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Abstract: We consider the question of whether Q-balls can exist in a chiral Lagrangian

truncated at leading order when, in addition, the Standard Model Higgs boson couples to

the pseudo-Nambu-Golstone bosons (pNGBs). In particular, we consider the so-called thin-

wall limit where volume energy dominates over surface energy. It is known that the leading

order chiral Lagrangian alone does not support such multi-field solutions. Augmented by

the Higgs, however, we do indeed find that such solutions exist. We then study their

properties numerically and, in various limits, analytically. Furthermore, since we consider

a mirror-world-like model where the pNGBs are composite states of fundamental fermions,

the question of Fermi repulsion in the high density bulk of the Q-ball plays a central role

in determining its properties. The main effect is that when the parameter controlling the

Fermi repulsion increases beyond a critical value, the radius of the Q-ball increase and

continues to increase while the Q-ball becomes more weakly bound. As a result, there

are Q-ball solutions with radii well exceeding a femtometer which would interact with

nuclei in direct detection experiments via momentum-dependent form factors making their

signatures striking. We leave the question of the production and direct detection of these

Q-balls to a future study.
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1 Introduction

Q-balls are non-topological solitons [1] whose stability is ensured, simultaneously, by en-

ergy and Noether charge conservation [2]. Specifically, a Q-ball is the most energetically-

favourable state that stores charge in a theory. In his classic analysis [2], Coleman consid-

ered a single complex scalar field that carries a global U(1) charge. The resulting extended

objects have piqued theorists’ interests since then, as evidenced by the large body of work

that ensued.1 The original Q-ball analysis has thus been expanded to accommodate mul-

tiple fields [3], more complicated symmetry groups [4], as well as gauging the stabilising

symmetry [5, 6].

Finding the extremum, in field space, that corresponds to a minimum of the energy

functional of the soliton can be formulated by studying a bounce equation, albeit at fixed

and finite charge. This latter constraint is most naturally implemented with a Lagrange

multiplier [7]. Consequently, an exact analytical solution is generally not possible and one

must resort to numerical techniques. However, exact analytical solutions can be found

in certain limits such as the ‘thin-wall’ limit [2], the ‘thick-wall’ limit [8], and, more re-

cently even beyond the strict thin-wall limit [9]. More precisely, thin-walled Q-balls are

spherically-symmetric solutions with parametrically large volumes such that the energy of

the Q-ball is dominated by the bulk, or volume, energy rather than the surface energy.2

Conversely, thick-walled Q-balls are appropriate to describe small Q-balls when the surface

energy gives an important contribution to the overall rest mass of the object.

1Coleman’s paper [2] alone has, at the time of writing, greater than 800 citations.
2By parametrically large, we mean here a volume per unit charge greater than the corresponding Comp-

ton wavelength of the constituent scalar.
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An interesting question to ask is whether the Standard Model (SM) itself, with its

known field content, can admit Q-ball solutions, especially since the SM has many acci-

dental global symmetries. While only the matter fields are charged under these global

symmetries, however, they are inherited by the scalar composite states they form below

the QCD confinement scale. This question was addressed in [10] where the authors con-

sidered the leading order SU(3)-flavour-symmetric chiral Lagrangian. The Q-balls in that

study were envisioned to be composed of kaons which are stable in the limit of strangeness

conservation. It turns out, however, that no Q-ball solutions exist at leading order.

Nevertheless, Q-balls arise in many extensions of the SM, such as supersymmet-

ric or mirror-world-like theories where additional scalar fields and global symmetries are

aplenty [3, 7, 11], or in theories of extra dimensions [12, 13]. They have long been con-

sidered as candidates for dark matter [7, 14–16] owing to their stability against decay.

Q-balls can even play a role in baryogenesis [17]. So far, the existence of Q-balls has not

been confirmed experimentally, but, should they cross-paths with a sensitive detector, their

signatures will be striking [18–20].

In this work, we focus on a class of multi-field, thin-walled Q-balls that are stabilised

by a global U(1) symmetry in a theory beyond the SM. We have in mind a mirror-world-like

scenario [21–23], but leave the analogue of U(1)Y ungauged. The leading order interaction

between this hidden sector and the Standard Model is given through a portal interaction

between the SM Higgs and a new scalar multiplet that acquires a vacuum expectation

value (VEV). Upon spontaneous symmetry breaking, the matter fields of the hidden sector

acquire masses via Yukawa terms with the scalar. The resulting breaking of an approximate

chiral symmetry in the sector of hidden “quarks” leads to a number of stable scalars. The

couplings of these pseudo-Nambu-Goldstone bosons (pNGBs) with the SM Higgs provide

a non-trivial potential, as seen in Eq. (2.8), for which it is natural to ask if stable Q-ball

states exist. Here, the pNGBs are composite states of fundamental fermions and, therefore,

at high density, Fermi repulsion must be taken into account as it modifies both the mass

and volume of the Q-ball.

