867

5040
+

(
119338465

378
− 259735π2

8

)
ν +

19930745ν2

28
− 444125ν3

)

+
E
j11

(
137076707247

22400
+

11

224

(
−84607982 + 488187π2

)
ν +

30107727ν2

16
− 635985ν3

2

)

+
E4
j5

(
11296885277

92400
+

(
534595

14
− 12177π2

4

)
ν +

2595759ν2

28
− 103395ν3

)

+
1

j13
(25574348567

11520
+

11
(
−361091813 + 3587787π2

)
ν

2016
+

17361135ν2

32
− 444675ν3

8

)

+
E5
j3

(
2075735

1848
− 11920ν

3
+

45467ν2

14
− 3256ν3

))
cos−1

(
− 1

eN

)

+

(
161249

√
2
√
E

j12
+

7455118
√

2E3/2
15j10

+
6414436

√
2E5/2

15j8
+

140201672
√

2E7/2
1575j6

)
log

(
2E
eN

)

+

(
−161249

j13
− 3022536E

5j11
− 2104904E2

3j9
− 5406496E3

21j7
− 508464E4

35j5

)

×
(

Cl2

(
2 cos−1

(
− 1

eN

))
+ cos−1

(
− 1

eN

)
log

(
2(e2N − 1)

eN E

))]
.

The Clausen function of order 2 is defined by the integral representation,

Cl2(z) ≡ −
∫ z

0
dy log

∣∣∣2 sin
y

2

∣∣∣ . (5.3)

On the other hand, for a period of an elliptic orbit we have

∆Eell(j, E) =
M ν2

15

[
850π

j7
+

1464Eπ
j5

+
296E2π
j3

+
E2π
j5

(
46617

7
− 10464ν

)
(5.4)

+
7π(5763− 3220ν)

4j9
+

15Eπ(2259− 2120ν)

2j7
+
E3π
j3

(
4786

7
− 888ν

)

+
5E4π

(
8344− 7179ν + 7770ν2

)

21j3
+

2E3π
(
29950− 328971ν + 403326ν2

)

21j5

+
5E2π

(
736055− 7764219ν + 5348700ν2

)

252j7
+
π
(
29198255− 32514426ν + 6906060ν2

)

336j11

+
Eπ
(
11947909− 25547193ν + 9287460ν2

)

108j9

−161249
√

2
√
−Eπ

j12
− 7455118

√
2
√
−EEπ

15j10
− 6414436

√
2
√
−EE2π

15j8

−140201672
√

2
√
−EE3π

1575j6
+

Eπ
22400j11

(
137076707247 + 1100

(
−84607982 + 488187π2

)
ν

+42150817800ν2 − 7123032000ν3
)

+
π

80640j13
(
179020439969

+440
(
−361091813 + 3587787π2

)
ν + 43750060200ν2 − 4482324000ν3

)

+
E5π
j3

(
2075735

1848
− 11920ν

3
+

45467ν2

14
− 3256ν3

)

+
E2
j9

(
− 1

16

(
480725π3ν

)
+ π

(
178442872459

30240
− 356977615ν

216
+

23677969ν2

12
− 607110ν3

))

– 17 –



+
E3
j7

(
−1

8

(
259735π3ν

)
+ π

(
10364987867

5040
+

119338465ν

378
+

19930745ν2

28
− 444125ν3

))

+
E4
j5

(
−1

4

(
12177π3ν

)
+ π

(
11296885277

92400
+

534595ν

14
+

2595759ν2

28
− 103395ν3

))

+

(
161249π

j13
+

3022536Eπ
5j11

+
2104904E2π

3j9
+

5406496E3π
21j7

+
508464E4π

35j5

)
× log

(
(1 +

√
1− e2N )E

2(e2N − 1)

)]
.

In order to apply the B2B correspondence in (3.9) we must exercise some care with the analytic

continuation in the angular momentum and binding energy. In particular, notice that we have

expanded the polynomial factors in 1/j explicitly, while keeping the special functions in terms

of the eccentricity. For the latter we apply the analytic continuation according to the B2B

dictionary using the definition of the principal values, e.g.

cos−1(z) = −i log
(
z + i

√
1− z2

)
, (5.5)

such that

cos−1

(
1

e

)
+ cos−1

(
−1

e

)
= π , log

(
1

e

)
− log

(
− 1

e

)
= i π , (5.6)

gives the relation

cos−1

(
−1

e

)
log

(
2(e2 − 1)

e E

)
+ cos−1

(
1

e

)
log

(
−2(e2 − 1)

e E

)

= cos−1

(
−1

e

) (
log

(
2(e2 − 1)

e E

)
− log

(
−2(e2 − 1)

e E

))
+ π log

(
−2(e2 − 1)

e E

)

= cos−1

(
−1

e

)
i π + π log

(
−2(e2 − 1)

e E

)
= π log

(
−1

e
+ i

√
1− 1

e2

)
+ π log

(
−2(e2 − 1)

e E

)

= π log

(
−2

(1−
√

1− e2)(1− e2)

e2E

)
= −π log

(
(1 +

√
1− e2)E

2(e2 − 1)

)
, (5.7)

which links hyperbolic and elliptic orbits. Another important relation is given by

Cl2

(
2 cos−1

(−1

e

))
+ Cl2

(
2 cos−1

(
1

e

))
= 0 , (5.8)

which altogether disappears from the elliptic case. This is proved by noticing

Cl2

(
2 cos−1

(−1

e

))
= Cl2

(
2π − 2 cos−1

(
1

e

))

= −
∫ 2π−2 cos−1 ( 1

e)

0
dz log

∣∣∣2 sin
z

2

∣∣∣ = −
∫ −2 cos−1 ( 1

e)

−2π
dz log

∣∣∣∣2 sin
z + 2π

2

∣∣∣∣

= −
∫ 2π

0
dz log

∣∣∣2 sin
z

2

∣∣∣−
∫ −2 cos−1 ( 1

e)

0
dz log

∣∣∣∣2 sin
2π + z

2

∣∣∣∣

= −
∫ −2 cos−1 ( 1

e)

0
dz log

∣∣∣2 sin
z

2

∣∣∣ =

∫ 2 cos−1 ( 1
e)

0
dz log

∣∣∣2 sin
z

2

∣∣∣
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= −Cl2

(
2 cos−1

(
1

e

))
(5.9)

where we used the identity
∫ 2π

0 dz log |2 sin z
2 | = 0.

Other terms, such as those involving
√
E , produce imaginary pieces for bound orbits

which are either canceled against similar complex terms or by the B2B relations. After all of

these manipulations, we find that the B2B correspondence in (3.9) is neatly fulfilled to 3PN

order. A similar check was discussed in [17] in the context of the PM expansion. We confirm

the results in [17] are consistent with the PN values presented here.

