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Abstract

Kination denotes an era in the cosmological history corresponding to an equation of stateω=+1
such that the total energy density of the universe redshifts as the sixth inverse power of the scale fac-
tor. This arises if the universe is dominated by the kinetic energy of a scalar field. It has often been
motivated in the literature as an era following inflation, taking place before the radiation era. In this
paper, we review instead the possibility that kination is disconnected from primordial inflation and
occurs much later, inside the Standard Model radiation era. We study the implications on all main
sources of primordial gravitational waves. We show how this leads to very distinctive peaked spectra
in the stochastic background of long-lasting cosmological sources of gravitational waves, namely the
irreducible gravitational waves from inflation, and gravitational waves from cosmic strings, both local
and global, with promising observational prospects. We present model-independent signatures and
detectability predictions at SKA, LIGO, LISA, ET, CE, BBO, as a function of the energy scale and du-
ration of the kination era. We then argue that such intermediate kination era is in fact symptomatic
in a large class of axion models. We analyse in details the scalar field dynamics, the working con-
ditions and constraints in the underlying models. We present the gravitational-wave predictions as
a function of particle physics parameters. We derive the general relation between the gravitational-
wave signal and the axion dark matter abundance as well as the baryon asymmetry. We investigate
the predictions for the special case of the QCD axion. The key message is that gravitational-waves of
primordial origin represent an alternative experimental probe of axion models.
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1 Introduction

The measurement of the abundances of the light elements as predicted by the theory of Big-Bang
Nucleosynthesis (BBN) constrains the universe to be dominated by radiation when the temperature
was 1 MeV. The smoothness and flatness of the universe, and the temperature anisotropies in the
Cosmic Microwave Background (CMB), support the idea that much earlier than BBN, the universe
was inflating exponentially, dominated by the energy density of a slowly-rolling scalar field. The non-
detection of the fundamental B-mode polarization patterns in the CMB suggest that the maximal
Hubble rate during inflation Hinf is 5× 1013 GeV, which corresponds to a maximal energy scale of
1016 GeV [1–3].

The equation of state (EOS) of the universe between the end of inflation and the onset of BBN,
encoded by the parameter ω = p/ρ, where p and ρ are the local pressure and energy densities, is
currently unconstrained [4]. While the standard paradigm assumes that the energy density of the
post-inflationary universe is radiation-dominated,ω= 1/3, alternative cosmological histories are not
unlikely. For instance, the dynamics of the inflaton at the end of inflation can trigger a stiff EOS, ω>
1/3 such that the total energy density of the universe redshifts faster than radiation. In this scenario,
the universe can be dominated by the kinetic energy of a fast-rolling scalar field, with ω= 1 [5–8].

The possibility that the universe has had a stiff EOS, ω > 1/3, is particularly relevant for the ob-
servation of a Stochastic Background of Gravitational Waves (SGWB) of primordial origin. The main
sources of gravitational waves (GW) in the early universe are inflation, reheating/preheating, first-
order phase transitions, and cosmic strings [9]. The observation of such GW in future interferometers
or at pulsar-timing arrays would not only offer a unique probe of the high-energy particle physics
phenomena responsible for their production but also of the cosmological history, as the GW spectra
encode information about the EOS of the universe between GW production at very early times and
GW detection today.

The interesting aspect of an era with a stiff EOS is that it leads to an amplification of the GW energy
density ρGW produced by long-lasting sources compared to the predicted value in standard cosmol-
ogy. This can be understood as follows. A given GW frequency f in the primordial GW spectrum
measured today corresponds to a GW emitted at time t∗ with frequency of order H∗ ∝p

ρ∗ when the
total energy density of the universe ρ∗. Reading the frequency spectrum from low to high frequencies
is like going back to earlier emission times. The emitted energy density in GW is proportional to ρ∗,
and therefore to H 2∗. For a given GW frequency today, the corresponding total energy density of the
universe is necessarily higher in the scenario with a kination era than in the standard cosmology, see
Fig. 1. If a stiff era occurred, the GW energy density today is larger than the value obtained assum-
ing standard cosmology. If a stiff era lasts too long, this leads to a substantial amplification of the
primordial GW signal, violating the bounds on the number of massless degrees of freedom Neff from
BBN. There is a large literature on the impact of a stiff era on the nearly-scale invariant primordial
GW spectrum generated during inflation in the case where kination happens right after inflation [10–
30]. The effect of a kination era following inflation on the SGWB generated by cosmic strings was also
discussed in [31–37].

On the other hand, so far (up to the suggestions in [38, 39] and the coincident studies [40, 41]),
there has been no investigation of the scenario where kination is disconnected from inflation and
happens much later after reheating, inside the radiation era. In this situation, BBN-Neff bounds are
easily evaded, while the observational prospects at future gravitational-wave observatories are excel-
lent. This is the main topic of this article. Such scenario can be realised only if the kination era is
preceeded by a matter era. The main task of this paper is to motivate, from particle physics, such
a scenario, to derive the GW signatures and the prospects for their detectability. We identify main
classes of models where this happens naturally. They are linked to axion models where the axion ac-
quires a large kinetic energy before its low-energy potential develops, therefore leading to a spinning
stage along the circular orbit of the axion potential. The interplayed dynamics between the radial
mode and the angular mode of a complex scalar field generates the desired sequence of events. A
letter version of this work was presented in [40]. We provide many details and a thorough discussion
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in this paper, in particular on the damping of radial motion.
The plan of this paper is the following. We start with the phenomenology and the observational

implications of a kination era. We then present the particle physics implementation. In Sec. 2, we
review the status of kination in a broad sense, we sketch the three possible cosmological scenarios
that can lead to a kination era. We first discuss the universal experimental prospects for probing a
kination era following inflation: We derive in Fig. 2 the values of the inflation scale and of the reheat-
ing temperature that are already constrained by BBN and by the scalar fluctuation, concluding that
LIGO, LISA, ET and BBO do not have sensitivity to probe the allowed region of parameter space and
only ultra-high-frequency experiments could do so. We then turn to our main topic: a kination era
inside the radiation era. Gravitational-wave signatures are first studied in a model-independent way
in Sec. 3. We predict the effect of kination on the irreducible GW spectrum from inflation as well as on
the GW from (both local and global) cosmic strings. We present the constraints on the duration and
energy scale of kination. Prospects for detection at future experiments are derived in detail. Having
motivated an intermediate kination era with axion models, we determine the relation between the
relic abundance of the axion and the GW energy density today in Sec. 4. We also comment on the
relation between the GW energy density today and the baryonic energy density predicted through
the axiogenesis mechanism in Sec. 5. We then discuss the particle physics realisations in Sec. 6 , 7,
8, 9 and 10. The damping of the radial mode energy density is a crucial aspect in this story and we
discuss this extensively in Sec. 8 and 9 and 10. Thermal effects are investigated in details in Sec. 9 and
10. The conditions that lead to kination are analysed in terms of model parameters for both classes of
models. Precise predictions for the GW signal and the prospects for detection for each class of models
are given. We conclude in Sec. 11.

A number of technical details are presented in the appendices. App. A reviews the occurrence of
a kination era following inflation before reheating. App. B shows the constraints and observability
prospects of a generic stiff era with EOS 1/3 < ω < 1. App. C discusses different limitations on the
duration of a kination era. App. D explains in details the origin of the complex scalar potential in the
UV completion and the role of each term in the dynamics. In App. E, we discuss the usual issues of
adiabatic and isocurvature perturbations in the axion models and the solutions. App. F provides more
details on the thermal and non-thermal damping mechanisms for the radial mode. App. G reports the
detailed solution of the equation of motion for the complex scalar field model, discussing the various
steps over the full cosmological evolution.

2 What is kination?

The term kination was introduced for the first-time in [6] and describes a scalar field whose kinetic
energy dominates the dynamics. The corresponding EOS is ω = p

ρ = K E − PE
K E + PE ' 1, where K E and

PE denote kinetic and potential energy density, respectively. For example, inflation can end when the
inflaton potential becomes steep and the inflaton fast-rolls, inducing a kination period [5]. This is the
scenario of type (i) represented in Fig. 1.

We can generalise the definition of a kination era to an epoch when the universe is dominated
by a fluid with EOS ω ≡ p/ρ = 1, where p and ρ are pressure and energy density. According to this
definition, kination dates back to the exotic cosmological model by Zel’dovich [42]. Kination has the
maximum EOS allowed by causality, i.e. the sound speed is the speed of light. Its energy density
has the fastest redshift ρ∝ a−6, where a is the scale factor of the universe, and the universe has the
slowest expansion, a ∝ t 1/3. Hence, a kination era at early times will end by becoming subdominant
to the Standard Model radiation without the need of decay♠1. Such slowest rate of expansion can
affect for example reheating after inflation [44–50], electroweak baryogenesis [6, 51], the enhance-
ment of Dark Matter (DM) relics [43, 52–59], matter perturbations and small-scale structure forma-
tion [60, 61], GW signals from inflation [15, 26, 27, 62], GW from both local and global cosmic strings
[31, 32, 35, 36, 63, 64], and GW from phase transitions [4, 65].

♠1Though the kination-decaying scenario can be considered as in [43].
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The kination EOS can also arise outside of the fast-rolling scalar field context. The small-scale
anisotropic stress in the coarse-grained homogenous expanding background has the energy density
∝ a−6 [66, 67]. Recently, it was pointed-out that the cosmic fluid after a first-order phase transition
can also produce the kination-liked anisotropy [68, 69]. A late intermediate kination era could thus
occur after a second inflation stage arising for instance due to a supercooled phase transition. Such
case is denoted type (iii) in Fig. 1. The EOS evolution after bubble collision would require a dedicate
study. We do not consider kination after a secondary inflation in this work. We instead focus on the
cases where kination occurs right after inflation (type (i)) and the intermediate kination following a
matter era (type (ii.1) & (ii.2)). As we will explain below, a post-reheating kination era cannot happen
inside the standard radiation era, it has to be preceeded by a matter era. In summary, the following
cosmological histories involving a period of kination are possible:

• Type (i): Inflation → Kination → Radiation

• Type (ii.1): Inflation → Radiation → Matter → Kination → Radiation
(without entropy injection)

• Type (ii.2): Inflation → Radiation → Matter → Kination → Radiation
(with entropy injection)

• Type (iii): Inflation → Radiation → Inflation → Kination → Radiation

They are compared on Fig. 1 and we discuss them in turn below.

kination

inflation

kination

To
ta

l e
ne

rg
y 

de
ns

ity
 

 o
f t

he
 U

ni
ve

rse
  ρ

(a)

scale factor a

standard cosmology radiation

radiation
type (i)

type (ii.1)

kin.

secondary period of inflation
matter

type (ii.2)
type (iii)

kination right after primordial inflation

intermediate 
kination

Figure 1: Possible cosmological histories involving a period of kination.

2.1 Kination right after inflation

In the literature, two classes of models predict a stiff EOS, ω> 1/3, following primordial inflation.

Steep oscillatory potential. There are models where the inflaton ends up oscillating in a steep po-
tential, V (φ) ∝φp with p > 4 [5, 6, 70]. The stiff equation of state, however, hardly lasts longer than a
few e-folds [71–74].

Steep non-oscillatory potential. There are non-oscillatory or quintessential inflation models [75,
76] where the inflaton potential has a sudden drop responsible for the fast-roll of the scalar field after
the end of inflation. On both sides of the drop, the inflaton potential features two asymptotically
flat regions, the inflationary plateau and the quintessence tail, in which the scalar field can slow-
roll and generate both primordial inflation and the late dark energy with a unified description. The

7



first problem of quintessence inflation model is the need for super-Planckian field excusion. Indeed,
during a period of kinetic energy domination,

φ̈+3Hφ̇= 0 with H =
√√√√ φ̇2/2

3M 2
pl

=⇒ ∆φ'p
6MplNKD, with NKD ≡∆ log a, (2.1)

a canonically-normalized scalar field φ varies over O (MPl) during each e-fold of kination which is a
no-go if one takes seriously the swampland distance conjecture [77–79]. This problem can be circum-
vented by considering non-canonical kinetic terms as in α-attractor models, see App. A. The second
problem is how to reheat the universe as kination does not feature the coherent oscillations that can
lead to the usual reheating or preheating mechanism. Ways out require extra ingredients, either ad-
ditional non-minimal couplings or extra fields. We do not discuss this further as a myriad of models
have been discussed in the literature and defer to App. A, a report status with references, on model-
building related to the scenario of kination following inflation. In the next subsection, we present
model-independent constraints on this scenario.

2.2 BBN, CMB & and scalar fluctuation bounds

A kination era is constrained by BBN and CMB for two reasons.

Kination cannot end after BBN. The universe must be in the radiation era at the time of BBN, so in
this paper we will impose that the kination era ends before BBN, at a temperature T∆ higher than, cf.
App. C.1 and Ref. [80]

T∆& TBBN = 1 MeV. (2.2)

The possibility that a kination era starts after BBN and ends before matter-radiation equality was con-
sidered in [41] and is constrained by CMB. In App. C.1, we show consistency between BBN constraints
and the CMB upper bound on the inflationary scale leads to

Type (i): NKD . 29+ 2

3
log

(
Einf

1.4×1016 GeV

)
(2.3)

Type (ii): NKD . 14.6+ 1

3
log

(
Ereh

1.4×1016 GeV

)
. (2.4)

where Einf is the inflation energy scale, Ereh is the energy scale when the universe becomes radiation
dominated right after inflation, and where the scenarios of Type (i) and Type (ii) are defined in Fig. 1.

BBN constraints on inflationary GW. The pre-BBN kination enhances the GW signal ΩGW( f ) =
ρGW/ρc from primordial times, as discussed in the next section. If the duration of kination is too
long, the enhanced GW energy density can impact the expansion rate at the time of BBN as it acts as
an effective number of neutrino relics.

Neff =
8

7

(
ρtot −ργ

ργ

)(
11

4

)4/3

, (2.5)

which is constrained by CMB measurements [81] to Neff = 2.99+0.34
−0.33 and by BBN predictions [82, 83]

to Neff = 2.90+0.22
−0.22 whereas the Standard Model (SM) prediction [84, 85] is Neff ' 3.045. Using Ωγh2 '

2.47×10−5 [86], we obtain the following bound on the GW spectrum∫ fmax

fBBN

d f

f
h2ΩGW( f ) ≤ 5.6×10−6 ∆Nν, (2.6)

where we set ∆Nν ≤ 0.2 [86], fBBN is the characteristic frequency corresponding to the BBN time
( fBBN ' 0.18 nHz for inflationary GW, see next section) and fmax is the cutoff frequency (associated
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with the end of inflation). This bound applies to all sources of primordial GW. A conservative bound
can be derived by considering the irreducible inflationary GW background♠2.

We show now that the kination right after inflation is strongly constrained by BBN which prevents
the possibility that GW observatories such as LIGO, LISA, ET and BBO could probe such kination
era. A similar analysis was performed for an arbitrary stiff era in [27], considering LIGO and LISA
prospects. The conclusion was that only ω ∼ 0.5 could still lead to signals at LISA while not being
excluded by BBN, but they would correspond to a very low-energy stiff era, below a GeV.

Consider the scenario where kination occurs after inflation characterised by the Hubble scale
Hinf and ends at the reheating temperature TRH. From Eqs. (3.11) and (3.12), the GW from inflation
gets enhanced between the frequency corresponding to reheating f∆ and the cut-off frequency cor-
responding to the end of inflation

fmax ' 9.64×1011 Hz

(
g∗(TRH)

106.75

)1/6 (
g∗,s(TRH)

106.75

)−1/3 (
Hinf

1013 GeV

)2/3 (
1 TeV

TRH

)1/3

. (2.7)

We provide in Fig. 2 model-independent bounds on a kination era (ω= 1) happening just after infla-
tion as a function of the inflationary scale and the reheating temperature. In App. C.2, we show that
BBN-Neff bound on inflationary GW leads to the following upper bound on the duration of kination

Scenarios of Type (i) and (ii) in Fig. 1: NKD . 11.9+ log

(
5×1013 GeV

Hinf

)
. (2.8)

The BBN-Neff bound excludes the region where kination is too long and leads to a too large GW sig-
nal. All future planned experiments cannot beat this bound so we expect no discovery of the en-
hanced signal from a kination era right after inflation. A way-out would be to use high-frequency
(HF) experiments as discussed in [87]. In Fig. 2, we show how HF experiments operating at 10 MHz
and 10 GHz with sensitivity h2Ωmin

sens = 10−10 can potentially probe the parameter space beyond the
BBN bound. We also find that HF experiments operating at 1 kHz, 1 MHz, and 1 GHz need at least
h2Ωmin

sens . 10−14,10−11, and 10−8 respectively, to make a discovery. For experiments operating at &
THz range, the cut-off frequency in Eq. (2.7) is smaller such that they cannot probe the GW signal.

We show in App. B the analogues of Fig. 2 for a stiff era corresponding to ω= 1/2 and ω= 2/3. For
ω= 1/2, there is no BBN bound, LISA, ET and BBO can probe the enhanced GW signal from inflation
while high-frequency experiments would not bring additional insight due to the gentle slope of the
signal. For ω = 2/3, the BBN bounds prevents LISA’s sensitivity while there is a potential for ET and
BBO. In the rest of this paper, we only consider the maximal stiff era known as kination and we fix
ω= 1.

Possible constraint from scalar fluctuation. Kination is triggered by a freely-rolling scalar field,
whose fluctuation behaves as a hot gas of massless particles, therefore red-shifts as radiation. The
energy density of the fluctuation of the scalar field can eventually dominate that of the zero-mode
which red-shifts as the inverse sixth power of the scale factor of the universe. Assuming that the fluc-
tuation with energy density δρ is generated at the end of inflation, it dominates the zero-mode of en-
ergy density ρ after the kination era expands by NKD ' log(ρinf/δρinf). For instance, the scalar might
fluctuate as the same order as the curvature fluctuation – ρ/δρ ∼ 109÷10 which leads to N max

KD ∼ 11,
cf. also App. C.3. For a suppressed fluctuation, the bound on kination duration can be relaxed for
some particular inflation models. Fig. 2 shows that the theoretical kination-constraint from fluctua-
tion is stronger than the usually-considered BBN-Neff bound. The very interesting implications of the
fluctuation from the kination-like field will be discussed further in [88].

♠2To use the GW background from cosmic strings, one needs a mechanism to generate cosmic strings during a kination
era. We leave this issue for future work.
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Figure 2: Ability of future GW experiments to probe a kination era taking place right after inflation (Sce-

nario Type (i) in Fig. 1) via the imprint on the irreducible inflationary SGWB, assuming an inflation scale

Hinf = E 2
inf/

p
3MPl. Given the BBN-Neff bound shown in red, cf. Eq. (2.8), none of the planned experiments

can observe the kination-induced GW enhancement, even for the highest allowed inflationary scale Hinf,Planck.

Above the black dotted lines of the left panel, the kination enhancement could be probed by high-frequency (HF)

experiments, operating at a given frequency and at the required sensitivity Ωsens,min shown on the right panel.

Alternatively, the pale spectra on the right panel – with a specific value of the number of kination-efolds NKD–

could violate the BBN bound for a given Hinf, but are still undetectable with future experiments. However, these

spectra are unphysical due to the scalar fluctuation bound, NKD . 11 for ρ/δρ (Hinf). 109÷10 cf. Eq. (C.21), as

shown as the green lines on the left panel. By imposing NKD. 11 (could be relaxed in some inflation model), the

spectra in the right panel can never violate the BBN-Neff bound.

We now move to the new scenario investigated in this paper: an intermediate matter-kination era,
corresponding to Scenario Type (ii) in Fig. 1.

2.3 Matter-Kination inside radiation

As we will motivate from particle physics in Secs. 6, 7, 8, 9 and 10, kination can occur at lower energy
scales well after reheating and for a short period. Therefore, it could enhance GW produced either
during inflation, at preheating or much later in the post-reheating era by a network of cosmic strings,
within the observable ranges of future-planned experiments, while the BBN-Neff bound is not vio-
lated.

A matter-kination era. A period when the total energy density redshifts slower than radiation is
needed, for a kination era inside the radiation era. As we will see, the UV completions we present
naturally generate a kination after a matter era. The matter era brings the energy density of the uni-
verse above the radiation energy density. This enables a period of kination that redshifts faster than
radiation afterwards. The longer the matter era dominates, the longer kination lasts. The cosmolog-
ical history with the intermediate matter-kination era is described by the total energy density of the
universe

ρ(a) = ρr,0 G[T (a),T0]

(
a

a0

)4

+ρm,0

(
a

a0

)3

+ρΛ,0 +ρφ(a), (2.9)

where the function

G(T, T0) =
[

g∗(T )

g∗(T0)

][
g∗s(T0)

g∗s(T )

]4/3

, (2.10)

accounts for the change in the number of relativistic degrees of freedom, assuming the conservation
of the comoving entropy g∗s T 3 a3. We take the functions g∗ and g∗s from App. C of [24]. The first
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three terms of Eq. (2.9) follow from theΛCDM assumption, while ρφ is the scalar field energy density
that generates the non-standard matter and kination eras.

The cosmological evolution is sketched in Fig. 3. We start when the Standard Model radiation
dominates, while the scalar fieldφ is frozen and contributes to a subdominant cosmological constant.
When the scalar field mass becomes larger than the expansion rate, it can start to move and oscillate.
Its coherent motion then behaves as pressure-less matter and leads to the matter era. Later, its kinetic
energy dominates its dynamics, the kination era starts and lasts until the SM radiation dominates
again.
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Figure 3: Scalar field dynamics that generates a matter-kination era inside the radiation epoch. The solid or-

ange line shows Scenario of Type (ii.1) where the entropy injection is absent or happens before the scalar domina-

tion. For Scenario of Type (ii.2), the entropy injection occurs after scalar domination and suppresses the kination

duration, as shown in dashed orange line. fa denotes the radius of the circular orbit of the field spinning with

velocity θ̇.

The cosmological history with the intermediate-scale matter era followed by the kination era can
be described in a model-independent way by the following quantities:

1. ρrad
osc – Energy density of the background radiation when the scalar field starts oscillating at aosc,

2. ρosc – Energy density of the scalar field at oscillation,

3. ρKD – Energy density of the scalar field when the kination era starts,

All of them can be related to the model-dependent quantities, see later sections. For convenience, we
define the energy scale at each event by

ρi ≡ E 4
i . (2.11)

The non-standard matter era starts at the so-called time of scalar domination, a = adom, when the
scalar field energy density is

ρdom = ρosc

(
aosc

adom

)3

= ρosc

(
ρosc

ρrad
osc

)3

. (2.12)

It lasts until kination starts at a = aKD with

aKD

adom
=

(
ρdom

ρKD

)1/3

, (2.13)

and kination ends when the radiation bath dominates again at a = a∆

ρ∆ = ρ2
KD

max(ρdom,ρdamp)
. (2.14)
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The duration of kination is given by the e-folding number

eNKD ≡ a∆
aKD

=
[

max(ρdom,ρdamp)

ρKD

]1/6

. (2.15)

Absence of entropy injection. We have introduced the quantity ρdamp, that will enter in the particle
physics implementations where the radial mode of the complex scalar field plays a role, see Sec. 7. It
is crucial for the duration of kination as the increase in the thermal bath energy density from radial
mode damping shortens the duration of kination, see orange dashed line in Fig. 3. The longest ki-
nation era is obtained when the universe evolves adiabatically during the whole matter-kination era.
This implies no entropy injection during the matter-kination era and therefore ρdamp > ρdom. In that
case ρ∆ = ρdom (adom/a∆)4 together with Eq. (2.12) and (2.14) imply

NKD = NMD/2, (2.16)

where NMD ≡ log(aKD/adom) is the duration of the matter era. Except when explicitly specified, we
assume Eq. (2.16) to hold in our plots.

Impossibility of a kination era inside radiation. We now comment on the impossibility in our opin-
ion of the radiation-kination-radiation scenario (adopted in [64]).

A spinning field inside a quartic potential can lead to the same EOS as radiation. As we show in
Fig. 60 of App. G.4, if the trajectory is circular, then the EOS becomes kination-like once the scalar
field reaches the bottom of the potential. Nevertheless, as we illustrate in Fig. 4, this scenario appears
unfeasible. The damping of the radial motion responsible for the circular trajectory is expected to
produce particles redshifting as radiation (or worse as matter), which prevents the universe to enter
a kination stage.
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Figure 4: A complex scalar field orbiting in a quartic potential has the same EOS as radiation ω = 1/3 (see

App. G.2 and App. G.4). The radial mode must be damped for kination to occur. However, the damping mecha-

nism transfers the radial mode energy to the thermal bath, preventing a kination era. An intermediate kination

era must therefore be preceeded by a matter era as shown in Fig. 3.

2.4 Preview: UV completions with intermediate kination cosmology

The sequence of events presented in the previous subsection and in Fig. 3 requires a non-trivial dy-
namics which can nevertheless occur naturally in well-motivated particle physics models. This will
be the subject of a thorough analysis in Secs. 6, 7, 8, 9 and 10. Here we give a preview of the main
properties. Generally, the kination era arises from a stage when the energy density of the universe is
dominated by the spinning of an axion field around a circular orbit with vanishing potential energy
(at the bottom of the U (1)-symmetric potential). The key questions are: What imprinted the initial
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velocity of the axion? How was the axion kicked in the first place? We discuss the main mechanism
illustrated in Fig. 5.

In the first attempt in Sec. 6, we show why it is not enough to invoke only the axion degree of
freedom (angular direction of the complex scalar field). In fact, the radial component of the complex
scalar field is the key feature. The dynamics of the radial mode will trigger a motion in the angular
direction. The interplayed dynamics induces a matter era. Eventually the field will reach the bottom
of the potential. There is still an obstacle for a kination EOS to follow: the energy density in the radial
mode must be damped. The optimal case happens when this damping occurs before the scalar field
energy density dominates. A kination era may still happen otherwise but its duration will be reduced
by the entropy injection. Two damping mechanisms can be invoked: through parametric resonance
of the radial mode at early times or through thermal effects. The latter case relies on the interaction
of the radial mode with particles in the thermal bath.

In the following Sec. 3, we present the implications for the GW signals of the intermediate mat-
ter+kination era in the most general way, that does not rely on any assumptions about the particle
physics realisation. In Sec. 4 and Sec. 5, we connect the GW signal to the axion dark matter abun-
dance and the baryon asymmetry. We will present the specific model parameter dependences of the
GW signal in Secs. 6, 7, 8, 9, and 10.

Figure 5: Axion models naturally provide a kination era preceded by a matter era. The field starts at large radius

(red trajectory "I") before reaching stage "II".
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Model-independent predictions

3 Gravitational-wave peaked signature

Cosmic archeology. We will discuss the effect of an intermediate matter-kination era on primor-
dial GW. There are four main sources of GW of primordial origin: from inflation [89], from reheat-
ing/preheating [9], from first-order phase transitions [90, 91] and from networks of cosmic strings
[36]. The first and last can be considered long-lasting sources while the others are typically short-
lasting (meaning only active for a Hubble time or so).

As GW from long-lasting sources are produced at different times, they encode information about
the cosmological history. Their GW spectrum spans a wide range of frequencies. GW from the earlier
times are produced when the horizon size was smaller and, thus, have higher frequencies. Different
cosmological histories lead to different amounts of GW today. A non-standard cosmological history
imprints a GW spectral distortion which enables to trace the early-to-late history of our universe in
the direction of high-to-low frequencies.

Examples of the cosmic-archeology works using long-lasting GW are [24, 26–28, 31, 32, 35–37, 40,
41, 92, 93], see [4] for a review. Developing from the idea of cosmic archeology, this section focuses on
the intermediate kination following the matter era and its smoking-gun signature, the peak♠3 in GW
spectrum from primordial inflation (Sec. 3.1), cosmic strings (Sec. 3.2), or both (Sec. 3.3). For a short-
lasting source, GW are produced at a specific time and the spectrum localizes at a specific frequency.
The effect of the non-standard cosmological history shifts the spectrum as a whole, at the exception
of the causality tail [100]. As an example of the short-lasting GW source, the effect of matter-kination
era on the GW from first-order phase transitions is discussed in Sec. 3.4.

Why a peaked spectrum? Before providing the mathematical formulation of the GW spectrum, let
us first illustrate the origin of the peak signal from the matter-kination era. For simplicity, the fol-
lowing argument assumes the absence of entropy injection into the thermal bath. The spectrum
observed today of GW produced at H∗ is

ΩGW =
(
ρGW,∗
ρtot,∗

)(
H∗
H0

)2 (
a∗
a0

)4

. (3.1)

GW inherit a fraction of the total energy density of the universe at the time of production. The
amplitude of the GW spectrum from long-lasting GW sources (such as GW from inflation or cosmic
strings) is therefore a probe of the cosmological history.

The inflationary GW energy density is sourced by the scale-invariant tensor perturbation from
the primordial inflation, and Fourier modes remain frozen until they re-enter the Hubble horizon
f = H/2π ∝ ρ1/2

tot . Modes continuously re-enter the horizon in the post-inflationary cosmological
history. In this sense, inflation can be understood as a long-lasting source of GW. In the case of cosmic
strings, loops are continuously produced and radiate GW with amplitude ρGW ∝ ρtot as the network
of long strings in the scaling regime has an energy density proportional to ρtot. For both sources,
GW from a matter-kination era is enhanced because of the larger ρtot, compared to the standard
cosmology,

ρNS
GW

ρST
GW

= ρNS
tot

ρST
tot

≥ 1. (3.2)

During the matter era, the above ratio increases with times so we expect the GW spectrum to increase
in the direction of high-to-low frequencies. This ratio decreases during the kination era over time so

♠3A peak signature also arises from some inflationary models when the tensor perturbations leave the horizon during the
non-slow-rolling phase. The peak has a log-normal shape and also incorporates the oscillation feature [94–99]. This feature
can be distinguished from the broken power-law arising in the post-reheating dynamics discussed in this paper.
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the GW amplitude decreases for lower frequencies. GW produced during the transition between the
matter and the kination era are maximally enhanced, and correspond to the peak illustrated in Fig. 6.

On the other hand, a matter era without kination leads to a suppression of the SGWB from long-
lasting sources. The above argument using Eq. (3.72) applies for the rescaled scale factor. Since a
matter era without kination leads to a horizon size today which is larger than the one predicted in
standard cosmology, the total energy density before the matter era is smaller than in the standard case
after rescaling, cf. Fig. 6. Hence, it induces the step-liked suppression which might be an observable
signature for a large GW signal such as cosmic-string SGWB [37].
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shows the enhanced GW spectrum whose peak position directly relates to the start of the kination era. By rescaling

the scale factor of the universe, a matter era without kination leads to a universe that has smaller energy density

at earlier times and thus leads to a suppression of the GW signal.

3.1 Inflationary Gravitational Waves

The content of Sec. 3.1 is reported as well in [40].