This scenario was explored in the thick-wall Q-ball limit in previous work [11]. The

nature of the thick-wall limit is that the fields take on moderately low values in the Q-ball,

and so higher order terms can be neglected in the Hamiltonian. However, this is not the

case in the thin-wall limit. Higher order terms could render the potential unfavourable to

Q-ball solutions.

The goal of this work is to show that Q-balls in the thin-wall limit of this theory

exist and are classically stable against decay to the pions of the hidden sector. We present

numerical results, considering the effect of Fermi repulsion, as well as analytic expressions

in certain limits. These large Q-balls are interesting phenomenologically as they could

form a component of dark matter. Owing to their interactions with Standard Model

states via the Higgs portal they can be detected in direct detection experiments. Their
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signatures, however, are different to those of ordinary point particles due to form factor

suppression at moderately-high momentum transfer [18]. We leave this to future work on

the phenomenology of this class of theories.

Note that while we have a particular UV model in mind, the only relevant states

are the low energy ones, namely, the pNGBs and the SM higgs. The dynamics of the

pNGBs are fully determined by the low energy effective field theory (EFT) according to

the Callan-Coleman-Wess-Zumino coset construction [24, 25] and, therefore, our analysis

is more general than the model we describe. The only caveat is that in the model we have

in mind, the couplings of the Higgs to the hidden sector pions are fixed by the breaking of

scale invariance [26–28] in addition to the portal coupling.

This paper is structured as follows. In Section 2, we describe the structure of the

hidden sector of study. We introduce the Higgs portal term that leads to the coupling of

the Standard Model Higgs with the pseudo-Nambu-Goldstone bosons that arise from the

spontaneous symmetry breaking of approximate chiral symmetry in the “quark” sector of

the theory. In Section 3, we construct the Q-ball solution by analysing the scalar sector for

states that minimise the energy for a given charge. We then present our numerical results,

as well as regions of parameter space that allow for an analytic description. We finally

discuss constraints on these solutions.

2 The structure of the model

In this section, we briefly outline the model we later analyse for thin-wall Q-balls. The

model has similarities with Mirror World [21–23] and Twin Higgs [29–31] scenarios, and in

particular the Fraternal Twin Higgs models [32–36]. In our case, however, we are taking the

hidden sector SU(3)′ dynamical scale Λhs
χ & 1 TeV rather than the few GeV appropriate

for the Twin Higgs models.

2.1 The Content of the Hidden Sector

In addition to the SM field content, we consider an SU(3)′ × SU(2)′ gauge group in the

hidden sector (HS) leaving the analogue of U(1)Y ungauged. The SU(3)′ sector is QCD-

like, i.e., it is asymptotically free in the UV and confines at energies below a scale ΛHS
χ .

As for the SU(2)′ gauge group, we assume that it is spontaneously broken by a VEV

of a scalar doublet, S. A Higgs portal coupling between S and the SM doublet, H, gives

the leading interaction between the two sectors. We consider the following potential, which

facilitates both spontaneous symmetry breaking in both sectors, as well as mass eigenstate

mixing:

V (H,S) = −µ2hH†H + λh(H†H)2 − µ2sS†S + λs(S
†S)2 + λp(H

†H)(S†S) . (2.1)
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The final term above results in the mixing of the SM and HS Higgs gauge eigenstates h′

and s′ into the mass eigenstates h and s. This dimension-four operator is consistent with

the symmetries of the theory, and could arise from integrating out higher modes.

We can determine the masses of the corresponding eigenstates of this theory. Writing

the VEVs in the two sectors as 〈H〉 = vh/
√

2 and 〈S〉 = vs/
√

2, the gauge eigenstate s′

can be written in terms of the mass eigenstates as s′ ≈ s− θh, where the mixing angle θ,

in the small angle approximation, is given by,

θ ≈ λpvh
2λsvs

. (2.2)

The quartic Higgs coupling in the same approximation is, then, λ ≈ λh − λ2p/(4λs), where

λh is its SM value; for more details regarding the scalar mass matrix diagonalization see [37]

and Appendix A in [11].