5.2 Radiated angular momentum

The same logic applies to the angular momentum. For non-spinning bodies we find

∆Jhyp(j, E) =
8GM2 ν2

5

[
15
√

2
√
E

j3
+

4
√

2E3/2
j

+

(
15

j4
+

14E
j2

)
cos−1

(
− 1

eN

)
(5.10)

+
E3/2

(
5541

√
2− 8620

√
2ν
)

72j3
+

√
E
(
4953
√

2− 4748
√

2ν
)

48j5
+
E5/2

(
109
√

2− 35
√

2ν
)

7j

+

√
E
(
9
√

2 +
√

2ν
)

(1 + 2Ej2)j5
+

(E2(4283− 3976ν)

84j2
+
E(535− 748ν)

4j4
− 5(−1077 + 940ν)

48j6

)
cos−1

(
− 1

eN

)

+

√
E
(
123507

√
2− 23678

√
2ν − 2289

√
2ν2
)

1344(1 + 2Ej2)j7
+

√
E
(
−81
√

2− 18
√

2ν −
√

2ν2
)

8(1 + 2Ej2)2j7

+
E7/2

(
3245

√
2− 5886

√
2ν + 3213

√
2ν2
)

504j
+
E5/2

(
−439377

√
2− 1828552

√
2ν + 2246335

√
2ν2
)

5040j3

+

√
E
(
15340289

√
2− 38231694

√
2ν + 14143059

√
2ν2
)

36288j7

+
E3/2

(
−12397361

√
2− 59811138

√
2ν + 53024895

√
2ν2
)

54432j5

+
(E3

(
5308− 32877ν + 28308ν2

)

252j2
+

5E
(
−2999− 152946ν + 106848ν2

)

432j6

+
1307683− 2782332ν + 1005480ν2

2592j8
+
E2
(
−404980− 1181889ν + 1438668ν2

)

1512j4

)
cos−1

(
− 1

eN

)

+

(
3531

√
E√

2j9
+

10700
√

2E3/2
3j7

+
421366

√
2E5/2

315j5

)
log

(
2 E
eN

)

−
(

3531

2j10
+

14231E
3j8

+
21614E2

7j6
+

9844E3
35j4

)(
log

(
2(e2N − 1)

eN E

)
cos−1

(
− 1

eN

)
+ Cl2

(
2 cos−1

(
− 1

eN

)))

+
E5/2

2177280j5

(
10005567679

√
2 + (6156118418

√
2− 202155912

√
2π2)ν + 12209691726

√
2ν2

−10620524250
√

2ν3
)

+
E3/2

1451520j7

(
24486609623

√
2 + (−18545026170

√
2 + 252462420

√
2π2)ν

+18259461090
√

2ν2 − 6662875590
√

2ν3
)

+

√
E

2903040j9
(
37783086543

√
2

+(−52725330410
√

2 + 834567300
√

2π2)ν + 19852063650
√

2ν2 − 3342659670
√

2ν3
)

– 19 –



+
E7/2

282240j3

(
−106774701

√
2 + 33275322

√
2ν + 305926390

√
2ν2 − 341077730

√
2ν3
)

+
E9/2

(
−6973

√
2− 35695

√
2ν + 334521

√
2ν2 − 172557

√
2ν3
)

22176j

+

√
E
(
244427427

√
2− 165077725

√
2ν + 1487808

√
2π2ν − 6469083

√
2ν2 − 134379

√
2ν3
)

290304(1 + 2Ej2)j9

+

√
E
(
729
√

2 + 243
√

2ν + 27
√

2ν2 +
√

2ν3
)

48(1 + 2Ej2)3j9

+

√
E
(
−772659

√
2 + 48105

√
2ν + 22507

√
2ν2 + 847

√
2ν3
)

5376(1 + 2Ej2)2j9

+

(
E2
(
2082786797− 44373700ν − 8136450π2ν + 1398279600ν2 − 910576800ν3

)

120960j6

+
E3
(
90979951 + 255064600ν − 5811750π2ν + 433045800ν2 − 492912000ν3

)

151200j4

+
5567205457− 6037270480ν + 94382820π2ν + 2200128840ν2 − 371498400ν3

322560j10

+
E
(
1737906083− 1253646560ν + 18597600π2ν + 889119000ν2 − 277754400ν3

)

51840j8

+
E4
(
−227005− 5072672ν + 11771892ν2 − 9953328ν3

)

44352j2

)
cos−1

(
− 1

eN

)]
,

whereas for one period of elliptic motion we have

∆Jell(j, E) =
8GM2 ν2

5

[
15π

j4
+

14Eπ
j2

+

(
E2π(4283− 3976ν)

84j2
+
Eπ
(
535
4 − 187ν

)

j4
− 5π(−1077 + 940ν)

48j6

)

+
E3π

(
5308− 32877ν + 28308ν2

)

252j2
+

5Eπ
(
−2999− 152946ν + 106848ν2

)

432j6
(5.11)

+
π
(
1307683− 2782332ν + 1005480ν2

)

2592j8
+
E2π

(
−404980− 1181889ν + 1438668ν2

)

1512j4

+−3531
√
−Eπ√

2j9
− 10700

√
2
√
−EEπ

3j7
− 421366

√
2
√
−EE2π

315j5

+
π
(
5567205457 + 20

(
−301863524 + 4719141π2

)
ν + 2200128840ν2 − 371498400ν3

)

322560j10

+
Eπ

51840j8
(
1737906083 + 160

(
−7835291 + 116235π2

)
ν + 889119000ν2 − 277754400ν3

)

−E
4π
(
227005 + 5072672ν − 11771892ν2 + 9953328ν3

)

44352j2

−E
2π
(
−2082786797 + 350

(
126782 + 23247π2

)
ν − 1398279600ν2 + 910576800ν3

)

120960j6

+
E3
j4

(
− 1

16

(
615π3ν

)
+ π

(
90979951

151200
+

182189ν

108
+

240581ν2

84
− 3260ν3

))

+

(
3531π

2j10
+

14231Eπ
3j8

+
21614E2π

7j6
+

9844E3π
35j4

)
log

(
(1 +

√
1− e2N )E

2 (e2N − 1)

)]
.
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The reader will notice the odd vs even factors of 1/j in the expansions of the energy and

angular momentum. As a result, both entail the same type of analytic continuation, such

that we find the latter is as well nicely connected by (3.11) to 3PN order.

5.3 Fluxes

The above values for the total radiated energy and angular momentum were computed from

the knowledge of the known PN fluxes in the multipole expansion. However, it is also possible

to reverse engineer from the total values, in particular for those obtained from the (on-shell)

scattering process. As an example of this inverse problem, let us consider the 3PM total

radiated energy recently computed through various methodologies in [14, 17, 26, 27, 29, 30,

32, 68],

∆E
(0)
hyp

M
= −2πν2

3

(γ2 − 1)2

Γ4
χ2ε(γ) , (5.12)

where the expression for χ2ε can be found in [26, 27]. Following the steps outlined in §3.4, us-

ing ∫ ∞

J/p∞

J3

r4
√
p2
∞ − J2/r2

dr =
π

4
p2
∞ , (5.13)

and
∂H(r,p2)

∂p2
=

∂

∂p2

(√
p2 +m2

1 +
√
p2 +m2

2 + · · ·
)

=
1

2ξE
+O(G) , (5.14)

we find

F (0)
E (E) =

2

π

νΓ

ξ (γ2 − 1)

∆E
(0)
hyp(E)

M
, (5.15)

for the leading coefficient of the PM expansion of the energy flux, see (3.15).

