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We use the numerical conformal bootstrap to study six-dimensional N = (1, 0) superconformal
field theories with flavor symmetry so4k. We present evidence that minimal (Dk, Dk) conformal
matter saturates the unitarity bounds for arbitrary k. Furthermore, using the extremal-functional
method, we check that the chiral-ring relations are correctly reproduced, extract the anomalous
dimensions of low-lying long superconformal multiplets, and find hints for novel OPE selection rules
involving type-B multiplets.

I. INTRODUCTION

For the last three decades, string theory has been a
potent apparatus for the construction of quantum field
theories (QFTs). The power of this approach finds its
source in the way the parameters and properties of the
quantum field theory are governed by geometrical and
topological features of the compactification space. Con-
formal field theories (CFTs) are an especially interesting
class of QFTs; they exist at the fixed points of the renor-
malization group flows, and thus they can provide im-
portant insights into the nature of quantum field theory.

In this work, our focus is on CFTs with additional
supersymmetry, known as superconformal field theories
(SCFTs). From a pure field theory perspective, it was
long unknown whether interacting superconformal field
theories exist in five or six dimensions, despite the ex-
istence of the appropriate superconformal algebras [1].
In part, the challenge in constructing such theories lies
in the fact that there are no supersymmetry-preserving
marginal deformations in five or six dimensions [2], and
thus the usual techniques of perturbation theory cannot
be applied. In the 1990s, it was discovered that compact-
ifications of Type IIB string theory on non-compact K3
surfaces give rise to exotic six-dimensional theories, with
sixteen supercharges, whose constituent objects are ten-
sionless strings [3], and it was soon realized that they are
in fact superconformal field theories [4]. This is a prime
example of geometric engineering ; each such 6d SCFT is
associated to a finite subgroup of SU(2), Γ, as the K3
surfaces are all locally of the orbifold form C2/Γ.

One of the recent successes of this technique of geo-
metric engineering of quantum field theories is the enu-
meration of a vast landscape of six-dimensional super-
conformal field theories with eight supercharges obtained
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via F-theory [5, 6]. The SCFTs realized by this con-
struction have a quiver-like structure; the “links” ap-
pearing in these quivers are themselves non-trivial in-
teracting SCFTs with a g⊕ g′ flavor algebra – they are a
generalization of an sun ⊕ sum bifundamental hypermul-
tiplet – known as minimal (g, g′) conformal matter [7].
These conformal matter theories have a simple construc-
tion from the perspective of M-theory: for each ADE al-
gebra g′ = g, the minimal conformal matter theory lives
on the worldvolume of a single M5-brane probing a C2/Γ
orbifold, where Γ is the finite subgroup of SU(2) of the
same ADE-type as g.

Despite marking a significant milestone in our under-
standing of six-dimensional field theories, it remains un-
known to what extent the landscape of consistent 6d
SCFTs matches that obtained from geometric construc-
tions. There are six-dimensional SCFTs which are con-
structed with “frozen” 7-branes, and these are not cap-
tured by the geometric constructions of [5, 6], however
such SCFTs may still be obtainable from an F-theory
origin [8, 9]. Similarly, there are putative 6d SCFTs
that appear non-anomalous from the bottom-up, field-
theoretic perspective, however there is no known way to
engineer these theories from F-theory; such theories are
widely believed to be inconsistent for a variety of indi-
rect reasons [10, 11], however this has not been rigorously
established. As a final example, there is a seemingly con-
sistent spectrum with su3 flavor symmetry, for which the
Higgs branch is the one-instanton moduli space of SU(3)
[12]; this theory does not have a known geometric con-
struction. It is an open question, which can be considered
as part of the swampland program, whether all consistent
6d SCFTs have an origin in string theory.

The main drawback of the geometric engineering ap-
proach is that, up to a small collection of protected quan-
tities such as the central charges, it is unknown how to
access the conformal data, namely the conformal dimen-
sions and OPE coefficients, from the geometry. This
raises the question of whether other techniques, when
used in conjunction with geometry, can be employed
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to learn about those conformal quantities. Some work
towards the determination of the conformal dimensions
for certain classes of unprotected operators in 6d (1, 0)
SCFTs was initiated in [13, 14].

Concurrently, but transversely, to the development of
the geometric program, the conformal bootstrap [15, 16]
has known renewed interest, sparked in [17], and provides
a technique for bounding the conformal data of a CFT.
Using the associativity of the operator product expansion
(OPE), the ethos of the bootstrap is to harness the power
of unitarity to impose strict bounds on the values that
the conformal data of a(n S)CFT can take, with minimal
assumptions on the spectrum of the theory. The super-
conformal bootstrap has been applied to SCFTs with at
least eight supercharges; in three [18–23] and four [24–
37] dimensions there is a significant body of literature,
however five [38] and six [39–41] dimensional analyses
have been carried out comparatively less. In general, the
bounds that are imposed by crossing symmetry and as-
sociativity of the OPE appear to be saturated by SCFTs
that have a construction via string theory. While most
of the literature has focused on theories in lower dimen-
sions, the geometric landscape of 6d (1, 0) SCFTs that
has been charted in [5, 6] is opportune for exploitation
via bootstrap techniques.

In this paper, we use the numerical conformal boot-
strap to study six-dimensional N = (1, 0) SCFTs with a
non-Abelian flavor symmetry. We focus on those with fla-
vor algebra so4k, for k > 4. We find that the lower bound
imposed by unitarity on the flavor central charge for a
given value of k converges to that of minimal (Dk, Dk)
conformal matter. This suggests that such conformal
matter is the “smallest” SCFT with that flavor symme-
try, and rules out any potential more exotic theory with
a smaller flavor central charge. Assuming that the bound
is saturated, we proceed to extract the conformal dimen-
sions of the first few scalar long multiplets. We observe
that the half-BPS multiplets that appear to be absent
from the spectrum are consistent with those known to be
projected out by the Higgs-branch chiral ring of minimal
(Dk, Dk) conformal matter, providing further confirma-
tion for the conjecture that conformal matter saturates
the bounds.