Minimally, we mirror one full SM matter generation in the same representations and

with the same charges under SU(3)′×SU(2)′. These states acquire masses through Yukawa

couplings to the HS scalar doublet, S:

LHS ⊃ yijQL,iSqR,j + h.c., (2.3)

For concreteness, we assume that the resulting quark masses are ‘light’, i.e., below ΛHS
χ ,

while the lepton masses are heavy. These ‘light’ quarks will hadronise into stable pseudo-

Nambu-Goldstone bosons (pNGBs). Allowing for an arbitrary number of ‘heavy’ quark

generations contributes to the HS scalar to pion couplings as in the SM via matching onto

an S〈G ·G〉 operator [28].

The spectrum of this theory is shown in Fig. 1. Note that we assume that the mass of

the HS Higgs, ms, to be larger than the HS pion masses in our theory such that it is not a

relevant degree of freedom in the low energy EFT. It can, however, be above or below the

chiral symmetry breaking scale, Λhs
χ .

2.2 Chiral Symmetry Breaking in the Hidden Sector

A necessary condition for the existence of Q-ball solutions is that the relative binding en-

ergy of the Q-ball per unit charge, 1 −MQ/Qmπ, be greater than zero. Furthermore, in

the case of thin-wall Q-balls, the fractional binding energy scales as ε with ε � 1 and

thus the relevant degrees of freedom are indeed the pNGBs whose dynamics are described

by a low-energy chiral Lagrangian. The global flavour symmetry is spontaneously broken

to its diagonal subgroup, SU(nl)L × SU(nl)R → SU(nl)V , and explicitly broken by the

Yukawa terms.3 Provided that the mass matrix M is not proportional to the unit ma-

3As in Ref. [11], we ignore the fact that the symmetry group is generally U(Nf )L × U(Nf )R since the
one non-anomalous U(1) from the U(Nf )L ×U(Nf )R, that in the SM case corresponds to baryon number,
acts trivially on the pNGBs, so it is not of interest to us here.

– 4 –



ms

Λhs
χ

HS pions ∼ O(few TeV)

mh ∼ vh

... heavy HS mesons
and baryons

Figure 1: Spectrum of the hidden sector states relative to the weak scale vh. In our
analysis, we assume that the hidden-sector Higgs boson, s, is close to or above Λhs

χ and
thus we do not consider it as a low-energy degree-of-freedom in our EFT.

trix, the remaining global symmetry acting on the pNGBs is U(1)nl−1, in the absence of

other interactions. Under the assumption that the number of light quarks is 2, by Gold-

stone’s theorem there will be 3 pNGBs: the HS pions, which transform under the unbroken

U(1) symmetry. Below the chiral symmetry breaking scale of the HS, the correct effective

description is the chiral Lagrangian in terms of these pNGBs.

To describe the pion sector of the theory, we conventionally define the unitary matrix

field of unit determinant from the three pNGBs, πa,

Σ = exp(iπaT a/f), (2.4)

where T a are the generators of SU(nl) and f is a coefficient to be determined experimen-

tally. Under the global vectorial symmetry, Σ transforms as

Σ→ Σ′ = V ΣV †, (2.5)

where V is given in terms of the Hermitian and traceless matrix X as V = exp(−iX). The

leading order chiral Lagrangian is then

L =
f2

4
tr
(
∂µΣ∂µΣ†

)
+
B0f

2

2
tr
(
M(Σ + Σ† − 2)

)
. (2.6)

where B0 is another coefficient to be determined experimentally and M is the quark mass

matrix. This is the leading-order low-energy description of the HS pions, valid up to the

chiral symmetry breaking scale ΛHS
χ ∼ 4πf . Despite the non-trivial potential contained

within this Lagrangian, it does not admit thin-wall Q-ball solutions [10].

The HS pions of the theory are not the only light scalars which must be taken into

consideration. The lightest mass eigenstate, h, associated to the scalar doublets couples

to the chiral Lagrangian in a manner completely determined through the breaking of scale

symmetry [26–28]. It is relevant to our analysis provided that its mass is smaller than
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those of the HS pions. Specifically, the leading order coupling of the gauge eigenstate, s′,

to the HS chiral Lagrangian is given through

L =

(
1 +

4nh
3β0

s′

vs

)
f2

4
tr
(
∂µΣ∂µΣ†

)
+

(
1 +

[
1 +

2nh
β0

]
s′

vs

)
B0f

2

2
tr
(
M(Σ + Σ† − 2)

)
,

(2.7)

where nh is the number of quarks with mass greater than the confinement scale, and β0

is the one-loop beta function. In principle, higher powers of s′/vs can also be included in

Eq. (2.7). However, the resulting couplings to the light mass eigenstate, h, are suppressed

by commensurate powers of the small mixing parameter θ. Therefore we are justified in

ignoring such terms. These additional terms originate from the Yukawa couplings of the

fundamental quarks with the scalar S, and from integrating out the heavy quark degrees

of freedom. The details of the numerical coefficients can be found in Ref. [28].