3.1.1 Standard cosmology

Today, the irreducible stochastic GW background from inflationary tensor perturbations, denoted by
its fraction of the total energy density, reads [9]

ΩGW = k2a2
k

24H 2
0

ΩGW,inf (3.3)

and arises from modes with comoving wave number

k = ak Hk (3.4)

which re-entered the cosmic horizon when the scale factor of the universe was ak and the Hubble rate
was Hk . H0 is the Hubble rate today. The spectrum contains a high-frequency cut-off correspond-
ing to the inflationary scale kinf = ainfHinf, where ainf is the scale factor at the end of inflation [17].
After being generated by quantum fluctuations during inflation, the metric tensor perturbation are
stretched outside the Hubble horizon and are well-known to lead to a nearly scale-invariant power
spectrum at the horizon re-entry,

ΩGW,inf '
2

π2

(
Hinf

Mpl

)2 (
k

kp

)nt

, (3.5)
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where Hinf the Hubble rate during inflation, and kp is the pivot scale used for CMB observation
kp /a0 ' 0.002 Mpc−1 [2] (equivalent to the GW frequency fp = 3.1×10−18 Hz). In slow-roll inflation,
the spectral index nt is expected to be only slightly red-tilted

nt '−2ε'−r

8
&−0.0045, (3.6)

since the non-observation of primordial B-modes by BICEP/Keck Collaboration constrains the tensor-
to-scalar ratio to be r . 0.036 [3]. The presence of this red-tilt suppresses the GW energy density by
O (10%) correction in the ranges of Pulsar-Timing-Arrays (PTA) and Earth-based interferometers. In
the rest of the paper, we neglect this suppression and assume nt = 0 for simplicity.

Tensor modes that enter during the radiation era have the standard flat spectrum

Ωst
GWh2 ' (1.3×10−17)G(Tk )

(
Einf

1016 GeV

)4

, (3.7)

where Einf is the inflationary energy scale, G(Tk ) = (g∗(Tk )/106.75)(g∗,s(Tk )/106.75)−4/3 and Tk is the
temperature when a given mode enters the Hubble horizon. This GW background is beyond the
sensitivity of future GW observatories: LISA [101] and Einstein Telescope [102, 103]. Only Big Bang
Observer [104] could be sensitive to if we assume the largest inflation energy scale allowed by CMB
data [2].

3.1.2 In the presence of a matter-kination era

Spectral index. The inflationary GW which are produced with the horizon-size wavelength H−1
k

have the frequency today

f = Hk

2π

ak

a0
. (3.8)

Using the Friedmann equation H = √
ρ/3MPl where ρ∝ a−3(1+ω), ω being the EOS of the universe,

we have f ∝ a−(1+3ω)/2
k and Eq. (3.3) gives

ΩGW ∝ f β, with β ≡ −2

(
1−3ω

1+3ω

)
. (3.9)

Note that the non-trivial scaling comes from the factor a2
k in Eq. (3.3) which arises from the transfer

function of GW after re-entry [105]. Therefore, modes entering the horizon during radiation (ω= 1/3),
matter (ω= 0) and kination (ω= 1) eras have spectral indices β= 0,−2, and 1, respectively♠4.

Triangular shape. For the intermediate matter-kination era as illustrated in Fig. 3, the sign-change
in the spectral index occurs at the transition between these eras and leads to a peaked GW signa-
ture. The high-frequency slope -2 is associated to the matter era while the low-frequency slope +1 is
associated to the kination era. The GW spectrum in the presence of the matter-kination era reads

ΩGW,0h2( f ) =Ωst
GW( f∆)h2 ×


1 ; f < f∆ (late-time radiation),(

f / f∆
)

; f∆ < f < fKD (kination),(
fKD/ f∆

)(
fKD/ f

)2 ; fKD < f < fdom (matter),(
fKD/ f∆

)(
fKD/ fdom

)2 ; fdom < f (early-time radiation),

(3.10)

where the GW abundance assuming the standard radiation-dominated cosmology Ωst
GW is given by

Eq. (3.7), and f∆, fKD (peak frequency), fdom are the characteristic frequencies corresponding to the

♠4For a more realistic power spectrum, i.e., by solving the full GW EOM, the non-standard cosmology alters the behavior
of the GW transfer function. The effect on the amplitude is of order O (1) [27], while the transition between eras could
feature a spectral oscillation from the change of Bessel function’s orders.
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modes re-entering the horizon right after the end of the kination era, at the beginning of the kination
era, and at the end of the matter era, respectively. They are defined as:

f∆ = H∆a∆
2πa0

' (2.7×10−6 Hz)

(
g∗(T∆)

106.75

)1/2 (
g∗,s(T∆)

106.75

)−1/3 (
T∆

102 GeV

)
, (3.11)

fKD = HKDaKD

2πa0
= f∆

(
ρKD

ρ∆

)1/3

= f∆e2NKD ' (1.1×10−3Hz)G1/4(T∆)

(
ρ1/4

KD

10 TeV

)(
eNKD/2

10

)
, (3.12)

where the e-folding of the kination era is eNKD ≡ (ρKD/ρ∆)1/6. This peak frequency fKD thus contains
information about the energy scale and the duration of the kination era. The peak amplitude at fKD

is

ΩGW,KD = Ωst
GWh2( f∆)

(
fKD

f∆

)
= Ωst

GWh2( f∆)e2NKD

' 2.8×10−13
(

g∗(T∆)

106.75

)(
g∗,s(T∆)

106.75

)−4/3 (
Einf

1016 GeV

)4 (
exp(2NKD)

e10

)
, (3.13)

and is enhanced by the duration of kination era. Finally, the frequency corresponding to the start of
the matter era is

fdom = Hdomadom

2πa0
= fKD

(
ρdom

ρKD

)1/6

. (3.14)

The amplitude difference between flat parts from radiation eras before and after the matter-kination
era is

ΩGW( f > fdom)

ΩGW( f < f∆)
=

(
fKD

f∆

)(
fKD

fdom

)2

=
(

1

ρ∆
· ρ

2
KD

ρdom

)1/3

≤ 1. (3.15)

The above equality is satisfied when no entropy dilution occurs during the whole completion of the
matter domination era and ρ∆ = ρ2

KD/ρdom, cf. Eq. (2.14). Otherwise, the amount of dilution is im-
printed in the difference between the amplitudes of the two flat parts of the spectrum.

Detectability The resulting typical spectra are plotted in the right panel of Fig. 7 for three bench-
mark points reported in the left panel and corresponding to different choices of kination energy scales
and kination durations. A large parameter space allows the peak from the matter-kination era to be
probed by LISA [101], BBO [104], ET [102, 103], CE [106] and SKA [107], where we have used the inte-
grated power-law sensitivity curves♠5 of [36]. Note that a kination era lasting more than ∼ 12 e-folds
is not viable as a too large energy density in GW violates the BBN-Neff bound, see Eq. (2.6). Fig. 8
shows that the longer duration of the kination era enhances the detectability of the peak signature.

The peak signature which we are exploring should be distinguished from GW peaked signals pro-
duced by cosmological first-order phase transitions, e.g. [91, 111], or by network of cosmic strings
[34, 36]. Another scenario with large primordial GW from inflation is axion inflation [112, 113]. The
spectral shape of this signal is however very different from what we predict from an intermediate
matter-kination era.

♠5We denote a signal to be detectable when its amplitude surpasses the power-law sensitivity curve for a given signal-
to-noise ratio (SNR). We note that the SNR formula given in [36] is an approximated one which works in the limit of a
large detector noise. The generic formula can be found in [108–110]. We have checked that the two formulae agree for the
power-law sensitivity curves with SNR. 10 used in this paper.

17



Gravitational waves from primordial inflation

Figure 7: Left: Detectability of the irreducible GW background from inflation with energy scale Einf, enhanced

by a period of matter-kination lasting for (2NKD + NKD) efolds with no entropy injection, cf. Eq. (2.16). The

kination era starts at energy scale EKD and ends when the temperature of the universe is T∆ (gray dotted lines).

The observable windows of the peak signal are shown in the colored regions. BBN constrains the late kination

eras (gray) and the duration of kination (red-hatched) (see Sec. 2.2). The QCD axion that allows a kination

era could be DM along the solid-gray lines for the conventional and ZN QCD-axion models, assuming kinetic

misalignment (see Sec. 4). The smaller the inflation scale, the weaker the GW amplitude. The black dashed lines

show the prospects for the detectability by hypothetical high-frequency experiments operating at 10 kHz and 1

MHz with sensitivity h2Ωsens = 10−10. Right: GW spectra corresponding to the benchmark points shown in the

left panel. Dashed lines show the peak position for the matter-kination era from the QCD axion DM.

Figure 8: Observability regions when varying the inflation scale for two kination durations, NKD = 5 (left) and

NKD = 10 (right). Planck2018 data [1, 2] implies the upper bound Einf. 1.6×1016 GeV (purple-hatched).
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3.2 Gravitational waves from cosmic strings

3.2.1 Short review

A network of cosmic strings (CS) arises from a U (1)-symmetry-breaking phase transition in the early
universe [114]. We refer to [33, 36] for reviews of their GW emission and [115] for a textbook.

Scaling regime. It is well-known that the network of topological defects reaches the so-called scaling
regime where the correlation length of the network grows linearly with the cosmic time [115–117].
Unlike other types of defects, only cosmic strings attain a constant fraction of the total energy density
of the universe, regardless of the cosmology. Loops are being produced, which later decay either into
GW or into particles.

Nambu-Goto string. As in [36, 37], we first assume the Nambu-Goto approximation where CS are
infinitely thin classical objects which are described by their tension.

µ= 2πnη2 ×
{

1 for local strings,

log(ηt ) for global strings,
(3.16)

where η is the VEV of the scalar field that forms strings, n is the winding number assumed to be
n = 1, and the global strings have a massless Goldstone mode with logarithmically-divergent gradient
energy [115].

GW emission from loops. The SGWB from CS is dominated by the emission of loops with the emis-
sion frequency f̃ corresponding to the mode m ∈Z+ of the loop oscillation, f̃ = 2m/l , where l is the
loop length. The frequency today is f = f̃ [a(t̃ )/a(t0)]. Loops are formed at time ti with a size αti at a
rate

dnloop

d ti
= 0.1

Ceff(ti )

αt 4
i

, (3.17)

where the local-string loop-formation efficiency reaches the asymptotic value Ceff ' 0.39, 5.4, 29.6
during matter, radiation and kination respectively [36]. For global strings, the long strings lose en-
ergy through particle production in addition to loop formation. This suppresses the loop-production
efficiency with log-dependence, which is approximated to be Ceff ∼ O (1) for all cosmologies [35, 36,
64]. However, for the plots and analysis of this paper, we solve Ceff(t ) as a solution of the velocity-
dependent one-scale (VOS) equations governing the string network evolution, see [36] for more de-
tails on VOS equations of both local and global strings. As pointed-out in [36], the VOS evolution
should capture the network’s behavior more realistically than a constant Ceff for each era.

We suppose that the GW spectrum is dominated by the largest loops formed with size equal to
10% of the horizon [118]. Hence we impose the following monochromatic loop size distribution

Pα(α) = δ(α−0.1). (3.18)

After loops are formed, their oscillation of the mth mode emit GW of power

P (m)
GW = Γ(m)Gµ2, with Γ(m) = Γm−4/3∑∞

p=1 p−4/3
, (3.19)

where Γ= 50 [119] and where, without too much loss of generality, we have assumed the small-scale
structure to be cusp-dominated [120]. Due to GW and particle emissions, the loops length l shrinks
as

l (t̃ ) =αti − (ΓGµ+κ)(t̃ − ti ). (3.20)

where ΓGµ and κ are shrinking rates due to GW and particle emissions, respectively. Local-string
loops only decay via GW emission (κ = 0), while global-string loops dominantly decay into particles
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(κ À ΓGµ). Moreover, the particle production rate κ contains the logarithmic dependence which
follows from the string tension κ = ΓGold/2π log(ηt ), where ΓGold ≈ 65 [121]. The master formula for
SGWB from CS can be written pedagogically as

ΩGW( f ) =∑
m

1

ρc

∫ t0

tosc

d t̃
∫ 1

0
dαΘ

(
ti − l∗

α

)
·Θ(ti − tosc) ·

[
a(t̃ )

a(t0)

]4

·P (m)
GW ·

[
a(ti )

a(t̃ )

]3

·Pα(α) · d ti

d f
· dnloop

d ti
,

(3.21)
such that the chronology of the involved processes can be understood from right to left. Loops are
formed at rate dnloop/d ti at ti with a size distribution Pα(α). They dilute like a−3 due to Hubble

expansion, before emitting GW with power spectrum P (m)
GW which subsequently redshifts like a−4. The

two Heaviside functions represent high-frequency cut-offs that might appear on the GW spectrum
and will be discussed in the next paragraphs. We integrate over all loop sizes α, all emission times t̃
and we sum over all loop modes m. Using the previous equations, we can reshuffle Eq. (3.21) into the
ready-to-use form

ΩGW( f ) =∑
m

1

ρc
· 2m

f
· (0.1)Γ(m)Gµ2

α(α+ΓGµ+κ)

∫ t0

tosc

d t̃
Ceff(ti )

t 4
i

[
a(t̃ )

a(t0)

]5 [
a(ti )

a(t̃ )

]3

Θ

(
ti − l∗

α

)
Θ(ti − tosc). (3.22)

We refer to [36] for more details.

GW amplitude for the standard cosmology The general formula – Eq. (3.22) – can be evaluated in
two limits: κ = 0, αÀ ΓGµ for local strings and κÀ αÀ ΓGµ for global strings. Taking the analytic
estimates in [36], the local-string GW spectrum during the standard radiation era is estimated to be
flat (scale-invariant) with an amplitude

Ωlocal
std h2 ' 1.5πΩr h2 C rad

eff

(
αGµ

Γ

)1/2

' (1.5×10−10)

(
Gµ

10−11

)1/2

' (1.0×10−10)
( η

1014 GeV

)
, (3.23)

whereΩr h2 ' 2.473×10−5 [122] is the radiation density today, and here the summation to large har-
monics has been done. The GW spectrum from global strings in a radiation era can be obtained using
the formula from the fundamental mode [36]

Ω
global
std,1sth

2 ' 2.5Ωr h2 C rad
eff

(
Γ

ΓGold

)
log3(ηt̃M )

(
η

MPl

)4

, (3.24)

Ω
global
std,sum ' 1.2×10−17 log3

[
(5.6×1030)

( η

1015 GeV

)(
1 mHz

f

)2]( η

1015 GeV

)4
, (3.25)

where the last line uses Eq. (3.30) and (3.31), and we have also multiplied the factor 3.6 coming from
the inclusion of higher-modes (cusp) [31]. Here we obtain the extra log3-dependence compared to the
local-string case. From Eq. (3.22), two of the log-factors come from the string tension µ and another
one from the particle production rate κ. There is also another mild log-dependence from the loop
formation efficiency Ceff [36], which could lead to the log4-dependence as observed in the recent
field-theoretic simulations [123].

Spectral index and the non-standard cosmology First we consider the local-string case. From the
master equation Eq. (3.22), the GW amplitude depends on frequency as

Ωlocal
GW ∝ f −1 t̃ t−4

i a2(t̃ ) a3(ti ) ∝ f β, with β = = 2

[
3m +n −nm

n(2−m)

]
, (3.26)

where the emission time and the loop formation time are related to frequency via Eq. (3.30) and (3.31).
In the second step, we assume that the formation and the emission happen when the universe is dom-
inated by the energy densities ρ∝ a−n and a−m , respectively. For loops that are produced and emit
from the same era, i.e., n = m, the spectral index simplifies to 2(n −4)/(n −2). For example, the GW
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spectrum has slope 0, −2, and 1 for loops from radiation, matter, and kination eras, respectively. This
scaling is the same as the inflationary GW spectrum. However, their degeneracy is broken by other
effects of the cosmic-string network. For example, the VOS evolution smoothens the GW around the
transition between eras [36] and the effect of the higher harmonics makes the scaling during matter
era dropped slower with the spectral index −1/3, −2/3, and −2 for cusps, kinks, and kink-kink colli-
sion [92].♠6 In contrast, as shown in [36] the kination slope does not change after summing higher
harmonics.

The spectral index for the global strings in the presence of a non-standard EOS reads

Ω
global
GW ∝ f 2

(
n−4
n−2

)
log3

[
ηt∆

(
t̃M

t∆

)]
, (3.27)

∝ f 2
(

n−4
n−2

)
log3

[
(5.6×1030)

( η

1015 GeV

)(
1 mHz

f∆

)2 (
f∆
f

)n/(n−2)
]

, (3.28)

where we took n = m as global-string loops decay right after their formation. The scaling inside the log
term comes from Eq. (3.31) and slightly reduces the spectral index of the kination slope. We recover
the scaling which is found in [64].

Energy-frequency relation The energy-frequency relations were derived for the first-time in [31,
32] for local strings and in [35] for global strings, and were later corrected through the numerical
computation of the string network evolution in [36]. The time t̃M when loops maximally contribution
to GW emission is defined to be when loop size in Eq. (3.20) is half of its initial size αti ,

t̃M =
(1

2α+ΓGµ+κ)
(ΓGµ+κ)

ti . (3.29)

A difference between local and global strings is the particle-production efficiency

t̃M '
{

α
2ΓGµ ti for κ= 0, αÀ ΓGµ (local strings),

ti for κÀαÀ ΓGµ (global strings).
(3.30)

The global-string loops decay fast after their production, while the local-string loops live much longer.
For the emitted GW, the frequency today f relates to the loop length lM = l (t̃M )(

2

f

)[
a(t̃M )

a(t0)

]
= lM = αti

2
⇒ f = 4

αti

[
a(t̃M )

a(t0)

]
, (3.31)

where the fundamental mode is considered here, fM = 2/lM . The above equation shows how the GW
spectrum traces the cosmic-string evolution across the cosmological history. In Ref. [36], we reported
the frequencies in GW spectrum that correspond to loops production during radiation era at energy
scale ρ1/4

∆

f∆ '


(1.3×10−2 Hz)

(
0.1×50×10−11

α×ΓGµ

)1/2 (
ρ1/4
∆

GeV

)
(local strings),

(9.0×10−7 Hz)
(0.1
α

)( ρ1/4
∆

GeV

)
(global strings),

(3.32)

which are obtained from evaluating Eq. (3.31), after assuming that t̃M and ti are in radiation era. We
have multiplied the numerical-fitted of 0.2 for local and global strings, justified by numerical simu-
lations, in order to account for VOS evolution [36]. Note that the above relation works for all loops

♠6In addition to enhancing GW signals, the presence of a matter-kination era could probe the string small-scale structure
by measuring the spectral index of the matter slope.
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which both decay and are produced during the radiation era. For example, the BBN temperature
TBBN ' 1 MeV corresponds to the GW frequency [36]

fBBN '


8.6×10−5 Hz

(
0.1×50×10−11

αΓGµ

)1/2
, (local strings),

(5.9×10−9 Hz)
(0.1
α

)
, (global strings),

(3.33)

and where the GW amplitude should not exceed the BBN-Neff bound in Eq. (2.6).
The peak frequency from matter-kination era is obtained in a similar manner, but now ti is in

the kination era. The lifetime of global-string loops is short, such that we can safely assume t̃M in
the kination era. On the other hand, the time t̃M for local strings could reside in either kination or
radiation era, depending on the kination duration and the loop lifetime.

High-frequency cut-offs. The string network forms around the energy scale η defined in Eq. (3.16),

Tform ' (1011 GeV)

(
Gµ

10−15

)1/2

. (3.34)

The above temperature, when plugged into the energy-frequency relation (3.32), corresponds to a UV
cut-off on the GW spectrum, assuming a standard cosmology♠7

fform ' 206 GHz

(
0.1×50

αΓ

)1/2 [
g∗(Tform)

g∗(T0)

]1/4

, (3.35)

which is interestingly independent of Gµ. Indeed, string networks with smaller Gµ are formed at later
times, but the associated loops decay much slower, cf. Eq. (3.20). By varying Gµ, the GW frequency
today remains constant by the compensation of smaller red-shift.

The GW spectrum from cosmic strings can experience other high-frequency cut-offs due to some
UV physics or to the dynamics of strings at early times. The first Heaviside function in Eq. (3.22)
Θ(ti − l∗/α) discards loops whose size αti is smaller than a critical length l∗ below which massive
particle production are responsible for the loop decay [124].

With the second Heaviside function in Eq. (3.22),Θ(ti −tosc), we eliminate loops which are formed
when loop oscillation is frozen due to thermal friction, i.e., strings motion is damped by interaction
with the thermal plasma [125] and hence the GW is suppressed. String oscillation can start when
thermal friction becomes smaller than Hubble friction.

As we show in [36], the presence of these high-frequency cut-offs can lift the BBN bounds on
kination-enhanced GW from cosmic strings, however we expect them to lie at frequency higher than
the windows of current and future GW interferometers. We leave the study of high-frequency cut-offs
in the presence of kination for future work.

Local vs. global strings. Parametrically, the GW spectra from local and global CS scale as, cf. Eq. (3.23)
and (3.25)

Ωlocal
GW 'Ωr

η

Mpl
, and Ω

global
GW 'Ωr

(
η

Mpl

)4

log3 (
ηti

)
. (3.36)

In order to understand the scaling difference, let us consider the contribution to the GW spectrum
coming from loops produced at time ti . For local strings, the corresponding GW are dominantly
emitted at time t̃ local

M 'αti /(2ΓGµlocal), see Eq. (3.30), which means that GW emission occurs
(
Mpl/η

)2

Hubble times after loop production. Instead, global loops decay at t̃ global
M ' ti , so within one Hubble

time after production, even though their tension is logarithmically enhanced. Therefore, with respect
to local strings, the GW spectrum from global strings in standard radiation cosmology is:

♠7If network formation takes place in a kination era, the corresponding cut-off frequency fform is obtained from Eq. (3.41)
and (3.48).
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• suppressed by the shorter Hubble time t̃M at the time of GW emission: factor t̃ global
M /t̃ local

M ∝
Gµlocal ∝

(
η/Mpl

)2,

• suppressed by the larger GW redshift factor since emission occurs earlier: factor

[
a
(
t̃ global

M

)
a(t̃ local

M )

]4

∝(
η/Mpl

)4,

• enhanced by the lower loop redshift factor since GW emission occurs right after loop produc-

tion: factor
(
a

(
t̃ local

M

)
/a

(
t̃ global

M

))3 ∝ (
η/Mpl

)−3,

• increased by the logarithmically-enhanced GW power emission rate: factor log2 (
ηti

)
,

• increased by the logarithmically-enhanced loop lifetime: factor log
(
ηti

)
.

The GW spectrum from global strings could be further enhanced by a fourth power of logarithmic fac-
tor due to a deviation from scaling regime in the loop production rate Ceff [36, 123]. Additionally, for
a given loop-production time ti , the earlier GW emission for global loops implies that the associated
frequency today, assuming a standard radiation cosmology, is lowered by a factor

fixed loop formation time ti =⇒ fglobal

flocal
'

a
(
t̃ global

M

)
a

(
t̃ local

M

) ' η

Mpl
, (3.37)

which indeed coincides with Eq. (3.32). The next subsections provide expressions for the peak posi-
tion for both local and global strings, and the GW detectability at current and future-planned detec-
tors is discussed.

3.2.2 Local strings

Peak frequency. Local-string loops that are produced at the start of kination tKD could decay long
after the end of a short kination era at t∆. The condition for the GW emission at t̃ KD

M to take place
during the late-radiation era is

1 < t̃ KD
M

t∆
'

(
α

2ΓGµ

)(
tKD

t∆

)
=

(
α

2ΓGµ

)(
aKD

a∆

)3

⇒ NKD < 1

3
log

(
α

2ΓGµ

)
, (3.38)

where we used Eq. (3.30) to relate GW emission times t̃ x
M and loop production times tx . For t̃ KD

M > t∆,
the peak frequency fKD follows from Eq. (3.31)

fKD = f∆

[
a(t̃ KD

M )

a(t̃∆M )

](
t∆

tKD

)
= f∆

(
t∆

tKD

)1/2

= f∆

(
ρKD

ρ∆

)1/4

, (3.39)

where we used Eq. (3.30) once again. For t̃ KD
M < t∆, the peak frequency fKD is

fKD = f∆

[
a(t̃ KD

M )

a(t∆)

][
a(t∆)

a(t̃∆M )

](
t∆

tKD

)
= f∆

(
2ΓGµ

α

)1/6 (
t∆

tKD

)2/3

= f∆

(
2ΓGµ

α

)1/6 (
ρKD

ρ∆

)1/3

. (3.40)

From the expression for f∆ in Eq. (3.32), we deduce the frequency of the peak signature of the presence
of a matter-kination era in the GW spectrum from local strings

fKD '


(1.8×103 Hz)

(
0.1×50×10−11

αΓGµ

)1/2 (
EKD

105 GeV

)
for NKD < 1

3 log
(

α
2ΓGµ

)
,

(6.1×102 Hz)
(0.1
α

)2/3
(

50×10−11

ΓGµ

)1/3 (
EKD

105 GeV

)[
exp(NKD/2)

10

]
for NKD > 1

3 log
(

α
2ΓGµ

)
.

(3.41)
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Peak amplitude. The amplitude at the peak is obtained from Eq. (3.26)

ΩGW,KD ' 1

2.5
ΩGW,st(10 f∆)

(
fKD

10 f∆

)
, (3.42)

where the factor 2.5 accounts for the change of relativistic degrees of freedom♠8, and we multiply the
factor 10 to f∆, which is fitted well with the peak from numerical simulations, in order to account for
VOS evolution and mode summation. An analytical estimate of the GW amplitudeΩGW,st( f ) emitted
by local strings in standard cosmology is given by Eq. (3.23).

Detectability. The peak signature of a matter-kination era in the GW spectrum from local cosmic
strings is potentially observable by future observatories, as shown in Fig. 9. As the GW spectrum
from local CS assuming standard cosmology is already at the observable level, even a few e-folds
of kination era can induce the smoking-gun peak signature. On the top panel, we show the string
tension of Gµ∼ 10−11 [126, 127], which could explain hints from NANOGrav 12.5 years [128], PPTA 15
years [129] and EPTA 24 years [130].

A large parameter space (white) cannot be probed by the planned observatories, but ultra-high
frequency experiments could do so. We expect the ability to probe such high-energy kination era to
get reduced by other cut-offs that we have not discussed so far, i.e., friction and particle production.
We leave the dedicated study for further work.

In Fig. 10, a few e-folds of kination render GW signal from strings of tension Gµ ' 10−19 observ-
able, but at the price of having kination ending after BBN.

Second kination peak at high-frequency. The delayed decay of local string loops introduces an-
other spectral enhancement at high-frequency, see top left panel in Fig. 9. In contrast to the main
peak from loops produced at the start of kination, the smaller second peak corresponds to loops
created deep inside the earlier radiation era. Eq. (3.26) tells us that the spectral index changes sign
between loops from radiation which decay in matter era, β=−1/2, and those decay during kination
era, β= 1/4. So the second peak corresponds to loops produced during radiation era and decay right
at the start of kination era, i.e.

t̃ KDII
M = tKD ⇒ tKDII = 2ΓGµ

α
tKD, (3.43)

where we applied Eq. (3.30) to relate GW emission times t̃ x
M and loop production times tx . The vis-

ibility of the second peak depends on the separation with respect to the first biggest kination peak,
which we can derive from Eq. (3.31)

fKDII

fKD
=

[
a(t̃ KDII

M )

a(t̃ KD
M )

](
tKD

tKDII

)
=

[
a(tKD)

a(t̃ KD
M )

](
α

2ΓGµ

)
, (3.44)

where the first bracket depends on the two limits of NKD, as in Eq. (3.41). Here we report the separa-
tion between two kination peaks

fKDII

fKD
=


104

(
α×50×10−11

0.1×ΓGµ

)1/2
exp(NKD/2) for NKD < 1

3 log
(

α
2ΓGµ

)
,

2.15×105
(
α×50×10−11

0.1×ΓGµ

)2/3
for NKD > 1

3 log
(

α
2ΓGµ

)
.

(3.45)

Eq. (3.45) underestimates the two-peak separation in Fig. 9 by approximately one order of magnitude
because the EOS change only impacts the network evolution which results in correcting the loop

♠8Precisely, Eq. (3.26) has a factor of
(

g∗(T )
g∗(T0)

)(
g∗s (T0)
g∗s (T )

)4/3
, which goes to 2.5−1 in high-temperature limit.
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formation and, thus, the position of the biggest peak. It takes a few e-folds for the network to adapt to
the change of cosmology which moves the first biggest peak to lower frequency than naively expected,
same as the factor O (0.1) in Eq. (3.32). On the other hand, the position of the smallest peak depends
only on the loops’ emission time and is not affected by the time that the network adapts to a change
of cosmological era.

Before moving to the global strings, let us emphasize that the second peak will not be seen in the
global string spectrum. This peak is linked to GW emission occurring for local strings at a time t̃M

much later than the loop-formation time ti , while global loops decay almost instantaneously after
their formation.

Gravitational waves from local cosmic strings

Figure 9: The GW background from local strings with tension Gµ is enhanced by a period of matter-kination

lasting for (2NKD + NKD) efolds, cf. Eq. (2.16). The kination era starts at energy scale EKD and ends when the

temperature of the universe is T∆ (dashed lines). Left panel: In the coloured regions, the peak is observable. BBN

constrains late kination eras (gray) and long kination eras (red-hatched) (see Sec. 2.2). The black dashed lines

show the detectability prospects of hypothetical HF experiments operating at 10 kHz, 1 MHz, 1 GHz frequencies

with sensitivity h2Ωsens = 10−10. The QCD axion that allows a kination era could be DM along the solid-gray

lines for the conventional and ZN QCD-axion models, assuming kinetic misalignment (see Sec. 4). Right panel:

The GW spectra correspond to benchmark points in the left panel. Note the second peak at high-frequency for

the green line, that comes from loops produced during the radiation era and decaying at the start of kination, cf.

Eq. (3.45).
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Gravitational waves from local cosmic strings

Figure 10: Detectability of the GW peak for varying string tension Gµ. The longer the matter-kination era, the

higher the peak signature, allowing strings with smaller tension Gµ to be probed.

3.2.3 Global strings

Short-lived global strings. The short-lived global strings emit GW right after loop production, much
earlier than for local strings. As a consequence, GW redshift for a longer time, at fixed loop-formation
time ti , and the frequency observed today is lowered by a factor equal η/Mpl, see Eq. (3.37). Hence,
for fixed string scale η, the peak signature from the matter-kination era from global strings sits at a
lower frequency than in the local-string case.

Due to PTA constraints Gµ . 10−11 [131, 132], we only consider local strings with scale η . 3×
1012 GeV. In contrast the scale of global strings is only bounded by the largest inflationary scale η.
1016 GeV. Hence, in our plots the peak frequencies from global and local strings can only be compared
if we keep in mind that the string scales η which we consider for both are different.