II. MINIMAL (Dk, Dk) CONFORMAL MATTER

Before discussing how the conformal bootstrap can be
used to learn about the data of 6d SCFTs, we review
how they can be engineered in F-theory, and in particular
how minimal (Dk, Dk) conformal matter and some of its
properties arise from geometry.

Six-dimensional theories with superconformal symme-
try are obtained by compactification of F-theory on
particular non-compact elliptically-fibered Calabi–Yau
threefolds. The internal space encodes many properties
of the theory, including the required cancellation of gauge

anomalies.1 As mentioned in the introduction, an extra
ingredient in six-dimensional conformal theories is the
presence of tensionless strings in their spectrum – and
the tensor multiplets they magnetically couple to – which
are absent in their lower-dimensional cousins. These can
be realized by wrapping D3-branes on curves in the base
of the elliptic fibration, where the tension of the string is
set by the volume of the curve. To obtain an SCFT it is
therefore necessary that there are no curves of finite vol-
ume, as they would otherwise introduce a scale induced
by the tension.

In practice, one can begin by enumerating all non-
compact bases containing configurations of contractible
curves such that there exists a minimal elliptic fibration
over them. Compactification of F-theory on these geome-
tries however gives rise to 6d field theories containing ten-
sionful strings. This geometry corresponds to the tensor
branch of a 6d SCFT if it is possible to simultaneously
shrink all rigid curves to zero volume; this can be done if
the intersection matrix of the curves – corresponding to
the Dirac pairing of the 6d strings – is negative definite.
This condition, in addition to the requirement that the
elliptic fibration has only minimal singularities, makes it
possible to enumerate all such tensor-branch geometries
leading to an SCFT [5, 6].

In this top-down approach, minimal (Dk, Dk) confor-
mal matter is realized through an elliptic fibration over
C2. The elliptic fiber over a generic point is a smooth
torus, and over two divisors, z1 and z2, in C2 there exist
I∗sk−4 singular fibers.2 These singular fibers make manifest
an so2k ⊕ so2k flavor algebra. The tensor-branch geom-
etry is obtained by blowing up the intersection point in
C2 between the divisors z1 and z2. This procedure intro-
duces a compact (−1)-curve over which the singular fiber
is Insk−4, corresponding to an spk−4 gauge algebra.3 This
tensor-branch geometry can be compactly written in the
shorthand notation

spk−4

1 . (1)

On the tensor branch the theory has the following con-
tent: one tensor multiplet; a vector multiplet in the ad-
joint representation of spk−4; and 4k half-hypermultiplets
in the fundamental representation of spk−4. As the fun-
damental representation of the gauge algebra is pseudo-
real, the 4k half-hypermultiplets are rotated by a clas-
sical so4k flavor symmetry, and this indicates that the

1 For a recent review of the construction and properties of 6d
SCFTs that arise from F-theory, see [42].

2 For the notation for the types of singular fibers in elliptically-
fibered Calabi–Yau threefolds, we refer the reader to [43].

3 The case k = 4 corresponds to having no gauge algebra over the
(−1)-curve; this is the geometric configuration associated to the
E-string theory, and the flavor symmetry enhances: so8 ⊕ so8 →
e8. We will assume k > 4 in this article. The superconformal
bootstrap for the E-string has been studied in [40].
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geometrically-manifest flavor algebra is enhanced:

so2k ⊕ so2k → so4k . (2)

This so4k is the flavor symmetry of the gauge theory that
exists on the generic point of the tensor branch. We
can verify that so4k is also the flavor symmetry of the
SCFT at the origin of the tensor branch by studying, for
example, the infinite-coupling magnetic quiver [44].

Our knowledge of the conformal data, such as the scal-
ing dimensions and OPE coefficients, of the 6d SCFTs
constructed from geometry in the manner that we have
just described remains limited. While the SCFT may
possess a weakly-coupled regime away from the fixed
point, one of the obstacles is that it is generally unknown
how to fully track data obtained using such a description,
e.g. the gauge-invariant operators on the tensor branch,
to the origin where the SCFT resides. From the geom-
etry, we are however able to compute a particular set
of symmetry-protected quantities on the tensor branch,
and follow them through the geometric deformations that
lead to the origin in a controlled way.

One such quantity is the anomaly polynomial. Moving
onto the tensor branch, where the scalar fields inside the
tensor multiplets receive non-trivial vacuum expectation
values, conformal invariance is broken. However, since
these scalars are uncharged under the other symmetries,
conformality is the only symmetry which is broken. As
such, one can use a form of ’t Hooft anomaly matching to
determine the anomaly polynomial of the SCFT at the
conformal fixed point [45, 46].

For a theory in d dimensions, the anomaly polynomial
is a formal (d+2)-form which captures the variation of the
partition function under the application of a symmetry
transformation via the Wess–Zumino descent procedure.
In 6d, it is generally written in terms of the characteristic
classes of the bundles associated to the gravitational, fla-
vor, and SU(2)R symmetries; it measures an obstruction
to the gauging of these symmetries.4 The (1, 0) super-
symmetry mandates that various coefficients appearing
in the anomaly polynomial can be related to the central
charges of the theory, and these can further be related
to certain OPE coefficients. The bounds derived on the
OPE coefficients from the conformal bootstrap then lead
to bounds on quantities which can be obtained geomet-
rically from the anomaly polynomial.

The anomaly polynomial for a 6d SCFT contains the
terms

I8 =
∑
a

TrF 2
a

(
κap1(T ) + νac2(R)

)
+ · · · , (3)

where p1(T ) is the first Pontryagin class of the tangent
bundle to the six-dimensional spacetime, c2(R) is the sec-
ond Chern class of the SU(2)R R-symmetry bundle, and

4 A recent summary on the determination of anomaly polynomials
of 6d SCFTs appears in [47]. We refer to that paper for the
conventions used herein.

TrF 2
a is the curvature of each flavor symmetry bundle.

The index a runs over all simple non-Abelian flavor sym-
metries.