We assume that the heavier scalar, s, has a mass larger than the chiral symmetry

breaking scale, and is thus irrelevant for this low-energy description. The full low-energy

Lagrangian describing the HS scalars with masses less than ΛHS
χ is then

L =

(
1− θ2η

3

h

vs

)
f2

4
tr
(
∂µΣ∂µΣ†

)
+

(
1− θ (1 + η)

h

vs

)
B0f

2

2
tr
(
M(Σ + Σ† − 2)

)

+
1

2
∂µh∂

µh− U(h),

(2.8)

where we have defined η = 2nh/β0 and the Higgs potential is given by

U(h) =
1

2
m2
hh

2 + λvhh
3 +

1

4
λh4. (2.9)

3 Higgs assisted thin-wall Q-balls

The hidden sector theory with a Higgs portal to the SM described in the previous section

was shown to admit thick-wall Q-ball solutions in Ref. [11]. In this paper, we turn our

attention to the question of whether it admits thin-wall Q-ball solutions, where the volume

energy dominates and the surface energy is negligible.

3.1 Minimising the Energy in a Sector of Fixed Charge

A Q-ball is a solution of minimum energy at fixed charge. The energy functional that

should be minimized is given by

Eω = H + EF + ω

(
Q−

∫
d3xJ0

)
, (3.1)

where H is the Hamiltonian of the theory with Lagrange density given by Eq. (2.8) and ω

is a Lagrange multiplier that enforces the fixed charge constraint. The second term on the
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right hand side, EF , is the total Fermi repulsion energy which must be included to account

for the fact that the HS pions are fermion/anti-fermion composites states. Therefore, the

overlap between HS pion wave functions cannot be arbitrarily large.

The average energy contributed to the Q-ball per constituent fermion is

3

5
EF =

3

10mf
(3π2n)2/3 , (3.2)

where EF is the Fermi energy, n is the number density of a fermionic species, and mf is

the dressed quark mass, i.e., the mass of an excitation with the same quantum numbers as

a quark, within the Q-ball medium. Typically, mf ∼ ΛHS
χ , which is not set in our theory

and so can in principle be large relative to other scales.4 The total energy contributed to

the Q-ball is thus

EF =
1

5mf

(
243π4

Q5

V 2

)1/3

, (3.3)

where V is the volume of the Q-ball, and Q the total charge.

The Noether charge (last term in Eq. (3.1)) is associated to the invariance of the

Lagrangian in Eq. (2.8) under the transformation

Σ→ exp(−iαX)Σ exp(iαX) and h→ h, (3.4)

where X is a Hermitian charge operator. The Noether charge functional is given by

∫
d3xJ0 = i

∫
d3x

(
1− θ2η

3

h

vs

)
f2

4
tr
(

Σ̇[Σ, X] + Σ̇†[Σ†, X]
)
. (3.5)

Hence, a Q-ball must be time-dependent solution of the classical equations of motion as

is well known [2]. Explicitly isolating the time-dependent terms in the energy functional

gives

Eω =

∫
d3x

{(
1− θ2η

3

h

vs

)
f2

4
tr
(
|Σ̇− iω[Σ, X]|2 − ω2[Σ, X][X,Σ†] +∇Σ · ∇Σ†

)

−
(

1− θ (1 + η)
h

vs

)
B0f

2

2
tr
(
M(Σ + Σ† − 2)

)

+
1

2

(
ḣ2 +∇h · ∇h

)
+ U(h)

}
+ ωQ+ EF .

(3.6)

4If the chiral symmetry breaking scale is sufficiently high, one might wonder if it might give rise to
unnaturally large corrections to the Higgs mass through pion loops. The cubic Higgs-pion coupling gives
rise to corrections that are logarithmic in Λhs

χ /mπ, however, and therefore naturalness is not a problem in
this case.
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The two terms with explicit time-dependence are minimised if they vanish,5 and so

Σ(~r, t) = exp(−iωXt)Σ(~r) exp(iωXt) and h(~r, t) = h(~r) . (3.7)

After reinsertion of the Q-ball ansatz into the energy functional, what remains is known

as a Euclidean bounce [38–40]. This well-studied class of differential equations is generally

intractable analytically, but progress can be made in certain limits. In previous work, the

thick-wall limit [8] was analysed for Q-ball solutions [11]. This work is concerned with the

opposite limit: thin-wall Q-balls [2].