As we discussed earlier, the energy flux can also be obtained through the pole in the

tail Hamiltonian, see (4.19). The computation has been carried over in [26, 27] at 4PM

order. As we mentioned, there is a caveat regarding the flux as a function of (r,p2) as in the

tail Hamiltonian, and (r, E) as in the representation in §3.4. Yet, the mismatch in the PM

coefficients of the G/r expansion only matters at higher orders. Hence, we find

F (0)
E (E) = −4

3

(γ2 − 1)ν3

Γ3ξ
χ2ε(γ) , (5.16)

for the 3PM flux, which is equivalent to the result in (5.15). Unfortunately, the 3PM value is

not sufficient to recover even the leading PN result from the quadrupole formula. However,

it is straightforward to compute the required term in the isotropic gauge, yielding8

F (1)
E (E) =

34ν2

3
+O(E) . (5.17)

8Notice this turns into a factor of 22ν2/15 when the flux is evaluated as a function of the momentum [26].
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5.4 Aligned-spin configurations

Using the results for the spin-dependent dynamical effects to next-to-leading order [65, 69–

73], recently combined in [57] to compute the associated fluxes (see also [74]), we derived the

radiated energy and angular momentum for aligned-spin configurations. To the extent of our

knowledge, the following results are reported here for the first time.

For one period of elliptic-like motion we find to next-to-leading PN order and quadratic
order in the spins,

∆Eell(`, ã±, E)

Mπν2
= (5.18)

1

`4

{
−4

5
E3[33ã−∆ + 97ã+] +

1

70
E4[ν(7504ã−∆ + 20048ã+)− 4869ã−∆− 15806ã+]

}

+
1

`5

{
2

5
E3
[
ã2−(59κ+ − 109) + 118ã−ã+κ− + 59ã2+(κ+ + 2)

]

+
1

280
E4
[
ν
(
−56ã2−(531κ+ − 517)− 59472ã−ã+κ− − 29736ã2+(κ+ + 2)

)

+ ã2−(609∆κ− + 26643κ+ − 38138) + 6ã−ã+(203∆κ+ + 6104∆ + 8881κ−)

+ã2+(609∆κ− + 26643κ+ + 49478)
]}

+
1

`6

{
− 12E2[34ã−∆ + 145ã+] +

1

42
E3[ν(127456ã−∆ + 509152ã+)− 114753ã−∆− 372729ã+]

}

+
1

`7

{
E2
[
334ã2−κ+ − 635ã2− + 668ã−ã+κ− + 334ã2+κ+ + 668ã2+

]

+
1

84
E3
[
ν
(
−112ã2−(2037κ+ − 1214)− 456288ã−ã+κ− − 228144ã2+(κ+ + 2)

)

+ ã2−(22827∆κ− + 215028κ+ − 328472) + 6ã−ã+(7609∆κ+ + 93156∆ + 71676κ−)

+ã2+(22827∆κ− + 215028κ+ + 1010300)
]}

+
1

`8

{
− 833E [ã−∆ + 5ã+] +

1

12
E2[ν(136500ã−∆ + 665364ã+)− 187318ã−∆− 651175ã+]

}

+
1

`9

{
7

6
E
[
ã2−(539κ+ − 1039) + 1078ã−ã+κ− + 539ã2+(κ+ + 2)

]

+
7

48
E2
[
ν
(
−4ã2−(16099κ+ − 1099)− 128792ã−ã+κ− − 64396ã2+(κ+ + 2)

)

+ ã2−(9693∆κ− + 83685κ+ − 134138) + 2ã−ã+(9693∆κ+ + 130688∆ + 83685κ−)

+3ã2+(3231∆κ− + 27895κ+ + 201638)
]}

+
1

`10

{
− 21

5
[93ã−∆ + 506ã+] +

3

40
E [ν(162988ã−∆ + 895188ã+)− 328441ã−∆− 1285277ã+]

}

– 22 –



+
1

`11

{
63

20

[
ã2−(88κ+ − 171) + 176ã−ã+κ− + 88ã2+(κ+ + 2)

]

+
3

80
E
[
ν
(
−196ã2−(1296κ+ + 761)− 508032ã−ã+κ− − 254016ã2+(κ+ + 2)

)

+ ã2−(48321∆κ− + 470006κ+ − 775904) + 2ã−ã+(48321∆κ+ + 770532∆ + 470006κ−)

+ã2+(48321∆κ− + 470006κ+ + 4121960)
]}

+
1

`12

{
11(ν(387296ã−∆ + 2308880ã+)− 1097925ã−∆− 4756668ã+)

1120

}

+
1

`13

{
11

4480

[
ν
(
−112ã2−(10347κ+ + 14269)− 2317728ã−ã+κ− − 1158864ã2+(κ+ + 2)

)

+ ã2−(262227∆κ− + 2978061κ+ − 5005550) + 6ã−ã+(87409∆κ+ + 1644440∆ + 992687κ−)

+ã2+(262227∆κ− + 2978061κ+ + 28885322)
]}

The computation for unbound orbits is significantly more involved. However, after some

massaging it can be written as follows:

∆Ehyp(`, ã±, E) = +
∆Eell(`, ã±, E)

π
cos−1

(−1

eN

)
+ ∆E

(even)
hyp (`, ã±, E) , (5.19)

where ∆E
(even)
hyp is even under J → −J (and e → −e). Hence, noticing that ∆Eell is odd

under J-parity, and using (5.6), the B2B map in (3.9) is obeyed.

The explicit expression for the (lengthier) even term is given by:

√
2e4N∆E

(even)
hyp (`, ã±, E)

Mν2
= (5.20)

1

`

{
− 16

75
E9/2[5713ã−∆ + 21521ã+]

+
2E11/2[ν(38147088ã−∆ + 131474448ã+)− 28359001ã−∆− 93954742ã+]

11025

}

1

`2

{
8

225
E9/2

[
ã2−(29281κ+ − 55127) + 58562ã−ã+κ− + 29281ã2+(κ+ + 2)

]

+
E11/2
22050

[
ν
(
−56ã2−(2554367κ+ − 2034713)− 286089104ã−ã+ + κ− − 143044552ã2+(κ+ + 2)

)

+ ã2−(9872037∆κ− + 123495327κ+ − 183275618)

+ 2ã−ã+(9872037∆κ+ + 130785704∆ + 123495327κ−)

+9ã2+(1096893∆κ− + 13721703κ+ + 44532590)
]}

1

`3

{
− 8

75
E7/2[54851ã−∆ + 252517ã+]

+
E9/2[ν(630281904ã−∆ + 2806389936ã+)− 702186917ã−∆− 2332888208ã+]

11025

}
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1

`4

{
4

225
E7/2

[
ã2−(259817κ+ − 497014) + 519634ã−ã+κ− + 259817ã2+(κ+ + 2)

]

+
E9/2

44100

[
ν
(
−56ã2−(38656801κ+ − 13673167)− 4329561712ã−ã+κ− − 2164780856ã2+(κ+ + 2)

)

+ ã2−(271723095∆κ− + 2371844217κ+ − 3718678126)

+ 2ã−ã+(271723095∆κ+ + 3450724648∆ + 2371844217κ−)

+3ã2+(90574365∆κ− + 790614739κ+ + 4794170902)
]}

1

`5

{
− 4

75
E5/2[150673ã−∆ + 755891ã+]

+
E7/2[ν(1426875492ã−∆ + 7196110404ã+)− 2221381823ã−∆− 8090706680ã+]