It has been shown in [40, 48] that the flavor central
charges, which are defined through the two-point corre-
lation function of the flavor currents,5〈

Jaµ(x)Jbν(0)
〉

=
(CJ)a

vol(S5)2
δab

x2ηµν − 2xµxν
x12

, (4)

can be written in terms of the ’t Hooft coefficients of the
anomaly polynomial via

(CJ)a = 240 (κa − νa) . (5)

In the F-theory construction, the anomaly polynomial
can be determined from the geometric data of the asso-
ciated non-compact elliptically-fibered Calabi–Yau, to-
gether with (mixed-)gauge anomaly cancellation. For
(Dk, Dk) conformal matter it was worked out in [45], us-
ing the tensor-branch geometry as in equation (1), and
the relevant coefficients from the anomaly polynomial
were found to be

ν = −1

4
(k − 3) , κ =

1

48
(k − 1) . (6)

As the theory has only a single simple flavor symmetry
factor, so4k, we have suppressed the index a. From the
relation (5) we can immediately see that the flavor central
charge is6

CJ = 65(k − 4) + 75 . (7)

The flavor current associated to a flavor symmetry of
a 6d N = (1, 0) SCFT belong to the half-BPS super-
conformal multiplet known as a D[2]-multiplet [49]. The
highest-weight state of this multiplet is an adjoint-valued
scalar field known as the moment map, φ.7 The OPE of
two of these moment maps contains a contribution from
the D[2] multiplet, with OPE coefficient λD[2] = λφφD[2].
This coefficient is related to the flavor central charge [40],
via the definition in equation (4):

CJ =
5h∨

λ2
D[2]

, (8)

where h∨ is the dual Coxeter number of the flavor alge-
bra. Upper bounds on λ2

D[2] – and thus lower bounds on

CJ – can be determined from the superconformal boot-
strap, to which we turn in Section III.

5 There is a slight difference in normalization with respect to [48]:
CJ (us) = vol(S5)2 CJ (them).

6 The normalization differs from that of [40] by a factor of two.
7 The highest-weight state of a D[2JR]-multiplet transforms in the
SU(2)R representation with highest weight (2JR) and has con-
formal dimension ∆ = 4JR. Thus, the moment map transforms
in the adjoint representation of both SU(2)R and the flavor sym-
metry.
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Another interesting feature of a 6d SCFT, and one
which can be gainfully employed in a superconformal
bootstrap approach, is the associated Higgs branch. This
is the hyperkähler moduli space where the half-BPS
states gain vacuum expectation values and as such it
is a more refined property than the numerical value of
CJ . It is not known how to determine the Higgs branch
in general. If the 6d SCFT admits a Type IIA descrip-
tion however, then the methods of magnetic quivers [50]
can be used. Fortunately, minimal (Dk, Dk) conformal
matter possesses such a Type IIA description, and their
magnetic quivers were studied in [44, 51].

One must distinguish the Higgs branch of the tensor-
branch theory from that of the conformal fixed point.
In either case, the structure of the Higgs branch is pre-
served by dimensional reduction and it can be studied
using the associated 3d magnetic quivers. In the former
case, the Higgs branch is the closure of the nilpotent or-
bit of so4k associated to the partition [22k−8, 116] of 4k,
and the Higgs branch chiral ring is finitely-generated by
the moment map operator. Typically the chiral ring is
not freely generated and the presence of chiral-ring re-
lations is determined from the Hilbert series, which, in
turn, can be computed from the magnetic quiver. Due to
the half-BPS states arising from the tensionless strings,
the dimension of the Higgs branch jumps by 29 when one
travels to the origin of the tensor branch. A new gener-
ator of the chiral ring appears at the SCFT point, and
it transforms in one of the spinor representations of so4k

with R-charge 2JR = k − 2.
The Hilbert series (HS) encodes which of the flavor

representations are allowed to appear in chiral-ring re-
lations involving a spin-JR representation of SU(2)R.
Any flavor symmetry representation that does not ap-
pear in the Hilbert series at order t2JR implies that the
theory does not contain a D[2JR] superconformal mul-
tiplet transforming in that representation. Denoting the
irreducible representations of so4k appearing in adj⊗adj
by Ri (as in Figure 1), one finds the following universal
contributions to the Hilbert series at the conformal point:

HS(t) =
∑
JR≥0

cJRt
2JR

= (R1) + (R5)t2 + (R1 +R3 +R4)t4 + · · · ,
(9)

with R1 = 1 and R5 = adj. The ellipses indicate terms
with JR > 2 or other representations that do not appear
in the adj ⊗ adj decomposition. For instance, the pres-
ence of the second generator might lead to extra cubic or
quadratic terms in the Hilbert series, but these are not
relevant for our purposes.

An important consequence of this analysis is that the
unit operator and the moment map can only transform
in the singlet or adjoint representations respectively, as
expected, and furthermore that half-BPS states with
JR = 2 are forbidden to transform in the representations
Ri , i = 2, 5, 6. We will see in Section IV that this se-
lection rule will provide an additional cross-check to the
claim that conformal matter saturates unitarity bounds.

III. THE CONFORMAL BOOTSTRAP

The conformal bootstrap relies on the associativity of
the OPE and the decomposition of four-point correlation
functions in terms of (super)conformal blocks to extract
constraints on the spectrum. The majority of bootstrap
studies focus on correlation functions of Lorentz scalars;
the structure of their OPE and the conformal blocks be-
ing well understood in those cases [52–54]. As we are
interested in obtaining bounds on theories with flavor
symmetry so4k, we use that the moment map is a Lorentz
scalar, as seen in Section II. For 6d SCFTs with eight
supercharges, the sum rules used in the conformal boot-
strap were first derived in [38] and applied to theories
with f = e8 flavor symmetry, which we now review with
minor modifications for the case where f = so4k.