A thin-wall Q-ball is characterised by a core of a homogeneous state, named Q-matter,

and a thin outer shell. The mass of a thin-wall Q-ball is dominated by this core.6 We let

Σ(~r) = Σ0 and h(~r) = h0 be constant spatial profiles of the fields inside the core of the

Q-ball, such that

Eω ≈− ω2

(
1− θ2η

3

h0
vs

)
f2

4
tr
(

[Σ0, X][X,Σ†0]
)
V

−
(

1− θ (1 + η)
h0
vs

)
B0f

2

2
tr
(
M(Σ0 + Σ†0 − 2)

)
V

+ U(h0)V + ωQ+ EF ,

(3.8)

where V is the volume of the core of the Q-ball. To determine the mass of the resulting

Q-ball, this expression must be minimised with respect to the field content, as well as the

volume and the Lagrange multiplier.

So far, we have not specified the number of light flavours, nl, in the analysis that led

to Eq. (3.8). To make further progress, it is useful to specialize to our case of interest,

SU(nl) = SU(2), which will allow us to simplify the exponentials involving n̂ · ~T , where

T a are the generators of SU(nl). In this case, T a ∝ σa, where σa are the Pauli matrices.

Since Σ0 is now an element of SU(2), we can write it as,

Σ0 = exp (iϕn̂ · σ) = cosϕ+ i (n̂ · σ) sinϕ, (3.9)

where it is understood that cosϕ multiplies a unit 2 × 2 matrix, and n̂ = (n1, n2, n3) is

a unit vector, n̂2 = 1. Furthermore, without loss of generality, we can choose the charge

operator, which appears in Eq. (3.7), X = σ3/2 since the Lagrangian is invariant under

SU(2) transformations.

5The field configuration Σ(~r, t) = 1 leads to Q = 0. Thus, a configuration with non-zero charge must
differ from the vacuum in some domain.

6This statement holds apart from in the case where the underlying fields comprising the Q-ball take on
configurations such that the potential energy vanishes inside the homogeneous core (see Ref. [41]). In this
case, the mass of the resulting Q-ball is dependent only on its surface energy.
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For convenience, we introduce a small parameter, ε, defined as,

ε ≡ θh0
vs
. (3.10)

Here, we recall that θ is the mixing angle between the SM and HS Higgses and is less

than unity following our choice to work in the small angle limit. Furthermore, the ratio of

VEVs h0/vs must also be small otherwise the effective field theory describing our system

is not valid. Therefore, we also have that ε� 1. Minimising with respect to the Lagrange

multiplier, ω, yields

Q =

(
1− 2η

3
ε

)
f2ω(1− n23) sin2 ϕV . (3.11)

This expression corresponds precisely to the one for the charge as determined from Eq. (3.5).

We use this to eliminate ω, giving

E =
Q2

2

(
1− 2η

3
ε

)
f2(1− n23) sin2 ϕV

+ (1− (1 + η) ε)m2
πf

2(1− cosϕ)V

+ U(h0)V +
1

5mf

(
243π4

Q5

V 2

)1/3

.

(3.12)

The only dependence on the direction of the VEV of Σ is the factor n3 in the first term.

The energy of the Q-ball is minimized for n3 = 0, which corresponds to zero VEV for the

neutral pions. This behaviour is unsurprising since a neutral pion VEV inside the Q-ball

contributes to its mass but not to its charge – unlike the SM Higgs, the neutral pion does

not offer a way to reduce the mass of the resulting Q-ball for a given charge.

We further note that, in the expression that must be minimised, E/Q, the volume and

charge of the Q-ball always appear in the form V/Q. Thus, we infer that V scales linearly

with Q for thin-wall Q-balls, even in the presence of Fermi degeneracy pressure. This is in

contrast with the thick-wall case, where V ∼ Q−3, for small Q [8, 11].

Before we continue, we note the complications in proceeding analytically. Due to the

non-trivial dependence on V , it is not feasible to analytically minimise the energy of the

Q-ball with respect to the volume exactly. This is entirely due to the presence of the Fermi

degeneracy pressure. Furthermore, the presence of nh heavy quarks in Eq. (3.12) does not

qualitatively affect the Q-ball solution since it only contributes an additional (and slightly

larger) coupling between the HS Higgs and pions. Therefore, in the following, we will set

nh = 0 to simplify our expressions – we will reintroduce this parameter in our numerical

results. The Higgs potential is also a barrier to obtaining exact analytical expressions. We

will discuss this as we proceed below.
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3.2 Higgs-Assisted Thin-Wall Q-balls