11025

}

1

`6

{
2

225
E5/2

[
ã2−(679831κ+ − 1310552) + 1359662ã−ã+κ− + 679831ã2+(κ+ + 2)

]

+
E7/2

44100

[
ν
(
−28ã2−(165710591κ+ + 18223105)− 9279793096ã−ã+κ− − 4639896548ã2+(κ+ + 2)

)

+ ã2−(745894737∆κ− + 6737032059κ+ − 10910108374)

+ 2ã−ã+(745894737∆κ+ + 10682364952∆ + 6737032059κ−)

+3ã2+(248631579∆κ− + 2245677353κ+ + 17422730002)
]}

1

`7

{
− 14E3/2[305ã−∆ + 1607ã+]

+
E5/2[ν(126497224ã−∆ + 688003120ã+)− 253520875ã−∆− 998019442ã+]

1050

}

1

`8

{
7

3
E3/2

[
ã2−(1331κ+ − 2578) + 2662ã−ã+κ− + 1331ã2+(κ+ + 2)

]

+
E5/2
4200

[
ν
(
−28ã2−(14163997κ+ + 7912369)− 793183832ã−ã+κ− − 396591916ã2+(κ+ + 2)

)

+ 3ã2−(24716321∆κ− + 242351703κ+ − 399754150)

+ 2ã−ã+(74148963∆κ+ + 1186217480∆ + 727055109κ−)

+ã2+(74148963∆κ− + 727055109κ+ + 6340031818)
]}

1

`9

{
− 42

5

√
E [93ã−∆ + 506ã+]

+
1

840
E3/2[ν(41837768ã−∆ + 239782088ã+)− 101769441ã−∆− 423561642ã+]

}
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1

`10

{
63

10

√
E
[
ã2−(88κ+ − 171) + 176ã−ã+κ− + 88ã2+(κ+ + 2)

]

+
E3/2
3360

[
ν
(
−112ã2−(1140621κ+ + 1120396)− 255499104ã−ã+κ− − 127749552ã2+(κ+ + 2)

)

+ ã2−(26599377∆κ− + 282234867κ+ − 470833058)

+ 6ã−ã+(8866459∆κ+ + 155168888∆ + 94078289κ−)

+ã2+(26599377∆κ− + 282234867κ+ + 2627426630)
]}

1

`11

{
11

560

√
E [ν(387296ã−∆ + 2308880ã+)− 1097925ã−∆− 4756668ã+]

}

1

`12

{
11
√
E

2240

[
ν
(
−112ã2−(10347κ+ + 14269)− 2317728ã−ã+κ− − 1158864ã2+(κ+ + 2)

)

+ ã2−(262227∆κ− + 2978061κ+ − 5005550)

+ 6ã−ã+(87409∆κ+ + 1644440∆ + 992687κ−)

+ã2+(262227∆κ− + 2978061κ+ + 28885322)
]}

Something similar occurs for the angular momentum, where we find

∆Jell(`, ã±, E)

πGM2ν2
= (5.21)

1

`3

{
− 8

15
E2[52ã−∆ + 245ã+] +

2

15
E3[ν(980ã−∆ + 3680ã+)− 898ã−∆− 2159ã+]

}

+
1

`4

{
6

5
E2
[
ã2−(21κ+ − 41) + 42ã−ã+κ− + 21ã2+(κ+ + 2)

]

+
1

70
E3
[
ν
(
−28ã2−(311κ+ − 369)− 17416ã−ã+κ− − 8708ã2+(κ+ + 2)

)

+ ã2−(371∆κ− + 9419κ+ − 16514) + 2ã−ã+(371∆κ+ + 7868∆ + 9419κ−)

+ã2+(371∆κ− + 9419κ+ + 18530)
]}

+
1

`5

{
− 8

5
E [95ã−∆ + 468ã+] +

1

35
E2[ν(55832ã−∆ + 242872ã+)− 58346ã−∆− 166243ã+]

}

+
1

`6

{
6E
[
ã2−(20κ+ − 39) + 40ã−ã+κ− + 20ã2+(κ+ + 2)

]

+
1

28
E2
[
ν
(
−28ã2−(1324κ+ − 975)− 74144ã−ã+κ− − 37072ã2+(κ+ + 2)

)

+ ã2−(4319∆κ− + 38618κ+ − 64972) + 2ã−ã+(4319∆κ+ + 49308∆ + 38618κ−)

+ã2+(4319∆κ− + 38618κ+ + 190300)
]}

+
1

`7

{
− 2

3
[168ã−∆ + 901ã+] +

1

6
E [ν(17536ã−∆ + 88648ã+)− 26100ã−∆− 87115ã+]

}
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+
1

`8

{
7

2

[
ã2−(23κ+ − 45) + 46ã−ã+κ− + 23ã2+(κ+ + 2)

]

+
1

24
E
[
ν
(
−56ã2−(961κ+ − 154)− 107632ã−ã+κ− − 53816ã2+(κ+ + 2)

)

+ ã2−(8869∆κ− + 74819κ+ − 126006) + 2ã−ã+(8869∆κ+ + 113260∆ + 74819κ−)

+ã2+(8869∆κ− + 74819κ+ + 549338)
]}

+
1

`9

{
1

60
[ν(74676ã−∆ + 418432ã+)− 158892ã−∆− 615951ã+]

}

+
1

`10

{
3

80

[
ν
(
−112ã2−(216κ+ + 115)− 48384ã−ã+κ− − 24192ã2+(κ+ + 2)

)

+ ã2−(4921∆κ− + 47168κ+ − 80140) + 2ã−ã+(4921∆κ+ + 75348∆ + 47168κ−)

+ã2+(4921∆κ− + 47168κ+ + 416112)
]}

On the other hand, after similar manipulations, we arrive at

∆Jhyp(`, ã±, E) = +
∆Jell(`, ã±, E)

π
cos−1

(−1

eN

)
+ ∆J

(odd)
hyp (`, ã±, E) , (5.22)

where ∆J
(even)
hyp is odd under J → −J (or e → −e). Once again, since in this case ∆Jell is

even under J-parity, the B2B correspondence in (3.11) applies.

The expression for the odd term is given by:

√
2e4N∆J

(odd)
hyp (`, ã±, E)

GM2ν2
= (5.23)

`2
{
−128

5
E9/2[ã−∆ + 7ã+] +

32

35
E11/2[ν(63ã−∆ + 357ã+)− 109ã−∆− 203ã+]

}

+ `

{
128

5
E9/2

[
ã2−(κ+ − 2) + 2ã−ã+κ− + ã2+(κ+ + 2)

]

− 32

35
E11/2

[
ν
(
7ã2−(11κ+ − 14) + 154ã−ã+κ− + 77ã2+(κ+ + 2)

)

+ã2−(232− 123κ+)− 2ã−ã+(98∆ + 123κ−)− 3ã2+(41κ+ + 12)
]}

+ `0
{
− 32

45
E7/2[978ã−∆ + 4675ã+]

+
8E9/2[ν(1009106ã−∆ + 4045202ã+)− 935472ã−∆− 2512391ã+]

1575

}

+
1

`

{
8

15
E7/2

[
ã2−(1091κ+ − 2127) + 2182ã−ã+κ− + 1091ã2+(κ+ + 2)

]