In order to avoid cluttering due to the proliferation
of R-symmetry indices, it is customary to introduce an
auxiliary variable Y A , A = 1, 2, and define degree-two
homogeneous functions, φa(x, Y ) = φa(x)ABY

AY B . The
correlation functions of four of these operators are then
constrained by symmetry to take the form [55]:〈
φa(x1, Y1)φb(x2, Y2)φc(x3, Y3)φd(x4, Y4)

〉
=

(Y1 · Y2)2(Y3 · Y4)2

x8
12x

8
34

Gabcd(u, v;w) .
(10)

The three variables u, v, w are called the cross-ratios, and
are invariant under conformal and SU(2)R transforma-
tions:

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

,

w =
(Y1 · Y2)(Y3 · Y4)

(Y1 · Y4)(Y2 · Y3)
,

x2
pq = |xp − xq|2 , Yp · Yq = εABY

A
p Y

B
q .

(11)

The four-point function must also be a four-index in-
variant tensor of the flavor symmetry. The conformal-
and SU(2)R-invariant part of the correlation function,
Gabcd(u, v;w), can therefore further be decomposed into
a sum over the projectors onto irreducible representations
Ri appearing in adj⊗ adj [56]:

Gabcd(u, v;w) =
∑

Ri∈adj⊗adj

P abcdi Gi(u, v;w) . (12)

The tensors P abcdi are the projectors onto Ri and satisfy
the usual properties [57]:

P abcdi P dcefj = δijP
abef
i , P abbai = dim(Ri) . (13)

Having broken down the four-point function into invari-
ants for each of the flavor symmetry channels Gi(u, v;w),
we further decompose it into contributions from each of
the superconformal multiplets, χ, appearing in the OPE
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of two moment maps and transforming in a given irre-
ducible representation Ri of the flavor symmetry:

Gi(u, v;w) =
∑

χ∈φ×φ
χ in Ri

λ2
χ,Ri
Gχ(u, v;w) . (14)

For ease of notation, we write the OPE coefficients of
χ ∈ φ × φ as λφφχ = λχ. The superconformal blocks,
Gχ(u, v;w), can themselves be expanded as a linear com-
bination over the non-supersymmetric conformal blocks
associated to the bosonic primaries in the superconfor-
mal multiplet, and they satisfy both a Casimir differ-
ential equation [58] and a Ward identity [55, 59]. This
allows one to write each coefficient as a rational function
depending solely on the quantum numbers of the super-
conformal primary. For theories with eight supercharges
and 2 < d ≤ 6, this analysis was performed in detail for
the moment map in [40, 58] and generalized to arbitrary
D-type half-BPS multiplets in [60], to which we refer for
the exact expressions.

In addition to the form of the superconformal blocks, it
was also found that not all types of superconformal mul-
tiplets are allowed to appear in the OPE. Let us denote a
superconformal multiplet by χ[2JR]∆,`,R. For 6d SCFTs
with N = (1, 0) supersymmetry, the multiplets can be
long, χ = L, or short, χ = A,B, C,D [49, 61]. In the
present case, the superconformal primary always trans-
forms in the `-traceless symmetric representation of the
Lorentz group and has integer R-charge JR.8 It has con-
formal dimension ∆, while R indicates the representation
under the flavor symmetry. For short multiplets, the su-
perconformal primary is annihilated by a particular sub-
set of the supercharges, fixing some of its quantum num-
bers. In those cases, we drop the associated subscript.
For instance, D[2JR]-type superconformal primaries are
half-BPS and must be scalars (` = 0) of conformal di-
mension ∆ = 4JR.

It turns out that A- and C-type multiplets cannot ap-
pear in the decomposition in equation (14), while long
multiplets must be R-symmetry singlets. Generically,
only the following multiplets are allowed:9

L[0]∆,`,R , B[0]0,R , B[2]`,R ,

D[0]1 , D[2]adj , D[4]R .
(15)

The unit operator, D[0], and the moment-map super-
conformal multiplet, D[2], must transform in the singlet
and adjoint representations of the flavor symmetry, re-
spectively, as we also observed from the Hilbert series in

8 Generically, the superconformal multiplets depend on all three
Dynkin indices of so6, but for OPEs of scalars, we are restricted
to [0, `, 0] representations.

9 Type B[0]`>0 multiplets are in principle also allowed in the OPE,
but they include higher-spin conserved currents. The presence of
these multiplets in the spectrum implies that (at least a subsector
of) the theory is free [49, 61, 62]. We exclude them as we focus
on interacting SCFTs.

equation (9). We denote a generic superconformal mul-
tiplet transforming in a representation R of the flavor
symmetry as χR when the other quantum numbers are
not relevant.

Having a block decomposition of the four-point func-
tion, the important observation that led to the conformal
bootstrap is that performing an OPE in either of the s,
t, or u channels does not change its structure. Using the
properties of superconformal blocks under exchange of
kinematic variables,

(1↔ 2) : Gi(u, v;w) = (−1)|Ri|Gi(
u

v
,

1

v
;
−w
w + 1

) , (16)

(1↔ 3) : Gi(u, v;w) =

(
u2

v2w

)2

Gi(v, u;w−1) , (17)

one then obtains two sets of constraints from the crossing
symmetry of the four-point function [40].

In the specific case of the moment map, invariance un-
der exchange of (x1, Y1, a) ↔ (x2, Y2, b) leads to an ad-
ditional selection rule: a superconformal multiplet can
only appear in the conformal block decomposition if its
quantum numbers satisfy:

`+ JR + |Ri| ∈ 2Z , (18)

where |Ri| is defined as the parity of the embedding of Ri
in adj ⊗ adj, specifically 0 or 1 if the representation is
embedded symmetrically or anti-symmetrically, respec-
tively. In Figure 1, we give the decomposition into irre-
ducible representations for so4k and the relevant group-
theoretic quantities.