Peak frequency. The peak GW frequency fKD from loops that formed at the start of the kination era
tKD is written, via Eq. (3.31), in terms of the frequency f∆ corresponding to the end of kination at time
t∆,

fKD = f∆

[
a(t̃ KD

M )

a(t̃∆M )

](
t∆

tKD

)
, (3.46)

where t̃ x
M and tx are the emission and loop-production times, respectively. Applying a ∝ t 1/3 ∝ ρ1/6

during kination and a ∝ t 1/2 ∝ ρ1/4 during radiation era, the peaked frequency for global strings is

fKD = f∆

[
a(t̃ KD

M )

a(t∆)

][
a(t∆)

a(t̃∆M )

](
t∆

tKD

)
= f∆

(
t∆

tKD

)2/3

= f∆

(
ρKD

ρ∆

)1/3

, (3.47)

where we apply t̃ x
M ' tx for global strings, see Eq. (3.30). Acquiring f∆ from Eq. (3.32), we obtain the

peak frequency from the presence of a matter-kination era in the global-string GW spectrum

fKD ' (0.9 Hz)

(
0.1

α

)(
EKD

105 GeV

)[
exp(NKD/2)

10

]
, (3.48)

where the numerically-fitted f∆, Eq. (3.32), is used to account for the transition between two scaling
regimes of the string network.
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Peak amplitude. From the relation in Eq. (3.28), the GW amplitude at the peak is

ΩGW,KD ' ΩGW,st(10 f∆)

(
fKD

10 f∆

)
L, (3.49)

where the factor 10 f∆ fits well with the peak from numerical simulations, accounting for VOS evolu-
tion and mode summation and where L = O (1) is a ratio of log factors.♠9 An analytical estimate of
the GW amplitudeΩGW,st( f ) emitted by global strings in standard cosmology is given by Eq. (3.25). In
terms of the kination parameters, we have

ΩGW,KD ' (1.2 × 10−18)
( η

1015 GeV

)4
exp(2NKD) log3

[
(2.2 × 1018)

( η

1015 GeV

)( α
0.1

)2
(

109 GeV

EKD

)2]
(3.50)

Detectability. Fig. 11 shows the detectability of GW produced by global strings and enhanced by the
intermediate matter-kination era. The spectra shown on the right panel correspond to the benchmark
points in the contour plot on the left panel. The GW amplitude scales as η4 up to the log-suppression,
therefore the string tension η is required to be large for detectability. The spectral index correspond-
ing to loops formed during the matter era goes like f −1/3 due to the summation of higher harmonics,
instead of f −1 in the spectrum of the only fundamental Fourier mode [36, 64, 92]. The drop at some
high frequency is an artefact bacause we only sum up to 5×105 modes.

GW from strings could experience a high-frequency cut-off due to friction effect. This could shift
the spectral peak if the friction cut-off has frequency lower than the peak from the matter-kination
era. We leave the dedicated study for future work. On the other hand, the spectrum could exhibit
the low-frequency cut-off (black dotted lines in Fig. 11) if the CS network manifests the metastability
similar to [36, 133, 134] in the context of local strings. The contour plot in Fig. 11-left shows the com-
promise between the enhancement of the GW signal and the BBN bound when the kination duration
is increased.

A common origin for matter-kination era and GW source: axion strings. An intriguing possibility
is if the physics responsible for kination induced by a spinning axion and the physics responsible for
the cosmic strings have a common origin. A U (1)-breaking phase transition generates cosmic strings
at early times, and the dynamics of the axion at later times generates a kination era. In this paper, we
consider models (Sec. 7) where the radial mode of the complex scalar field obtains a large VEV at early
times during inflation so all topological defects are diluted away. However, in alternative construc-
tions [135], the U (1) could be broken after inflation. This can lead to formation of a cosmic string
network. A few efolds of kination for large fa values would then be compatible with global strings
with large tension and a detectable GW signal. For this class of models, the axion could generate the
multiple-peak GW signals from both inflation and cosmic strings. We discuss the detectability of the
axion-string GW enhanced by kination from spinning axion in Fig. 20 in Sec. 4.3.

♠9L ≡


log3

[
(5.6×1030)

(
η

1015 GeV

)(
1 mHz
10 f∆

)2(
10 f∆
fKD

)3/2
]

log3
[

(5.6×1030)
(

η

1015 GeV

)(
1 mHz
10 f∆

)2
]

.
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Gravitational waves from global cosmic strings

Figure 11: The GW spectrum from global strings with tension η is enhanced by a period of matter-kination

lasting for (2NKD + NKD) efolds, cf. Eq. (2.16). The kination era starts at energy scale EKD and ends when the

temperature of the universe is T∆ (dashed lines). Left panel: In the coloured regions, the peak is observable. BBN

constrains late kination eras (gray) and long kination eras (red-hatched). The peak is described by Eq. (3.48)

and (3.50). The black dashed lines show the detectability prospects of hypothetical HF experiments operating

at 10 kHz, 1 MHz, 1 GHz frequencies with sensitivity h2Ωsens = 10−10. The QCD axion that allows a kination

era could be DM along the solid-gray lines for the conventional and ZN QCD-axion models, assuming kinetic

misalignment (see Sec. 4). Right panel: The GW spectra correspond to benchmark points in the left panel. The

effect of metastable strings cut the spectrum at a low-frequency, as shown by the black-dashed line for a network

decay at T ∼ 100 MeV.

Figure 12: The longer kination era enhances the peak, allowing strings with smaller string scale η to be probed.
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3.3 Multiple-peak signature

3.3.1 Inflation + local cosmic strings

Three types of peaks. The physics explaining the presence of the cosmic strings is generally unre-
lated to the inflationary sector. In the presence of multiple SGWB, the intermediate matter-kination
era can lead to a multiple-peak GW signal which could be probed by the synergy of future detectors.

1. Peak signature of matter-kination era in inflationary GW, cf. Eq. (3.12).

2. Peak signature of matter-kination era in SGWB from local CS, cf. Eq. (3.41).

3. Peak in SGWB from local CS due to the transition between radiation and later matter era around
the temperature 0.75 eV, and whose frequency reads [36]

f cs
low ' 1.48×10−7 Hz

(
50×10−11

ΓGµ

)
. (3.51)

The inflationary peak (1) can be easily distinguished from the CS peaks (2 and 3) which are broader
because the CS network takes time to react to the change of cosmology [36]. In this section, we point-
out the possibility of a two-peak spectrum (two matter-kination peaks) and a three-peak spectrum
(two matter-kination peaks + one radiation-matter peak at lower frequency, Eq. (3.51)).

Gravitational waves from inflation and local cosmic strings

Figure 13: Two-peak (left) and three-peak (right) GW spectra from inflation and local CS network. We assume

the maximum inflationary scale allowed by CMB data Einf = 1.6×1016 GeV [1, 2].

Peaks separation. We could observe either two (left panel) or three peaks (right panel) depending
on the separation between each peak, which are estimated from Eqs. (3.12), (3.41), and (3.51)

f cs
peak

f cs
low

≈ 1.2×109
(

EKD

10 TeV

)(
ΓGµ

50×10−11

)1/2 (
0.1

α

)1/2

, (3.52)

f cs
peak

f inf
peak

≈ 1.6×105
[

10

exp(NKD/2)

](
0.1×50×10−11

αΓGµ

)1/2

, (3.53)

f inf
peak

f cs
low

≈ 0.7×104
(

EKD

10 TeV

)[
exp(NKD/2)

10

](
ΓGµ

50×10−11

)
, (3.54)

where we have assumed for simplicity that loops from kination era decay in the radiation era, NKD <
log(α/2ΓGµ)/3. For observable multiple peaks, the separations should be small but not overlapping.
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Detectability of two peaks. The combined GW spectra are shown in Fig. 13. The two-peak spectrum
can be observed in synergy by LISA and ET/CE.

Detectability of three peaks. The lowest-frequency peak in CS spectrum receives no boost from
kination, but requires a large Gµ for its observability in PTA range. However, the flat part of CS in
Eq. (3.23) could dominate over the boosted inflationary peak, Eq. (3.13). The ratio between them is

Ωinf
peak

Ωcs
flat

≈ 0.8×10−3
(

Einf

1016 GeV

)4 (
0.1×10−11

αGµ

)1/2 (
Γ

50

)1/2 [
exp(NKD/2)

10

]4

. (3.55)

For NKD = 5 and Einf = 1.6×1016 GeV, the string network with tension Gµ. 10−15 allows the infla-
tionary peak to emerge. However, as shown in Fig. 13-right, the simultaneous observation of the three
peaks could be possible with the help of HF experiments [87].

3.3.2 Inflation + global cosmic strings

Peaks separation. The separation between the matter-kination peak in SGWB from global string
and primordial inflation can be read out from Eqs. (3.12) and (3.41)

f inf
KD

f glob
KD

' (1.2 × 10−2)G1/4(T∆)
( α

0.1

)
. (3.56)

Interestingly, the peak separation is independent of the matter-kination parameters. The reason is
that global-string loops decay right after their production. So the GW frequency reflects directly the
horizon size at that time, similar to the inflationary GW.

Detectability of two peaks. The visibility of each peak depends on their respective height, deter-
mined by the string scale η and the inflationary scale Einf. The matter-kination peak in the global-
string spectrum, Eq. (3.50), is visible if its amplitude exceeds the inflation shoulder, Eq. (3.13),

1 < Ω
glob
GW

Ωinf
GW

∣∣∣∣∣
f glob

KD

=
Ω

glob
GW,KD

Ωinf
GW,KD

(
f inf

KD

f glob
KD

)2 = (6.4 × 102)
( η

1015 GeV

)4
G−3/2(T∆)

(
0.1

α

)2 (
1016 GeV

Einf

)4

×

× log3

[
(2.2 × 1018)

( η

1015 GeV

)( α
0.1

)2
(

109 GeV

EKD

)2]
. (3.57)

Conversely, the matter-kination peak signature in the primordial inflationary GW is visible if its am-
plitude exceed the global-string blue-tilted part,

1 > Ω
glob
GW

Ωinf
GW

∣∣∣∣∣
f inf

KD

=
Ω

glob
GW,KD

(
f inf

KD

f glob
KD

)
Ωinf

GW,KD

= (1.1 × 10−3)
( η

1015 GeV

)4
G−3/4(T∆)

( α
0.1

)(
1016 GeV

Einf

)4

×

× log3

[
(2.2 × 1018)

( η

1015 GeV

)( α
0.1

)2
(

109 GeV

EKD

)2]
. (3.58)

Both conditions in Eq. (3.57) and (3.58) must be satisfied for a visible two-peak signature, as illustrated
in the white region of Fig. 14. Otherwise, only one peak is visible, either the one from global strings
(red region) or the one from inflation (blue region). Fig. 14 only depends logarithmically on EKD, the
white region moving to lower Einf by only 10% when EKD increases by three orders-of-magnitude.

30



Gravitational waves from inflation and global cosmic strings

Figure 14: Left: In the presence of GW from both inflation and global strings, as well as a matter-kination

era, the signal can have either one or two peaks. Right: Two-peak GW spectra from inflation at the maximum

inflation scale allowed by CMB data Einf = 1.6× 1016 GeV [1, 2] and from global strings with energy scale η =
2×1014 GeV.

3.4 GW from first-order phase transitions

In the previous subsections, we have shown that the presence of a matter-kination era leads to a peak
shape in the GW spectrum produced by primordial inflation or cosmic strings. More generally, any
GW signal whose production period lasts longer than the duration of the matter-kination era itself,
will receive a triangular shaped spectral distortion. In Sec. 3.4.1, we show that this is also the case
for super-horizon Fourier modes of GW from short-lasting sources such as a cosmological first-order
phase transition (1stOPT). Moreover, Sec. 3.4.2 shows that whenever the 1stOPT is produced during
the non-standard era, the amplitude of the GW peak is reduced and its frequency is blue-shifted.

3.4.1 Spectral distortion

GW from 1stOPT. We consider a 1stOPT driven by a scalar field initially at thermal equilibrium with
the radiation component. Depending on the amount of supercooling, GW are either sourced by the
collision of bubble walls of by fluids motions, e.g. [90, 91, 136]. The peak amplitude of the GW can be
formulated as

h2ΩGW(k)
∣∣

t0
' h2

(
ap

a0

)4 (
ρtot,p

ρtot,0

)(
Hp

β

)m (
κα

1+α+γ
)2

∆(k,β), (3.59)

where ρtot,i is the total energy density of the universe at time i , Tp and Hp are the temperature and
Hubble scale at the time of GW production, β−1 is the duration of the transition, α is the ratio of
the vacuum energy difference over the radiation energy density, κ is the conversion coefficient and
∆(k,β) is the spectral shape. We expect m = 1 for GW from long-lived fluid motion and m = 2 for
GW from short-lived fluid motion or bubble wall collisions. Since our focus in on the effects from the
matter-kination era, we have neglected factors involving the wall velocity vw. The factor γ is the ratio
of the energy density of the new sector, the spinning axion in our case, to that of radiation

γ≡ ρNS/ρrad. (3.60)

The case γ = 0 corresponds to the 1stOPT occuring during the standard radiation era. Additionally,
the peak frequency is shifted with respect to the standard scenario by

fNS = fST

(
a0

ap Hp

)
ST

(
ap Hp

a0

)
NS

. (3.61)
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Super-horizon modes are sensitive to the EOS. Due to causality, the IR slope of GW spectrum from
1stOPT is expected to scale asΩGW ∝ k3 during radiation domination [137–139]. However, in generic
background with EOSω, we expect the spectral index of super-Hubble Fourier modes to be [100] (see
also [140–142])

ΩGW(k) ∝
 k3, for k &Hp ,

k
1+15ω
1+3ω , for k .Hp ,

(3.62)

where Hp = ap

a0
Hp is the comoving Hubble radius at the time of the PT. Therefore during matter and

kination era the slopes become k1 and k4 for superhorizon modes. The resulting spectral shape is
shown in Fig. 15. We recognize the same triangular shape as the imprint in GW from primordial
inflation and cosmic strings, cf. Sec. 3. The potential detection of such a feature with future interfer-
ometers would be a smoking-gun of the scenarios presented in this paper.
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Figure 15: Spectral distortion of GW produced from a 1stOPT occurring before the matter-kination era (Top

left), during a matter era which is followed by a kination era (Top right), and during a kination era (Bottom).

To observe a triangular shape would be a smoking-gun of the scenarios studied in this work. The present figure

does not show the peak suppression and the overall frequency blue-shift when the PT takes place during the non-

standard era (e.g. middle and bottom panel here), and which we reserve for Fig. 16 and Fig. 17. Hdom, HKD,

and H∆ are the comoving Hubble scales (H ≡ aH) at the beginning of the matter era, at the transition to the

kination era, and at the end of the kination era, respectively. The angular wave number k is related to the linear

frequency f by k = 2π f .

3.4.2 Uniform shift of the spectrum

Amplitude suppression and blue-shifting of the GW peak. Usually, a matter era is followed by a
heated radiation era which implies a violated of entropy conservation, see e.g. [143]. Instead, if the
matter era is followed by a kination era, as considered in this paper, cf. Fig. 16, there is no entropy
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injection, which implies (
ap

a0

)
NS

=
(

ap

a0

)
ST

. (3.63)

As we will see later in Eq. (3.69), (3.70) and (3.63), we deduce the displacement of the GW peak ampli-
tude and frequency if emission occurs during the matter-kination era

ΩNS
GW

ΩST
GW

=
(
ρNS

p,tot

ρST
p,tot

)[
(1+α)ST

(1+α+γ)NS

]2

=
(
ρST

p,tot

ρNS
p,tot

)
, (3.64)

fNS

fST
=

(
H NS

p

H ST
p

)
=

(
ρNS

p,tot

ρST
p,tot

)1/2

, (3.65)

where we have assumed unchanged α, κ, and β/Hp .♠10 We see that if the PT occurs during the non-
standard era, ρNS

p,tot > ρST
p,tot, the amplitude of the GW peak is suppressed and its frequency is blue-

shifted, with respect to the one assuming a standard cosmological history, whch is in agreement with
previous litterature [4, 65, 144].

Case where PT occurs before non-standard era. In contrast if the spinning axion energy density is
sub-dominant at the time of GW production, γ→ 0 in Eq. (3.60), then there is no modification of the
GW peak position with respect to the standard scenario.

Comparison with standard matter era. Due to the absence of entropy injection, cf. Eq. (3.63), the

amplitude Ωpeak
GW and frequency fp of the peak are dispensed from the additional suppression factor

1/D4/3 and redshift factor 1/D , respectively, where D ≡ Safter
Sbefore

≥ 1 is the usual dilution factor, e.g. [145].
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Figure 16: The left panel compares the evolution of the total energy density of the universe in the kination-

matter scenario (colored) and the one in the standard cosmological history (black). The black dashed line is the

expected energy density in GW produced during a thermal 1stOPT taking place at some temperature Tp . Since

β/Hp is independent of the EOS of the universe, the colliding bubbles during the new-sector domination are

smaller in size and the GW production is suppressed. The right panel shows the amplitude suppression (green

and orange lines) and blue-shift (gray dashed lines) of the GW peak when the 1stOPT takes place during the

matter-kination era, cf. Eq. (3.69) and (3.70), with respect to the standard radiation-dominated history (black

line). The maximum suppression, shown in red, occurs when the PT takes place at the onset of the kination era.

♠10α≡ ∆V
ρrad(Tp ) , where ∆V is the vacuum energy difference, is left unchanged if Tp is unchanged. κ≡ ρsource

ρrad
where ρsource

is the energy density of the GW source, is intrinsically independent of the background. β/Hp ≡ T
Γ
∂Γ
∂T

∣∣∣
Tp

where Γ is the

tunneling rate, is left unchanged if Γ(T ) is unchanged.
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The change of the GW peak position, more precisely. We consider a kination-matter era with en-
ergy scale at the onset of kination EKD ≡ ρ1/4

KD and with NKD efolds of kinations, as in Fig. 16. Using
Eq. (2.12) and (2.14), we obtain the corresponding temperatures of the radiation bath at the onset of
matter, at the onset of kination, and at the end of kination, respectively

Tdom =
(

30

π2g∗(Tdom)

)1/4

EKD exp

(
3

2
NKD

)
, (3.66)

TKD =
(

30

π2g∗(TKD)

)1/4

EKD exp

(
−1

2
NKD

)
, (3.67)

T∆ =
(

30

π2g∗(T∆)

)1/4

EKD exp

(
−3

2
NKD

)
. (3.68)

The amplitude of the GW peak in the presence of a kination-matter era reads

ΩNS
GW

ΩST
GW

=



1 for Tp < T∆,(
g∗(TKD)g∗(T∆)

g 2∗(Tp )

)(
T∆
Tp

)2
for TKD > Tp ≥ T∆,(

Tp

TKD

)
exp(−2NKD) for Tdom > Tp ≥ TKD,

1 for Tp ≥ Tdom,

(3.69)

while its frequency is

fNS

fST
=



1 for Tp < T∆,(
g 2
∗(Tp )

g∗(TKD)g∗(T∆)

)1/2 (
Tp

T∆

)
for TKD > Tp ≥ T∆,(

TKD
Tp

)1/2
exp(NKD) for Tdom > Tp ≥ TKD,

1 for Tp ≥ Tdom.

(3.70)

The largest modification occurs when the PT takes place at the start of kination era, Tp = TKD, for
which the peak amplitude and frequency are given by

ΩNS
GW

ΩST
GW

∣∣∣∣∣
KD

= exp(−2NKD), and
fNS

fST

∣∣∣∣
KD

= exp(NKD), (3.71)

The right panel of Fig. 16 shows the peak position of the modified GW spectrum in the presence of the
kination-matter era, compared to the one assuming a standard cosmological history. The GW ampli-
tude in the standard cosmological history (black line) is approximately constant with varying Tp , i.e.

ΩGW,ST ∝ (
ap /a0

)4
ρp,tot ∝ constant, while the peak frequency grows linearly with the temperature

fST ∝ ap Hp ∝ Tp . In contrast, during the kination and matter eras, the peak amplitude ΩNS
GW scales

with the peak frequency as f −1
NS and f 2

NS, respectively.

Origin of the peak suppression. The NS-to-standard GW density ratio in Eq. (3.64) can be rewritten
as the ratio of Hubble horizon

ΩNS
GW

ΩST
GW

=
(
ρST

p,tot

ρNS
p,tot

)
=

(
H ST

p

H NS
p

)2

. (3.72)

At fixed β/Hp , the bubble size at collision is smaller during kination or matter era, which implies
a smaller GW amplitude. Finally, the overall impact of the matter-kination era on the short-lasting
sources such as 1stOPT is shown in Fig. 17.
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Figure 17: Hp and Hdom are the Hubble scales at the time of GW production and at the onset of the matter-

kination era, respectively. Super-horizon modes (i.e. emitted with a frequency fem. < H/2π), are sensitive to the

EOS of the universe as stated in Eq. (3.62) (blue-ish lines). Here for Hp < Hdom, the PT takes place during the

non-standard era (either matter or kination) so its peak amplitude is suppressed and blue-shifted as stated by

Eq. (3.64) and Eq. (3.65) (red-ish lines). The GW spectrum in standard radiation cosmology is computed accord-

ing to [136].

4 Axion Dark Matter

The matter-kination scenario is well motivated by the spinning axion field, as we will see in the later
section. We now discuss the relic abundances of the axion and axion-like particle (ALP). Then we
study if this leads to extra constraints on the parameter space from overabundance. One of the mo-
tivation of our study is to demonstrate that spinning complex scalar fields can generate intermediate
matter-kination era and enhance SGWB of cosmological origin. By-products of such particle physics
models are the baryon asymmetry discussed in Sec. 5 and, in this section, DM, whose corresponding
production mechanism can either be kinetic misalignment or standard misalignment. Let us stress
that this section only utilizes the generic setup of the spinning axion. The concrete realization of such
model can put more constraints on the parameter space, cf. the ‘Axion model realizations’ part of the
paper.

4.1 GW peak and axion abundance

4.1.1 GW peak and U (1) charge

U (1) charge generation. The axion is the angular mode of a complex scalar field Φ = φe iθ, the
Peccei-Quinn (PQ) field, with a U (1)PQ symmetry. At early times, it could receive a kick parametrized
by the number density of Noether U (1)PQ charge

nθ =φ2θ̇, (4.1)

due to some U (1)PQ-breaking effect

1

a3

∂

∂t
(a3nθ) = − ∂V

∂θ
. (4.2)

Assuming that the integral of Eq. (4.2) is dominated by the latest time tr , we obtain the resulting
comoving number density of U (1) charge

Yθ(t ) ≡ nθ
s

' a3(tr )

a3(t )
· ∂V

∂θ
(tr ) · 1

H(tr )
, (4.3)
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where s is the entropy density of the universe and which is conserved through Hubble evolution, see
Eq. (7.19). See Sec. 7.3 for more details, [146] for the original work and e.g. Chap. 11.6 of [147] for a
review.

Relation between U (1) charge and kination parameters. Assuming that the U (1)PQ breaking effect
decouples at later time ∂V /∂θ→ 0, the invariance of the interactions under the U (1) symmetry of the
complex scalar field, implies the conservation of the comoving U (1) charge

Yθ = nθ
s

= φ2θ̇

2π2

45 g∗s(T )T 3
=

(
2

θ̇KD

)[
E 4

KD
2π2

45 g∗s(TKD)T 3
KD

]
. (4.4)

In the last equality of Eq. (4.4), we have evaluated Yθ at the beginning of the kination era, when the
complex scalar field sits in the circular minimum φ = fa and the axion kinetic energy is given by
ρKD = E 4

KD = f 2
a θ̇

2
KD/2. The temperature TKD of the thermal bath when kination starts follows from

ρrad
KD = E 4

KD exp(−2NKD) and reads TKD = (
30/π2g∗(TKD)

)1/4
EKD exp(−NKD/2). It follows that the kina-

tion energy scale EKD is directly related to the U (1) charge Yθ

EKD = 0.436G3/4(TKD)

(
fa

Yθ

)
exp(3NKD/2), (4.5)

where G(T ) ≡ (g∗(T )/106.75)(g∗,s(T )/106.75)−4/3. As we will see below, this relation allows for a one-
to-one relation between the frequency and amplitude of the GW peak induced by the kination era,
and the U (1) charge Yθ.

The U (1) charge Yθ can be partially transferred into baryon number and lead to successful baryo-
genesis as in the Affleck-Dine mechanism [146] or so-called axiogenesis mechanism [38]. We post-
pone the discussion of the baryon asymmetry to the next Sec. 5. Instead in the present section, we dis-
cuss the transfer of Yθ into axion coherent oscillations via the so-called kinetic misalignment mech-
anism, which can explain dark matter for smaller fa than in the standard misalignment mechanism
[148, 149].

4.1.2 Axion abundance

Kinetic misalignment mechanism. After the kination starts, the energy density in the spinning ax-
ion ρθ = f 2

a θ̇
2/2 decreases as a−6. Eventually, it drops below the axion potential at the top of the

barrier ρbarrier ' 2m2
a f 2

a where ma is the axion mass, and the axion gets trapped and oscillates in one
of the minima [148, 149]. This occurs when the axion spinning speed drops to

θ̇(Ttrap) = 2ma(Ttrap), (4.6)

where we neglect the temperature dependence of ma . Conservation of energy ρθ = ρa implies that
the U (1) charge yield Yθ = 2ρθ/(θ̇s) is transferred to the yield of the axion oscillation Ya = ρa/(ma s)

Ya = Yθ. (4.7)

However, Eq. (4.7) neglects correction due to non-linear effects which can enhance the axion abun-
dance. Indeed, the fast-moving axion skipping the potential barrier is known to fragment into higher-
momentum modes [150]. It is found that the axion energy density in higher modes generated by the
fragmentation is of the same order as the zero-mode component generated from Eq. (4.7) [80, 150,
151]. Hence we replace Eq. (4.7) by

Ya = 2Yθ, (4.8)

as in the kinetic misalignment mechanism [148, 149]. We deduce the fraction of axion in the total DM
energy density as a function of the U (1) charge

ρa,0

ρDM,0
= Ωa,0h2

ΩDM,0h2 ' 2s0maYθh2

0.5745 keV/cm3 ' 405.7 h2
( ma

1 eV

)(
Yθ
40

)
. (4.9)
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where 2s0maYθ is the axion energy density today and s0 = 2π2g∗s(T0)T 3
0 /45 is the entropy density to-

day. From using Eq. (4.5) and (4.9), we deduce the kination of energy scale and duration as a function
of the axion abundance

EKD = (4.4×109 h2 GeV)G3/4(TKD)

(
fa

109 GeV

)( ma

1 eV

)(
ΩDM,0h2

Ωa,0h2

)
exp(3NKD/2). (4.10)

If the axion is the canonical Peccei-Quinn (PQ) QCD axion [152–155], the ma− fa relation is fixed [156]

ma ' (5.70 µeV)
(
1012 GeV/ fa

)
, (4.11)

and the kination energy scale in Eq. (4.10) becomes

E QCD
KD = (2.5×107 h2 GeV)G3/4(TKD)

ΩDM,0h2

Ωa,0h2 exp(3NKD/2). (4.12)

Standard misalignment mechanism. The one-to-one relation in Eq. (4.10) between the kination
energy scale and duration and the DM abundance is only valid if the axion abundance is set by the
U (1) charge Yθ (kinetic misalignment mechanism). Instead, in the limit of small Yθ, the axion can be
trapped by the potential barrier at Ttrap in Eq. (4.6) before the conventional onset of axion oscillation
at Tmis

3H(Tmis) = ma(Tmis). (4.13)

In that case, for which Ttrap > Tmis, the axion abundance is dominantly set by the standard misalign-
ment mechanism with an axion number density [157–159]

Y mis
a = 2ma(Tmis) f 2

a
2π2

45 g∗s(Tmis)T 3
mis

if ma (T ) is T−independent−−−−−−−−−−−−−−−−−−−→
(

45

303/4π1/2

)(
g 3/4∗ (Tmis)

g∗s(Tmis)

)(
f 2

a

m1/2
a M 3/2

Pl

)
θ2

mis, (4.14)

where θmis is the initial amplitude of the oscillation, which is expected to be order 1. In the general
case, the axion number density can be computed from

Ωa,0h2

ΩDM,0h2 ' 405.7 h2
( ma

1 eV

)(
Ya

40

)
, with Ya = Max

[
Y mis

a , 2Yθ
]

, (4.15)

where we used Eq. (4.9), and where Yθ and Y mis
a are defined in Eq. (4.4) and (4.14). We conclude that

whenever
Y mis

a > 2Yθ, (4.16)

then we cannot relate the matter-kination parameters to the axion abundance using Eq. (4.10), which
assumes that the kinetic misalignment sets the axion abundance.

The temperature dependence of the axion mass ma(T ) is model dependent. Considering the case
of the canonical PQ QCD axion, the mass is supposed to vary as, e.g. [160]

m2
a(T ) = m2

a
χ(GeV)

χ(0)

(
1 GeV

T

)α
= 0.12m2

a

(
ΛQCD

T

)α
, (4.17)

where♠11 χ(0) ' (75,6 MeV)4, χ(1 GeV) ' (2 MeV)4, α = 8.16 [160] and ΛQCD ' 211 MeV [161]. By
comparing Eq. (4.14) with Eq. (4.9), we deduce that the kinetic misalignment is effective for√

ma fa . 1.1×10−9
(

g∗s(Tmis)

g 3/4∗ (Tmis)

)(
MPl

fa

)3/2

, (4.18)

♠11χ is the susceptibility of the topological charge, defined by χ(T ) ≡ ma (T )2 f 2
a andΛQCD is the scale at which the pertur-

bative QCD coupling constant diverges.
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where we have taken ma(Tmis) = ma .
In the region of the parameter space leading to an observable peak in SGWB from primordial

inflation, the DM abundance of conventional QCD axion DM is predicted to be too large, e.g. see
Fig. 18 for kinetic misalignment. To prevent QCD axion DM overclosure, we can instead consider
non-conventional QCD axion as discussed in Sec. 4.2.2 or a non-QCD generic ALP, see Fig. 18. For
the case where the DM abundance is set by standard misalignment, DM overclosure can be avoided
if θmis is tuned to be small. We leave this issue to future studies.

4.2 Probing axion DM with inflationary GW

4.2.1 ALP DM

Let us first focus on the GW from inflation whose peaked signature simply depends on the inflationary
scale. From Eqs. (3.12), (3.13), and (4.5), the peaked frequency and amplitude read

fKD = (4.7×10−9 Hz)[G1/4(T∆)G3/4(TKD)]

(
fa

Yθ

)
exp(2NKD), (4.19)

ΩGW,KDh2 = (1.1×10−16)

(
G(T∆)

G(TKD)

)3/4 (
Einf

1016 GeV

)4 (
fKD

1 Hz

)(
109 GeV

fa

)(
Yθ
40

)
. (4.20)

The GW peak position relates to the axion contribution to DM, set by the kinetic misalignment mech-
anism cf. Eq. (4.9)

fKD = (21 Hz) h2
[

G(T∆)

G(TKD)

]1/4 (
109 GeV

fa

)1/3 (
1 eV

ma

)1/3 (
Ωa,0

ΩDM ,0

)1/3 (
EKD

109 GeV

)4/3

, (4.21)

ΩGW,KDh2 = (2.7×10−19) h−2
(

G(T∆)

G(TKD)

)3/4 (
Einf

1016 GeV

)4 (
fKD

1 Hz

)(
109 GeV

fa

)(
1 eV

ma

)(
Ωa,0

ΩDM ,0

)
.