For notational convenience, let us define the dimensionless variables,

Ê ≡ E

mπ Q
, and ν ≡ mπ f

2 V

Q
, (3.13)

together with the dimensionless parameters

A ≡ (243π4)1/3

5

(
f4

m3
f mπ

)1/3

and B ≡ 1

4

λ

θ4
v4s

m2
π f

2
and C ≡ θvh

vs
. (3.14)

This equation is enclosed in a box for referential convenience since all of the ensuing

analysis will be done using these dimensionless parameters defined here. These parameters

effectively control the size of the contribution to the Q-ball mass due to the presence

of Fermi degeneracy pressure, and the SM Higgs potential. Note that C is not entirely

independent of B; they are related through

BC4 =
λ

4

v4h
m2
πf

2
. (3.15)

This relation is always satisfied for some parameter values in each theory. Moreover, by

Eq. (2.2), we see that C ∝ θ2, and so it is related to the mixing between the SM and the

HS. Thus, we see that C is naturally small.

Consider the example of mπ ∼ f ∼ 4vh and λ ∼ 0.1, then BC4 ∼ 10−4. Since, in the

small angle approximation, θ . 10−1, we also have that

B & 103
(
vs
f

)4

, C . 10−1
(
vh
vs

)
,

λp
λs

(
vh
vs

)
. 10−1, (3.16)

where the final inequality comes from the definition of θ in Eq. (2.2). If there is no hierarchy

between the two parameters λp and λs, then we see that C . 10−2 and B & 104, which in

turn requires that vs & f – this latter constraint is consistent with the idea that the “heavy

Higgs” is massive enough that we need not include it in our effective theory. Realistically,

the parameters can be different from these assignments, but we use values similar to these

in our numerical study below.

Q-ball stability requires, at the minimum of the energy, that Ê < 1; that is, the mass

of the Q-ball must be less than the product of the total charge and the HS pion mass such

that it cannot classically decay into pions. With these definitions, the energy of the Q-ball

reads,

Ê =
1

2 sin2 ϕν
+ (1− ε)(1− cosϕ) ν +B

(
4C2ε2 + 4Cε3 + ε4

)
ν +

A

ν2/3
, (3.17)
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where we have set η = 0, as discussed above. Minimising this expression with respect to ε,

ϕ and ν yields, respectively,

4B
(
2C2ε+ 3Cε2 + ε3

)
= (1− cosϕ)

(1− ε)ν2 =
cosϕ

(1− cos2 ϕ)2

(1− ε)(1− cosϕ) +B
(
4C2ε2 + 4Cε3 + ε4

)
=

1

2(1− cos2 ϕ)ν2
+

2

3

A

ν5/3
.

(3.18)

It is not possible to simultaneously solve these equations analytically due to the combination

of the terms proportional to ν−2 and ν−5/3, as well as the Higgs self-interactions.7 We

must therefore proceed numerically obtaining, at best, analytical approximations in certain

limits.

Naively, we might expect that, since they represent contributions to the Q-ball energy

without a corresponding contribution to the charge, the parameters A, B and C (see

Eq. (3.14)) should be as small as possible for a stable Q-ball to form. However, note that

if we set B → 0 in the above, then ϕ → 0. This represents the vacuum solution, i.e., no

stable Q-ball forms. Thus, counterintuitively, the Higgs potential is a necessary component

in the stabilisation of these Q-balls; it is not enough for the Higgs to merely couple linearly

to the pNGBs.

In the limit of A → 0 and C → 0, with B non-zero, these equations can be readily

solved for a stable Q-ball solution. We find that, to leading order,

ϕ2 ≈ 8Bε3, ν ≈ 1

8Bε3
and ε ≈ 1

(8B)1/2
. (3.19)

The resulting physical properties of the Q-balls are given by

mQ ≈ mπQ

(
1− 1

8

1

(2B)1/2

)
and V ≈ Q

mπf2
(8B)1/2. (3.20)

We see that the resulting Q-balls are stable, provided that B > 1/128. In fact, B & O(1)

since the expansion is in terms of ε� 1, and so this condition is always satisfied whenever

the expansion in ε is valid.