On the other hand, invariance under the exchange
(x1, Y1, a) ↔ (x3, Y3, c), in combination with equations
(12) and (17), leads to the following constraint:

F j
i Gj(u, v;w) =

u4

v4w2
Gi(v, u;w−1) . (19)

The crossing matrix, F j
i , captures how the flavor repre-

sentations are reshuffled when going from the s channel
to the t channel. The indices i, j run over the irreducible
representations Ri inside of adj ⊗ adj. The matrix is
defined via the following combination of the projectors
[56]:

F j
i =

1

dim(Ri)
P dabci P abcdj , F k

i F
j
k = δji . (20)

It is therefore a purely group-theoretic quantity, and for
f = son, using “birdtrack” techniques [57], a lengthy but
straightforward computation leads to the results collated
in Figure 1.

While the crossing matrix deals with the flavor symme-
try, we still need to decompose the constraint in equation
(19) into each R-symmetry channel. Invariance under
the R-symmetry forces the function Gi(u, v;w) to be a
degree-two polynomial in w−1 [55]:

Gi(u, v;w) =
2∑
k=0

G
(k)
i (u, v)w−k . (21)
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adj⊗ adj =R1 ⊕ R2 ⊕ R3 ⊕ R4 ⊕ R5 ⊕ R6

dimRi : 1 + (n−1)(n+2)
2

+ (n−3)n(n+1)(n+2)
12

+ n(n−1)(n−2)(n−3)
24

+ n(n−1)
2

+ n(n+2)(n−1)(n−3)
8

|Ri| : + + + + − −

F j
i =



2
n(n−1)

n+2
n

(n−3)(n+1)(n+2)
6(n−1)

(n−3)(n−2)
12

1 (n−3)(n+2)
4

2
n(n−1)

n2−8
2(n−2)n

(n−4)(n−3)(n+1)
6(n−2)(n−1)

3−n
6

n−4
2(n−2)

−n−3
n−2

2
n(n−1)

n−4
(n−2)n

n2−6n+11
3(n−2)(n−1)

1
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FIG. 1: Decomposition of adj⊗ adj for son algebras and the group-theoretic data relevant for the N = (1, 0) sum
rules with flavor. The highest-weights of the representations are R1 = 1 : [00 · · · ], R2 : [20 · · · ], R3 : [020 · · · ],

R4 : [00010 · · · ], R5 = adj : [010 · · · ], and R6 : [1010 · · · ].

Using the relation in equation (17) one find constraints
for each power of w, but, as pointed out in [40], they
are not independent. Using the superconformal Ward
identity, it is then possible to find a single independent
constraint for each flavor-representation channel. These
constraints are referred to as the sum rules, and are given
by: ∑

χ∈φ×φ
χ in Rj

λ2
χ,Rj

(
F j
i Kχ(u, v)− δjiKχ(v, u)

)
= 0 , (22)

where the sum is over each multiplet that transforms in
the representation Rj ∈ adj⊗ adj, subject to the selec-
tion rule in equation (18). Furthermore, we have defined
the function

Kχ(u, v) = v4G(2)
χ (u, v)− u4G(0)

χ (v, u) , (23)

and used a polynomial expansion of the superconformal
blocks similar to that of equation (21),10

Gχ(u, v;w) =
2∑
k=0

G(k)
χ (u, v)w−k . (24)

We refer to [40, 58, 60] for additional details on the
derivations of the sum rules and the form of the con-
formal blocks.

10 In the notation using the auxiliary R-symmetry variable, a pos-
sible decomposition for the superconformal blocks of a multiplet,
χ, is in terms of Legendre polynomials, Pn:

Gχ(u, v;w) =
∑

(∆,`,J)∈χ
c∆,`,JP2J (1 + 2/w)g∆,` ,

where g∆,` are the bosonic conformal blocks, and the sum is
taken over the bosonic (conformal but not necessarily supercon-
formal) primaries in χ. While convenient to derive the explicit
expression of Gχ, we stress that this basis is different from the
one used in equation (21).

IV. BOOTSTRAPPING CONFORMAL MATTER

To extract constraints on the spectrum of the SCFT
from the sum rules in equation (22), we use the now-
standard linear-functional method introduced in [17],
which we briefly summarize here. The interested reader
will find additional details in the reviews [63–67].

Consider the space of functions of the conformal cross-
ratios, f(u, v). We may then define a functional, αi, for
each of the flavor channels. The space of such linear
functionals can be parameterized by linear combinations
of derivatives of the function evaluated at, for instance,
the crossing-symmetric point, u = v:

αi[f ] =
∑
m,n

αim,n ∂
m
u ∂

n
v f(u, v)|u=v . (25)

Applying this functional to the sum rules and summing
over all flavor channels, we obtain the single constraint∑

χRi
∈φ×φ

λ2
χ,Ri

α[χRi ] = 0 ,

α[χRj
] = F j

i α
i[Kχ(u, v)]− δjiα

i[Kχ(v, u)] ,

(26)

where we abuse the notation and use α[χRi
] to denote

the linear combination of the functionals αi applied to the
function in equation (23) for a multiplet χ transforming
in the representation Ri.

By unitarity, the OPE coefficients satisfy λ2
χ,Ri

≥ 0,
and the numerical conformal bootstrap involves searching
for a functional such that:

α[D[2]adj] = 1 ;

α[χRi
] ≥ 0 , ∀ χRi

6= D[0]1 ,D[2]adj ;

α[D[0]1] maximized .

(27)

Plugging back into in equation (26) and using a conven-
tion in which the OPE coefficients of the identity and mo-
ment map are normalized such that λ2

D[0],1 = dim f and
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λ2
D[2],adj = λ2

D[2], we obtain an upper bound on λ2
D[2] and

by extension a lower bound on the flavor central charge:

λ2
D[2] ≤ −α[D[0]1] dim f ,

CJ ≥ 5h∨

−α[D[0]1] dim f
,

(28)

with h∨ = (n − 2) , dim f = 1
2n(n − 1) for f = son. Sim-

ilar bounds can be obtained for any OPE coefficient by
demanding the functional be normalized with respect to
the relevant multiplet.

The system defined by equation (27) is called a semi-
definite program, and solving it is a well-defined opti-
mization problem. In practice, we restrict ourselves to a
finite number of derivatives, up to a cutoff 2m+ n ≤ Λ,
which captures only a portion of the space of functionals.
As a functional satisfying equation (27) for a given Λ is
included in the space of functionals with Λ + 1, we can
only find improved results as the cutoff is increased, and
sending Λ → ∞ will correspond to strongest bound.