(4.22)

For the QCD axion, Eq. (4.11) leads to simpler expressions

f QCD
KD = (115 Hz) h2

[
G(T∆)

G(TKD)

]1/4 (
Ωa,0

ΩDM ,0

)1/3 (
EKD

109 GeV

)4/3

, (4.23)

Ω
QCD
GW,KDh2 = (4.8×10−17) h−2

(
G(T∆)

G(TKD)

)3/4 (
Einf

1016 GeV

)4 (
fKD

1 Hz

)(
Ωa,0

ΩDM ,0

)
. (4.24)

The relation between observability of GW from primordial inflation and axion DM abundance is
shown in Fig 18. The matter-kination era generated by ALP DM with a mass ma . 10−6 eV can move
the GW signal into observable windows of the future interferometers. In the specific case of the QCD
axion DM, the GW signal is enhanced only at frequencies larger than ET/CE, which motivates high-
frequency GW searches [87]. In the regions of observable GW signals, the conventional QCD axion
is overabundant, as shown in Fig. 7 and 18. As we show in the next Sec. 4.2.2, only lighter (non-
conventional) QCD axion can satisfy the correct DM abundance while leading to an observable GW
peak signature.
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Gravitational waves from primordial inflation

Figure 18: The solid lines indicate the position of the GW peak signature in the presence of a matter-kination

generated by the spinning axion, for a fixed axion relic abundance, which is produced via kinetic misalignment

for either the QCD axion (Top), see Eq. (4.24), or a generic ALP (Bottom), see Eq. (4.22). In the top-right plot,

above the black solid lines, the axion is overabundant. Below the dashed gray lines, for a given fa value the

axion abundance is set by the standard misalignment mechanism, such that the relation between the GW peak

signature and the axion abundance in Eq. (4.24) and (4.23) is not applicable. The dependence on ma and fa is

shown in Fig. 19.

4.2.2 Non-canonically lighter QCD axion dark matter

In the previous section, we stressed that the QCD axion DM cannot induce an observable matter-
kination GW peak, except maybe at BBO. Instead, for a given fa most of the interesting regions lies at
a smaller ma region. This motivates QCD axion models with a smaller mass than the one expected
from the standard QCD relation in Eq. (4.11). We consider models where the QCD axion transforms
non-linearly under a ZN symmetry [162–164].

TheZN symmetry suppresses the axion potential and the axion mass, see more details in the next
section. Ref. [163] improves the calculation of the axion mass in the large N -limit(

ma

mQCD
a

)2

' 1p
π

√
1− z2(1+ z)N 3/2zN −1, (4.25)

where mQCD
a is the canonical QCD axion mass, and z ≡ mu/md ' 0.47 [86]. Plugging Eq. (4.11), the

lighter QCD axion mass becomes

ma ' (4.9 µeV)N 3/4z(N −1)/2
(

1012 GeV

fa

)
. (4.26)
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Assuming that the lighter QCD axion with mass in Eq. (4.26) forms DM, the kination energy scale
EKD,ZN

and duration NKD become, cf. Eq. (4.10),

EKD,ZN
' (9.1×106 GeV)G3/4(TKD)N 3/4z(N −1)/2 exp

(
3NKD

2

)
. (4.27)

For values of N for which the axion mass ma in Eq. (4.26) corresponds to the benchmark points in
Fig. 7, see Table 1, the non-canonical QCD axion DM can induce a GW peak from primordial inflation
that is observable by the future experiments.

Observatories EKD (GeV) NKD N

LISA 3×104 4 39

BBO 3×106 5 31

ET 108 6 25

Table 1: Benchmark points in Fig. 7 and the corresponding N -values of the non-canonical QCD axion DM

models.

4.2.3 Detectability of inflationary GW peak

Reach of GW interferometers. From Eq. (4.22) and Fig. 18, we see that the GW peak amplitude
scales asΩGW,KD ∝ fKD/ma fa . For a given observatory with the best sensitivityΩsens,min, there exists
an maximal value of ma fa below which the peak is observable. It depends on the frequency fsens,min

at which the signal-to-noise ratio is the largest♠12. Requiring ΩGW,KD >Ωsens,min with fKD = fsens,min

in Eq. (4.22), we deduce the maximal axion mass which leads to a detectable peak signature in the
SGWB from primordial inflation

ma . (0.65 µeV)

(
Einf

1016 GeV

)4 (
10−12

Ωsens,min

)(
fsens,min

1 Hz

)(
109 GeV

fa

)(
Ωa,0

ΩDM,0

)
. (4.28)

We show the reach of future observatories in the (ma , fa) plane in Fig. 19. For example, ET ( fsens,min '
1 Hz andΩsens,min ' 10−13) can probe mET

a . 6.5µeV(109 GeV/ fa) for the maximum inflationary scale.
Note that Eq. (4.28) is parallel to the ma( fa) QCD axion mass relation.

BBN bound. The energy scale E∆ when the kination era ends follows from Eq. (4.10)

E∆ = EKD exp(−3NKD/2) = (1.9×109 GeV)G3/4(TKD)

(
fa

109 GeV

)( ma

1 eV

)(
ΩDM,0

Ωa,0

)
. (4.29)

The successful BBN requires that the universe is radiation dominated at the temperature TBBN ∼
1 MeV, which implies

E∆. 1 MeV =⇒ ma . (0.5×10−12 eV)G−3/4(TKD)

(
109 GeV

fa

)(
Ωa,0

ΩDM,0

)
, (4.30)

which is shown as the red-hatched region in Fig. 19.

♠12This estimation is valid only when the slope of the sensitivity curve is steeper than the scaling ofΩGW. If not, the tip of
sensitivity curve does not correspond to the largest ma fa .
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Scalar fluctuation bound. The presence of scalar fluctuation of the order ρ/δρ ∼ 109÷10, cf. Sec. 2.2,
puts an upper limit on the duration of kination NKD ∼ 11. Therefore, the observable region can-
not violate this bound for a given detector with the frequency fsens,min with its best sensitivity if
ΩGW( fsens,min) in Eq. (4.22) is smaller than ΩGW(N max

KD ∼ 11) in Eq. (3.13). Equivalently, the scalar
fluctuation bound excludes the observable region for

ma . (1.3×10−11 eV)G−3/4(TKD)G−1/4(T∆)

(
fsens,min

Hz

)(
109 GeV

fa

)(
e11

eN max
KD

)2 (
Ωa,0

ΩDM,0

)
, (4.31)

corresponding to the region on the left of each (NKD = 11) line in Fig. 19.

Minimum inflationary scale. The amplitude of the GW spectrum from primordial inflation scales
as E 4

inf, see Eq. (4.22). The discovery band of a particular detector, Eq. (4.28), becomes weaker than
the BBN bound, Eq. (4.30), when the inflationary scale becomes lower than

Einf . (3×1014 GeV)

(
Ωsens,min

10−12

)(
1 Hz

fsens,min

)
. (4.32)

For instance, ET can no longer probe the SGWB from primordial inflation enhanced by a period of
kination induced by ALP DM if Einf. 1013 GeV.

Trapping before kination ends. After the start of kination, the axion speed θ̇∝ a−3 should not drop
below ma . Otherwise, kination stops earlier than expected and the universe is overclosed by the axion
oscillation energy density. We require that the energy scale at the end of kination must be larger than
the scale of the potential barrier, see also App. C

ρ∆ = ρ2
KD/ρdom & m2

a f 2
a . (4.33)

Plugging Eq. (4.29) in Eq. (4.33), we obtain a lower bound on the axion mass

ma . (2.9×10−19 eV)G−3/2(TKD)

(
109 GeV

fa

)(
Ωa,0

ΩDM,0

)2

. (4.34)

For ALP DM, this bound is weaker than the BBN bound in Eq. (4.30).

Fragmentation before kination ends. From [150] which was recently confirmed by lattice simula-
tions [151], the condition for fragmention of the zero-mode axion is

2H fa θ̇ < πΛ8
b

2 f 3
a θ̇

2
W −1

0 , (4.35)

θ̇ <
(π

4

)1/3
ma

(ma

H

)1/3
W −1/3

0 , (4.36)

where W0 is the 0th branch of the product log-function. We impose that kination does not end be-
cause of fragmentation but due to the SM radiation overtaking the total energy density of the universe.
In this case, the spinning speed and the Hubble parameter at the end of kination is

θ̇∆ = E 2
KD

fa
exp(−3NKD), H∆ = E 2

KD

MPl

p
3

exp(−3NKD). (4.37)

Plugging these expressions back into the fragmentation condition, the kination ends by fragmenta-
tion if

E∆ <Λb

(p
3π

4

)1/8 (
MPl

fa

)1/8

W −1/8
0 'Λb . (4.38)

This leads to a similar bound as the trapping condition before kination ends in Eq. (4.34).
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Gravitational waves from primordial inflation

Figure 19: Ability of future planned GW experiments to probe axion DM through its matter-kination peak

signature in inflationary SGWB, cf. Eq. (4.28). The BBN constraints, Eq. (4.30), are shown in red-hashed. The

black solid lines are different ma− fa relations corresponding to either canonical, see Eq. (4.17), or non-canonical,

see Eq. (4.26), QCD axion. Below the black dashed lines, the axion abundance is set by standard misalignment

such that the 1-to-1 connection between the matter-kination parameters (EKD, fKD) and the axion abundance

Ωa,0 is lost, and the prediction of the GW peak signature via the kinetic misalignment, Eqs. (4.24) and (4.23),

is not applicable. We consider either a QCD axion mass dependence ma(T ) or a constant mass ma . The axion

fluctuation mentioned in Sec. 2.2 allows the longest kination era to be NKD ' 11 and prevents the detectability

bands to continue to smaller ma . Moreover, the axion fluctuation can dominate the relic density from the zero-

mode when fa . 109÷10 GeV [88]. We only show fa values larger than ∼ 108 GeV due to astrophysical constraints

[165–168].

4.3 Can axion DM produce its own GW ?

4.3.1 What if Axion DM generates both kination and GW

An intriguing possibility would be if the U (1)-breaking producing the cosmic-string network is the
same as the one leading to spinning axion and therefore to matter-kination. While it is not clear if
this is a viable possibility♠13, this section considers the special case where the complex scalar field

♠13The emission of GW requires the existence of topological defects which imply the presence of inhomogeneities. In
contrast, the generation of a matter-kination era assumes an homogeneous condensate. We leave to future work a precise
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that sources the matter-kination era also generates the network of global strings, whose string scale
matches the axion decay constant η = fa . SGWB produced by CS and their enhancement by a pre-
BBN kination era are studied in Sec. 3. Similar to the GW peak from primordial inflation in Eq. (4.22),
the peak position in the SGWB from CS can be related to the axion abundance.

Using Eqs. (3.50) and (3.48), the frequency and amplitude of the GW peak are

fKD ' (3.96h2 kHz)G3/4(TKD)

(
0.1

α

)(
fa

1015 GeV

)(
ma

µeV

)(
ΩDM,0

Ωa,0

)
exp(2NKD), (4.39)

ΩKD
GW ' (3.03h−2 × 10−22)G−3/4(TKD)

( α
0.1

)(
fKD

Hz

)(
fa

1015 GeV

)3 (
µeV

ma

)(
Ωa,0

ΩDM,0

)
×

log3

[
(2.83h−1 ×1022)

( α
0.1

)1/2
G3(TKD)

(
Hz

fKD

)3/2 (
fa

1015 GeV

)1/2 (
µeV

ma

)1/2 (
Ωa,0

ΩDM,0

)1/2
]

. (4.40)

Fig. 20 shows the axion parameter space where the peak signal from axionic strings is observable by
future detectors. As expected, the higher the fa value, the larger the peak amplitude.

4.3.2 Two-peak signature

In some regions of the parameter space, future experiments could observe two GW peaks, resulting
from the imprint of the kination era, in the SGWB from the axionic string network, cf. Fig. 20, and in
the SGWB from primordial inflation, cf. Fig. 19, respectively. In particular, Fig. 20 shows a region in
gray band where the two peaks can be separated, i.e. where the inter-peak distance is more than two
orders of magnitude in frequencies, cf. Eq. (3.56). This occurs when the two conditions (3.57) and
(3.58) are satisfied.

Gravitational waves from axionic strings: η= fa

Figure 20: We consider the spinning axion-DM field generating both the matter-kination era and the cosmic

strings sourcing the GW. The colored solid lines shows the ability of future observatories to probe the resulting

matter-kination enhanced GW peak. The upper bounds on the duration of the kination era NKD. 11, discussed

in Sec. 2.2, prevents the detectability windows going to smaller ma . Additionally, the gray band shows the region

where the GW peak from the axionic string network could coexist with a second matter-kination peak from pri-

mordial inflation, assuming Einf = 1.6× 1016 GeV (and EKD = 109 GeV even though the dependence on EKD is

only logarithmic, cf. Eq. (3.57) and Eq. (3.58)). See Fig. 19 for a description of the other lines.

investigation of how the presence of gradient terms in the energy density modifies the EOS of the complex scalar field.
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5 Baryon asymmetry

In the presence of an interaction between the complex scalar field charged under the U (1) and SM
fields carrying baryon number, the U (1) charge Yθ, defined in Eq. (4.3), can be transferred into a
baryon asymmetry. This is the so-called Affleck-Dine mechanism [146]. We can check that the three
Sakharov conditions [169] are satisfied. B number is violated by SM sphaleron, C P is violated spon-
taneously by the rotation of the complex scalar field in one specific direction and the dynamic is far
from equilibrium due to the presence of the condensate.

5.1 Axiogenesis

The U (1) charge first transfers to the chiral asymmetry of SM quarks through SU (3)c sphaleron transi-
tions, and later this asymmetry is converted into the baryon asymmetry through the SU (2)L sphalerons
[38, 170]. As shown in the supplementary material of [38], when the scalar field thermalizes with the
plasma, most of the U (1) charge remains in the condensates if the scalar field VEV is much larger than
the temperature φÀ T . This implies that only a fraction T 2

ws/ f 2
a of the U (1) charge is converted into

the baryon number

YB = 1

s

(
cB

T 2
ws

f 2
a

nθ

)
= 8×10−11

( cB

0.1

)(
Tws

130 GeV

)2 (
108 GeV

fa

)2 (
Yθ

500

)
, (5.1)

where cB ∼ O (0.1) stands for the interactions between baryons and the axion, Tws is the tempera-
ture when electroweak spharelon becomes inefficient, which is around ∼ 130 GeV for SM [171]. The
current value for the yield of baryon asymmetry is given by YB = nB ,0/s0 ' 10−10, where the number
density of baryon today is nB ' 2.515×10−7cm−3 [86]. We deduce the value of the PQ charge which
results in the baryon asymmetry YB

Yθ = 692

(
0.1

cB

)(
130 GeV

Tws

)2 (
fa

108 GeV

)2 (
YB

10−10

)
. (5.2)

From Eq. (4.5) and Eq. (5.2), we can relate the baryon asymmetry with the energy scale of kination

EKD = (74 TeV)G3/4(TKD)
( cB

0.1

)(
Tws

130 GeV

)2 (
108 GeV

fa

)(
10−10

YB

)
exp

(
3NKD

2

)
. (5.3)

Using Eq. (4.19), (4.20) and (5.2), the frequency and amplitude of the associated peak in the SGWB
from primordial inflation are

fKD = (0.79 mHz)[G1/4(T∆)G3/4(TKD)]
( cB

0.1

)(
Tws

130 GeV

)2 (
108 GeV
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)(
10−10

YB

)
exp(2NKD),

(5.4)

ΩGW,KDh2 = (1.6×10−14)
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(5.5)

We show in Fig. 21 the lines for the peak position of GW spectrum where the baryon asymmetry
is explained.
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Gravitational waves from primordial inflation

Figure 21: Reach of future interferometers to probe the GW peak signature in inflationary GW due to the pres-

ence of a matter-kination era induced by a spinning axion which also generates the correct baryonic asymmetry.

We fixed cB = 0.1 and Tws = 130 GeV in Eq. (5.2).

5.2 Connection to axion relic abundance

Using Eq. (4.9) and (5.2), the axion abundance relates to the baryon asymmetry

Ωa

ΩDM
= 7006

(
0.1

cB

)(
130 GeV

Tws

)2 ( ma

1 eV

)(
fa

108 GeV

)2 (
YB

10−10

)
(5.6)

For the QCD axion, this translates into

Ωa

ΩDM
= 399

(
0.1

cB

)(
130 GeV

Tws

)2 (
fa

108 GeV

)(
YB

10−10

)
, (5.7)

which clearly shows that the QCD axion overcloses the universe for a correct baryon asymmetry.

5.3 More efficient charge transfer

The transfer of the PQ charge to the baryon asymmetry can be made more efficient if the electroweak
sphalerons freeze-out at a larger temperature Tws [172–175], if the weak anomaly of U (1)PQ is larger
(larger cB ) [38], in the presence of the dimension-5 Weinberg operator giving a Majorana mass to the
SM neutrinos [39, 176, 177], or in the presence of supersymmetric R-parity violating couplings [178].
It will be interesting to study the correlation between the presence of the matter-kination peak in
SGWB from primordial origin and the successful baryogenesis in the case of the QCD axion.

After the general model-independent discussion of the previous sections, we are now ready to
discuss specific model implementations of the matter-kination era induced by a spinning axion and
work out in details the conditions and particle physics parameter space.

5.4 Axiogenesis and the scalar fluctuation

The baryon asymmetry is mostly set at the time when the EW sphaleron becomes ineffective at tem-
perature smaller than Tws. At this moment, the PQ charge in the axion zero-mode is transferred into
the baryon asymmetry

Yθ = 692

(
0.1

cB

)(
130 GeV

Tws

)2 (
fa

108 GeV

)2 (
YB

10−10

)
. (5.8)
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Assuming the transfer occurs after the kination-like behavior starts. Since the baryon asymmetry
is induced from the zero mode, one needs the non-linear effect to occur below Tws [88]

Tws
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= aKD

aws
> aKD

anl
= ξ1/2 ⇒ TKD < 107 GeV

(
Tws
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)(
10−10

ξ

)1/2

, (5.9)

where ξ = δρ/ρ describes the relative size of the scalar fluctuation. Moreover, the PQ charge at the
time of Tws is bounded

Yθ =
nθ,ws
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T 3
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where we use that the PQ charge red-shifts ∝ a−3 from the start of kination. Applying this bound for
the baryogesis prediction,

f 2
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T 3
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The baryogenesis from spinning axion w.r.t. the fluctuation bound reads

mr < 1.52×108 GeV

(
YB

10−10

)(
Tws
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)(
10−10

ξ

)3/2

. (5.13)

Note that this bound is independent of fa . It remains to be seen if the fluctuation plays any role in
Axiogenesis.
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Axion model realizations

6 A first attempt: An axion-only realisation with spontaneous symmetry
breaking scale φ= fa

In this section, we consider a class of models in which the axion acquires a large kinetic energy due
to a change in its mass at early times. Initially, the axion has a large mass and oscillates around the
minimum of its potential. At some temperature Tc , the potential drops and the energy stored in the
oscillations is converted into kinetic energy density. Such dynamics does not involve at all the radial
mode of the complex scalar field and we investigate whether this simple model can lead to a kination
era. For this study, we will use the benchmark model based on the work of [163, 164]. However, our
results could be applied to other models in which the axion acquires a temporary large mass at early
times. The QCD axion potential is well-known to be generated by non-perturbative effects around
the QCD scale. At high temperature, the axion potential is unconstrained and can arise from a variety
of PQ breaking effects [163, 164, 179–182]. Based on the idea of [162], the Refs. [163, 164] assume
the existence of a discrete ZN shift symmetry for the axion field, where N is the number of mirror
worlds to which the axion interacts with. As soon as the non-perturbative QCD effects from all worlds
are effective, the axion mass receives an exponential suppression with respect to the usual prediction
[183–188]. We extend the construction of [163, 164] to any axion-like particles (ALP). We consider a
toy model in which the ALP potential is a cosine whose barrier size suddenly drops to a much smaller
value below a temperature Tc . The oscillation energy density of the axion in the high-temperature
potential gets converted into kinetic energy density.

6.1 Trapped-misalignment setup

6.1.1 A two-stage axion potential

We assume the potential of the axion a ≡ θ fa to vary suddenly at a critical temperature Tc ,

V (T, θ) =


M 2

a f 2
a

(
1−cos θ−δ

N (1)
DW

)
for T > Tc

m2
a f 2

a

(
1−cos θ

N (2)
DW

)
for T < Tc

, (6.1)

where δ is the angular shift between potential minima. N (1)
DW and N (2)

DW are the domain wall (DW)
numbers of the two potentials. We assume a large-scale separation between the high-temperature
and low-temperature axion masses Ma À ma . In [164], such a sudden suppression of the axion mass
arises when a symmetry ZN turns on.♠14

6.1.2 Two stages of oscillation

Intially, the axion is frozen on the high-T potential with an energy density

ρosc = 1

2
M 2

a f 2
a

(
θi −δ
N (1)

DW

)2

, (6.2)

where we assumed a small initial misaligned angle θi . π. The axion starts to coherently oscillate
with a pressure-less equation of state when the expansion rate drops to 3H ∼ Ma , or equivalently,
when the energy density of the thermal bath reaches

ρrad
osc = 1

3
M 2

PlM
2
a . (6.3)

♠14We thank Pablo Quilez for a valuable discussion on the set-up of the trapped misalignment scenario.
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As the axion energy density redshifts slower than radiation, it dominates the universe and gives rise
to a matter-dominated era at the energy density determined by Eq. (2.12)

ρdom = 27

16
M 2

a f 2
a

(
fa

MPl

)6
(
θa −δ
N (1)

DW

)8

. (6.4)

Below T < Tc , the finite-temperature axion potential vanishes and the smaller potential turns on. The
redshifted axion oscillation energy density

ρ(Tc ) = ρosc

(
aosc

ac

)3

= ρosc

(
π2

10 g∗(Tc )T 4
c

M 2
a M 2

Pl

)3/4

, (6.5)

gets converted in kinetic energy density and the axion gets kicked with the speed

f 2
a θ̇

2
c

2
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2
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c M 1/4
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M 3/4
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N (1)
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)
, (6.6)

where we have averaged ρ(Tc ) over many oscillations. We checked that the dynamics of the radial
mode can be safely neglected.

A freely moving scalar χ has the EOM χ̈+3H χ̇= 0 and its solution is χ̇∝ a−3. Hence, if the axion
speed is large enough, θ̇À ma , its energy density redshifts as a−6 and if it were to dominate the total
energy density, this would trigger a kination era.

6.2 Impossibility to generate a kination era

The main issue of the scenario above is that the energy density of the sector responsible for the vary-
ing axion mass is not sub-dominant compared to the energy density of the axion rotation after the
axion mass is turned off, leading to the impossibility of a kination era♠15. This can be seen in Eq. 6.6
where the kinetic energy of the axion after rotation begins is half of the energy density of the axion os-
cillation. The other half of the energy goes to the sector responsible for the varying axion mass, which
further prevents kination domination. The thermal bath of the confining sector always has more en-
ergy than the axion oscillations. To circumvent this problem one has to involve a second scalar field.
The simplest and most natural realisation is to consider the radial mode of the complex scalar field,
and this is what will be done in the remaining sections of this paper. Alternative UV-completions will
be presented elsewhere [135].

♠15We thank Raymond Co, Nicolas Fernandez, Akshay Ghalsasi, and Keisuke Harigaya for a discussion on this point.
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7 Interplayed dynamics between radial and angular modes of the com-
plex scalar field with large spontaneous symmetry breaking scale φÀ
fa

A main class of models that can lead to a kination era is based on the work of [38, 39, 148, 189]. In
this section, we review the evolution of a rotating complex scalar field in an expanding universe, from
the time when it has large radial value φÀ fa during inflation, until the time when it reaches the
zero-temperature minimum in φ= fa . We present what are the necessary conditions for generating a
kination era.

Secs. 8, 9, 10 present three possible scenarios for the mechanism of damping of the radial mode
motion depending on whether thermal effects play a role or not. In each case, we determine the
duration of the intermediate kination era and for scenario I and I I I , we study the impact on the ob-
servability of the SGWB from primordial inflation, local or global cosmic strings. Other works which
rely on a similar set-up appear in [38, 39, 41, 148, 149, 175, 189, 190]. Earlier works study the dynamics
of a complex scalar field leading to a kination era following inflation, by assuming the initial rotational
velocity in the context of self-interacting dark matter [23, 29, 30, 191]. The initial rotational velocity
can be predicted as a function of model parameters as we will now discuss.

7.1 Requirements for a kination era

Complex scalar field. We consider a complex scalar fieldΦwith a Lagrangian

L = (∂µΦ)†∂µΦ−V (|Φ|)−Vth(|Φ| , T )−V��U (1)(Φ)−VH (Φ), (7.1)

where V (|Φ|) is a global U (1)-symmetric potential with spontaneous symmetry breaking (SSB) vac-
uum, Vth(|Φ| , T ) are the finite-temperature corrections, V��U (1) is an explicit U (1)-breaking term, and
VH is a Hubble-dependent term driving the field VEV to large values at early time. The complex scalar
field can be parameterized by two real fields describing radial φ and angular θ directions

Φ = φe iθ, (7.2)

where the U (1) symmetry acts as a shift symmetry for θ. We consider only the homogeneous part of
the field, such that the Lagrangian in the angular representation is

L = 1

2
φ̇2 + 1

2
φ2θ̇2 −V (|Φ|)−Vth(|Φ| , T )−V��U (1)(Φ)−VH (Φ), (7.3)

where the first and second terms denote the kinetic energy in the radial and angular modes, respec-
tively.

Ingredients for a kination era. First, let us chart the big picture and list the special features of the
model required for generating a kination-dominated era.

• a U (1)-conserving potential V (|Φ|) with spontaneous breaking. In our scenario, the kination era
occurs when a rotating scalar field, which dominates the energy density of the universe, rotates
along the flat direction of its SSB minimum.

• an explicit U (1)-breaking potential V��U (1)(Φ). The rotation of the field condensate is induced by
an early kick in the angular direction due to the presence of an explicit breaking potential, sim-
ilarly to the Affleck-Dine mechanism [146].

• a large initial radial field-value φini. For the explicit breaking higher-order terms in the potential
to play a role on the dynamics of the scalar field, we need a mechanism to drive the scalar field
to large value in the early universe. This is encoded in the term VH (Φ).
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• a mechanism for damping the radial mode. After the kick, the field condensate undergoes an
elliptic motion. A mechanism is necessary to damp the radial mode so that a circular trajectory
is reached and the energy density will be dominated by the kinetic energy of the angular mode
when the field settles down to the SSB vacuum, resulting in a kination era.

7.2 U (1)-conserving potential with spontaneous breaking

7.2.1 Zero-temperature potential

In App. G.2 and G.4, we show that for the scalar field energy density to redshift slower than radiation
and to dominate the energy density of the universe, we need to consider a potential shallower than
quartic. Therefore, we consider a nearly-quadratic potential with a flat direction at the minimum

V (|Φ|) = m2
r |Φ|2

(
ln

|Φ|2
f 2

a
−1

)
+m2

r f 2
a + λ2

M 2l−6
pl

|Φ|2l−2, (7.4)

where fa is the radial field value at the minimum. We can define an effective mass which is field
dependent

m2
r,eff ≡

d 2V

d |Φ|2 = 4m2
r

(
1+ ln

|Φ|
fa

)
. (7.5)

In App. D.1, we show that the quadratic potential in Eq. (7.4) can be generated in gravity-mediated
SUSY-broken theories, with mr being equal to the gravitino mass

mr ' m32. (7.6)

In the limitφ.Mpl which we consider, we can reasonably neglect the quartic term, see App. D.1. The
logarithmic function is generated by the running of the soft mass [192], see App. D.4 for a review. The
origin of the last term of Eq. (7.4) is discussed in the next section, Sec. 7.3.

Before reaching φ → fa , the equation of state of the scalar field in the potential in Eq. (7.4) is
matter-like, see App. G.2 and G.4, such that the scalar field energy density unavoidably overtakes the
radiation energy density after some time.

7.2.2 Finite-temperature corrections

The interactions between the complex scalar and other fields at equilibrium with the thermal plasma
can give rise to thermal corrections to the potential. For definiteness, we assume that the complex
scalar field φ is coupled to fermions ψ charged under some (hidden or SM) gauge sector Aµ

L ⊃ yψφψ
†
LψR +h.c.+ g ψ̄γµψAµ. (7.7)

Depending on whether the fermions of mass yψφ are Boltzmann-suppressed or not, the thermal cor-
rections read [193, 194]

Vth(φ, T ) =
{1

2 y2
ψT 2φ2, for yψφ. T,

α2T 4 ln(
y2
ψφ

2

T 2 ), for yψφ& T,
(7.8)

with α≡ g 2/4π the gauge coupling constant.

1. Thermal mass yψφ< T : fermions are relativistic and abundant in the thermal plasma.

2. Thermal-log yψφ À T : the fermions abundance is Boltzmann suppressed. In that case the
thermal corrections are obtained from the running of the gauge coupling constant g , after in-
tegrating out the heavy fermions [195–199].

A sketch of the thermal corrections to the zero-temperature potential is shown in Fig. 22.
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Figure 22: Sketch of the zero- and finite-temperature potentials.

7.2.3 Q-ball formation

Scalar fields moving in a potential V (φ) where V (φ)/φ2 has a non-trivial minimum, have stable non-
topological localized field configurations known has Q-balls [200]. This is the case for instance of
theories with negative radiative corrections to the mass term [201]

m2 = m2
0(1+β ln(φ)), with β< 0. (7.9)

The potential being flatter than quadratic, condensates with large rotational charge have a centrifugal
force larger than the potential gradient and fragments into higher modes [200]. Thermal-log poten-
tials, which are flatter than quadratic are also expected to form Q-balls [193, 202, 203]. In order to
preserve the condensate, the thermal-potential in the second line of Eq. (7.8) must be sub-dominant
meaning that one of the two following conditions must be satisfied

{
yψφ . T,

2αT 2 ln1/2
(

yψφ
T

)
. mr,effφ,

=⇒


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( T
8.3×1012

)( Mpl

φ

)
,

T . 8.3×1012
(

mr,eff

108 GeV

)1/2 (
φ

Mpl

)1/2 (0.1
α

)1/2
(

5

ln1/2(
yψφ

T )

)1/2

.

(7.10)
Q-ball formation is avoided either by choosing small Yukawa coupling yψ, cf. scenario I in Sec. 8, or a
small maximal plasma temperature Tmax, cf. scenario III in Sec. 10, and in particular outside the red
region in Fig. 45-top-left. In contrast, in scenario II presented in Sec. 9 in which nothing is done to
control neither Yukawa coupling nor the maximal plasma temperature, both conditions in Eq. (7.10)
could be violated and Q-balls could possibly form [193, 202, 203]. We don’t investigate this possibility
further since scenario II does not lead to any kination era.