For the resulting Q-balls to be well-approximated by this idealised solution, we require

that A� 1 and that the Higgs potential be well-defined by its quartic term in the centre

of the Q-ball, i.e., that 4C � ε. Considering the definition of C and ε given above, this

translates to vh � h0, and so the VEV of the Higgs inside the Q-ball must be much greater

than its VEV outside it. This occurs if the separation between the scale of the Higgs and

the scale of the HS pNGBs is large. To corroborate this, we examine this inequality in

7One might naively expect that, in the large volume limit, we might ignore the term proportional to ν2,
however, this becomes equivalent to the limits, either ε → 1, φ → 0, or ν → 0, which are all inconsistent
with our assumptions (ε < 1) or the requirements for a stable Q-ball solution (φ 6= 0 and ν > 0).
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Figure 2: The C vs. ε plane. Each line corresponds to a family of Q-ball solutions for
different values of the parameter A each given on their respective line. The dotted line
denotes C = ε. The excluded zone is the region where the binding energy goes negative –
this corresponds with C � ε, as discussed in the main text.

terms of the solution above,

8
√

2B1/2C � 1, (3.21)

which, in terms of the fundamental parameters of the theory, is

v2s
mπf

� 1, (3.22)

where we have assumed that no hierarchy exists between the parameters λs and λp, and

taken λ ∼ 0.1. Thus, we see that, for this limit to be realistic, we require a hierarchy

between the scale of the pNGBs and the VEV of the heavier HS Higgs. Moreover, since

we ignored the HS Higgs from our analysis, for this to be self-consistent, we would require

a large splitting between mπ and f . We thus see that this limit is highly idealised (and is

contrary to our realistic parameter values discussed above).

A realistic analysis, however, must consider non-zero A and C (see Eq. (3.14)). And,

regarding the latter, for A positive definite, there is a maximum value of C beyond which

the Q-ball becomes unbound because large values of C make the contribution of the Higgs

potential to the Q-ball mass large. For a given value of A and B, we can numerically

determine the relationship between ε and C by solving the set of equations in Eq. (3.18)

simultaneously. These contours are shown in Fig. 2. The shaded region in the figure

delineates where the Q-ball solutions become unstable because C becomes too large.8 Note

8In this plane, this can be thought of as the region where ε� C – this is equivalent to the limit h0 � vh,
i.e., that the Higgs VEV inside the Q-ball is negligible. As noted above, the Higgs is a necessary component
to the stability of these Q-balls, and so it is expected that this limit would not produce a meaningful
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that for the case where A = 0, the Q-ball solutions are always bound for any value of C

up to its asymptotic value.

The vertical asymptotes on the right of the plot represent the case that C → 0.9 For

A→ 0, this corresponds to the idealised case given above. When C is appreciable w.r.t. ε

– when the curve differs slightly from the vertical asymptote – we find that

ε ≈ 1

(8B)1/2
− C. (3.23)

Given that 1−Ê ∼ ε, we thus see that the binding energy of the Q-balls is reduced, which is

as expected – though the Higgs is a necessary component for the stability of these Q-balls,

the Higgs self-interactions only increase the mass without increasing the charge, and so the

turning on of additional terms in the potential should always relatively reduce the binding

energy. For A & 1, we find that the asymptotes are given by

ε ≈ 3

64AB2/3
. (3.24)

In these cases, 1− Ê ∼ ε once more, and so we see that the binding energy of these Q-balls

reduces quickly with increasing A or, equivalently, the greater the contribution the Fermi

repulsion has, the less bound the Q-ball is.

We now turn our attention to the Fermi repulsion, its corresponding parameter, A, and

the properties of realistic Q-balls. In Figs. 3 and 4, we plot the fractional binding energy,

1− Ê, and the resulting Q-ball radius, as functions of A for different values of B and C –

we use the fact that B and C are related through Eq. (3.15). We see that there are two

limiting regimes. For A� 1 – the Fermi repulsion provides a negligible component to the

energy – there is no dependence of the physical parameters on A: for C → 0, this regime

corresponds to our idealised scenario above. In the high A regime, the binding energy and

radius scales as

mQ ≈ mπQ

(
1− 9

1024

1

AB2/3

)
and V ≈ Q

mπf2

(
32

3

)3

A3B. (3.25)

As we can see in the latter case, together with the plots in Figs. 3 and 4, the effect of the

Fermi repulsion is profound on the physical properties of the Q-ball. The binding energy

reduces quickly with increased A and the Q-ball radius increases quickly with increased

A. Note, when C ∼ ε, we obtain a function of A that is almost parallel to the case of

C → 0. When C > ε, we see that as A gets larger, it becomes too large of a component of

the energy of the Q-ball, and it renders it unstable. There is thus a maximum value of A

that allows for stable Q-balls to form – this maximum can only be found numerically and

solution.
9The asymptotes in the shaded region are unphysical, and so do not mention them further.
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Figure 3: The fractional binding energy with no heavy quarks (left panel) and three heavy
quarks (right panel). The three curves correspond to different values of the constant B;
see text for details. The thick grey lines behind each curve (left panel) are obtained from
the analytic expressions in the two limits of large and small A.