+
2E9/2
1575

[
ν
(
−28ã2−(126061κ+ − 121315)− 7059416ã−ã+κ− − 3529708ã2+(κ+ + 2)

)

+ ã2−(309449∆κ− + 3479857κ+ − 5918310) + 2ã−ã+(309449∆κ+ + 3785012∆ + 3479857κ−)

+ã2+(309449∆κ− + 3479857κ+ + 12238918)
]}
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+
1

`2

{
− 16

45
E5/2[4350ã−∆ + 21983ã+]

16E7/2[ν(2150743ã−∆ + 10018946ã+)− 2626776ã−∆− 8039878ã+]

1575

}

+
1

`3

{
4

15
E5/2

[
ã2−(4477κ+ − 8739) + 8954ã−ã+κ− + 4477ã2+(κ+ + 2)

]

+
E7/2
1575

[
ν
(
−28ã2−(986447κ+ − 501590)− 55241032ã−ã+κ− − 27620516ã2+(κ+ + 2)

)

+ ã2−(3765328∆κ− + 32458829κ+ − 54619230)

+ 2ã−ã+(3765328∆κ+ + 45132304∆ + 32458829κ−)

+ã2+(3765328∆κ− + 32458829κ+ + 196050926)
]}

+
1

`4

{
− 8

45
E3/2[5910ã−∆ + 30949ã+]

+
4E5/2[ν(11019148ã−∆ + 55964216ã+)− 17180511ã−∆− 59099908ã+]

1575

}

+
1

`5

{
2

3
E3/2

[
ã2−(1165κ+ − 2277) + 2330ã−ã+κ− + 1165ã2+(κ+ + 2)

]

+
E5/2
3150

[
ν
(
−28ã2−(2415106κ+ − 257035)− 135245936ã−ã+κ− − 67622968ã2+(κ+ + 2)

)

+ ã2−(11212334∆κ− + 97928347κ+ − 165264510)

+ 2ã−ã+(11212334∆κ+ + 148172192∆ + 97928347κ−)

+ã2+(11212334∆κ− + 97928347κ+ + 733208698)
]}

+
1

`6

{
− 4

3

√
E [168ã−∆ + 901ã+]

+
4

9
E3/2[ν(31821ã−∆ + 171094ã+)− 59298ã−∆− 219324ã+]

}

+
1

`7

{
7
√
E
[
ã2−(23κ+ − 45) + 46ã−ã+κ− + 23ã2+(κ+ + 2)

]

+
1

12
E3/2

[
ν
(
−56ã2−(2257κ+ + 536)− 252784ã−ã+κ− − 126392ã2+(κ+ + 2)

)

+ ã2−(23632∆κ− + 216323κ+ − 366426) + 2ã−ã+(23632∆κ+ + 339304∆ + 216323κ−)

+ã2+(23632∆κ− + 216323κ+ + 1797674)
]}

+
1

`8

{
1

30

√
E [ν(74676ã−∆ + 418432ã+)− 158892ã−∆− 615951ã+]

}

+
1

`9

{
3

40

√
E
[
ν
(
−112ã2−(216κ+ + 115)− 48384ã−ã+κ− − 24192ã2+(κ+ + 2)

)

+ ã2−(4921∆κ− + 47168κ+ − 80140) + 2ã−ã+(4921∆κ+ + 75348∆ + 47168κ−)

+ã2+(4921∆κ− + 47168κ+ + 416112)
]}

Notice in both cases some of the terms in the hyperbolic result do not allow for a smooth
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analytic continuation in the binding energy. However, all of these pieces nicely cancel out in

the B2B dictionary of (3.9) or (3.11).

5.5 Local-in-time

We move on now onto the conservative sector and local-in-time effects. We concentrate on

the 4PN dynamics which has been established by independent derivations [42–45, 52–55].9

Introducing the split between local- and non-local-in-time contributions,

χ

2
=
∞∑

j=1

1

jn

(
χ

(n)
j,loc(v∞) + χ

(n)
j,nloc(v∞)

)
, (5.24)

where v∞ ≡
√
γ2 − 1 serves as an expansion parameter, we have

χ
(1)
j,loc =

1

v∞
+ 2v∞ ,

χ
(2)
j,loc =

3π

2
+

[
15π

8
− 3πν

4

]
v2
∞ +

[
9πν2

16
− 3πν

4

]
v4
∞ +

[
−15πν3

32
+

27πν2

64
+

9πν

64

]
v6
∞

χ
(3)
j,loc = − 1

3v3
∞

+
4

v∞
+ [24− 8ν]v∞ +

[
8ν2 − 36ν +

64

3

]
v3
∞ +

[
−8ν3 + 34ν2 − 91ν

5

]
v5
∞

χ
(4)
j,loc =

[
−15πν

4
+

105π

8

]
+

[
45πν2

8
+

(
123π3

256
− 109π

2

)
ν +

315π

8

]
v2
∞

+

[
−225πν3

32
− 3

512
π
(
123π2 − 12872

)
ν2 +

π
(
100803π2 − 5016832

)
ν

49152
+

3465π

128

]
v4
∞

χ
(5)
j,loc =

1

5v5
∞
− 2

v3
∞

+
32− 8ν

v∞
+

[
24ν2 +

(
41π2

8
− 1168

3

)
ν + 320

]
v∞

+

[
−40ν3 +

(
7342

9
− 287π2

24

)
ν2 +

(
5069π2

144
− 227059

135

)
ν + 640

]
v3
∞

(5.25)

9The conservative 5PN dynamics was recently reported in [59, 75], see also [33, 76–80], and partial values

to 6PN order in [58, 60]. Despite some disagreements in the literature, notably for memory terms, we checked

the B2B correspondence remains valid regardless of the specific values associated with local-in-time dynamics.
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From here, and using the algebraic relations discussed in [1, 2], we find

f loc
1

Γ
=

2

v2
∞

+ 4 ,

f loc
2

Γ
=

6

v2
∞

+
15

2
,

f loc
3

Γ
=

[
−5ν +

17

2

]
1

v2
∞

+

[
3ν2

4
− 37ν

2
+ 9

]
+

[
−3ν3

8
+

33ν2

16
− 471ν

80

]
v2
∞

f loc
4

Γ
=

[
7ν2

2
+

(
41π2

32
− 160

3

)
ν + 8

]
1

v2
∞

+

[
−5ν3

4
+

49ν2

2
+

(
33601π2

6144
− 3877

45

)
ν +

129

16

]

f loc
5

Γ
=

[
−9ν3

4
+

(
2579

24
− 205π2

64

)
ν2 +

(
14173π2

6144
− 3707

360

)
ν + 6

]
1

v2
∞

(5.26)

for the fi’s in the expansion of the center-of-mass momentum in (2.2). These values capture

all the needed information to 4PN order. For instance, the application of the B2B map

requires the even coefficients of the scattering angle, which can be obtained directly from the

fi coefficients [1, 2]

χ
(6)
j,loc =

5πv6
∞

16Γ6

(
f3

2

2
+ 3f1f3f2 + 3f4f2 +

3

2
f2

3 +
3

2
f2

1 f4 + 3f1f5 +
3f6

2

)
. (5.27)

Due to the scaling fi ' 1/v2
∞ [1, 2], the PN contribution from f6 is subleading, such that