7.3 Explicit U (1)-breaking potential

7.3.1 Origin

The general form of the explicit breaking term can be written as

V��U (1)(Φ) = Λ4
b

∑
l

∑
k 6=l

[(
Φ†

Mpl

)l (
Φ

Mpl

)k

+ h.c.

]
, (7.11)

where Λb is a mass scale, Mpl is the cut-off of the theory which we set equal to the Planck mass, and
l 6= k ensures the explicit breaking of the U (1) symmetry. In this work, we will assume a simpler form
where k = 0 and only one value of l . As discussed in App. D, the origin of Eq. (7.11) can be attributed
to the interaction, in a SUSY theory, between soft-breaking terms and the higher-dimensional super-
potential

L ⊃
∫

d 2θW (SΦ) + h.c., with W (SΦ) = λ

l M l−3
pl

Sl
Φ, (7.12)
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where SΦ is the chiral superfield containing Φ and λ = O (1). The superpotential W (SΦ) in Eq. (7.12)
also generates a positive λ2φ2l−2 term which insures stability at large field value and which we have
already included in Eq. (7.4). In App. D.1, we obtain

V��U (1)(φ,θ) = Λ4
b

[(
Φ†

Mpl

)l

+
(
Φ

Mpl

)l
]

, (7.13)

with
Λ4

b =λm32M 3
pl. (7.14)

The integer l corresponds both to the field order and to the number of wiggles along the angular
direction.

7.3.2 Equations of motion

The evolution of the homogeneous field configuration is controlled by the Klein-Gordon equation in
an expanding universe

Φ̈+3HΦ̇+ ∂

∂Φ†

(
V +V��U (1)

) = 0, (7.15)

where H is the Hubble rate. Plugging Eq. (7.13) in Eq. (7.15) and decomposing into radial and angular
parts, we obtain the system of coupled equations of motion (EOM)

φ̈+3Hφ̇+ ∂V

∂φ
+2l cos[lθ]Λ3

b

(
Λb

Mpl

)(
φ

Mpl

)l−1

= φθ̇2, (7.16)

φθ̈+3Hφθ̇−2l sin[lθ]Λ3
b

(
Λb

Mpl

)(
φ

Mpl

)l−1

= −2φ̇θ̇, (7.17)

which is simply a Keplerian motion in a rotationally-invariant potential V , in the presence of small
wiggles V��U (1) and Hubble friction. The equation of state of the universe is controlled by the Friedmann
equation

H 2 = 1

3M 2
Pl

(
ρrad + φ̇2 +φ2θ̇2 +V +Vth +V��U (1) +VH

)
, (7.18)

where ρrad is the radiation background energy density. Note that the scalar field has three compo-
nents in its energy density: radial and angular kinetic energies and potential energy.

U (1)-charge conservation. For l > 2, the U (1)-breaking to U (1)-conserving ratio decreases at smaller
field value φ¿φini, such that the U (1) symmetry is restored at later time, cf. Fig. 58 in App. D. There-
fore, after a few Hubble times of evolution during which φ has redshifted below φ¿ Mpl, the angular
EOM, Eq. (7.17), takes the form of a charge conservation equation

d

d t

(
a3nθ

) = 0, with nθ ≡φ2θ̇, (7.19)

where nθ is the comoving Noether charge of the restored U (1) symmetry.
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Generation of the U (1) charge. The angular EOM in Eq. (7.17), can be written in the form of a Boltz-
mann equation for the U (1) charge nθ

ṅθ+3Hnθ = − ∂V��U (1)

∂θ
, with nθ ≡φ2θ̇. (7.20)

In App. G.1, we show that this implies that the field receives an angular kick at the onset of the radial
mode oscillation, tosc ∼ m−1

r,eff(φini) cf. Eq. (7.29), which for V��U (1)(θ) in Eq. (7.13) and l ≥ 4, is given by

nθ = φ2
iniθ̇ini

( aini

a

)3
=

(
12l

6+q

)
Λ4

b

(
φini

Mpl

)l sin(lθini)

mr,eff(φini)

( aini

a

)3
, (7.21)

where q is related to the equation of state of the universe H 2 ∝ a−q and where mr,eff is defined in
Eq. (7.5).

7.4 Motivation for operators of high dimension

Quality problem of the Peccei-Quinn solution. If the global U (1) symmetry is anomalous in a back-
ground of SU (3)c gluons, then a second U (1)-breaking potential is generated by QCD instantons
around T ' 100 MeV [156, 204, 205]. In that case, the angular mode θ offers a solution to the strong CP
problem known as the Peccei-Quinn QCD axion [152–155]. The non-detection of the electric dipole
moment of the neutron (nEDM) implies the upper bound [206–208]

θ̄0 . 10−10, (7.22)

where θ̄0 is the angle value today with respect to one of the – C P-preserving [209] – minimum of
the QCD instanton potential. The presence of the higher dimentional U (1)-breaking potential in
Eq. (7.13) is expected to shift the C P-preserving minimum by♠16

∆θ ' l
Λ4

b

χ0

(
fa

Mpl

)l

, (7.23)

where χ0 ≡ m2
a f 2

a ' (75.6 MeV)4 is the susceptibility of the topological charge at zero temperature
for the canonical QCD axion [160]. Using Eq. (7.14) with m32 ' mr , the nEDM bound in Eq. (7.22)
translates to

l λ
mr M 3

pl

χ0

(
fa

Mpl

)l

. 10−10. (7.24)

For mr / fa ' 10−2, λ= 10−4 and fa ' (108 GeV, 1012 GeV, 1016 GeV), the neutron EDM bound implies
the following lower bounds on the order of the high-dimensional terms l ≥ (7, 12, 34).

Long kination requires large l . Even though it is not restricted to the Peccei-Quinn QCD axion,
our study also motivates large values of l in order to maximize the amount of rotation ε, defined in
Eq. (8.3), resulting from the angular kick, see Eq. (8.7), and to have initial radial value φini as large
as possible, see Eq. (7.28). As we show in Eq. (7.37) and Eq. (7.38), the duration of the kination era
depends crucially on those quantities. The impact of the value of l on the detectability of the GW
peak signature can be seen in Figs. 32, 33, 34, 35. 36, 37, 38 of Sec. 8 or in Fig. 46 of Sec. 10.

♠16Here we calculate the shift in the axion’s potential minimum and obtain a similar condition as provided in Ref. [39]
where the authors consider the mass contribution from the explicit breaking term.
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7.5 Large initial vacuum expectation field-value

7.5.1 Supersymmetric theory

During the early universe, the complex scalar fieldΦ can obtain a Hubble-induced negative mass and
Hubble-induced higher dimensional terms [210, 211]

VH (Φ) ' − c H 2|Φ|2 + a
H

m32
Λ4

b

[(
Φ

Mpl

)l

+h.c.

]
, a, c =O (1). (7.25)

As shown in App. D.2, these naturally arise in SUSY theories in the presence of a gravity-mediated
interaction in the Kahler potential

L =
∫

dθ2d θ̄2

(
a

S I +S∗
I

Mpl
|Sφ|2 + c

|S I |2
M 2

pl

|SΦ|2
)

, (7.26)

where SΦ is the chiral superfield containing Φ and S I is the chiral superfield whose F - or kinetic-
term dominates the energy density of the universe. At early time, the radial VEV of the scalar field is
governed by the U (1)-conserving, U (1)-breaking and Hubble-induced terms in Eq. (7.4), (7.13) and
(7.25)

V (Φ) = (m2
r,eff − cH 2)|Φ|2 +Λ4

b

(
1+a

H

mr

)[(
Φ

Mpl

)l

+h.c.

]
+ λ2

M 2n−6
pl

|Φ|2l−2. (7.27)

With c ∼ O (1) and H &mr,eff, the Hubble friction 3H and the Hubble-induced mass term cH in the
EOM have comparable size, such that the scalar field is nearly critically-damped [212], and rolls expo-
nentially fast (actually in 3/c e-folds of inflation) towards a non-trivial minimum at large field value,
which for a. c, reads, cf. App. D.3

φini = Mpl

(
p

c
mr,eff(φini)

λ
p

2l −2Mpl

) 1
l−2

. (7.28)

When the Hubble scale crosses its mass

Hosc ' mr,eff/3, (7.29)

the field starts oscillating (under-damped motion) with an initial amplitudeφini. An oscillation in the
angular direction with initial amplitude θini ∼ O (1) is generated by the same dynamics thanks to the
Hubble-dependent U (1)-breaking terms in Eq. (7.25). We refer to App. D.3 for more details on the
evolution ofΦ at early time.

7.5.2 Random fluctuations during inflation

Without any Hubble-induced mass term from the supersymmetry, the field can be driven at large field
value by the de Sitter (dS) fluctuations during inflation, namely the sub-horizon quantum modes in
the dS background. During each Hubble time H−1

inf , the dynamics of a real scalar field during inflation
can be described as a superposition of quantum fluctuations δφ and classical motion ∆φ

δφ' Hinf

2π
, ∆φ' V ′

3H 2
inf

, (7.30)

where Hinf is the Hubble scale during inflation. Out of this interplay between random walk and restor-
ing force, the scalar field probability distribution, is a solution of the associated Fokker-Planck equa-
tion, and for a U (1)-preserving potential, spreads as [213, 214]

〈φ2〉 = 3H 4
inf

8π2m2
φ

[
1−exp

[
−

2m2
φ

3Hinf
(t − t0)

]]
N&(Hinf/mφ)2

−−−−−−−−−−→ 3H 4
inf

8π2m2
φ

, (7.31)

54



where mφ is the mass of the real scalar field. The arrow shows when the so-called Bunch-Davies
equilibrium distribution is reached.♠17 The correlation length l of dS fluctuations [213]

l ∼ H−1 exp(3H 2
inf/2m2

φ), (7.32)

can be much larger than the Hubble horizon for relatively flat potential mφ¿ Hinf, and therefore can
give rise to an homogeneous condensate at later time. The case of a complex scalar field is treated in
[215] where it is shown that the averaged radial value is equal to Eq. (7.31), up to a factor 2

〈φ2
ini〉 ' 3H 4

inf

4π2m2
r,eff

, (7.33)

where mr,eff is defined in Eq. (7.5). In the presence of an explicit U (1)-breaking, the averaged an-
gle acquires a shift of order O (ε), defined in Eq. (8.3), with respect to the values of θ along the val-
leys [215].♠18 The scalar field remains frozen at

(〈φ2
ini〉 , 〈θini〉

)
until the time of oscillation given by

Eq. (7.29). Then, the O (ε) shift of 〈θini〉 acts as a kick in the angular direction.

Issues with quantum fluctuations during inflation. In App. E, we show that in the absence of Hubble-
size mass terms for the radial and angular modes in Eq. (7.25), quantum fluctuation during infla-
tion leads to problematic adiabatic and isocurvature perturbations as well as to the formation of do-
main walls which are not bounded by cosmic strings. For those reasons, in this work we assume the
presence of the Hubble-induced potential in Eq. (7.25) such that that the radial VEV 〈φ2

ini〉 is set by
Eq. (7.28) and not by Eq. (7.33).

♠17Basically, we can interpret the quantum fluctuations as due to the temperature of the dS space-time Hinf/2π such that
the scalar field gets a thermal distribution satisfying V (φ) ' H4

inf.
♠18The authors of [215] assume an explicit breaking of U (1) of the form

V
��U (1)(Φ) = λ

(
Φ3Φ† + h.c.

)
,

where λ can be either positive or negative. As a result, they find that the averaged angular amplitude is

〈tanθini〉 =
±

√
1− 9λH 4

8π2m4
r,eff

±
√

1+ 9λH 4

8π2m4
r,eff

⇒ 〈θini〉 ' (2n +1)
π

4
± 9H4

8π2m4
r,eff

λ,

where λ¿ m4
r,eff/H4 by assumption, and n is an integer.
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Figure 23: Evolution of complex field energy density without (left) and with (right) radial damping. Only

the latter case gives rise to a kination equation of state when the complex scalar field reaches the degenerate

minimum of its potential φ→ fa (bottom). Obtained after numerically integrating the equations of motion in

Eqs. (7.16), (7.17) and (7.18).

7.6 Damping of the radial mode

7.6.1 Damping mechanisms

After the complex fields starts oscillating, it accomplishes an elliptic orbit. In Fig. 23, we show that
damping of the radial kinetic energy Kφ = φ̇2/2 (green lines - left vs right) is necessary for the complex
scalar field to accomplish a circular orbit and to acquire a kination equation of state when reaching
the bottom of its potential φ→ fa . In this work we consider two mechanisms for damping the radial
mode.

1) Parametric resonance: In App. F.2, we discuss in a qualitative manner the possibility that para-
metric resonance could damp the radial mode while preserving the U (1) charge nθ. We leave however
the quantitative study of the realistic efficiency of this damping mechanism for further studies.

2) Thermalization: We assume that the complex scalar field φ is coupled to fermions ψ charged
under some (hidden or SM) gauge sector Aµ (KSVZ-type interactions)

L ⊃ yψφψ
†
LψR +h.c.+ g ψ̄γµψAµ. (7.34)

As a consequence, the scalar condensate thermalizes with the thermal plasma when the rate Γ of
decay into fermions, given in Eq. (F.5) of App. F.1, is larger than H . Higgs interactions are not sufficient
enough as discussed in App. F.1, we therefore focus on thermal effects from the fermionic portal. As
shown in the supplementary material of [38], as long as φÀ T , after thermalization it is energetically
more favorable to keep the U (1) charge in the condensate, which has an energy density ρφ = φ2θ̇2,
than in the plasma, which has an energy density ρrad ⊃ φ4θ̇2/T 2. In the presence of this interaction,
the scalar field dynamics can be dominated by its thermal mass

m2
r,eff,T = m2

r,eff + y2
ψT 2, (7.35)

after the onset of radial mode oscillation, if the Yukawa coupling yψ is larger than

yψTosc > mr,eff =⇒ yψ & g 1/4
∗

√
mr,eff

Mpl
, (7.36)
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where 3Hosc '
(
π2g∗

10

)1/2
T 2

osc/Mpl ' mr,eff and where we have replaced π2 ' 10.

7.6.2 Three possible scenarios

We consider three possible scenarios for the damping of the radial mode.

1. Scenario I. The complex scalar field is assumed to evolve in the zero-temperature potential
V (φ) = m2

r,eff(φ)φ2/2, which implies a small Yukawa coupling yψ .
√

mr,eff/Mpl, cf. Eq. (7.36).
As shown in gray regions of Fig. 44, for such small Yukawa coupling, thermalization is not effi-
cient enough to damp the radial mode early enough to generate kination. Instead, we assume
that radial damping occurs non-thermally via some unknown mechanism, for which paramet-
ric resonance appears as a possible candidate, cf. App. F.2. This leads to the largest prediction
for the number of kination e-folds NKD. This is the scenario considered in the next Sec. 8. The
longest duration of kination is obtained in Eq. (8.31)

eNKD = e8.2 ε2/3
(

109 GeV

fa

)1/3 (
mr,eff(φini)

5mr,eff( fa)

)1/3 (
φini

Mpl

)4/3

. (7.37)

2. Radial damping occurs via thermalization. Large NKD requires that thermalization occurs be-
fore scalar field domination in order to prevent entropy injection. This implies a large Yukawa
coupling yψ and potentially large thermal effects. We consider two possibilities.

(a) Scenario II. The dynamics of the complex scalar field is controlled by its thermal mass
V (φ) = 1

2 y2
ψT 2φ2. In Sec. 9 we show that the modification of the field dynamics in the

presence of the thermal mass prevents the onset of a kinaton-dominated era. This is due
to the initial angular kick ε being suppressed and also to the scalar field starting oscillating
earlier.

(b) Scenario III. The fermions responsible for the thermal corrections of the potential are
Boltzmann-suppressed when the scalar field starts oscillating. Therefore, the scalar field
evolves in its zero-temperature potential and the efficiency of the angular kick is not spoiled
by thermal effects. This scenario is presented in Sec. 10. The longest period of kination is,
cf. Eq. (10.29)

eNKD |yψ=yψ,∗ = e5.1 ε2/3

α1/3g 1/4∗

(
108

fa

)1/6 (
mr,eff( fa)

fa

)1/6 (
mr,eff(φini

mr,eff( fa)

)1/2 (
0.1

φini/Mpl

)2/3

. (7.38)

8 Scenario I: non-thermal damping

In the present section we study the first scenario (“Scenario I") for which the couplings between the
complex scalar condensate Φ and the thermal plasma are suppressed such that we can ignore the
thermal corrections to the potential in Eq. (7.8). We impose the thermal mass to be negligible at
the onset of the radial mode oscillation. Focusing on the case where Φ couples to thermal fermions
through a Yukawa coupling yψ as defined in Eq. (7.7), this implies

yψTosc . mr,eff(φini) =⇒ yψ. g 1/4
∗

mr,eff(φini)

Mpl
, (8.1)

where we have used yψTosc ' 3H(T ).
In App. F.1, we show that it is impossible to efficiently damp the radial mode via thermalization

while neglecting thermal corrections at the onset of the scalar field oscillation. Instead, in the present
section we assume that radial damping takes place via a non-thermal mechanism (possibly paramet-
ric resonance cf. App. F.2), and we consider the radial damping rate Γ to be a free parameter.
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8.1 Field trajectory

In Fig. 24, we outline the main stages of evolution of the rotating complex scalar field.
First, thanks to peculiarities of the Hubble-induced potential in SUSY theories, the scalar field is

initially frozen at a large field value φini and at a displaced angle θini with respect to the valleys of the
potential, see Sec. 7.5.

Second, the field starts oscillating when its dynamics become under-damped 3Hosc ' mr,eff. Thanks
to the initial kick induced by the U (1) breaking potential, see Sec. 7.3, the complex scalar field accom-
plishes an elliptic motion, whose size reduces with time due to the cosmic expansion. For a nearly-
quadratic potential, see Sec. 7.2, the scalar field energy density redshifts as matter ρφ∝ a−3 and starts
dominating the energy density of the universe.

Third, the radial motion is damped due to either parametric resonance, cf. present Sec. 8, or
thermalization, cf. next Sec. 9 and 10, while the angular motion remains, see Sec. 7.6.

After this stage, the field rotates coherently in a circle with a continuously reducing size. When the
orbiting field reaches the bottom of the potential, its kinetic energy dominates its potential energy
and gives rise to a kination equation of state.

The numerical computation of the full trajectory of the scalar field from the onset of the oscillation
until the end of the kination era is shown in Fig. 26, Fig. 28 and in our animation.
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Stages Hubble factor Field value Energy density

I. Field frozen or track large-field minimum 3H > mr,eff, Γ φ=φini ρΦ∝ a0

II. Elliptic orbit: oscillation and rotation mr,eff ≥ 3H > Γ
φini >φ> fa ρΦ∝ a−3

III. Circular orbit after radial damping
mr,eff, Γ> 3H

IV. Rotation at potential minimum φ= fa ρ∝ a−6

Figure 24: We show the different stages of evolution of the scalar field, leading to the matter-kination equation

of state. The side bar on the left shows the EOS of the scalar field. We invite the interested reader to visualize our

animation.

59

https://www.youtube.com/watch?v=RdCAgcvfFy0
https://www.youtube.com/watch?v=RdCAgcvfFy0


8.1.1 Kick in the angular direction.

Amount of rotation. We introduce the ratio between number densities in the angular mode and in
the radial mode♠19

ε ≡ φ2θ̇/2

V (φ)/mr,eff(φ)
= φ2

iniθ̇ini/2

V (φ)/mr,eff(φ)

( aini

a

)3
. (8.3)

From using (φini/Mpl)
l−2 = p

cmr,eff(φini)/λ
p

2l −2Mpl, see Eq. (7.28), we find that the term in the
potential which dominates the dynamics of the scalar field at the onset of the radial-mode oscillation
depends on the value of c

V (φini) =


λ2 φ2l−2

ini

M 2l−6
pl

, if c > l −1,

1
2 m2

r,eff(φini)φ2
ini, otherwise.

(8.4)

In the first case of the previous equation, the scalar field redshift as, cf. App. G.2

φ∝ a− 6
2+n , with n = 2l −2. (8.5)

until the nearly-quadratic term φ2 dominates around the field value φquad

1

2
m2

r,eff(φquad)φ2
quad = λ2

φ2l−2
quad

M 2l−6
pl

. (8.6)

Forφ < φquad, the quantity ε defined in Eq. (8.3) becomes a conserved quantity since both numerator
and denominator scale as a−3. Plugging Eq. (8.5) into Eq. (8.6), we obtain the scale factor aquad below
which ε becomes constant. From injecting aquad into the generated U (1) charge in Eq. (7.21) and then
back into the definition of ε in Eq. (8.3), we obtain

ε =


1p
2

mr,eff( fa )
mr,eff(φini)

l sin lθini, if c > l −1,

1p
2

√
c

l−1
mr,eff( fa )

mr,eff(φini)
l sin lθini, otherwise.

(8.7)

For c =O (1) and sin lθini =O (1), a large value of l , as for instance l ' 10, can easily compensate for the
ratio of mr,eff, which is only log1/2 suppressed, cf. Eq. (7.5), such that ε=O (1) is realistic.♠20 In Fig. 25,
we can see that the size of the wiggles increases with ε. The larger the wiggles, the larger the potential
gradient along the angular direction and the larger the initial kick.

8.1.2 Motion after the kick.

In App. G.2, we show that after a few oscillations in a nearly-quadratic potential, the angular velocity
averaged over many oscillation periods 〈θ̇〉 becomes independent of the initial kick θ̇ini in Eq. (7.21).
Instead, it converges to the attractor solution

〈θ̇〉 ≡ 1

T

∫ T

m−1
eff

θ̇(t ′)d t ′ = mr,eff, (8.8)

♠19ε is related to Yθ defined in Eq. (4.4) through

ε = s

2V (φ)/mr,eff(φ)
Yθ , (8.2)

where s = 2π2

45 g∗T 3. In successful setup, the quantity ε is bounded by above ε . 1, where ε = 1 corresponds to a field
trajectory which would be already circular at the onset of the radial mode oscillation. In that sense, ε can be called the U (1)
charge fraction contained in the condensate, 1 being the maximal value.
♠20Values of ε larger than 1 corresponds to the field climbing up the field potential due to the centrifugal force being larger
than the mass and we expect them to be unphysical, therefore we should replace Eq. (8.7) by Min[ε, 1].
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Figure 25: Nearly-quadratic potentials with the explicit-breaking term in Eq. (7.13). The integer l corresponds

to both the number of wiggles and the order of φl . The amplitude of the angular velocity kick θ̇ini is set by the

explicit-breaking strength ε, defined in Eq. (8.3). The bottom-right figure shows a zoom of the circular vacuum at

φ= fa .

for which the quadratic potential m2
r,effφ

2 is exactly compensated by the centrifugal potential φ2θ̇2.
This is confirmed by the numerical integration of the equations of motion shown in Fig. 26. Notice
that even if the stationary value of 〈θ̇〉 is independent of θ̇ini, it is not the case of the fraction ε of U (1)
charge in the condensate, see Eq. (8.7).

In App. G.2, using Virial theorem we show that the energy density ρΦ and the radial field value φ
of a complex scalar field in a U (1) conserving nearly quadratic potential, averaged over oscillations,
scale like

〈ρΦ〉∝ a−3, 〈φ〉∝ a−3/2. (8.9)
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Figure 26: Left: Non-averaged angular velocity θ̇(t ), obtained after numerically integrating the equations of

motion in Eqs. (7.16), (7.17) and (7.18). (mr = 105 GeV, M = MPl, φini = 1017 GeV, θini = π/2l , φ̇ini = θ̇ini = 0).

The trajectory is more and more circular as the U (1) charge fraction ε→ 1. Right: Averaged angular velocity 〈θ̇〉,
defined in Eq. (8.8). After that the scalar field starts oscillating a > aosc, the trajectory becomes independent of

the values of ε and l and quickly converges to the attractor solution 〈θ̇〉 = mr,eff.

8.1.3 Motion due to radial damping.

The damping of the radial mode φ̇→ 0, see Sec. 7.6, converts the elliptic trajectory into a circular one.
In App. G.3, we show that radial damping leads to a drop in total energy of the complex scalar field Φ
equal to the U (1) charge fraction ε defined in Eq. (8.3)

ρafter
Φ = ερbefore

Φ =⇒ φ2
after = εφ2

before, (8.10)

where the label ‘before’ and ‘after’ denote the moments just before and just after the time of damping.
The suppression factor in Eq. (8.10) can be understood from the conservation of the rotational energy
ρθ ≡ θ̇2φ2/2 during radial damping

ρθ = εV (φ). (8.11)

In App. G.3, we show that due to Eq. (8.10), the number of e-folds of kination domination receives the
suppression factor −2

3 logε. The impact of ε on the energy density and the duration of kination can
be understood from Fig. 27.
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Figure 27: Impact of ε¿ 1 on the evolution of the energy density of the complex scalar fields. We consider two

cases according to whether the radial damping occurs before (left) or after (right) the complex scalar dominates

the energy density of the universe. In both cases, the number of e-folds of kination is reduced by − 2
3 logε. The best

case scenario ε= 1 corresponds to a trajectory which is already circular even before radial damping.
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Figure 28: mr = 106 GeV, M = MPl, φini = 1017 GeV, θini = π/2l , φ̇ini = θ̇ini = 0, ε = 0.4, and Γ = 104 GeV.

Evolution of the radial field φ, the angular velocity θ̇, the equation-of-state ωΦ, and the energy density ρΦ. The

complex scalar field has a matter EOS ωΦ = 0, when φÀ fa and reaches a kination EOS ωΦ = 1, when φ ' fa .

Kination ends when the radiation energy density shown in red starts dominating the energy budget of the universe

once again. For a fixed mr , the smaller fa , the longer the matter era, the larger the domination of the energy

density of the universe, and the longer the kination era. Obtained after numerically integrating the equations of

motion in Eqs. (7.16), (7.17) and (7.18).

8.1.4 Motion towards kination.

After radial damping φ̇→ 0, the trajectory of the complex scalar field is reduced to a circular orbit
whose radius decreases due to the Hubble friction. From the conservation of the U (1) charge in
Eq. (7.19)

a3φ2θ̇ = constant, (8.12)

we see that once φ→ fa , the complex scalar field reaches a kination equation of state

θ̇∝ a−3 and ρΦ = φ2θ̇2

2
∝ a−6. (8.13)

More precisely, in App. G.4 we compute the evolution of the complex scalar fieldΦ=φe iθ after radial
damping φ̇→ 0

d lnφ

d ln a
=

−3log
(
φ2

f 2

)
2log

(
φ2

f 2

)
+1

and
d ln θ̇2

d ln a
= −6

2log
(
φ2

f 2

)
+1

, (8.14)
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as well as its energy density ρΦ and equation of state ωΦ

d lnρΦ
d ln a

=
−6log

(
φ2

f 2

)
2log

(
φ2

f 2

)
−1+ f 2

φ2

and ωΦ = φ2 − f 2
a

2φ2 log φ2

f 2
a
− f 2

a +φ2
. (8.15)

For φÀ fa we have

φ ∝ a−3/2, θ̇ ∝ a0, ρΦ ∝ a−3, ωΦ ' 0, (8.16)

and for φ' fa we have

φ ∝ a0, θ̇ ∝ a−3, ρΦ ∝ a−6, ωΦ ' 1. (8.17)

Those analytical results agree with the numerical computation of the full trajectory of the complex
scalar field in an expanding universe, from the onset of the oscillation until the end of the kination
era, shown in Fig. 28.

8.2 Cosmological history

In this section, we discuss the cosmological history of the universe in terms of the energy density of
the scalar field ρΦ. We defer the derivations of the expressions below to App. G.5 (and App. G.3 for the
factor ε/2). We show a sketch of the evolution of ρΦ in Fig. 29.

8.2.1 Pre-kination stages

Onset of field oscillation. We assume that the universe is initially radiation-dominated. The com-
plex scalar field starts to roll when

3H = mr,eff =⇒ Tosc = g−1/4
∗

√
mr,effMpl, (8.18)

and
ρosc =V (φini), (8.19)

with mr,eff and φini given in Eq. (7.5) and (7.28), respectively.

Oscillation after reheating. In our framework, we assume that the scalar field starts oscillating dur-
ing a radiation-dominated era after reheating

Tosc = g−1/4
∗

√
mr,effMpl ≤ Treh. (8.20)

The maximum reheating temperature is of the order of the inflationary scale Einf. Hence in our plots
we have the constraint

Tosc ≤ Einf, (8.21)

which can be seen as the purple upper-right region in Fig. 32, 33, 34, 35, 36, 37, and 38.

No second inflation. In order for the scalar field to not induce a second period of slow-roll inflation,
we must imposeΦ to be sub-dominant at the onset of the oscillation

V (φini) <
m2

r,effM
2
pl

3
. (8.22)

Note that this condition also guarantees that the initial radial field excursion is never superplanckian.
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Figure 29: Evolution of energy densities of SM radiation (black) and the complex scalar field in nearly-quadratic

potential (red) and quartic potential (green). A complex scalar field evolving in a quartic potential redshifts like

radiation, see App. G.2 and G.4 for the analytical justification, and can never generate a kination-dominated

era. Whenever it occurs after domination, ρdamp < ρdom, the radial damping heats the thermal bath (black

dashed lines), which reduces the duration of the kination era. In contrast, the kination duration is optimized for

ρdamp > ρdom. We show two fa-values, fa,I > fa,II, corresponding to two durations of kination, NKD,I < NKD,II.

Matter domination. The scalar field redshifts like matter and dominates the energy density of the
universe at

ρdom = 27mr,eff(φini)2φ8
ini

16M 6
Pl

A4
ε and

adom

aosc
= 2M 2

Pl

3φ2
ini

A−1
ε (8.23)

with

Aε =
ε, if ρdamp > ρdom,

1, if ρdamp < ρdom,
(8.24)

where ε is the amount of Noether charge, defined by Eq. (8.3) and whose value is dynamically gener-
ated at the onset of oscillation, see Eq. (8.7). The impact of ε on the evolution of the scalar field energy
density is discussed in App. G.3.

Radial damping. Denoting by Γ the rate at which the radial motion is damped by some unspecified
mechanism, cf. Sec. 7.6, we obtain that the trajectory becomes circular when

ρdamp = 3M 2
PlΓ

2 B 4
ε , and

adamp

adom
=

(
ρdom

ρdamp

)1/3

, (8.25)

with

Bε =
1, if ρdamp > ρdom,

ε, if ρdamp < ρdom.
(8.26)

In this section, Γ is considered as a free parameter and we assume that damping can occur before the
onset of the matter domination, ρdamp > ρdom.
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Figure 30: Number of e-folds NMD and NKD of the matter and kination eras, for different values of the initial

and final values of the radial modeφini and fa , cf. Eq. (8.31) and (8.32). The purple region is excluded because the

potential energy of the scalar field dominates the universe before oscillation and leads to a second inflationary

stage, cf. Eq. (8.22). For a given radial mass mr , the region above the gray lines is excluded because the kination

era ends after BBN. The vertical cut is due to perturbativity violation mr > fa .