10−4 10−3 10−2 10−1 1 10

A

10−2

10−1

1

10

102

Q
-b

a
ll

ra
d
iu

s
[f

m
]

nh = 0, B = 103

Asymptotes
C ∝ B−1/4

C = ε
C = 0

10−4 10−3 10−2 10−1 1 10

A

10−2

10−1

1

10

102

Q
-b

a
ll

ra
d
iu

s
[f

m
]

nh = 0, B = 104

Asymptote
C ∝ B−1/4

C = ε
C = 0

Figure 4: The Q-ball radius in [fm] with Q = 106. The three curves correspond to different
values of the constant B; see text for details. The thick grey lines behind each curve (left
panel) are obtained from the analytic expressions in the two limits of large and small A.

is model-dependent, and so we do not state any values here.

We also include in these plots the binding energy curve for non-zero heavy quarks.

Here, we choose nh = 4 to mimic the SM. We find that the shape of the curves are un-

changed by the addition of the heavy quarks and they merely introduce a shift to the

curve towards higher binding energy. This behaviour is consistent with our earlier discus-

sion, namely that the addition of heavy quarks effectively introduces an additional, slightly

larger, coupling between the HS Higgs and pions.

– 14 –



Finally, we comment on the phenomenology of these Q-balls if they form a component

of the observed dark matter abundance. In order to give an analytic understanding, we

consider the idealised scenario of A→ 0 and C → 0 in what follows. Q-balls may not have

arbitrarily large charge [42–44]. A constraint on the maximum charge of Q-balls comes

from demanding that the radius is always larger than the corresponding Schwarzschild

radius, RQ > 2MQ/M
2
Pl. This gives a constraint on the charge to be

Q <

[
3
√

2

16π

]1/2
M3

Pl

m2
πf
B1/4. (3.26)

Since both the volume and energy of the Q-balls we studied scale with the charge, this in

turn sets an upper bound on the mass and volume of these Q-balls before they collapse

into black holes:

mQ <

[
3
√

2

16π

]1/2
M3

Pl

mπf
B1/4 (3.27)

and

RQ <
1

2

[
54
√

2

π3

]1/6
MPl

mπf
B1/4. (3.28)

For some typical values for the idealised case of mπ ∼ TeV, f ∼ 10TeV, vs ∼ 5TeV,

θ ∼ 0.01 and λ ∼ 0.1, this sets an upper bound of ∼ 10 cm! These Q-balls can therefore

be phenomenologically relevant, far below their upper bound in size, in dark matter ex-

periments seeking direct detection, as they are in principle distinguishable from point-like

particle states due to form factor suppression at moderately-high momentum transfer. The

question, therefore, is how can such large Q-balls be formed in the early Universe? The

build-up of Q-balls from collisions with constituent quanta, coined ‘solitosynthesis’ [45, 46],

is unlikely to result in such large Q-balls, or even Q-balls that are large enough to be dis-

tinguished phenomenologically. This question is the subject of ongoing study.

4 Summary and conclusions

In this paper, we have shown that mirror-world-like theories, with the analogue of hyper-

charge ungauged, can support stable Q-ball states in the thin-wall limit. The stabilisation

of these Q-balls is ensured by energy and charge conservation but also requires a portal

coupling with the SM Higgs. This work is an extension of previous work on the so-called

thick-wall limit, valid for small charges. Here, we focussed on the thin-wall limit which

describes Q-balls with large charges. We have found several regimes that allow solutions

to exist, each described by the interplay between the Fermi repulsion, Higgs potential, the

mixing between the two sectors, and the number of heavy “quarks” in the hidden sector.

For a wide range of parameter values, we have shown that these solutions are stable – how-
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ever, in the case that the Higgs quadratic and cubic self-couplings are relevant, the Q-ball

is rendered unstable if the Fermi repulsion is too large. In this latter case, the resulting

Q-balls are sub-femtometre in size. However, if the quartic is the most relevant term in

the Higgs potential, then the size of these Q-balls is primarily set by the Fermi repulsion

itself and these Q-balls can be quite large in size.

In addition, if the Q-balls could contribute to the dark matter abundance inferred to

exist in our Universe, the SM Higgs would provide a portal between the SM and the Q-balls.

This coupling would allow for the direct detection of the Q-balls in existing dark matter

experiments. Though this also requires a full phenomenological study of the evolution from

formation to the detection of these objects. Such a study is warranted since the signatures

in direct detection experiments would be striking. These extended objects can reach, in

certain parts of parameter space, radii much greater than SM bound states, and thus the

event rate can be sharply peaked at low momentum transfer due to form factor suppression.

This study is the subject of future work.
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