χ
(6)
j,loc =

[
105πν2

16
+

5

256
π
(
123π2 − 8000

)
ν +

1155π

8

]
(5.28)

+

[
−525πν3

32
− 5

64
π
(
123π2 − 7013

)
ν2 +

π
(
771585π2 − 37556864

)
ν

24576
+

45045π

64

]
v2
∞+ · · ·

which agrees with the known value to 4PN. The same reasoning applies to higher order

terms. It is now straightforward to construct the (reduced) local-in-time bound radial action

following the B2B dictionary, which takes the form

iloc
r ≡

S loc
r,ell

GM2ν
= sgn(p̂∞)χ

(1)
j − j


1 +

2

π

∞∑

n=1

χ
(2n)
j,loc

(1− 2n)j2n


 , (5.29)

with the 4PN contribution to the χ
(2n)
j,loc’s, up to n = 4, obtained from the fi’s. Using [1, 2]

v2
∞ →

(
1 + E +

νE2

2

)2

− 1 , (5.30)

the bound radial action then becomes a function of the (negative) binding energy after analytic

continuation. From the radial action we compute all the local-in-time observables for bound
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orbits through derivatives w.r.t. the angular momentum and binding energy. For example,

we derived the local correction to the periastron advance to 4PN via

1 +
∆Φloc

2π
= − ∂

∂j
iloc
r , (5.31)

also directly from the value of the scattering angle using (2.8), yielding perfect agreement with

the result reported in [81]. The map can also be shown to hold for known values at higher PN

orders. For example, the bound radial action constructed through (5.26) neatly reproduces

all the values presented in TABLE XIV of [58]. Furthermore, the B2B map between angle

and periastron advanced was also used in the recent results at 5PN in [59].

5.6 Large-J expansion

Here we explicitly check the validity of the B2B dictionary in the large-eccentricity limit for

the paradigmatic example at 4PN order. To evaluate the non-local dynamics will we use a

(comprehensive) parameterization of the Newtonian orbit,

r =
j2

1 + e cosα
, (5.32a)

φ− φ0 = α , (5.32b)

j−3 (t− t0) =
2

(1− e2)3/2
arctan

(√
1− e
1 + e

tan
α

2

)
− e

1− e2

sinα

1 + e cosα
, (5.32c)

dr

dt
=
e sinα

j
, (5.32d)

dφ

dt
=

(1 + e cosα)2

j3
. (5.32e)

After rescaling the time parameter τ ≡ t
GM , the non-local Hamiltonian defined in (4.22) may

be written as

Hnloc(τ) = Htail +Hlog r , (5.33)

with10

Htail = −Mν2

15j10
PfT

∫
dτ ′

|τ ′ − τ |F (τ, τ ′) (5.34)

Hlog r = −4Mν2

15j10
F (τ, τ) log(r2/T 2) , (5.35)

where PfT stands for partie finite, and at leading PN order we have [58, 60]

F (τ, τ ′) = (1 + e cosα)2 (1 + e cosα′)2 (F0 + e F1 + e2 F2) , (5.36)

10The factor of log T is equivalent to the log(2eγEµ) in frequency space, see e.g. [42].
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where

F0 = 24 cos(2α− 2α′) , (5.37)

F1 = 9 cos(2α− 3α′) + 15 cos(α− 2α′) + 9 cos(3α− 2α′) + 15 cos(2α− α′) ,

F2 = −1

4
cos(α+ α′) +

45

8
cos(3α− α′) +

45

8
cos(−3α′ + α) (5.38)

+
27

8
cos(3α− 3α′) +

77

8
cos(α− α′) ,

with α ≡ α(τ) and α′ ≡ α(τ ′). The non-local radial action is then obtained by integrating

over the orbit,

Snloc
r = −GM

2π

∫ a

−a
dα

dτ

dα

(
Htail +Hlog r

)
≡ Stail

r + S log r
r , (5.39)

where the limits of integration given by hyperbolic-like (a = π) and elliptic-like (a = π/2)

motion at leading order in 1/j, respectively. Performing the (regularized) time and orbital

integration we find

Stail
r,ell

GM2ν
= 2
Stail
r,hyp

GM2ν
= − 1

2π

16πE2ν

15j3

(
37 log

( |E|T
2j

)
+ 100

)
, (large-e approx.)

S log r
r,ell

GM2ν
= 2
S log r
r,hyp

GM2ν
= − 1

2π

16π ν E2

15j3

(
37 log

( √
2j

T
√
|E|

)
− 85

4

)
,

(5.40)

for each individual term, such that the sum becomes

Snloc
r,ell

GM2ν
= 2
Snloc
r,hyp

GM2ν
= − 1

2π

16πE2ν

15j3

(
37 log

(√
|E|√
2

)
+

315

4

)
, (large-e approx.)

(5.41)

which, at this order, formally obeys the B2B correspondence in (4.25). However, while the

expansion of the radial actions in the limit of large angular momentum may be related through

the B2B map, the non-local contributions obtained in this fashion do not fully describe generic

bound orbits. Nevertheless, similarly to the local-in-time effects, we find the B2B dictionary

correctly captures all the logarithms of the binding energy.

5.7 Logarithms

Let us consider now the logarithms (in binding energy) resulting from the non-local-in-time

dynamics described by the universal contribution in (4.22). As we mentioned earlier, the

result takes the form,

χ
(n)
j,nloc = χ

(n)
j,log log v∞ + · · · , (5.42)
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which starts at 4PN order, and has been computed to 6PN in [58],11

χ
(4)
j,log

πν
= −37v4

∞
5

+

[
111ν

10
− 1357

280

]
v6
∞ +

[
−111ν2

8
+

2517ν

560
− 27953

3360

]
v8
∞ + · · · ,

χ
(5)
j,log

ν
= −6272v3

∞
45

+

[
13952ν

45
− 74432

525

]
v5
∞ −

[
21632ν2

45
− 288224ν

1575
+

881392

11025

]
v7
∞ + · · · ,

χ
(6)
j,log

πν
= −122v2

∞ +

[
811ν

2
− 13831

56

]
v4
∞ +

[
−785ν2 +

75595ν

168
+

64579

1008

]
v6
∞ + · · · ,

χ
(7)
j,log

ν
= −9344v∞

15
+

[
48256ν

15
− 284224

105

]
v3
∞ +

[
−118912ν2

15
+

11456416ν

1575
+

587984

567

]
v5
∞ + · · · ,

χ
(8)
j,log

πν
= −595

3
+

[
−15813

8
+

10535

6
ν

]
v2
∞ + · · ·

(5.43)

More recently, the logarithmic contribution to the scattering angle have been obtained at

4PM, to all orders in the PN expansion [26, 27]. The result reads

χ
(4)
j,log

νπ
=

E

M2ν2π

∂

∂j
∆Ehyp(j, E) =

2v4
∞

Γ3
χ2ε(γ) , (5.44)

with the explicit expression for χ2ε(γ) given in [26, 27]. Performing a PN expansion we find,

χ
(4)
j,log

νπ
= − 37v4

∞
5

+

(
111ν

10
− 1357

280

)
v6
∞ +

(
−111ν2

8
+

2517ν

560
− 27953

3360

)
v8
∞

+

(
259ν3

16
− 963ν2

448
+

2699ν

224
+

676273

118272

)
v10
∞ + · · · ,

(5.45)

which neatly agrees with the PN derivations, and we added the first new result at 7PN order.