8.2.2 Duration of kination

Start of kination. The universe acquires a kination equation-of-state when the field reachesφ→ fa ,
corresponding to the energy density

ρKD,i = 1

2
f 2

a m2
r,eff( fa). (8.27)

Depending on whether radial damping occurs before or after the onset of matter domination, we
obtain

aKD,i

max(adom, adamp)
=

(
min(ρdom, ρdamp)

ρKD,i

)1/3

. (8.28)

End of kination. The kination era stops when the universe becomes radiation-dominated again.
The energy scale at which it occurs depends on whether radial damping occurs before and after the
onset of matter domination

ρKD, f =
ρ2

KD,i

min(ρdom, ρdamp)
=


4 f 4

a m4
r,eff( fa )M 6

Pl

27m2
r,eff(φini)φ8

ini

(1
ε

)4
, if ρdamp > ρdom,

f 4
a m4

eff( fa )

12M 2
PlΓ

2
damp

(1
ε

)4
, if ρdamp < ρdom.

(8.29)

The duration of the kination era NKD ≡ log aKD, f /aKD,i reads

eNKD =
(

min(ρdom, ρdamp)

ρKD,i

)1/6

=


√

3
2

(
mr,eff(φini)
mr,eff( fa )

Mpl

fa

)1/3 (
φini

Mpl

)4/3
ε2/3, if ρdamp > ρdom,(

6M 2
PlΓ

2
damp

f 2
a m2

r,eff( fa )

)1/6

ε2/3, if ρdamp < ρdom.
(8.30)

The first line of Eq. (8.30), corresponding to efficient radial damping before scalar field domination,
gives the longest duration of kination for the complex scalar field model studied in this work
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ρdamp > ρdom =⇒ eNKD 'e8.2 ε2/3
(

109 GeV

fa

)1/3 (
mr,eff(φini)

5mr,eff( fa)

)1/3 (
φini

Mpl

)4/3

, (8.31)

where ε can be O (1), see Eq. (8.7).
Note that for efficient thermalization, the number of matter e-folds NMD ≡ log aKD,i /adom, cf. first

line of Eq. (8.28), verifies the property

ρdamp > ρdom =⇒ NMD = 2NKD. (8.32)

The durations of the matter and kination eras are shown in Fig. 30.

Figure 31: The duration of kination NKD, cf. Eq. (8.30), depends on the energy scale at the ‘effective’ start of the

matter era Min
[
Edom, Edamp

]
and at the onset of the kination era EKD = (2m2

r f 2
a )1/4. If Edamp < Edom, entropy

injection at the time of damping re-equilibrates the amount of matter vs radiation in the universe, hence the

‘Min’ function. The larger mr , the larger Edom and the longer the duration of the matter-kination era. In the

present Sec. 8, we consider Edamp as a free parameter. The maximum duration of kination compatible with both

BBN and the maximal inflationary scale allowed by CMB data, NKD. 14.6, is computed precisely in App. C.1.

8.3 Gravitational-wave signature and detectability

As discussed in Sec. 3, a main motivation for generating a kination era is the enhancement of the
amplitude of SGWB produced beforehand. The next figures show the detectability of SGWB produced
by primordial inflation (Figs. 32, 33, and 34), local strings (Figs. 35 and 36) and globals strings (Figs.
37 and 38), in the presence of a kination era generated by the scenario I: a spinning complex scalar
field assuming the existence of an efficient non-thermal damping mechanism that enables to neglect
thermal corrections to the potential.
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Gravitational waves from primordial inflation: Einf = 1.6×1016 GeV

Figure 32: Ability of future-planned GW observatories to detect the peak signature in the SGWB from primor-

dial inflation with energy scale Einf of a matter-kination era induced by scenario I. In this scenario, a kick in the

angular direction of a complex scalar field is induced with a large radial value by operators of order l = 6 and

self-coupling λ, and the radial motion is assumed to be damped non-thermally. For l = 6, these plots only apply

to non-QCD axions as the QCD axion is always overabundant, produced either from standard or kinetic mis-

alignment mechanism, when imposing (7.24) from the axion quality problem. A dotted-dashed red line denotes

the parameter space where the spinning axion allows the correct baryon asymmetry, cf. Eq. (5.3). Gray dotted and

dot-dashed lines show contours of kination duration NKD and energy scale EKD, respectively. Smaller mr and λ

implies larger initial scalar vev φini, cf. Eq. (7.28), and longer matter-kination.
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Gravitational waves from primordial inflation: Einf = 1.6×1016 GeV

Figure 33: Same as Fig. 32 for l = 9. Black dashed lines indicate where the lighter non-canonical QCD axion

abundance in Eq. (4.26) is satisfied, cf. Eq. (4.15). The left boundary is set by the kinetic misalignment mecha-

nism, while the right one is set by the axion quality problem (for larger mr depending on fa), cf. Eq. (7.24). Only

the region between these two lines does not over-produce DM.
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Gravitational waves from primordial inflation: Einf = 1.6×1016 GeV

Figure 34: Same as Fig. 32 for l = 12. Black solid lines indicate where the canonical QCD axion abundance is

satisfied, cf. Eq. (4.15). The left boundary is set by the kinetic misalignment mechanism, while the right one is set

by the standard misalignment (for small mr with a specific fa) and by the axion quality problem (for larger mr

depending on fa), cf. Eq. (7.24). Only the region between the two lines does not over-produce DM. Dashed lines

are the equivalent for lighter non-canonical QCD axion, cf. Eq. (4.26).
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Gravitational waves from local cosmic strings

Figure 35: Ability of future-planned GW observatories to detect the peak signature in the SGWB from local

cosmic strings with tension Gµ of a matter-kination era induced by scenario I. In this scenario, a kick in the

angular direction of a complex scalar field is induced with a large radial value by operators of order l = 9 and

self-coupling λ, and the radial motion is assumed to be damped non-thermally. Black dashed lines indicate

where the lighter non-canonical QCD axion abundance in Eq. (4.26) is satisfied, cf. Eq. (4.15). The left boundary

is set by the kinetic misalignment mechanism, while the right one is set by the axion quality problem (for larger

mr depending on fa), cf. Eq. (7.24). Only the region between the two lines does not over-produce DM. A dotted-

dashed red line denotes the parameter space where the spinning axion allows the correct baryon asymmetry,

cf. Eq. (5.3). Gray dotted and dot-dashed lines show contours of kination duration NKD and energy scale EKD,

respectively. Smaller mr and λ implies larger initial scalar vev φini, cf. Eq. (7.28), and longer matter-kination.
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Gravitational waves from local cosmic strings

Figure 36: Same as Fig. 35 for l = 12. Black solid lines indicate where the canonical QCD axion abundance is

satisfied, cf. Eq. (4.15). The left boundary is set by the kinetic misalignment mechanism, while the right one is

by the standard misalignment (for small mr with a specific fa) and by the axion quality problem (for larger mr

depending on fa), cf. Eq. (7.24). Only the region between the two lines does not over-produce DM. Dashed lines

are the equivalent for lighter non-canonical QCD axion, cf. Eq. (4.26).
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Gravitational waves from global cosmic strings

Figure 37: Ability of future-planned GW observatories to detect the peak signature in the SGWB from global

cosmic strings with string scale η of a matter-kination era induced by scenario I. In this scenario, a kick in the

angular direction of a complex scalar field is induced with a large radial value by operators of order l = 9 and

self-coupling λ, and the radial motion is assumed to be damped non-thermally. Black dashed lines indicate

where the lighter non-canonical QCD axion abundance in Eq. (4.26) is satisfied, cf. Eq. (4.15). The left boundary

is set by the kinetic misalignment mechanism, while the right one is set by the axion quality problem (for larger

mr depending on fa), cf. Eq. (7.24). Only the region between the two lines does not over-produce DM. A dotted-

dashed red line denotes the parameter space where the spinning axion allows the correct baryon asymmetry,

cf. Eq. (5.3). Gray dotted and dot-dashed lines show contours of kination duration NKD and energy scale EKD,

respectively. Smaller mr and λ implies larger initial scalar vev φini, cf. Eq. (7.28), and longer matter-kination.
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Gravitational waves from global cosmic strings

Figure 38: Same as Fig. 37 for l = 12. Black solid lines indicate where the canonical QCD axion abundance is

satisfied, cf. Eq. (4.15). The left boundary is set by the kinetic misalignment mechanism, while the right one is

by the standard misalignment (for small mr with a specific fa) and by the axion quality problem (for larger mr

depending on fa), cf. Eq. (7.24). Only the region between the two lines does not over-produce DM. Dashed lines

are the equivalent for lighter non-canonical QCD axion, cf. Eq. (4.26).

8.3.1 Axion dark matter

One interesting point in this paper is that the axion generating the matter-kination era and the peak
GW signature could also explain DM. In Sec. 4, the nature of kination – parametrized by its energy
scale EKD and duration NKD – is related model-independently to the axion parameters, namely axion
mass ma and its decay constant fa . This means that the axion parameter space could be probed easily
by reading the peak position of the GW background that gets boosted by this kination era.

This section provides the kination nature (EKD, NKD) in terms of UV-completion parameters, i.e.
the radial-mode mass mr and fa . Therefore we translate the detectability plots in the UV-completion
parameters into the usual axion parameter space. Let us compare the model-independent expression
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of the energy scale at the end of kination, Eq. (4.10),

E∆ = 4.4×109h2 GeV

(
fama

GeV2

)(
ΩDM

Ωa

)
, (8.33)

and the model-dependent expression, Eq. (8.29),

E 4
∆ ' 4 f 4

a m2
r M 6

Pl

27φ8
ini

⇒ E∆ '
(

4

27

)1/4

fa

(
mr

MPl

) l−6
2(l−2)

, (8.34)

where the log-dependence in mr introduces a factor O (1) to E f and thus is omitted for simplicity, and
we use the initial VEV in Eq. (7.28). Equating these two expressions, the mass of radial mode is fixed
when axion of mass ma contributes to the total DM density,

mr ' MPl

 7.1×109h2[
λ2(2l −2)

] 1
l−2

( ma

GeV

)(
ΩDM

Ωa

) 2(l−2)
l−6

. (8.35)

Here we see a non-trivial result, namely mr grows with ma . One might naively expect a larger mr for
smaller ma because the larger PQ-charge yield is required for the correct Ωa = maYθs0. However, a
larger charge does not mean larger mr . A yield is proportional to mr /T 3

KD. For larger mr , the kination
energy scale also increases and hence enhances TKD in the process. Applying the new mr expression,
the duration of kination in Eq. (8.30) transforms into the axion DM parameters,

eNKD '
√

3

2

(
MPl

fa

) 1
3
(
φini

MPl

) 4
3 '

√
3

2

(
MPl

fa

) 1
3

 7.1×109h2(
λ
p

2l −2
)1/2

( ma

GeV

)(
ΩDM

Ωa

)
8

3(l−6)

. (8.36)

9 Scenario II: thermal damping and relativistic fermions

9.1 Effects of the thermal corrections

In the scenario I in the previous Sec. 8, we have assumed the existence of an unspecified non-thermal
mechanism (maybe parametric resonance) responsible for efficiently damping the radial mode of the
scalar condensate. The advantage was that we could neglect the effect of the thermal corrections to
the potential, presented in Sec. 7.2.2, on the dynamics of the scalar field. In the current section, we
switch on the interaction with the thermal plasma by relaxing the condition of small Yukawa coupling
yψ in Eq. (8.1). The advantage is that it leads to an early thermalization of the condensate with the
plasma which is a well understood and efficient mechanism [38] for damping the radial mode. The
difficulty relies in the presence of the thermal mass which leads to a modification of the cosmological
history of the scalar field:♠21

• the scalar field starts oscillating earlier,

• the initial angular kick ε is substantially reduced,

• the scalar field redshifts like radiation until the thermal mass becomes negligible below Tzero =
mr,eff/yψ. This leads to a delay of the onset of the matter era.

We discuss those effects below and we show that they prevent the onset of the matter-kination era. A
sketch of the cosmological history in the presence of thermal effects is shown in Fig. 39.

♠21Another difficulty inherent to the scenario II studied in the present section is the fragmentation of the scalar condensate
into Q-balls whenever the thermal-log dominate, see Sec. 7.2.3. We do not investigate further this possibility as the present
scenario II does not lead to any matter-kination era.
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Figure 39: Evolution of the energy density of the complex scalar field with (blue) and without (gray) thermal

mass. Due to the earlier oscillation, the thermal mass suppresses the energy density at the time of scalar domi-

nation by a factor proportional to (mr /MPl)2(1/yψ)4, and so is the duration of the kination era, see text for more

details. The corresponding numerical trajectory is shown in Fig. 40. Not shown on this figure is the suppression

of the angular kick by the thermal mass, see Eq. (9.13).

9.1.1 An earlier oscillation

The earlier oscillation of the condensate due to the thermal effect has been pointed-out in [196, 216].
The field starts rolling when 3H ∼ meff,T where the effective mass, in a radiation era is

m2
eff,T = m2

eff + y2
ψT 2. (9.1)

Assuming that the thermal mass dominates, we obtain that the field starts oscillating at the tempera-
ture

3Hosc = yψTosc, =⇒ Tosc = g−1/2
∗ MPl yψ, (9.2)

which is larger than the oscillation temperature in the zero-temperature potential, see Eq. (8.18), for

yψ & yψ,T=0 ≡ g 1/4
∗

√
mr,eff(φini)

Mpl
. (9.3)

An earlier oscillation due to thermal effects can be visualized in Fig. 40.
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Figure 40: Evolution of scalar field energy density with thermal mass yψT (case I in green and II in black)

and without thermal mass (case III in yellow). After the onset of oscillation (vertical dashed), the field redshifts

as radiation until the zero-temperature mass dominates (vertical dotted), where it starts redshifting as matter.

The smaller yψ, the later the start of oscillation and the earlier the start of the matter behavior. Below the value

yψ < yψ,T=0, where yψ,T=0 is defined in Eq. (9.3), the thermal mass never plays any role in the evolution, and the

field redshifts as matter already at the onset of oscillation. We normalize the scale factor a with aosc of case II.

Figure obtained after numerically integrating the EOM of the scalar field in quadratic potential in the presence

of the thermal mass in Eq. (9.1).

9.1.2 A different redshift law

When dominated by its thermal mass, the complex scalar field redshifts like radiation, see App. G.2

φ2 ∝ a−3T −1 ∝ a−2, =⇒ ρΦ ' 1

2
y2
ψT 2φ2 ∝ a−4. (9.4)

On the other hand, the zero-temperature contribution redshifts slower than radiation

V (φ, T = 0) = 1

2
m2

r,effφ
2 ∝ a−2. (9.5)

The thermal potential becomes sub-dominant at the temperature, scale factor and field value

Tzero = mr,eff(φzero)

yψ
,

azero

aosc
= g−1/2

∗
y2
ψMPl

mr,eff(φzero)
and φzero =φini

Tzero

Tosc
. (9.6)

Changes in the redshift law are also seen in our numerical simulations, cf. Fig. 41.

No symmetry restoration when φ→ fa . To generate a kination equation of state, we must check
that the complex scalar field reaches the minimum of the potential φ→ fa after the thermal mass
becomes sub-dominant, i.e.

φ(Tzero) & fa . (9.7)

We checked that in the parameter space of interest, this never occurs.
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Figure 41: Left: In the presence of the thermal mass (dark blue), at the onset of oscillation (vertical dashed

line), the radial mode φ starts evolving as 〈φ〉 ∝ a−3/2T −1/2 ∝ a−1 in radiation era, until the zero-temperature

mass dominates (vertical dotted line), after which the field starts redshifting as 〈φ〉 ∝ a−3/2. Instead, when the

potential is always dominated by its zero-temperature contribution (light blue), i.e. yψ < yψ,T=0 where yψ,T=0 is

defined in Eq. (9.3), the field starts redshifting as 〈φ〉 ∝ a−3/2 immediately after the start of oscillation. Right:

During the period of thermal mass domination, the angular velocity θ̇ redshifts as 〈θ̇〉∝ T ∝ a−1 during radia-

tion, and then oscillates around mr,eff when the zero-temperature mass dominates.

9.1.3 A smaller angular kick

We calculate the U (1) charge fraction in Eq. (8.3)

ε ≡ φ2θ̇/2

V (φ)/mr,eff(φ)
= φ2

iniθ̇ini/2

V (φ)/mr,eff(φ)

( aini

a

)3
. (9.8)

From using (φini/Mpl)
l−2 = p

cmr,eff(φini)/λ
p

2l −2Mpl, see Eq. (7.28), we find that the term in the
potential which dominates the dynamics of the scalar field at the onset of the radial mode oscillation
depends on the value of c

V (φini) =


λ2 φ2l−2

ini

M 2l−6
pl

, if c > l −1,

1
2 y2

ψT 2
oscφ

2
ini, otherwise.

(9.9)

In the first case of the previous equation, the scalar field redshifts as, cf. App. G.2

φ∝ a− 6
2+n , with n = 2l −2. (9.10)

until the nearly-quadratic term φ2 dominates around the field value φquad

1

2
y2
ψT 2

quadφ
2
quad = λ2

φ2l−2
quad

M 2l−6
pl

. (9.11)

For φ < φquad, the U (1) charge fraction ε becomes constant since both numerator and denominator
in Eq. (9.8) scale like a−3. Plugging Eq. (9.10) into Eq. (9.11), we obtain the scale factor aquad below
which the potential is dominated by the quadratic term. From injecting aquad into the generated U (1)
charge in Eq. (7.21) and the definition of ε in Eq. (9.8), we obtain

ε =


√

g∗
2

mr,eff( fa )
y2
ψMpl

l sin lθini, if c > l −1,√
g∗c

2(l−1)
mr,eff( fa )

y2
ψMpl

l sin lθini, otherwise.
(9.12)

We conclude that for a fix value of c, l and θini, the value of ε in the presence of a thermal mass is

suppressed by a factor
g 1/2
∗ mr,eff(φini)

y2
ψMpl

with respect to the value of ε without thermal mass, cf. Eq. (8.7),
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which we denote ε0

ε =
(

g 1/2∗ mr,eff(φini)

y2
ψMpl

)
ε0. (9.13)

The reason of the suppression of ε in Eq. (9.13) can be understood from Eq. (9.8) where the denomi-
nator V (φ) is enlarged by the presence of the thermal mass while the explicit U (1) breaking potential
generating the numerator θ̇ is not.

9.2 Evolution of the field and its energy density

9.2.1 Delay of matter domination

The scalar field dominates the energy density of the universe at the scale factor adom defined by

V (φzero, T = 0)

(
azero

adom

)3

= ρrad(Tzero)

(
azero

adom

)4

with ρrad = π2

30
g∗T 4, (9.14)

where Tzero denotes the temperature, defined in Eq. (9.6), below which the zero-temperature mass
dominates over the thermal mass. We obtain

adom

azero
= 2

3

(
Mpl

φini

)2

A−1
ε , Tdom = mr,eff(φzero)

yψ

3

2

(
φini

Mpl

)2

Aε, (9.15)

and

ρdom = 27g∗
16

(
mr,eff(φzero)

yψ

)4 (
φini

Mpl

)8

A4
ε , (9.16)

with Aε defined by

Aε =
ε, if ρdamp > ρdom,

1, if ρdamp < ρdom,
(9.17)

stands for the ε-suppression discussed in App. G.3. The value of ε is given by Eq. (9.12). Note that we
can rewrite Eq. (9.16) as

ρdom =
(

g 1/2
∗

m2
r,eff(φzero)

y2
ψmr,eff(φini)Mpl

)2

ρdom,1 (9.18)

with ρdom,1 being the energy density at domination, defined in Eq. (8.23), in the case of the first sce-
nario where the thermal mass can be neglected due to a small Yukawa coupling. From Eq. (9.18), we
can see that the effect of the thermal mass is to delay the onset of the matter domination by a fac-
tor ∝ y−4

ψ in the energy density. As we will see in Eq. (9.28), the delay of the matter domination in
Eq. (9.18) together with the suppression of ε in Eq. (9.13) are responsible for preventing the kination
era to take place in the presence of thermal effects.

9.2.2 Radial damping

In the presence of the Yukawa interactions with fermions ψ, cf. Eq. (7.7), the scalar condensate ther-
malizes with the thermal plasma with the rate, see App. F.1

Γφ '


for yψφ< T :


for αT > yψφ,

y2
ψαT

2π2 ,

for αT < yψφ,
y4
ψφ

2

π2αT ,

for yψφ> T : bα2 Max[T, mφ]3

φ2 ,

+
y2
ψmφ

8π
Θ

(
mφ/2−Max

[
yψφ, g T

])
. (9.19)
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with b ' 0.01. As shown in the supplementary material of [38], thermalization conserves the U (1)
charge φ2θ̇. Radial damping takes place at the energy scale and scale factor

ρdamp = 3M 2
plΓ

2B 4
ε and

adamp

adom
=

(
ρdom

ρdamp

)1/3

B−1
ε , (9.20)

with

Bε =
1, if ρdamp > ρdom,

ε, if ρdamp < ρdom.
(9.21)

For the sake of simplicity, in the present Sec. 9, we suppose that the thermal width is larger than
the fermion mass αT > yψφ. The decay rate is given by the first line in Eq. (9.19) and we compute

Γdamp =


3α2

4π4 g−1/2∗ y4
ψMpl, for yψ > yψ,1,

y2
ψmr,eff( fa )

8π , otherwise,
(9.22)

and

Tdamp =


α

2π

y2
ψMpl

g 1/2∗
, for yψ > yψ,1,

yψ
πg 1/4∗

√
mr,eff( fa)Mpl, otherwise,

(9.23)

where

yψ,1 ≡ 2
g 1/4

s

α

(
mr,eff( fa)

Mpl

)1/2

. (9.24)

9.2.3 Duration of the kination era

Start of kination. The universe acquires a kination equation-of-state when the field reachesφ→ fa ,
corresponding to the energy density and scale factor

ρKD,i = 1

2
f 2

a m2
r,eff( fa) and

aKD,i

max(adom, adamp)
=

(
min(ρdom, ρdamp)

ρKD,i

)1/3

. (9.25)

End of kination. The kination era stops when the universe becomes radiation-dominated again.
The energy scale at which it occurs depends on whether radial damping occurs before and after the
onset of matter domination

ρKD, f =
ρ2

KD,i

min(ρdom, ρdamp)
. (9.26)

The duration of the kination era NKD ≡ log
aKD, f

aKD,i
reads

eNKD =
(

min(ρdom, ρdamp)

ρKD,i

)1/6

=


√

3
2

(
g 1/2
∗

y2
ψ

mr,eff(φzero)
mr,eff( fa )

mr,eff(φzero)
fa

)1/3 (
φini

Mpl

)4/3
ε2/3, if ρdamp > ρdom,(

6M 2
PlΓ

2
damp

f 2
a m2

r,eff( fa )

)1/6

ε2/3, if ρdamp < ρdom.

(9.27)
Using the first lines of Eq. (9.19) and (9.23), we obtain

eNKD = 0.74g 1/18
∗ α2/9ε2/3

(
Mpl

fa

)1/3 (
mr,eff( fa)

Mpl

)1/9 (
mr,eff(φzero)

mr,eff( fa)

)4/9 (
φini

Mpl

)8/9

×



(
yψ,th

yψ

)2/3
, if yψ& yψ,th,(

yψ
yψ,th

)4/3
, if yψ,th& yψ& yψ,1,(

yψ,1

yψ,th

)4/3 (
yψ

yψ,1

)2/3
, if yψ. yψ,1,

(9.28)
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where yψ,1 is defined in Eq. (9.24) and where yψ,th is the Yukawa coupling above which thermalization
starts to occur before scalar field domination

ρdamp > ρdom =⇒ yψ > yψ,th = π2/3 g 1/6∗
α1/3

(
mr,eff(φzero)

Mpl

)1/3 (
φini

Mpl

)2/3

. (9.29)

From plugging in Eq. (9.28) the most optimistic value of ε, cf. first line of Eq. (9.12), we obtain

eNKD = 0.2g 1/6
∗ α2/3

(
mr,eff( fa)

fa

)1/3 (
mr,eff(φini)

mr,eff( fa)

)2/3

(l sin lθini)
2/3×



(
yψ,th

yψ

)2
, if yψ& yψ,th,

1, if yψ,th& yψ& yψ,1,(
yψ,1

yψ

)2/3
, if yψ,1& yψ& yψ,0,(

yψ,1

yψ,0

)2/3 (
yψ

yψ,0

)2/3
if yψ,0& yψ,

(9.30)
where yψ,0, defined in Eq. (9.3), is the Yukawa coupling below which oscillation is induced by the
zero-temperature potential. The longest duration of kination occurs for

yψ ' yψ,0 =⇒ eNKD = 0.4g 1/6
∗

(
mr,eff(φini)

fa

)1/3

(l sin lθini)
2/3 . 1. (9.31)

We conclude that a period of kination-domination can not be induced by the spinning complex scalar
field, starting oscillating in a radiation-dominated universe, when the damping of the radial mode re-
lies on thermalization. To reduce the Yukawa coupling yψ would reduce the thermal mass but delay
thermalization too much. To increase yψ would make thermalization more efficient but would in-
crease the thermal mass too much. In the next section, we show how the inhibition of the initial rota-
tion due to the thermal mass can be avoided when the fermion abundance is Boltzmann-suppressed
at the onset of the oscillation due to either a large Yukawa coupling yψ or a small reheating tempera-
ture Treh

yψφosc& Tosc, or yψφreh& Treh. (9.32)

10 Scenario III: thermal damping and non-relativistic fermions

In the first scenario in Sec. 8, we have considered a small Yukawa coupling such that thermal correc-
tions could be neglected. However as discussed in App. F.1, the difficulty is that thermalization takes
place too late and we must rely on a different mechanism for damping the radial mode.

In the second scenario in Sec. 9, we have enforced radial damping through thermalization. How-
ever, the suppression of the initial angular kick ε, cf. Sec. 9.1.3, and the delay of the onset of the
matter era, cf. Eq. (9.18), due to the large thermal mass at early time, prevent the scalar field to induce
a kination era, cf. Eq. (9.31).

In the present section, we consider a third scenario, depicted in Fig. 42, which turns out to be
the promising one and where radial damping occurs through thermalization, but the thermal mass is
absent at the onset of the radial mode oscillation due to the Boltzmann-suppression of the fermion
abundance.

10.1 Boltzmann-suppression of the fermion abundance

10.1.1 Conditions

The presence of the thermal mass yψT supposes the fermions ψ to be abundant in the plasma. In-
stead, if their abundance is Boltzmann-suppressed, the thermal mass is set by the thermal log poten-
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Figure 42: In scenario III of the present Sec. 10, we consider the fermions responsible for the thermal mass to

be Boltzmann-suppressed at the onset of the oscillation (left panel). Therefore, the thermal mass is turned off

at the time of the angular kick and the U (1) charge fraction ε in Eq. (10.8) can be O (1) without any tuning of

the Yukawa coupling to small values, in contrast to scenario II, cf. Sec 9 (right panel). Later, when the fermions

become relativistic, Yukawa interactions are efficient enough to damp the radial motion before the onset of the

matter era.

tial, cf. Eq. (7.8)

mr,eff(φ, T ) =
{

yψT, for yψφ. T,p
2αT 2

φ , for yψφ& T,
(10.1)

The Boltzmann-suppression of the fermion abundance can arise in two situations:

1. At large Yukawa coupling yψ

yψφosc > Tosc,

φosc = Mpl

(p
c

yψTosc

λ
p

2l−2Mpl

) 1
l−2

,

Tosc = g−1/2∗ yψMpl,

=⇒ yψ > 21/4
p
λg

(3−l )
4∗

(
l −1

c

)1/4

. (10.2)

For (λ, c, l , g∗) = (1, 1, 10, 100), we obtain yψ ' 6.5×10−4.

2. At small reheating temperature Treh

yψφreh > Treh,

φreh = Mpl

(p
c 3Hreh

λ
p

2l−2Mpl

) 1
l−2

,

Treh = g−1/4∗
√

3HrehMpl.

=⇒ Treh/Mpl < y
l−2
l−4
ψ

(
g 1/4∗p

3

) 2
l−4

(
λ
p

2l −2

3
p

c

) 1
l−4

.

(10.3)
For (λ, c, l , g∗, yψ) = (1, 1, 10, 100, 10−4), we obtain Treh < 1.5 × 1013 GeV. The upper bound
(10.3) on the reheating temperature prevents the thermal mass yψT to be active at the time of
the kick. In our work we assume the universe to be radiation-dominated at the time of the kick.
Therfore, for consistency we must also insure that the reheating temperature is larger than the
temperature at the time of the kick

Treh > Tosc = g−1/4
∗

√
mr,eff(φini)Mpl = 4.9×1012 GeV

(
100

g∗

)1/4 (
mr,eff(φini)

108 GeV

)1/2

. (10.4)
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Compatibility between Eq. (10.3) and Eq. (10.4) implies that the conditions for successful kina-
tion are lost as soon as

g−1/4
∗

√
mr,eff(φini)/Mpl > y

l−2
l−4
ψ

(
g 1/4∗p

3

) 2
l−4

(
λ
p

2l −2

3
p

c

) 1
l−4

. (10.5)

We find that the later condition does not add any constraint on our plots.

No thermal-log domination. When fermions are Boltmann-suppressed, the thermal potential is
given by the thermal log potential which is suppressed with respect to the quadratic thermal correc-
tion by (αT /yψφ)2. If the thermal-log dominates the potential at the onset of oscillation, we expect a
suppression of the kick ε and a delay of the onset of the matter era as in scenario II, cf. Sec. 9.1, but
also the formation of Q-balls, see Sec. 7.2.3. The thermal-log potential can be neglected whenever its
associated thermal mass is smaller than the zero-temperature mass

p
2α

T 2
osc

φini
. mr,eff(φini) =⇒ α .

g 1/2∗p
2

(
φini

Mpl

)
. (10.6)

where we have used mr,eff(φini) ' 3Hosc ' g 1/2∗ T 2
osc/Mpl.

10.1.2 Consequences

Non-suppressed angular kick. Since the thermal mass is absent at the onset of the radial mode
oscillation, the onset of oscillation occurs when the Hubble scale crosses the zero-temperature mass

Hosc ' mr,eff(φini)/3. (10.7)

where φini is given by Eq. (7.28) and the fraction of U (1) charge is the same as in the scenario I, cf.
Eq. (8.7)

ε =


1p
2

mr,eff( fa )
mr,eff(φini)

l sin lθini, if c > l −1,

1p
2

√
c

l−1
mr,eff( fa )

mr,eff(φini)
l sin lθini, otherwise.

(10.8)

so that values ε∼O (1) are allowed.