There are nowadays standard tools to solve semi-
definite programs, in particular a numerical solver, SDPB,
was specifically created for applications to the numerical
bootstrap [68, 69]. In Appendix A, we explain how we
implemented and solved the semi-definite program nu-
merically, leading to the results found in the next sec-
tions.11

We stress that we obtain rigorous bounds: the confor-
mal bootstrap only relies on numerical algorithms to find
the optimal coefficients αi

m,n of the functionals defined
in equation (25) satisfying equation (27). While some
standard approximations are necessary, such as truncat-
ing the spin of the operators appearing in the OPE, we
verified that, up to the number of significant digits pre-
sented in the next sections, our results are stable against
the increase of these parameters.

A. Bounds on Central Charges

Having reviewed the sum rules for the moment map
and the associated semi-definite program defined in equa-
tion (27), we have now gathered all the necessary tools to
find bounds on the flavor central charge of 6d N = (1, 0)
SCFTs with f = so4k.

From the geometric point of view, the theory with the
smallest so4k flavor symmetry has k = 5 and corresponds
to minimal (D5, D5) conformal matter. Solving the semi-
definite program in equation (27), we obtain the results
shown in Figure 2.

11 The reader interested in raw data should feel free contact us.
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FIG. 2: Bootstrap lower bounds on CJ for theories with
flavor symmetry so20. The red lines correspond to

quadratic interpolations for points with either Λ ≥ 33 or
Λ ≥ 35. The derivative cutoffs are Λ = 7, 9, . . . , 49, 51.
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FIG. 3: Ratios between the bootstrap lower bounds
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D[2] with so4k flavor and the associated value for

(Dk, Dk) conformal matter. The red lines correspond to
quadratic interpolations for points with Λ ≥ 33.

k minCJ C
(Dk,Dk)
J

5 115 140
6 144 205
7 175 270
8 208 335
9 241 400
10 275 465
50 1540 3065

TABLE I: Bounds on CJ for various so4k flavor symme-
tries, and that of (Dk, Dk) conformal matter. The values
for minCJ are those obtained when Λ = 51.
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We can see that as the derivative cutoff Λ increases, the
lower bound on CJ improves; in particular, with Λ = 51
we obtain the strict bound CJ > 115, ruling out any
putative spectrum with a lower value of the flavor central
charge.

Using quadratic fits on the last few points, we can fur-
ther see that there is strong evidence that as Λ → ∞,

we will obtain the bound minCJ ≥ C
(D5,D5)
J = 140, in-

dicating that minimal (D5, D5) conformal matter is the
theory saturating the unitarity bounds.

We find that analogous results also hold for higher val-
ues of k. To aid comparison, Figure 3 shows the ra-
tio between the bound on λ2

D[2] and its value for min-

imal (Dk, Dk) conformal matter. As more derivatives
are taken into account, this ratio approaches one, again
appearing to rule out any SCFTs with a smaller flavor
central charge than conformal matter. A quadratic fit
further predicts that as Λ → ∞, we approach minCJ =

C
(Dk,Dk)
J within ten percent. The interpolation improves

as larger values of Λ are taken into account, and we con-
jecture that minimal (Dk, Dk) conformal matter satu-
rates the unitarity bounds for so4k flavor symmetry.

We emphasize again that while conformal matter has
the lowest value of the flavor central charge from the
geometric point of view, it is a priori not obvious
that, purely from superconformal-field-theoretic argu-
ments, there cannot exist another theory with f = so4k,
lying outwith the F-theory construction, satisfying CJ <

C
(Dk,Dk)
J . Our results exclude a large part of those po-

tential spectra. For instance, with k = 50, we rule out

the existence of any theory with CJ ≤ 1
2C

(D50,D50)
J , a

bound that is even more stringent for lower values of k.
We have collated these bounds for Λ = 51 in Table I.

B. Low-lying Spectrum of Scalar Long Multiplets

In addition to bounding the OPE coefficient λ2
D[2], the

conformal bootstrap can also be used to extract the con-
formal dimension of long multiplets appearing in the su-
perconformal block decomposition. This is referred to as
the extremal-functional method [70], and relies on the
fact that when the bound given in equation (28) is satu-
rated, the sum rules require the associated, extremized,
functional, αE , to satisfy

αE [χ] = 0 , ∀χ 6= D[0]1 , D[2]adj . (29)

Solving the constraint αE [L[0]∆,`,R] = 0 for a given long
multiplet, we can estimate the values of conformal di-
mensions. As we are operating under the assumption
that the limit Λ→∞ corresponds to the extremal func-
tional associated to conformal matter, for which evidence
was adduced in Section III, this enables us to learn more
about its spectrum.

Figures 4–7 show the functional applied to long mul-
tiplets in various flavor representations of f = so4k with
k = 5, 10, 50. For the representations R1,R2,R3, there

is a gap of at least one between the dimension of lowest-
lying operator and the unitarity bound, ∆ > 6, for long
scalar multiplets.12 While there are variations, the po-
sition of the conformal dimensions does not appear to
deviate significantly as k increases.

On the other hand for R4, the four-antisymmetric
representation, the extremal-functional method indicates
that there is an operator lying close to threshold. In that
case, the functionals are close together around that point,
and get closer to ∆ = 6 as k grows.

At threshold, long multiplets decompose (among oth-
ers) into type-A multiplets [49, 61]. As we have re-
viewed in Section III, these kinds of operators are for-
bidden to appear in the OPE, and the anomalous dimen-
sion therefore cannot vanish. If a multiplet with such
a small anomalous dimension is not an artifact of non-
extremality, and there is indeed a small deviation from
∆ = 6, it would seem to indicate the presence of a large-
k regime where perturbation theory can in principle be
used. This is somewhat reminiscent of large R-charge
limits, which have recently been shown to exhibit an in-
tegrable subsector [14]. It would be interesting to study
whether such a large-k limit can be probed from the ge-
ometry, and whether there is a connection with integra-
bility.