Due to the lack of information at higher PM orders, we will not consider this correction in

what follows.

The Firsov representation can now be augmented to include the logarithmic corrections

to describe generic orbits, re-written as

p2 = p2
∞

[
1 +

∑

i

(
f loc
i + f log

i log |v∞|
)(GM

r

)i]
. (5.46)

Notice that, as advertised, the factor of log r from potential-only contributions is traded by a

logarithm of the binding energy in the full dynamics. Following the same steps as before we

11Except for χ
(8)
j,log, which we have obtained here through the Firsov representation.
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arrive at

f log
4

Γ
= −296ν

15
− 1357νv2

∞
105

− 27953νv4
∞

1260
+ · · · ,

f log
5

Γ
= −136ν

3v2
∞

+

[
796ν2

15
+

1271ν

25

]
+

[
−37ν3

5
+

50441ν2

1050
+

412281ν

4900

]
v2
∞ + · · · ,

f log
6

Γ
=

[
2576ν2

15
+

5916ν

25

]
1

v2
∞
−
[

496ν3

5
+

453982ν2

1575
− 15073564ν

33075

]
+ · · · ,

f log
7

Γ
=

[
−348ν3 − 157946ν2

105
+

444883ν

19845

]
1

v2
∞

+ · · · ,

(5.47)

for the logarithmic contributions in the expansion of the center-of-mass momentum. Momen-

tarily, we will show how the above coefficient reproduce the correct logarithmic contributions

to the binding energy for quasi-circular orbits through the B2B dictionary.

5.8 Large-eccentricity vs circular orbits

In order to evaluate how well the bound radial action for generic orbits can be approximated

by the B2B map from the scattering angle obtained in a large-eccentricity expansion, we

consider next a paradigmatic example: the binding energy for circular orbits. Although,

as we shall see, the B2B map does not reproduce to the exact value in the literature [42–

45, 54, 55], we find that several contributions, notably local-in-time effects and leading tail

logarithms, do transition smoothly between unbound and bound motion.

We start by constructing the B2B radial action from the knowledge of the total scattering

angle,

ilarge-e
r = sgn(p̂∞)χ

(1)
j − j


1 +

2

π

∞∑

n=1

χ
(2n)
j,loc + χ

(2n)
j,nloc

(1− 2n)j2n


 , (5.48)

including non-local-in-time effects,12 e.g. [58]

χ
(4)
j,nloc

πν
=

[
−37

5
log v∞ +

37

5
log 2− 63

4

]
v4
∞+ · · · ,

χ
(6)
j,nloc

πν
=

[
−122 log v∞ + 122 log 2− 99

8
(21ζ3 + 2)

]
v2
∞+ · · · .

(5.50)

12In principle, to calculate the binding energy to 4PN from the radial action we need the value of χ
(8)
j , which

unfortunately is not presently known. Although we do not expect the Firsov representation to be valid for

(non-logarithmic) non-local-in-time terms, we can still use it as a proxy for the full value. Hence, from

χ
(8)
j =

35πp8∞
256ν8M8

(
f4
2 + 12 (f1f3 + f4) f2

2 + 12
(
f4f

2
1 + 2f5f1 + f2

3 + f6
)
f2 + 6f2

4

+4f3
1 f5 + 12f3f5 + 6f2

1

(
f2
3 + 2f6

)
+ 12f1 (2f3f4 + f7) + 4f8

)
,

(5.49)

truncated to 4PN order, we complete the expression in (5.48).
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The binding energy is then extracted by imposing the vanishing of the radial action to solve

for the angular momentum as a function of binding energy, and subsequently using the first-

law of binary dynamics [82] to write E as a function of the orbital frequency through the

parameter x ≡ (GMΩ)2/3. To 4PN order we find (recall ε = −2E)

ε(x) =

{
1 +

[
− ν

12
− 3

4

]
x+

[
−ν

2

24
+

19ν

8
− 27

8

]
x2 (large-e approx.) (5.51)

+

[
−35ν3

5184
− 155ν2

96
− 5

576

(
246π2 − 6889

)
ν − 675

64

]
x3

+

[
77ν4

31104
+

301ν3

1728
+

7
(
2706π2 − 71207

)
ν2

3456
+

7
(
19365π2 − 98756

)
ν

23040
− 3969

128

+

(
448 log x

15
− 271768ζ3

45
+

19576

135
+

463232 log 2

45

)
ν

]
x4

}
+ · · · .

For illustrative purposes we have colored here only the contribution from the non-local term,

which enters at O(ν).

After direct comparison with the literature we find that all of the local-in-time contribu-

tion (and logarithms) perfectly matches the correct value for circular orbits. However, other

terms, due to non-local effects, do not agree. At the end of the day there is a non-negligible

mismatch,

δε = νx5 56

135

(
14559 ζ3 − 329 + 144γE − 24528 log 2

)
' 102 νx5 , (5.52)

between the correct result at this order and the one obtained from the B2B map using a large-

eccentricity approximation. This feature (including the presence of different transcendental

numbers!) remains essentially unaltered at higher PN orders: contribution from local-in-time

effects transition smoothly to the correct result for generic orbits, whereas the numerical

values for most of the non-local corrections translated from a large-eccentricity expansion

through the B2B dictionary do not capture the circular case.

The situation, however, is remarkably different for the logarithmic terms. Using the

expressions in (5.43), or directly from the Firsov representation and the coefficients in (5.47),

we obtain the following contribution to the bound radial action to 6PN through the B2B

map,

ilog
r =

2

π

n=4∑

n=2

χ
(2n)
j,log

(1− 2n)j2n
+ · · · . (5.53)
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Performing the same manipulations as before, we find

εlog x =

{
448

15
νx5 +

[(
−224

5
− 432

5

)
ν2 +

(
−176 +

1172

35

)
ν

]
x6 (large-e approx.)

+

[(
616

27
+

792

5
+

176

3

)
ν3 +

(
39776

45
+

491326

315
− 1394492

945

)
ν2

+

(
−2638064

45
+

6032774

105
+

1138874

1215

)
ν

]
x7

}
log x ,

(5.54)

for the logarithmic contribution to the binding energy obtained via scattering data to 6PN

order. (Notice this included different orders in the 1/j expansion of the scattering angle.)

After adding them all up, they beautifully reproduce the correct value for circular orbits. This

demonstrates the validity of the B2B map and Firsov representation both for local-in-time as

well as (leading) tail logarithms for generic orbits.

6 Discussion

In this paper we have extended the B2B correspondence to include radiation effects, both in

the dissipative and conservative sectors. We have found various types of analytic continuations

between radiative observables for unbound and bound orbits,

∆Oell(J, E) = ∆Ohyp(J, E)− σO∆Ohyp(−J, E) ,

notably for the total (source) energy and angular momentum with σE/J = +/−, respectively;

as well as conservative radiation-reaction contributions to the radial action,

Sr,ell(J) = Sr,hyp(J)− Sr,hyp(−J) ,

in the large-eccentricity limit. While the latter encapsulates all the local-in-time terms as

well as the non-local-in-time logarithmic corrections, other non-local contributions in generic

bound states are not captured by the large J expansion. This is easy to see already from the

expression in (4.22). Assuming the validity of the adiabatic approximation, we can evaluate

the integral over the conservative trajectory. Hence, performing a change of variables, e.g.

u ≡ ω ea3/2, with (e, a) the orbital elements [58, 60], as well as using the parameterized form

for the trajectory in terms of v, the ‘eccentric anomaly,’

rell(v) = a(1− e cos v) , rhyp(v) = a(e cosh v − 1) ,

we can readily factor out the tail logarithms out of the integral, yielding a contribution to

the radial action proportional to13

Slog
r,ell/hyp ∝ ∆Eell/hyp log |E| .