No thermal mass domination at all. After the onset of oscillation, the scalar fieldφ∝ a−3/2 redshifts
faster than the temperature T ∝ a−1. This implies the existence of a temperature Trel

Trel ≡ yψφrel, (10.9)

below which the fermion are relativistic and abundant in the plasma. Using that the scalar field φ

reshifts as matter in a radiation-dominated universe, we get

φrel =φini

(
Hrel

Hosc

)3/4

, (10.10)

where Hosc ' mr,eff(φini)/3, Hrel ' g 1/2∗ T 2
damp/3Mpl. From Eq. (10.9) and Eq. (10.10), we obtain

Trel '
1

g 3/4∗

m3/2
r,eff(φini)

y2
ψM 1/2

pl

(
Mpl

φini

)2

. (10.11)

When the fermions become relativistic, the thermal mass jumps according to, cf. Eq. (10.1)

mr,eff|th =p
2α

T 2
rel

φrel
→ mr,eff|th = yψTrel. (10.12)
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This jump in thermal mass has no impact on the dynamics if the thermal mass remains smaller than
the zero-temperature mass

yψTrel . mr,eff(φrel). (10.13)

From plugging Eq. (10.11) in the previous equation, we obtain that the scalar field evolves in its zero-
temperature potential during the whole time if

yψ &
1

g 3/4∗

(
mr,eff(φini)

mr,eff(φrel)

)(
mr,eff(φini)

Mpl

)1/2 (
Mpl

φini

)2

. (10.14)

10.2 Evolution of the field and its energy density

10.2.1 Delay of matter domination.

If the condition in Sec. 10.1.1 and in Eq. (10.14) are satisfied, then the scalar field redshifts like matter
during its whole evolution. Therefore, the situation is similar to scenario I in Eq. (8.23) and the scalar
dominates the energy density of the universe at

ρdom = 27mr,eff(φini)2φ8
ini

16M 6
Pl

A4
ε and

adom

aosc
= 2M 2

Pl

3φ2
ini

A−1
ε (10.15)

with

Aε =
ε, if ρdamp > ρdom,

1, if ρdamp < ρdom.
(10.16)

We recall that the impact of εon the evolution of the scalar field energy density is discussed in App. G.3.

10.2.2 Radial damping.

The scalar field decay rate is given by Eq. (9.19) (see App. F.1 for more details) which we rewrite here

Γφ '


for yψφ< T :


for αT > yψφ,

y2
ψαT

2π2 ,

for αT < yψφ,
y4
ψφ

2

π2αT ,

for yψφ> T : bα2 Max[T, mφ]3

φ2 ,

+
y2
ψmφ

8π
Θ

(
mφ/2−Max

[
yψφ, g T

])
. (10.17)

The different decay channels in Eq. (9.19) are the ones induced by scattering with virtual fermions

of the plasma φψth →ψth

(
Γ = y2

ψαT

2π2 or
y4
ψφ

2

π2αT

)
, tree-level decay φ→ψψ

(
Γ= y2

ψmφ

8π

)
or loop-induced

decay into gauge boson pair φ→ A A

(
Γ= bα2 Max[T, mφ]3

φ2

)
. In Fig. 43, we show the different decay

rates and compute the decay temperature for three different values of the Yukawa coupling yψ.
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Figure 43: The total decay rate (solid purple) of the scalar condensate in the fermion portal compared to the

Hubble scale (solid red). The decay temperature is depicted by a blue star. We show three values of yψ, corre-

sponding to the three decay channels given in Eq. (10.17) and depicted in Fig. 57 (see App. F.1 for more details).

From top to bottom, the dominant channel is the decay into gauge boson pairs at one loopφ→ A A (dotted gold),

scattering with virtual fermions of the plasma φψth →ψth in the small thermal widthαT . yψφ (dotted purple)

and large thermal width limit αT & yψφ (dotted blue). Visible on these plots is the suppression of the decay into

fermions when the later are non-relativistic (yellow region).
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For the better understanding, we now derive analytically the expression for the maximum damp-
ing temperature. We suppose that the conditions introduced in Sec. 10.1.1 are satisfied such that the
fermion abundance is initially Boltzmann-suppressed at the onset of scalar field oscillation. When
the fermions become relativistic at the temperature Trel ≡ yψφrel given in Eq. (10.9), the damping rate
suddenly increases due the scattering with virtual fermions of the plasma, see Fig. 43. We suppose
α. 1 in Eq. (10.17), such that the decay rate at Trel is controlled by

Γ' Γφψth→ψth =
y4
ψφ

2

π2αT
∝ T 2. (10.18)

Since Γ/H = constant, the decay through that channel only depends on whether Γ/H > 1 or not at the
relativistic threshold Trel. This defines the quantity yψ,∗

Γ/H
∣∣∣
T=Trel

> 1 =⇒ yψ > yψ,∗ = 1.35α1/4

g 1/16∗

(
meff,ini

MPl

)3/8 (
Mpl

φini

)1/2

. (10.19)

We deduce the maximum damping temperature{
α. 1,

yψ > yψ,∗,
=⇒ Tdamp = Trel, (10.20)

with Trel given in Eq. (10.9). The damping temperature peaks for yψ = yψ,∗, see maximum of the
dashed yellow line in Fig. 44-top.

The energy density just after damping is given by, see Eq. (G.51)

ρdamp = π2

30
g∗T 4

damp B 4
ε , (10.21)

with

Bε =
1, if ρdamp > ρdom,

ε, if ρdamp < ρdom.
(10.22)

Preservation of the U (1) charge in the condensate. The U (1) charge carried by the condensate is
preserved during thermalization if [38] (see also App. F.1)

fa À Tφ→ fa , (10.23)

where Tφ→ fa is the temperature whenφ reaches fa . Using thatφ redshifts like matter,φ=φini

(
T

Tosc

)3/2
,

we obtain
fa

Tφ→ fa

= 0.8×105
(

fa

108 GeV

)1/3 (
1010 GeV

Tosc

)(
φini

Mpl

)2/3

À 1. (10.24)

We checked that all the parameter space shown in Figs. 44, 45, 46, 47 and 48 satisfies that condition.

10.2.3 Duration of the kination era

Start of kination. The universe acquires a kination equation-of-state when the field reachesφ→ fa ,
corresponding to the energy density and scale factor

ρKD,i = 1

2
f 2

a m2
r,eff( fa), and

aKD,i

max(adom, adamp)
=

(
min(ρdom, ρdamp)

ρKD,i

)1/3

. (10.25)

End of kination. The kination era stops when the universe becomes radiation dominated. The en-
ergy scale at which it occurs depends on whether radial damping occurs before and after the onset of
matter domination

ρKD, f =
ρ2

KD,i

min(ρdom, ρdamp)
. (10.26)
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Duration of the kination era. The duration of the kination era NKD ≡ log
aKD, f

aKD,i
= 1

6 log
(

min(ρdom,ρdamp)
ρKD,i

)
reads

eNKD =


√

3
2

(
mr,eff(φini)
mr,eff( fa )

Mpl

fa

)1/3 (
φini

Mpl

)4/3
ε2/3, if ρdamp > ρdom,(

π2

30 g∗T 4
damp

f 2
a m2

r,eff( fa )/2

)1/6

ε2/3, if ρdamp < ρdom.

(10.27)

where ε can be O (1) and where Tdamp is given by Eq. (10.20). In the case where yψ > yψ,∗ with yψ,∗
given by Eq. (10.19), we obtain

eNKD =


e8.1ε2/3

(
108GeV

fa

)1/3 (
mr,eff(φini)
mr,eff( fa )

)(
φini

Mpl

)4/3
, if ρdamp > ρdom,

e4.2 ε2/3

g 1/3∗

(
fa

108 GeV

)1/3 (
mr,eff( fa )

fa

)2/3 (
mr,eff(φini)
mr,eff( fa )

)(
10−4

yψ

)4/3 (
Mpl

φini

)4/3
if ρdamp < ρdom.

(10.28)
The maximal duration of kination is reached for yψ = yψ,∗

eNKD |yψ=yψ,∗ = e5.1 ε2/3

α1/3g 1/4∗

(
108

fa

)1/6 (
mr,eff( fa)

fa

)1/6 (
mr,eff(φini

mr,eff( fa)

)1/2 (
0.1

φini/Mpl

)2/3

. (10.29)

10.3 Gravitational-wave signature and detectability

Next, we show the detectability of the SGWB produced by primordial inflation (Fig. 46), local strings
(Fig. 47) and globals strings (Figs.48), in the presence of a kination era generated by the scenario III:
a spinning complex scalar field with thermal damping and Boltzmann-suppression of the thermal
corrections to the potential.

The parameter space splits into two parts separated by the blue dashed line: the Boltzmann sup-
pression by a large yψ in Eq. (10.2) and by a small reheating temperature in Eq. (10.3). The kination
duration in the former region is independent of Treh, and the inflationary or the string scales are not
bounded. On the contrary, in the region with the small reheating temperature the maximum energy
scale is constrained if the universe reheats instantaneously. In the figures below, some parts of the
parameter space have the inflation scale and the string scale fixed at high-energy above the Treh,max.
This is allowed when a period between the end of inflation and the completion of reheating exists. Its
existence would induce the SGWB distortion at high-frequencies above the kination peak and might
allow us to distinguish the large yψ from the small Treh cases.

Finally, we also show the constraints that apply for very low mr , in which case the radial mode
has a large thermal abundance and long lifetime, which is excluded either by overabundance if cos-
mologically stable or by late decay into photons after BBN [217]. The corresponding constraint mr >
10 GeV(fa/109 GeV)2/3 is reported in the green hashed region in the plots.

These plots demonstrate that the concrete scenario III, where radial damping is not assumed but
explicitly calculated via thermal effects, leads to observable signatures of an intermediate matter-
kination era.
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Figure 44: Number of kination e-folds when radial damping occurs via thermalization through fermion por-

tal. The presence of the thermal mass at the onset of the oscillation (scenario II in Sec. 7) suppresses the angular

kick and prevents kination (red region). Instead, at large Yukawa coupling (blue region and condition (10.2))

or at low reheating temperature (orange region and condition (10.3)), the fermion abundance is Boltzmann-

suppressed and the thermal mass is absent. The NKD black contour lines follow from Eq. (10.27), with the decay

temperature Tdamp being determined numerically as shown in Fig. 43. We write in red the dominant decay chan-

nel, based on Eq. (10.17). The maximal duration of kination is reached at yψ = yψ,∗, cf. Eq. (10.19), and is given

by Eq. (10.29). The thermal mass is also negligible at small Yukawa (gray region and scenario I in Sec. 8), but

there, the thermalization rate is too small and a circular trajectory is not obtained before φ→ fa . In the pale

purple region, the kick at Tosc occurs before the universe is reheated which goes beyond the scope of our study, see

Eq. (10.4). We show the LHC constraints on heavy colored fermions, mψ = yψ fa &TeV.
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Figure 45: Maximum number of kination e-folds in scenario III. In order to have matter-kination as long as

possible, we chose values of the Yukawa coupling yψ = yψ,∗ in Eq. (10.19) to maximize the duration of kination,

see Eq. (10.29). The dashed blue lines show the temperature at which the radial mode is dampened by thermal

effects. The dark blue region shows the LHC constraints mψ&TeV. The vertical green dashed line shows expected

astrophysical constraints fa & 108 GeV. The dark green region shows the limit of validity of the EFT. In the purple

region, the thermal-log potential dominates the onset of oscillation, which suppresses the angular kick ε, delays

the onset of matter era, cf. Sec. 9.1, and generates Q-balls, see Sec. 7.2.3.
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Gravitational waves from primordial inflation

Figure 46: Ability of future-planned GW observatories to detect the peak signature of a matter-kination era

induced by scenario III in the SGWB from inflation with energy scale Einf. Black solid lines indicate where the

canonical QCD axion DM abundance is satisfied, cf. Eq. (4.15). The left boundary is set by the kinetic misalign-

ment mechanism, while the right one is by the standard misalignment (for small mr with a specific fa) and by

the axion quality problem (for larger mr depending on fa), cf. Eq. (7.24). Only the region between the two lines

does not over-produce DM. Dashed lines are the equivalent for lighter non-canonical QCD axion, cf. Eq. (4.26). A

dotted-dashed red line denotes the parameter space where the spinning axion allows the correct baryon asymme-

try, cf. Eq. (5.3). Gray dotted lines show the kination duration contours. Smaller mr and λ implies larger initial

scalar vev φini, cf. Eq. (7.28), and longer matter-kination duration. For smaller α, the coupling yψ,∗ decreases

and cannot prevent the thermal mass to dominate during the field evolution as shown in bottom-left panel, cf.

Eq. (10.14). The blue dashed line separates the large yψ region where the kination duration is Treh-independent,

from the small Treh region.

90



Gravitational waves from local cosmic strings

Figure 47: Same as Fig. 46 using the SGWB from local cosmic strings with tension Gµ.
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Gravitational waves from global cosmic strings

Figure 48: Same as Fig. 46 using the SGWB from global cosmic strings with string scale η.

11 Summary and conclusion

We have presented a comprehensive analysis of the possibility of a kination era taking place inside the
standard radiation era in the cosmological history. So far, kination had been treated in the literature
mainly as a phenomenon occurring at the end of inflation, before reheating to the Standard Model
thermal bath, and therefore coming from the dynamics of the inflaton field itself. We have shown
that a kination era can take place completely independently of the inflation physics, inside the stan-
dard radiation era, and rather generically from the early dynamics of an axion field. In the first part
of this paper, Sec. 2 and Sec. 3, we have shown model-independent results, displaying in detail the
consequences of this kination era for the main classes of gravitational-wave stochastic backgrounds
of primordial origin, with emphasis on the long-lasting sources such as the irreducible one from in-
flation, and the signals from local and global cosmic strings. The case of short-lasting primordial
sources of gravitational waves such as first-order cosmological phase transitions is also discussed al-
though it is not enhanced by kination. GW from cosmic strings and inflation track the total energy
density and therefore get enhanced during the matter+kination era. In contrast, GW from phase tran-
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sitions come from an additional scalar-sector latent heat that is relatively suppressed in the presence
of the axion-sector extra energy density responsible for the matter+kination era with respect to the
case of standard cosmology. For long-lasting sources, in Sec. 4 we have derived the relation between
the amplitude and peak frequency of the GW signal to the relic abundance of axion DM. We have
presented results for both the most general ALP particles as well as for the QCD axion. We discuss im-
plications for the baryon asymmetry in Sec. 5. In the second part of the paper, we have discussed the
particle physics implementations of such intermediate kination era in one main class of axion mod-
els, presented in Secs. 7, 8, 9 and 10, where the unavoidable partner of the axion, the radial mode of
the complex scalar field, plays a crucial role in providing a kick to the axion. While the corresponding
setup where the radial mode dynamics starts at large VEV À fa can be well-motivated in SUSY frame-
works for instance, one non-trivial aspect is that the radial motion needs to be damped for successful
kination.

As this work was being completed, Refs. [40, 41] appeared which also discuss gravitational waves
from a kination era triggered in axion models, and therefore overlap with our Secs. 7, 8, 9 and 10.
As discussed extensively in these sections, the damping of the radial mode is absolutely crucial for
kination to take place. Thermal damping of the radial mode requires to introduce new interactions of
the Peccei-Quinn field. We have shown that these interactions induce a thermal mass for the Peccei
Quinn field, thus delaying the time of the axion kick. This, together with a modified thermalisation
temperature, prevents a kination era unless the reheating temperature of the universe is sufficiently
low or the Yukawa coupling yψ is sufficiently large. We have derived in detail the parameter space of
the model that leads to a kination era and resulting observable gravitational waves. We showed that
NKD < 6 for most of the parameter space of the model. In our model-independent part we considered
the energy scale and duration of kination as free parameters, with NKD as high as NKD < 11. It would
be interesting to investigate whether there are alternative models which can give longer kination eras.

The damping temperature is determined by the rate of thermalisation of the radial mode. We have
used the thermalisation rate that follows from a yukawa interactions between the scalar field and new
fermions, as derived in Refs. [193, 194], which we have relied on for our analysis. While there is a large
literature on axion cosmology, there is no study of the radial mode thermalisation beyond references
[38, 39, 41, 148, 149, 175, 189, 190], on which we have extended by including the thermal mass effect
in the equation of motion for the radial mode. We hope our work will motivate further investiga-
tions on these thermalisation effects as they are crucial for the early universe physics of axion, with
far-reaching observable consequences. Another option is to assume non-thermal damping through
parametric resonance. We have derived predictions in this case, treating the damping temperature
as a free parameter. It remains to be checked whether this is indeed realizable. We have exposed
the problematics in App. F.2. This will require a careful investigation of the coupled dynamics and of
back-reaction effects.

While most of the literature on axion cosmology typically ignores the dynamics of its radial mode
partner and only focuses on the angular mode dynamics, the analysis of our Secs. 7, 8, 9 and 10 as
well as references [38, 39, 41, 148, 149, 175, 189, 190] show that the radial mode may actually be a key
to understand the early cosmological history in axion models, with important consequences for the
experimental programme. We note that if the complex scalar field belongs to a completely secluded
sector, we expect the LHC and astrophysical bounds on fa in Fig. 45, 46, 47, and 48 to be relaxed.
Additionally, the Neff bounds can be evaded if the onset of matter domination takes place after ther-
malization. Low fa regions are interesting from the point of view of GW detection, see Fig. 7. In the
case where the matter-kination era occurs after the end of BBN, below 6 keV [41], the peak signature
appears in the very low frequency region and could be probed by pulsar timing array experiments like
SKA and NANOGrav [41]. We leave the dedicated study of the viability of this possibility for further
works.

Fig. 49 shows the values of fa and of the kination energy scales that can be probed by GW experi-
ments in the main class of axion model considered. We summarise the key expressions and figures of
the paper in Tables 2 and 3.
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Considering the particle physics implementations, Secs. 7, 8, 9 and 10 improve the recent study
[41] in different aspects which we can summarize as follows.

• We compute the Noether U (1) charge ε (or Yθ) explicitly from a particle physics model, and we
show that it is suppressed when the thermal mass is present, see Sec. 9.1.3. The impact of ε on
the kinaton duration is presented in Sec. 8.1.3.

• We show that the thermal mass is necessarily present at the time of the angular kick if we require
efficient thermalization, and as a consequence, a period of matter-kination domination cannot
be generated, see Sec. 9.

• A first solution is to consider radial damping through non-thermal processes as parametric
resonance, see scenario I in Sec. 8, even though a more quantitative analysis would be needed
to assess this possibility.

• A second solution♠22 is to consider the possibility that the fermions inducing the thermal mass
are Boltzmann-suppressed at the time of the angular kick, when the value of ε is generated, see
scenario III in Sec. 10.

• We study the possibility of generating a matter-kination era from a spinning complex scalar
field in all the possible values of the Yukawa coupling yψ and reheating temperature Treh. We
found four different regimes, pictured by colored regions in Fig. 44.

As shown in Fig. 45, the parameter space associated with the longest matter-kination era lies in the re-
gion fa . 108 GeV and yψ fa .TeV, potentially already excluded by astrophysics and LHC constraints.
This motivates the study of an axion sector secluded from the SM.

As the UV completion requires a number of assumptions (on the shape of the radial mode poten-
tial, on the absence of higher-dimensional operators with l < 6, on the need for appropriate damping
of the radial motion), it will be interesting to motivate further constructions leading to high axion
masses at early times compatible with a matter-kination era. We leave this for future work [88].

Finally, a particularly intriguing scenario is the case where the same U (1)-breaking generating
the axion leads to the global string network whose GW emission is enhanced by the matter-kination
era induced by the spinning axion itself. It will be worth investigating such so-called axionic string
framework in more details.

♠22We thank Keisuke Harigaya for fruitful discussions on this point.
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Figure 49: Left: Parameter space that leads to observable gravitational waves in the main class of model consid-

ered in this paper, scanning over mr and l values and the corresponding values of the axion velocity at the start

of kination. Right: Detectable ranges of EKD by the future planned GW experiments, for the three GW sources:

primordial inflation, local and global cosmic strings. For the fictional high-frequency experiments, we assume

detectors operating at 10 kHz and 1 MHz withΩsensh2 ' 10−10.

Model-independent

GW from primordial inflation
Fig. 7, 8

fpeak Eq. (3.12)
Ωpeak Eq. (3.13)

GW from local cosmic strings
Fig. 9, 10

fpeak Eq. (3.41)
Ωpeak Eq. (3.42)

GW from global cosmic strings
Fig. 11, 12

fpeak Eq. (3.48)
Ωpeak Eq. (3.50)

GW peak and axion relic abundance
Fig. 18, 19, 20

EKD −Ωa,0 Eq. (4.10)
Ωpeak −Ωa,0 Eq. (4.22)

GW peak and baryon asymmetry
Fig. 21

EKD −YB Eq. (5.3)
Ωpeak −YB Eq. (5.5)

Table 2: List of key relations and figures in the model-independent analysis.

Model-dependent

Model: radial mode + axion Fig. 24 EKD = 21/4( famr )1/2

Scenario I (non-thermal damping)
Fig. 31, 34, 36, 38

NKD Eq. (7.37)

Scenario II (thermal damping) Fig. 39 NKD Eq. (9.31)
Scenario III (thermal damping with non-relativistic fermions)

Fig. 42, 44, 45, 46, 47, 48
NKD Eq. (7.38)

Table 3: List of key relations and figures in the model-dependent analysis.
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A Kination after inflation: quintessential inflation with α-attractor

Kination has been discussed in the literature as a follow-up of inflation, and before reheating. While
this paper instead investigates the possibility of kination inside the radiation era, except for the new
constraints derived in Sec. 2.2, we review in this appendix motivations for models of kination fol-
lowing inflation for completeness. As already stated in Sec. 2.1, it is not possible to have a kination
era from a canonical scalar field rolling down its potential without having superplanckian field ex-
cursions. On the other hand, kination arises in a popular class of inflation models called α-attractor
models which not only fit well CMB data but also link to quintessence at late time. In addition, they
can be motivated in supergravity models. We summarise them in the following.

A.1 A sharp transition between two plateaus

α-attractor. α-attractor is a class of supergravity theory where kinetic terms have poles

L =
1
2 (∂φ)2

(1− φ2

6αM 2
pl

)2
−V (φ)+Λ, α> 0. (A.1)

The use ofα-attractor for quintessential inflation has been studied in [218–223]. Since the scalar field
cannot cross the poles, the field range is limited to −p6αMpl . φ . +p6αMpl. For α . 1/6, it has
the great advantage to prevent super-Planckian field excursion which plagues usual quintessential
inflation scenarios.

Scalar potential. Following [220, 221, 223], we choose the following scalar potential

V (φ) =V0 e−κφ/Mpl , (A.2)

where κ > 0, which can be motivated by supergravity [224, 225], brane inflation [226], string theory
[227–229] or gaugino condensation [230–232]. At late time, the scalar field slows downs when reach-
ing an infinite kinetic term at φ→+p6αMpl. We suppose the existence of an unknown mechanism
which set the cosmological constant (CC) to zero at φ→+p6αMpl

Λ=V (
p

6αMpl) =V0 e−κ
p

6α, (A.3)

such that the scalar field potential energy + CC reads

V (φ) =V0 e−n

[
e

n

(
1− φp

6αMpl

)
−1

]
, with n ≡ κp6α. (A.4)

Canonical normalization. Upon introducing the field transformation

∂φ

∂ϕ
= 1− φ2

6αM 2
pl

, ↔ φ=p
6αMpl tanh

(
ϕp

6αMpl

)
, (A.5)
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Figure 50: α-attractor potential for quintessential inflation. We took the same parameters as in Fig. (51).

we obtain a canonically normalized scalar field with potential energy

V (ϕ) = e−2n M 4

[
e

n

(
1−tanh ϕp

6αMpl

)
−1

]
, M 4 ≡ enV0. (A.6)

The poles at φ → ±p6αMpl have been sent to ϕ → ±∞ and the potential V (ϕ) features two
plateaus

V (ϕ) ' M 4 exp

(
−2ne

2ϕp
6αMpl

)
, when ϕ→−∞, (A.7)

V (ϕ) ' 2ne−2n M 4 exp

(
− 2ϕp

6αMpl

)
, when ϕ→+∞. (A.8)

This potential and the history of the universe in the quintessential inflation scenario are shown in
Fig. 50 and Fig. 51 respectively.

A.2 Kination followed by reheating

Kination. After inflation, the universe is dominated by the kinetic energy of the scalar field which
evolves according to Eq. (2.1)

ϕ=ϕend +
√

2

3
Mpl ln

(
t

tend

)
(A.9)

with the field position at the end of inflation estimated as

ϕend =
√

3α

2
Mpl ln

(p
3α

2n

)
. (A.10)

Since the inflation potential is non-oscillatory, the standard reheating can not occur through the de-
cay of the inflaton.
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Figure 51: Top: evolution of the different energy densities composing the universe in the quintessential inflation

scenario based on the potential in Eq. (A.6) for α= 7/3 (motivated by string theory [222]) and n = 123. We solved

numerically the equation of motion of the scalar field evolving in the potential in Eq. (A.6) in the expanding

universe. Bottom: evolution of the equation of state ω= p/ρ of the universe.

Gravitational reheating. The kination era ends when the universe becomes dominated by the en-
ergy density of the reheated plasma. An immediate possibility for producing radiation is gravitational
reheating [44, 45] in which the reheated density reads

ρgrav ' δ×10−2 H 4
end, (A.11)

where δ is an efficiency factor which depends on the number of fields, the nature of their coupling
with gravity, their mass and their self-coupling, see [62] for a review. However, unless we introduce a
large number δ& 50 of self-interacting and/or non-minimally-coupled light fields, reheating through
gravitational coupling only is inconsistent with the BBN bound on GW from inflation [13, 15, 62, 233–
235].

Other reheating mechanisms. A natural way-out, which may be the one realized in the SM [236],
is to introduce a large non-minimal coupling to gravity to exploit the tachyonic instability gener-
ated by the change of sign of the Ricci scalar during kination [46–50]. The tachyonic instability can
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also be generated by a thermal phase transition [223] or more generally when the inflaton crosses
an enhanced symmetry point, see instant reheating [221, 237–239] or trapping reheating [240, 241].
Another well-known efficient reheating is curvaton reheating where a spectator field decay into SM
[242–244].

B Stiff-dominated era

B.1 Example of stiff era

The scalar Virial theorem, Eq. (G.41), states that the averaged energy density of the scalar field in the
power-law potential, whose motion follows the Klein-Gordon equation in the expanding universe,
redshifts as

〈ρΦ〉 ∝ a−6n/(2+n) for V (Φ) ∝ Φn , (B.1)

which is equivalent to the EOS: ω= (n −2)/(n +2).

B.2 BBN and interferometer probe

In Sec. 3.1, we have studied the spectrum of inflationary GW in presence of an arbitrary equation of
state of the universe and we have found, see Eq. (3.9)

ΩGW ∝ f −2(1−3ω)/1+3ω∝ f β, with β ≡ −2

(
1−3ω

1+3ω

)
(B.2)

where ω is the equation of state of the universe. The energy-frequency relation is

f (ρ) = f∆

(
ρ

ρ∆

) 1+3ω
6(1+ω)

, (B.3)

where f∆ and ρ∆ are the GW frequency and the total energy density at the end of the stiff era. Ex-
amples of inflationary GW spectra in the presence of a stiff era are shown in Fig. 52-top. In Fig. 52-
bottom, we show the reach of future-planned GW observatories. In contrast to the case ω= 1 shown
in Fig. 2 where constraints from BBN were the strongest, here for ω = 2/3 and ω = 1/2, the ability of
GW interferometers to probe a stiff era can be better than what BBN does.
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Figure 52: Top: In the presence of a stiff era with EOS ω occuring right after inflation, the GW spectrum from

primordial inflation receives a blue-tilt, cf. Eq. (3.9). The dashed and solid lines correspond to the reheating

temperatures TRH = 10−1 GeV and 104 GeV, respectively. Some spectra associated with too long kination are

subject to the fluctuation constraint Eq. (C.20), which depends on the initial scalar fluctuation [88]. Bottom:

Ability of the future-planned experiments to compete with the BBN bound, for probing SGWB enhanced by post-

inflation stiff era with EOS ω ending at the reheating temperature TRH. The lower ω, the more competitive the

GW interferometers with respect to BBN. The stiff era on the left of green solid line cannot be realized due to the

radiation-like fluctuation, cf. Eq. (C.20). An experiment operating at higher frequencies loses sensitivity
for smaller ω because of the smaller enhancement.

C Maximal duration of kination

In this appendix, we discuss what could lead to upper bounds on the number of e-folds of kination.

1. The limited duration between end of inflation/reheating and BBN, cf. Sec. C.1

Type (i): NKD . 29+ 2

3
log

Einf

1.4×1016 GeV
(C.1)

Type (ii): NKD . 14.6+ 1

3
log

Ereh

1.4×1016 GeV
. (C.2)

where the Types (i) and (ii) are defined in Fig. 1.

2. The Neff constraint of kination-enhanced inflationary GW, cf. Eq. (C.2)

Types (i) and (ii): NKD . 11.9+ log
5×1013 GeV

Hinf
. (C.3)
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3. The growth of scalar fluctuation during kination, cf. Sec. C.3

Types (ii): NKD . 10 or 11. (C.4)

4. The angular mode energy density drops below the wiggle step size of the axion potential, cf.
Sec. C.4

NKD .
1

3
ln

θ̇0

2ma
, (C.5)

for the axion models discussed in Secs. 7, 8, 9, and 10.

5. The universe contains a non-vanishing vacuum energy V0, cf. Sec. C.5,

NKD .
1

6
log

(
ρKD

V0

)
(C.6)

We now derive these bounds in turn in the following subsections.

C.1 Duration between inflation/reheating and BBN

Maximal reheating scale. The non-detection of primordial B modes by 2021 BICEP/Keck Collabo-
ration [3] constrains the tensor-to-scalar ratio to be smaller than

r ≡ As

At
. 0.036, (C.7)

where As ' 2.196×10−9 [245] and At = 2H 2
inf

πM 2
pl

[246]. This implies the maximal Hubble and energy scale

at the end of inflation to be

Hinf . 5×10−13 GeV, and Einf ≡
(
3M2

plH
2
inf

)1/4
. 1.4×1016 GeV. (C.8)

The maximum reheating scale, corresponding to the extreme scenario where reheating takes place
instantaneously at the very end of inflation, is given by

Ereh . 1.4×1016 GeV. (C.9)

Successful BBN. By using the code AlterBBN [247], it can be shown♠23 that successful BBN requires
the amount of kination energy density to be less than 92% of the radiation energy density at the tem-
perature T = 1 MeV [80]

ρkin . 92% ρrad, at T = 1 MeV. (C.10)

We conclude that kination must end before

E∆ & EBBN ≡ 1.4 MeV, (C.11)

where E∆ is the energy scale at the end of kination when ρkin = ρrad, and where we remind the reader
of our notation Ei ≡ ρ1/4

i . In the plots of our paper we actually use a slightly more aggressive constraint
E∆ ' 10 MeV.