C. Chiral-ring Relations

As reviewed in Section II, (Dk, Dk) conformal matter
chiral-ring relations forbid some of the D-type supercon-
formal multiplets to appear in certain flavor representa-
tions. Even without solving the semi-definite program
in equation (27), the selection rule in equation (18) im-
posed by crossing symmetry is already powerful enough
to prevent the presence of D[4] multiplets in the anti-
symmetric representations, R5,R6, as required by the
chiral ring relations, see equation (9).

For symmetric representations, we expect, when we ap-
proach the unitarity bound, to find that α[D[4]R]→ 0 as
Λ→∞, if the representation is allowed. In Table II, we
show the numerical values of the functional for these mul-
tiplets in each of the four symmetric representations. We
can see that for R1 = 1 and R3 : [020 · · · ], the functional
is several orders of magnitude smaller than the other two
representations. For comparison, in the case of the multi-
plet containing the stress-energy tensor, which we know
appears in the OPE, we obtain values of the same or-
der of magnitude, α[B[0, 0]1] ∼ 10−12. This leads us to
conclude that the D[4] multiplet in the two-symmetric
representation of the so4k flavor, D[4]R2

, being of order
one, is forbidden to appear.

12 For k = 5, the vanishing of αE [L[0, 0]1] close to ∆ = 6 appears
to vanish for higher values of Λ.
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FIG. 4: α[L[0]∆,0,1] for Λ = 29, 31, · · · , 45, 47, from gold
to purple. Zeroes of the functional indicate the presence
of a long multiplet at the associated ∆.
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FIG. 5: α[L[0]∆,0,R2 ] for Λ = 29, 31, · · · , 45, 47, from
gold to purple. Zeroes of the functional indicate the pres-
ence of a long multiplet at the associated ∆.
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FIG. 6: α[L[0]∆,0,R3 ] for Λ = 29, 31, · · · , 45, 47, from
gold to purple. Zeroes of the functional indicate the pres-
ence of a long multiplet at the associated ∆.
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FIG. 7: α[L[0]∆,0,R4 ] for Λ = 29, 31, · · · , 45, 47, from
gold to purple. Zeroes of the functional indicate the pres-
ence of a long multiplet at the associated ∆.
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f R1 = 1 R2 R3 R4

so20 2.7 · 10−12 1.6 2.9 · 10−12 2.0 · 10−1

so24 2.0 · 10−12 1.6 2.5 · 10−12 4.8 · 10−2

so28 3.6 · 10−12 1.5 4.6 · 10−12 2.0 · 10−2

so32 6.3 · 10−12 1.5 8.3 · 10−12 1.0 · 10−2

so36 8.5 · 10−12 1.4 1.1 · 10−11 6.0 · 10−3

so40 8.2 · 10−12 1.4 1.1 · 10−11 3.8 · 10−3

so200 1.6 · 10−10 1.4 2.3 · 10−10 1.7 · 10−5

TABLE II: Values of α[D[4]R] for Λ = 49.

As we are able to reproduce the chiral-ring condition,
that D[4] multiplets should not appear in the represen-
tations R2, R5, or R6, of minimal (Dk, Dk) conformal
matter, this gives even more credence to our claim that
the unitarity bounds are saturated by conformal matter.

The case of R4, the four-antisymmetric representation,
is more subtle, as the functionals seem to depend on the
value of k. It appears that that for low values of k this
representation is forbidden but allowed for higher values.
It is very intriguing that in the case of long multiplets,
the anomalous dimension was also suppressed by k for
that representation. It would be interesting to further
study whether R4 plays an important rôle for conformal
matter, a question that is, to our knowledge, unexplored.

Emboldened by these results predicting the absence of
half-BPS multiplets, we can endeavor to go beyond the
chiral ring and use the conformal bootstrap to predict
whether there are additional constraints related to B[2, �]
operators, which must a priori only follow the selection
rule in equation (18) and can therefore appear in various
Lorentz and flavor representations. Figure 8 shows the
value of the functional for B[2, �] as a function of the
Lorentz representation, �, for f = so200.

The value of the functional grows rapidly with � and it
becomes difficult to comment on the presence or absence
of the multiplets past the first few values. However, the
value of the functional for B[2, 0] in the adjoint represen-
tation is significantly larger than that of R6. Similarly,
R1,R2, the singlet and two-symmetric representations,
are also orders of magnitude above the other symmetric
representations when � = 1, 3. It is therefore tempting
to conjecture that these multiplets are excluded from the
OPE of two moment maps. We have checked this be-
haviour in several cases, and there is no indication that
this potential selection rule depends on the value of k,
and thus it may be valid for any minimal (Dk, Dk) confor-
mal matter. Assuming that conformal matter saturates
the bounds, it would be interesting to study whether this
conjecture on the vanishing of these particular OPE coef-
ficients can be proven directly using either field-theoretic
or geometric techniques.
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FIG. 8: Value of the functional with Λ = 49 and
f = so200 applied to B[2, �]R multiplets. Representations
not satisfying the constraint in equation (18) do not

appear in the OPE from the outset.

V. CONCLUSIONS

We have explored applications of the superconformal
bootstrap to 6d SCFTs with eight supercharges, focusing
on the four-point function of moment maps associated to
a flavor symmetry algebra.

We extracted bounds on the flavor central charge of
theories with an so4k symmetry, leaving little room for
exotic theories with smaller central charges than mini-
mal (Dk, Dk) conformal matter. In particular, for all the
explicit values of k considered herein, we have managed
to exclude the existence of a consistent theory with a fla-
vor central charge smaller than half of that of conformal
matter, a result that significantly improves with smaller
values of k. For instance, when k = 5, the smallest pos-
sible value for (Dk, Dk) conformal matter, there is only
about a ten-percent window for such theories to exist.
Moreover, quadratic interpolations reasonably show that
conformal matter will saturate the bounds imposed by
unitarity as the whole space of functionals is explored.
Using the extremal-functional method, we have checked
that the value of the functional applied to half-BPS op-
erators reproduce the expected chiral-ring relations.