13More generally, within the realm of the PM expansion, this is due to the fact that the pole from radiation

modes in the tail effect is accompanied by a factor of v
−2(d−4)
∞ . The latter is ultimately responsible for the

log v∞ in the effective action [26, 27]. Hence, the universal character of the divergent part of the tail implies

that both appear multiplied by the total radiated energy at the end of the day, see §4.5.
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As a result of the B2B map for the total radiated energy, this implies the B2B correspon-

dence for the logarithmic terms in the conservative sector. However, the result also features

left-over integrals of the sort (schematically)
∫

ell
F (u) log u du vs

∫

hyp
F (u) log u du ,

with F (u) the (dimensionless) energy flux, see e.g. [58, 60] for examples in the PN context.

As discussed in detail in [58, 60], the presence of the log u produces wildly different values

depending on the trajectory, involving even different types of transcendental numbers. For

instance, while the quasi-circular binding energy features a factor of γE at 4PN, the scattering

angle does not. This precludes the existence of a straightforward map at the level of the final

answer which would connect generic non-local-in-time contributions from the above integral

evaluated on unbound and bound orbits.

It is possible, however, to establish a relationship at the level of the integrand. As it is well

known, e.g. [83], we can obtain the radial motion for elliptic-like orbits from hyperbolic-like

motion directly via analytic continuation to negative binding energy and complex eccentric

anomaly. Hence, we can search for the existence of an analytic continuation prior to per-

forming the integration. For instance, on the one hand we find the hyperbolic result for the

non-local-in time term at leading PN order leads to the integral
∫ ∞

0
dp p6|I ijhyp(p)|2 log (pΩhyp) ,

where we made a change of variables p ≡ ω/Ωhyp, and introduced a fictitious ‘orbital fre-

quency’ Ωhyp ≡ (2E)3/2/GM . Notice the parameter p is a continuous variable in this case.

The leading quadrupolar flux is given by |I ijhyp(p)|2 = |Îijhyp(ip)|2, as an analytic continuation

of the following function,

|Îijhyp(p)|2 = −8G4M6 π2 a4 ν2

3 e4 p4

[
3e2
(
1− e2

) (
1 +

(
1− e2

)
p2
)
H

(1)
p−1(ep)2

− 3e
(
1− e2

) (
− e2p(2p+ 3) + 2(p+ 1)2

)
H(1)
p (ep)H

(1)
p−1(ep)

+
(
− 3e6p2 + e4

(
12p2 + 9p+ 1

)
− 3e2(p+ 1)(5p+ 2) + 6(p+ 1)2

)
H(1)
p (ep)2

]
,

with (e, a) the orbital elements. The Hankel function is given by

H(1)
p (x) =

1

iπ

∫ +∞

−∞
dv ex sinh v−pv ,

which turns into the familiar Kp(x) Bessel function after analytic continuation x→ −ix.

On the other hand, the elliptic case involves a sum over harmonics of the type [66]

∞∑

p=1

p6|I ijell(p)|2 log (pΩell) ,
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with Ωell ≡ (−2E)3/2/GM the true frequency of circular orbits (which may be obtained

directly from Ωhyp via analytic continuation in E), and the quadrupole flux

|I ijell(p)|2 =
8G4M6 a4 ν2

3 e4 p4

[
3e2
(
1− e2

) (
1 +

(
1− e2

)
p2
)
Jp−1(ep)2

− 3e
(
1− e2

) (
− e2p(2p+ 3) + 2(p+ 1)2

)
Jp(ep)Jp−1(ep)

+
(
− 3e6p2 + e4

(
12p2 + 9p+ 1

)
− 3e2(p+ 1)(5p+ 2) + 6(p+ 1)2

)
Jp(ep)

2

]
,

which is written in terms of the following Bessel function

Jp(x) =
1

2π

∫ +π

−π
dv ei(x sin v−pv) .

The reader will immediately notice the resemblance between the two expressions. In par-

ticular, the analytic continuation in p → ip of the hyperbolic result plus the replacement

H
(1)
p → Jp leads to the integrand, albeit with a discrete variable, for elliptic-like motion.

Furthermore, the latter replacement between Bessel functions can be understood as the ana-

lytic continuation in v → iv associated with the link between unbound and bound (periodic)

parameterizations of the orbit. From here we conclude that, indeed, we can find an analytic

continuation at the level of the integrands. Yet, it is also clear the relationship ceases to

apply once we expand in small/large eccentricity limits. As a consequence, other than the

results uncovered here, it seems unlikely that a B2B-type map can connect non-local-in-time

scattering data to generic bound orbits. It is still unclear, however, whether bound states

with non-negligible eccentricities may be well approximated by the original B2B dictionary.

We will explore this in more detail in future work.

We have concentrated here on local- and non-local-in-time tail effects. For the sake of

completeness, let us conclude with a few comments regarding non-linear conservative mem-

ory terms, which are expected to be indistinguishable from other local-in-time effects and

therefore readily incorporated in the B2B dictionary. The leading memory contribution may

be computed through the same topology as in Fig. 3 (but including the quadrupole coupling

and the full radiative field in the middle line instead of the monopole term and quasi-static

potential). Similarly to tail terms, the separation between dissipative and conservative effects

must be performed at the level of the full equations of motion, which may be derived using the

Keldysh-Schwinger formalism [52, 84, 85]. Yet, at the 5PN order at which radiation-reaction

memory corrections start to contribute, we also encounter other non-linear dissipative effects

correcting the leading (Burke-Thorne) back-reaction force. The additional terms may be ob-

tained via the EFT approach by including the (seagull-type) non-linear worldline coupling

between the binary’s quadrupole and the curvature tensor, see e.g. [59, 86].14 As it turns out,

14These should not be confused with effects that enter the dynamics at quadratic order in the leading back-

reaction force. In the PM EFT language of [22], the latter arise through iterations involving the deflection due

to the leading dissipative effects inserted into the tree-level radiation-reaction effective action.
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the extra terms also entail three quadrupole moments and an even number of time derivatives,

as in the memory contribution. Therefore, they can mimic the scaling of time-symmetric con-

servative effects. Furthermore, total time derivatives (known as ‘Schott terms’) may not only

be present in the balance equations, they may also remain once averaged over the orbital

motion. Hence, one must exercise special care when separating the various pieces entering

the dynamics through the product of (more than two) multipole moments. Although yielding

somewhat subtle effects, all the conservative memory terms are purely local in time, and

therefore are automatically included in the original B2B dictionary. We will discuss these

contributions elsewhere.
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[42] T. Damour, P. Jaranowski and G. Schäfer, Nonlocal-In-Time Action for the Fourth

Post-Newtonian Conservative Dynamics of Two-Body Systems, Phys. Rev. D 89 (2014) 064058

[1401.4548].
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