We have therefore found substantial evidence that min-
imal (Dk, Dk) conformal matter saturates the bounds im-
posed by unitarity and crossing symmetry. Thus, there
cannot exist any interacting 6d SCFT, with so4k flavor
symmetry, that has a lower value of the flavor central
charge; geometry determines the extremal theory!

Assuming this is indeed correct, we have extracted the
low-lying spectrum of long operators, and also found new
hints pointing to previously unknown selection rules for
conformal matter involving B-type multiplets. For in-
stance, B[2, 0] should not appear in the OPE if it trans-
forms in the adjoint representation, and B[2, �]R1,2

should
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also be forbidden when ` = 1, 3.
Our analysis exploited a peculiarity of minimal

(Dk, Dk) conformal matter in that the naive flavor sym-
metry, so2k⊕so2k, enhances to so4k, so that there is only
one D[2] superconformal multiplet. Most other types of
(g, g′) conformal matter do not possess such an enhance-
ment, and have two irreducible flavor currents. A natu-
ral extension of our work is therefore to consider mixed-
correlator constraints involving multiple moment maps.
Such bootstrap analyses have shown to be extremely
powerful, and often give rise to “islands” in parameter
space. Considering our results, it is natural to expect
those islands to correspond to minimal (g, g) conformal
matter and their higher-rank generalizations. Further-
more, the sum rules for mixed D[2JR] correlators have
been found in [60]. When JR > 1 there is more than
one independent sum rule, which should lead to more
constraining results. While the moment map is forced
to transform in the adjoint representation of the flavor
symmetry, there are no such requirements for other half-
BPS states. This opens the way for flavor-independent
analyses, as well as bootstrap approaches to the whole
chiral ring.

Our results have potential consequences beyond six di-
mensions. Compactifying 6d (1, 0) SCFTs on a T 2 gives
rise to 4d SCFTs with eight supercharges. Starting with
conformal matter one can obtain a variety of 6d SCFTs
by performing deformations and renormalization-group
flows [71, 72]. In [47], these Higgs-branch deformations,
their compactifications on T 2, and their duality with the
class-S construction were studied; this results in a collec-
tion of 4d N = 2 SCFTs with diverse flavor symmetry
algebras for which the central charges were determined
explicitly. Compactifying minimal (Dk, Dk) conformal
matter on a circle, together with holonomies along the
S1, also leads to a vast collection of 5d SCFTs, for which
the flavor symmetries were worked out in [73–75]. As
with 6d SCFTs, not much of the conformal data is known
for these theories, although it is reasonable to expect a
dependence on the 6d progenitors, and again a conformal
bootstrap approach may be useful.

Finally, we have found that the anomalous dimension
of long multiplets transforming in the four-antisymmetric
representation R4 of so4k appears to be suppressed by k.
It has recently been shown that in a large R-charge limit,
the anomalous dimensions in a particular subsector are
controlled by an integrable spin chain [14, 76]. It would
be interesting to see if we can learn more about these
long multiplets using perturbation theory, and whether
there is an equivalent sector in the large-k limit where
integrability techniques can be used.
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Appendix A: Numerical Implementation

As we have reviewed in Section III, the basic elements
of the numerical conformal bootstrap are the bosonic
conformal blocks, g∆,`(u, v), and their derivatives at the
point u = v. To solve the semi-definite program in
equation (27), we made use of the rational approxima-
tion of the blocks, ∂mu ∂

n
v g∆,`(u, v)|u=v ∼ χ`(∆)Pm,n` (∆)

[77, 78]. The prefactor χ(∆) is positive for any value of
the conformal dimension above the unitarity bound, and
P (∆) is a polynomial in the conformal dimension. The
derivatives satisfy recursion relations found in [77, 79, 80]
which can be efficiently utilized to find the rational ap-
proximation at any derivative order. We note that these
relations are simpler in terms of the standard pair of vari-
ables (a, b), see e.g. [66]. In practice, we have therefore
rewritten the sum rules in equation (22) in terms of these
variables rather than the usual cross-ratios, (u, v).

Moreover, when evaluated at the crossing-symmetric
point some of the derivatives of K are related by a sign:
∂mu ∂

n
vK(u, v)|u=v = (−1)m+n+1 ∂mu ∂

n
vK(v, u)|u=v. This

introduces flat directions which can lead to numerical in-
stabilities. These can be made manifest by rewriting the
sum rule in terms of the eigenspaces of the flavor ma-
trix, i.e. the projectors P± = 1

2 (1∓ F ), see for instance
[25, 56].

The rational approximation of the bosonic blocks
and their recursion relations have been implemented in
scalar blocks [81], with the value of the cut-off being
related to the parameter nmax by Λ = 2nmax − 1. We
found the following parameters adequate for nmax ≤ 24
in all the cases discussed in this work:

poles=20
order=80
prec=1024

For nmax = 25, 26, an increased precision of 1280 and
keptPoleOrder=40 are needed to ensure stable results.
One also needs to introduce a cutoff for the spins, ` <
`max, of the multiplets appearing in the sum rules. We
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have tested various cases and found that at `max = 66,
the results are stable up to a sufficient number of signif-
icant digits.

The bounds are then obtained from the semi-definite
program in equation (27) using the solver sdpb [68, 69]
(version 2.3.1) with parameters:

--dualityGapThreshold=1e-10
--maxComplementarity=1e+80
--initialMatrixScalePrimal=1e+20
--initialMatrixScaleDual=1e+20

The precision was the same as that used to create the
bosonic blocks. The other parameters were set to their
default value. We refer to the original works and the
documentation of both scalar blocks and sdbp for ad-
ditional details on the numerics and the meaning of the
parameters.

To test our implementation we have reproduced var-
ious results in the literature, in particular those of six-
dimensional N = (1, 0) theories, where we have repli-
cated the bounds found in [38] for the E-string and a free
hypermultiplet.
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