Maximal duration of kination after inflation (Scenario Type (i)). We consider the case of quintessen-
tial inflation, cf. Scenario Type (i) in Fig. 1. A simple constraint on NKD comes from kination not be-
ing able to last more than the time between the end of inflation in Eq. (C.8), and the end of BBN in
Eq. (C.11). We obtain the bound

Type (i): NKD .
1

6
log

E 4
inf

ρBBN
= 29+ 2

3
log

Einf

1.4×1016 GeV
(C.12)

♠23We thank Philip Sørensen for this point.
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Maximal duration of intermediate matter-kination (Scenario Type (ii)). We consider the case of
an intermediate matter-kination era, corresponding to Scenario Type (ii) in Fig. 1. As we already
discussed along Eq. (2.16), the duration of the matter-kination is maximised when there is no entropy
injection which would produce additional radiation component. For such an adiabatic evolution, the
number of e-folds of matter and kination are related through

NMD = 2NKD, with NMD ≡ 1

3
log

ρdom

ρKD
, and NKD ≡ 1

6
log

ρKD

ρ∆
. (C.13)

In that scenario the energy scale EKD at the onset of the kination era is given by the geometric mean
of the energy scales Edom and E∆ at the onset of the matter era and at the end of the kination era

EKD =
√

EdomE∆, (C.14)

and the duration of the kination era alone can be written as

NKD = 1

3
log

Edom

E∆
. (C.15)

The longest matter-kination era allowed by CMB and BBN is the one which starts right after the end
of inflation Edom = Ereh and ends just before the onset of BBN E∆ = EBBN. We obtain the upper bound

Type (ii): NKD . 14.6+ 1

3
log

Ereh

1.4×1016 GeV
(C.16)

The constraint can be seen in Fig. 31.

C.2 Neff bound on inflationary GW

As we discuss in Sec. 2.2, the GW energy density produced prior to the onset of BBN can contribute
to the effective number of neutrino species, which leads to the bound, cf. Eq. (2.6)∫ fmax

fBBN

d f

f
h2ΩGW( f ) ≤ 5.6×10−6 ∆Nν, (C.17)

where ∆Nν ≤ 0.2 [86], In Sec. 3.1, we have studied the impact of a kination EOS on the spectrum of
primordial GW and we have found that a period of NKD e-folds of kination leads to a blue-tiltΩGW ∝ f
whose peak value is, cf. Eq. (3.13)

ΩGW,KD ' 2.8×10−13
(

g∗(T∆)

106.75

)(
g∗,s(T∆)

106.75

)−4/3 (
Einf

1016 GeV

)4 (
exp(2NKD)

e10

)
, (C.18)

Upon injecting Eq. (C.18) into Eq. (C.17), we obtain the maximal duration of kination

Scenarios Type (i) and (ii): NKD . 11.9+ log
5×1013 GeV

Hinf
. (C.19)

where Types (i) and (ii) are defined in Fig. 1. The constraint can be seen in Fig. 2.

C.3 Growth of scalar fluctuation

So far the strongest bound on the kination duration comes from the requirement of radiation era at
the time of BBN. However, the scalar fluctuations in the early universe could lead to a stronger bound
as the growth of fluctuation depends on the expansion history of the universe. For example, a long
matter era can lead to a non-linear behavior of fluctuations [248–250] or the enhanced formation of
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primordial black holes [251]. Similarly, the fluctuations of the massless field which behave as radia-
tion grow during kination era and could eventually dominate over that of the zero-mode which scales
as stiff fluid after some Nstiff efolds, determined by

(
ρinf

ρreh

) 1
3(1+ω) =

(
3MPlH 2

inf

π2g∗(Treh)T 4
reh/30

) 1
3(1+ω)

= areh

ainf
= exp(Nstiff) < ξ−

1
3ω−1 , (C.20)

where ξ is the initial fluctuation’s energy density at the end of inflation. To estimate the bound on
kination duration, one can assume that the growth is sourced by the curvature perturbations. The
maximum energy density in the fluctuation would be the mode entering the horizon at the start of
kination and could reach the level of the curvature perturbations observed in CMB ∼ 10−9÷−10. From
this we can estimate that the number of e-folds of kination era is bounded to♠24

NKD . 10 or 11. (C.21)

This bound is further relaxed for less stiff era, e.g. N max
stiff ∼ 23,46 forω= 2/3,1/2, respectively. We leave

a more careful study of fluctuations during matter-kination era for future work [88]. We impose this
constraint in Fig. 20.

C.4 Presence of axion wiggles

Assuming the presence of an axion potential

V (θ) = f 2
a m2

a(1+cosθ), (C.22)

where ma is the mass of the axion a ≡ θ fa . The circular motion of the angular mode is only possible
if its kinetic energy density is larger than the energy density on the top of the potential barrier

f 2
a θ̇

2

2
> 2 f 2

a m2
a =⇒ θ̇ > 2ma . (C.23)

Since the axion velocity redshift as θ∝ a−3, we deduce the maximal number of e-fold of kination

N max
KD = 1

3
ln

θ̇0

2ma
. (C.24)

We obtained a similar bound from fragmentation in Eq. (4.38). We also checked that the early wiggles
from higher-dimensional U (1)-explicit breaking terms do not lead to fragmentation.

♠24We thank Cem Eröncel for discussing this point.
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Figure 53: Maximal number of kination e-folds due to the presence of axion wiggles cf. Eq. (C.24). In the

parameter space of interest, the number of e-folds NKD is always smaller than N max
KD shown here, such that the

bound (C.24) is always satisfied. Instead, we expect the duration of kination to be dominantly constrained by the

other bounds given in Eqs. (C.1), (C.3) and (C.4)

C.5 Inflationary behavior after kination phase

Maximal number of kination e-folds. So far, we have neglected the vacuum energy at the potential
minimum. However, this non-zero potential energy can lead to an inflationary period at later times.
The kinetic energy density redshifts as a−6 and eventually becomes as small as the vacuum energy

ω(a) = K (a)−V0

K (a)+V0
= ρKD( aKD

a )6 −V0

ρKD( aKD
a )6 +V0

= exp(−6NKD)−V0/ρKD

exp(−6NKD)+V0/ρKD
, (C.25)

where NKD is the e-foldings of the cosmic expansion after the kination era started. For a non-zero V0,
Fig. 54 shows that after a number of kination e-folds given by

N max
KD = 1

6
log

(
ρKD

V0

)
, (C.26)

the EOS decreases abruptly to ω=−1.

Physical motivations. The vacuum-energy domination could signal a cosmological supercooled
first-order phase transition about to take place.
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Figure 54: The kination EOS ends when the kinetic energy density ρφ,KD drops below the non-zero vacuum

energy V0.

D Origin of the scalar potential in the rotating complex scalar field model

The potential. We consider a complex scalar fieldΦwith the Lagrangian introduced in Eq. (7.1)

L = (∂µΦ)†∂µΦ−V (|Φ|)−Vth(|Φ|)−V��U (1)(Φ)−VH (Φ), (D.1)

with V the global U (1)-symmetric potential with spontaneous symmetry breaking (SSB) vacuum, Vth

the thermal corrections, V��U (1) the explicit U (1)-breaking term, and VH the Hubble-dependent poten-
tial

V (|Φ|) = m2
r |Φ|2

(
ln

|Φ|2
f 2

a
−1

)
+m2

r f 2
a + λ2

M 2l−6
|Φ|2l−2, (D.2)

V��U (1)(Φ) =Λ4
b

[(
Φ†

M

)l

+
(
Φ

M

)l
]

, (D.3)

VH (Φ) =−cH 2|Φ|2 − a
M

Mpl

H

m3/2
Λ4

b

[(
Φ†

M

)l

+
(
Φ

M

)l
]

, (D.4)

and

Vth(φ, T ) =
{1

2 y2
ψT 2φ2, for yψφ. T,

α2T 4 ln(
y2
ψφ

2

T 2 ), for yψφ& T
. (D.5)

In this appendix, we derive the above scalar potential in SUSY framework. In the main text, we take
M = Mpl.

D.1 Neglecting Hubble curvature

The first two terms, in Eq. (D.2) and Eq. (D.3), can be derived from the SUSY Lagrangian

L ⊃
∫

d 2θd 2θ̄K (SΦ, S∗
Φ)+

∫
d 2θW (SΦ)+h.c. (D.6)

with the Kahler potential K and the superpotential W being given by

K (SΦ, S∗
Φ) = |SΦ|2 − 1

M
|SΦ|2

(
Sχ+S∗

χ

)
− 1

M 2 |SΦ|2|Sχ|2 −
1

M 4 |SΦ|4|Sχ|2, (D.7)

W (SΦ) =λ Sl
Φ

l M l−3
, l ∈N. (D.8)
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(θ, θ̄) are the Grassmanian coordinates in the superspace. SΦ is the chiral superfield containing the
complex scalarΦ

SΦ =Φ+
p

2θψ+θ2F. (D.9)

M is the messenger scale (e.g. the Planck scale for gravity mediation) and Sχ is a SUSY-breaking chiral
superfield

Sχ =χ+
p

2θψχ+θ2Fχ, (D.10)

which we assume to get a non-vanishing F-term VEV

〈Sχ〉 = θ2 〈Fχ〉 with 〈Fχ〉 = m32Mpl, (D.11)

where m32 is the gravitino mass. From using Eq. (D.10), together with
∫

dθ2θ2 = 1, the last two terms
of the Kahler potential in Eq. (D.7) contribute to the scalar potential

V (Φ) ⊃ 〈Fχ〉2

M 2 |Φ|2 + 〈Fχ〉2

M 4 |Φ|4, (D.12)

while the second term of the Kahler potential in Eq. (D.7) acts as a non-holomorphic effective super-
potential ∫

d 2θd 2θ̄
1

M
|SΦ|2

(
Sχ+S∗

χ

)
'

∫
d 2θ

1

M
|SΦ|2 〈Fχ〉+h.c., (D.13)

and Eq. (D.8) can be replaced by

W (SΦ) = 〈Fχ〉
M

|SΦ|2 +λ
Sl
Φ

l M l−3
. (D.14)

In turn, from the equations of motion for the F-terms of SΦ and S∗
Φ

F =
(

∂K

∂Φ†∂Φ†

)−1 ∂W

∂Φ†
, F∗ =

(
∂K

∂Φ∂Φ

)−1 ∂W

∂Φ
, (D.15)

we obtain the scalar potential

V (Φ) ⊃
(

∂K

∂Φ∂Φ†

)−1 ∣∣∣∣∂W

∂Φ

∣∣∣∣2

= 〈Fχ〉2

M 2 |Φ|2 +λ〈Fχ〉Φ
l +h.c.

M l−2
+|λ|2 |Φ|

2l−2

M 2l−6
. (D.16)

From Eq. (D.12) and Eq. (D.16), we deduce VU (1)(Φ) and V��U (1)(Φ) in Eq. (D.2) and Eq. (D.3)

V (|Φ|) = m2
r |Φ|2

(
ln

|Φ|2
f 2

a
−1

)
+m2

r f 2
a + |λ|2

M 2l−6
|Φ|2l−2, (D.17)

V��U (1)(Φ) =Λ4
b

[(
Φ†

M

)l

+
(
Φ

M

)l
]

, (D.18)

with

m2
r =

〈Fχ〉2

M 2 = m2
32

M 2
pl

M 2 , (D.19)

Λ4
b =λ 〈Fχ〉M 2 =λm32MplM

2. (D.20)

The quartic term in Eq. (D.12) is negligible as long as |Φ|¿ M . The presence of the logarithmic func-
tion in Eq. (D.17), which is responsible for the spontaneous breaking of the U (1) symmetryΦ→ e iαΦ,
is generated radiatively [192], see App. D.4 for a review. The constant term in the same equation is
needed in order to tune the cosmological constant to zero.
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D.2 Including Hubble expansion

Let’s assume that the energy density is dominated by a complex scalar I , which can be the inflaton
during inflation or matter-dominated preheating [210, 211] or a field in equilibrium with the thermal
plasma during radiation domination [252]

H 2M 2
pl = ρI =


〈F∗

I FI 〉 , during inflation or matter-domination,

〈∂I∗∂I 〉 , during radiation-domination,
(D.21)

where FI is the F-term of the chiral superpotential S I containing I . Our complex scalar of interest Φ,
which is a sub-dominant fraction of the energy density of the universe ρΦ¿ H 2M 2

pl, interacts with I
through gravity, which leads to the non-renormalizable Kahler potential

L ⊃
∫

dθ2d θ̄2

(
a

S I +S∗
I

Mpl
|Sφ|2 + c

|S I |2
M 2

pl

|SΦ|2
)

, a, c =O (1). (D.22)

Upon solving for the SΦ-F-term equations of motion from the total Lagrangian Eq. (D.7), (D.8) and
Eq. (D.22), in which we replace♠25

S I = iθσµθ̄∂µI +θ2FI , (D.23)

we find that the scalar potential receives the additional terms

V (φ) ⊃
−c∂I †∂I + (a2 − c)F∗

I FI +a
Mpl

M (FI F∗
χ +F∗

I Fχ)

M 2
pl

|Φ|2 −aλ
FI Φ

l +h.c.

MplM l−3
. (D.24)

If the dynamics occurs during radiation-domination, then 〈∂I∗∂I 〉 dominates and the scalar potential
receives a negative curvature-induced mass whenever c > 0

V (φ) ⊃−cH 2Φ2, (D.25)

If the dynamics occurs during inflation or matter-domination, then 〈F∗
I FI 〉 dominates♠26

V (φ) ⊃ (
(a2 − c)H 2 +am32H

)
Φ2 −a

M

Mpl

H

m3/2
Λ4

b

(
Φ

M

)l

, (D.26)

with Λb defined in Eq. (D.20). The Hubble-induced mass is negative whenever c > a2 and H &m32.
For M = Mpl, the latter condition is verified whenever the SUSY-breaking field χ does not dominate
the energy density of the universe Fχ . FI . We refer to [210, 211] for a discussion of supergravity
corrections, which should become important during inflation whenever I &Mpl.

In summary, we see that a large and negative Hubble-induced mass term is naturally generated
in models where the complex scalar fieldΦ couples to a field that dominates the energy density of the
universe. This is very important for justifying the initial conditions.

D.3 Evolution of the scalar field in the negative Hubble-induced potential.

Damped harmonic oscillator. We recall the damped harmonic oscillator

φ̈+Γφ̇+m2φ = 0, (D.27)

♠25We remind the reader that chiral superfields in superspace read SI (y,θ) = I (y)+p
2θψ(y)+θ2F (y) with yµ = xµ+iθσµθ̄,

which implies SI (y,θ, θ̄) = I (x)+ i θ̄σ̄µθ∂µI (x)+ 1
4θ

2θ̄2�I (x)+p
2θψ(x) = ip

2
θ2θ̄σ̄µ∂µψ(x)+θ2F (x). In Eq. (D.23), we have

neglected the fermionic component ψ, the inflaton VEV φ and the mass term�I .
♠26The term aHm32Φ

2 in Eq. (D.26) is generated by the interaction between the three non trivial terms |SΦ|2Sχ, |SΦ|2|Sχ|2
and |SΦ|2SI in the Kahler potential.
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has three regimes according to the value of Γ

φ(t ) =


φ1 exp

[(
−Γ

2 +
√
Γ2

4 −m2

)
t

]
+φ2 exp

[(
−Γ

2 −
√
Γ2

4 −m2

)
t

]
for Γ2 > 4m2 (over-damped),(

φ1 +φ2Γt
)

exp
(−Γt

2

)
for Γ2 = 4m2 (critically-damped),

φ1 cos(
√

m2 − Γ2

4 t −α)exp
(−Γt

2

)
for Γ2 < 4m2 (under-damped),

(D.28)

where φ1,φ2,α are constants set by the initial conditions. Taking Γ = 3H and introducing Ne ≡ H t ,
we obtain, e.g. [212]

φ(Ne ) '


φ1e−

m2

3H2 Ne for H À m (over-damped),(
φ1 +3φ2Ne

)
e−

3
2 Ne for H = 2

3 m (critically-damped),

φ1 cos(mt −α)e−
3
2 Ne for H ¿ m (under-damped).

(D.29)

Initial radial value. Neglecting the U (1)-breaking term and assuming a ¿p
c in Eq. (D.26), the po-

tential at early time reads, cf. Eq. (D.17), Eq. (D.18) and Eq. (D.26)

V (φ) = (
1

2
m2

eff(T )− cH 2)φ2 +λ2 φ
2l−2

M 2l−6
Pl

, m2
eff(T ) ≡ m2 + y2T 2, (D.30)

where we included a thermal mass y2T 2 coming from a possible interaction with the thermal bath.
We study the dynamics of the scalar field at early time by numerically integrating the field equation
of motion in the presence of the potential in Eq. (D.30). In order to simplify the numerical study, we
assume that the universe is radiation-dominated, so that the temperature T is related to the Hubble
parameter H through

T 2 ' H MPl. (D.31)

From Eq. (D.29), we deduce that there are three stages of field evolution after which the field starts
oscillating with an amplitude φini in a potential with minimum φmin = 0.♠27 The resulting field tra-
jectory is plotted in Fig. 55.

1.
p

cH À meff: the negative Hubble-mass dominates the mass term so the fields rolls within
Ne ' 3/c e-folds towards the non-trivial minimum at

φini(H) '
(

M l−3
Pl

√
cH 2 −m2/2−H MPl y2/2

λ
p

2l −2

)1/(l−2)

. (D.32)

2. meff &
p

cH : the Hubble-mass becomes sub-dominant and the time-dependent minimum
vanishes φmin = 0.

3. meff > 3H : the Hubble friction drops, the field becomes under-damped, V ′′(〈φ〉) > 9H 2, and
starts to roll away from

φini(H ' meff) ' Mpl

(
p

c
meff

λ
p

2l −2Mpl

)1/(l−2)

. (D.33)

♠27At early stage, we can forget about the existence of the SSB minimum at φ= fa ¿φini.
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Figure 55: We numerically integrate the Klein-Gordon equation of motion in the presence of the negative

Hubble-induced potential in Eq. (D.30), in radiation-dominated universe. There are three stages of field evolu-

tion, which depend on the value of V ′′/H: 1) critically-damped 2) over-damped 3) under-damped. Effects from

the thermal mass become important for y >p
m/MPl. They lead to an earlier oscillation and a larger φini, com-

pared to the zero-temperature mass alone. The field later evolves in a zero-temperature potential at the points

marked by the red crosses. We chose the values y1 =
p

10m/MPl, and y2 = 10
p

m/MPl.

The trajectories shown in Fig. (55) assume that the dynamics occurs during a radiation-dominated
era. If the Hubble-induced mass is generated from the inflaton sector, the Hubble-induced mass
decreases instead during preheating and the field starts rolling away from the non trivial value in
Eq. (D.33) as soon as Max

[p
c, 3

]
H drops below meff.

Initial angle. For F-term dominated universe, cf. Eq. (D.26), the U (1) breaking term receives Hubble-
dependent corrections

V��U (1)(Φ) '
(
1+a

H

m32

)
Λ4

b

[(
Φ

Mpl

)l

+h.c.

]
, a, c =O (1). (D.34)

Therefore, the positions of the valleys of minimum potential θmin are time dependent. The same
dynamics, just described above for the radial mode, also applies for the angular mode. The angular
field rolls towards a temporary vallee θ0 + θH during inflation when Hinf & m32, and starts rolling
towards the Hubble-independent valley θ0 when H drops below m32. In this work, we simply assume
the initial angular amplitude♠28

θini ∼O (1). (D.35)

D.4 Nearly-quadratic potentials

In this appendix, we review the results presented in [192] which show how spontaneous symmetry
breaking can arise due to the running of the soft masses. The authors consider supersymmetric
theories coupled to N = 1 supergravity where U (1)PQ is a global symmetry of the superpotential.
They show that U (1)PQ can be broken by the logarithmic running of renormalization group equa-
tions. Their results are not specific of the Peccei-Quinn symmetry and they can be generalized to
other global U (1).

♠28Note that for radiation-dominated universe, the A-term in Eq. (D.24), at least in our analysis and in the ones of [196, 216],
seems to be Hubble-independent. We leave for further study the question of whether such Hubble-dependent A-term is
induced during radiation-domination. In any case, the angular kick could be generated by random fluctuations during
inflation, see Sec. 7.5.2.
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Introduce chiral superfields. The superpotential is given by

W = λQ̄Qφ, (D.36)

where the SU (3)c quantum numbers of the chiral superfields are

Q(3), Q̄(3̄), φ(1), (D.37)

and are singlets under SU (2)L . The fields transform under the U (1)PQ as

(Q, Q̄) → e iα(Q, Q̄), φ → e−2iαφ. (D.38)

There is a continuum of supersymmetric minima

φ = undetermined, Q = Q̄ = 0. (D.39)

SUGRA breaking. Supergravity couplings lift this flat direction by inducing soft supersymmetric
breaking terms characterized by the gravitino mass m3/2

Vsoft = m3/2 AλQ̄Qφ+h.c.+m2
3/2(gQ |Q|2 + gQ̄ |Q̄|2 + gφ|φ|2). (D.40)

The initial conditions for the RGE are set at the Planck scale Mpl,

gQ = gQ̄ = gφ = 1. (D.41)

The effective scalar potential is

V = ∑
i

∣∣∣∣∂W

∂φi

∣∣∣∣2

+ 1

2
ΣaD2

a +Vsoft, (D.42)

and along the supersymmetric minimum (Q, Q̄) = (0, 0), it is reduced to

V (φ) = m2
3/2gφ|φ|2. (D.43)

Renormalization group equations. Loop corrections to the couplings lead to the running [192]

de

d t
= −2

16π2 e3, (D.44)

dλ

d t
= λ

16π2

(
5λ2 − 16

3
e2

)
, (D.45)

d A

d t
= 5Aλ2

8π2 e3, (D.46)

d gQ

d t
=

d gQ̄

d t
= 1

3
· d gφ

d t
= λ2

8π2

(
gQ + gQ̄ + gφ+ A2

)
, (D.47)

where t ≡ ln(|φ|/Mpl) and e is the gauge-coupling of the SU (3)c . The equation for e can be solved
analytically with

e2(t ) = e2
0

1+ e2
0

4π2 t
. (D.48)

All the couplings g are related gQ = gQ̄ = 1
3 gφ, hence we have

d gφ
d t

= λ2

8π2

(
5gφ+3A2) . (D.49)
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The system of first-order differential equations above has a fixed point at

λ2

e2 = 2

3
, (D.50)

where gφ is running as

d gφ
d t

= e2
0

12π2

5gφ+3A2

1+ e2
0

4π2 t

 , (D.51)

and A is approximately constant.

Dimensional transmutation. In the limit
e2

0

4π2 ¿ 1, the above equation is solved analytically by

gφ(φ) ' (3A+5)

(
e2

0

24π2

)
ln

(
φ2

M 2
pl

)
+1, (D.52)

where the approximation
e2

0

4π2 ¿ 1 is used. Then we define scale MPQ by when the radiative correction
changes the sign of effective potential, i.e. at

gφ(φ→ MPQ) = 0 ' (3A+5)

(
e2

0

24π2

)
ln

(
M 2

PQ

M 2
pl

)
+1, (D.53)

where MPQ is related to Mpl by

M 2
PQ = M 2

pl exp

[( −1

3A+5

)
24π2

e2
0

]
. (D.54)

With the definition of MPQ, the coupling gφ is simplified to

gφ(φ) = (3A+5)

(
e2

0

24π2

)
ln

(
φ2

M 2
PQ

)
. (D.55)

The effective potential. The effective potential reads

Veff = m2
3/2gφφ

2 ' m2
3/2φ

2
[

ln

(
φ2

f 2
a

)
−1

]
, and fa ≡ MPQe−1/2. (D.56)

For A = 2 and e0 = 0.8, we have fa ' 7×1010 GeV.

E Inflationary fluctuations in the rotating complex scalar field model

E.1 Adiabatic curvature perturbations

Any light scalar present during inflation receives quantum fluctuations which classicalize upon hori-
zon exit, e.g. [253]. When such perturbations re-enter the horizon, they source either the adiabatic or
the isocurvature power spectrum according to whether the extra specie thermalizes with the SM or
not. In our model, cf. Sec. 7, the radial mode of the complex scalar field decays into thermal radiation
and therefore contributes to the adiabatic part of the curvature perturbations. Assuming a quadratic
scalar potential with mr ¿ Hinf, the perturbation from the decaying scalar field reads [254]

P
φ

ζ
= r 2

dec

(
Hinf

3πφini

)2

, with rdec '
(

3ρφ
3ρφ+4ρrad

)
dec

, (E.1)
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where rdec is the energy density fraction carried by the scalar, evaluated at the time of radial damping.
The upper bound on P

φ

ζ
corresponds to the value measured by CMB [2]

P
φ

ζ
< P tot

ζ ' 2.2×10−9. (E.2)

To constrain the model, we consider two limits.
1) Damping before domination. Assuming the extreme case in which radial damping occurs

right after the onset of radial mode oscillation, c.f. Eq. (7.29), in order to minimize rdec, the adiabatic
curvature power spectrum reads

P
φ

ζ
=

(
φ2

osc

φ2
osc + 4

9 M 2
Pl

)2 (
Hinf

3πφini

)2

, (E.3)

where φosc is the value at oscillation.

• If the initial field value is set by the stochastic-inflation process, i.e. φ2
ini = 3H 4

ini/(4π2m2) in
Eq. (7.33), the above equation becomes

P
φ

ζ
=

(
27

64π4

)(
H 6

inf

m2M 4
Pl

)(
1+ 27H 4

inf

16π2m2
r M 2

Pl

)−2

. (E.4)

In Fig. 56, we show that the constraints on Hinf from Eq. (E.2) and Eq. (E.4) are weaker than the
Planck constraints coming from the B-mode non-observation.

• If the initial field value is driven by the negative-Hubble mass and is stabilized by higher-order
terms, the quantum fluctuation of the radial and angular fluctuation are suppressed, see Sec. E.4.
This is the scenario which we assume in this paper.

2) Damping when dominating. Assuming ρφÀ ρrad in Eq. (E.1) leads to rdec ' 1 and to the adiabatic

curvature perturbations P
φ

ζ
= (

Hinf/3πφini
)2 .

• If the initial field value is set by the stochastic-inflation process, i.e. φ2
ini = 3H 4

ini/(4π2m2
r ), the

above equation becomes

P
φ

ζ
=

(
4

27

)(
mr

Hinf

)2

. (E.5)

As shown in light blue in Fig. 56, the constraint from Eq. (E.2) and Eq. (E.5) can be quite limiting.

• As mentioned in the previous paragraph and as we will discuss more precisely in Sec. E.4, for
scenarios with Hubble-size masses, quantum fluctuations are suppressed and the Planck con-
straints are avoided.
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Figure 56: Parameter space of a thermalized complex scalar which generates too much adiabatic curvature

perturbations. The weakest constraint (green) arises when damping occurs at the onset of oscillation. As damp-

ing takes place later, the constraint grows and reach light blue region when damping takes place at the onset of

scalar domination. For the Hubble-induced mass scenario, the green and light blue constraints are avoided due

to a large Hubble-sized mass during inflation, see Sec. 7.5. The red line corresponds to Planck constraints from B

modes non-observation [2]. The gray region corresponds to the requirement of not generating a second inflation

era, see Eq. (8.22).

E.2 Domain wall problem

Quantum fluctuations of the initial angular phase δθi , and of the initial radial value δφi lead to a
fluctuation of the final angular phase δθ at the time when the axion potential develops. This can lead
to the formation of domain walls (DW). In the absence of CS, e.g. in the pre-inflationary PQ-breaking
scenario, the DW are infinite and can not decay, so we must impose δθ.O (1).

Assuming V (Φ) ∝ Φp , from U (1) charge conservation in Eq. (7.19) and from the scaling 〈φ〉 ∝
a− 6

2+p in Eq.(G.41), we deduce the scaling of the angular velocity

Yθ = φ2θ̇ ∝ a−3 ⇒ θ̇ ∝ a−3(p−2)/(p+2) ∝ t−3(p−2)/2(p+2), (E.6)

where we assume a radiation-dominated universe. The angular phase elapsed after the onset of radial
mode oscillation which we denote by ti ' m−1

eff (φi ) reads

θ =
∫ t

ti

θ̇d t ′ ' θ̇i ti

(
φi

φ

)(10−p)/6

, (E.7)

The fluctuation in the angular phase can be written as

δθ

θ
= δθ̇i

θ̇i
+ δti

ti
+

(
10−p

6

)(
φi

φ

)(10−p)/6 (
δφi

φi

)
. (E.8)

From Eq. (G.9), ti ' m−1
eff (φi ) and Eq. (7.5), we can write

δθ̇i

θ̇i
= (l −p)

δφi

φi
+ l cot(lθi )δθi + δti

ti
, and

δti

ti
= − δφi /φi

2
(
1+ log(φi / fa)

) . (E.9)
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The late time phase fluctuation in Eq. (E.8) becomes

δθ

θ
'

[
(l −p)− 1

1+ log(φi / fa)
+

(
10−p

6

)(
φi

fa

)(10−p)/6
](
δφi

φi

)
+ l cot lθiδθi , (E.10)

where the last term in the squared bracket dominates for p < 10 and φi À fa . Plugging the typical
standard deviation for a massless field during inflation, e.g. [253]

δφi = Hinf/2π=φiδθi , (E.11)

we obtain the necessary condition for preventing DW formation once the axion potential switches on

δθ '
[(

10−p

6

)(
φi

fa

)(10−p)/6

+ l cot(lθi )

](
Hinf

2πφi

)
< 1, (E.12)

where we replaced θ ∼ O (1). The flatter the potential, the slower the redshift of the angular velocity
and the larger the final time fluctuation δθ.

E.3 Isocurvature perturbations

If the axion contributes to the DM abundance then the quantum fluctuation during inflation in Eq. (E.11)
generate isocurvature perturbations [255–258]♠29 whose amplitude is bounded by Planck data [2]

P iso =
〈(

Ωa

ΩDM
· δΩa

Ωa

)2〉
< 8.69×10−11. (E.13)

For a spinning axion, the axion abundance is set by the kinetic misalignment mechanismΩa ∝ θ̇c , cf.
Eq. (4.9). From Eq. (E.9) and Eq. (E.11), we deduce

P iso =
(
Ωa

ΩDM

)2
〈(

δθ̇i

θ̇i

)2〉
= A

(
Ωa

ΩDM

)2 (
Hinf

2πφi

)2

< 8.69×10−11, (E.14)

where A ≡ l −p − 1
1+log(φi / fa ) + l cot(lθi ) =O (1).

E.4 Solution

A way to cure the three problems listed above - too large adiabatic and isocurvature perturbations
and DW overclosure - is to suppress the initial quantum fluctuations by introducing a large mass for
both the radial mode φ and the angular mode θ, during inflation [180, 263–268].

As discussed along Eq. (7.25), Hubble size masses for φ and θ arise naturally in SUSY scenario
where we have

m2
φ = ∂2VH /∂φ2 ' 4(l −2)H 2

inf, and m2
θ = |φ|−2∂2VH /∂θ2 ' H 2

inf

√
l 2/(l −1). (E.15)

So, in fact, the solution to these problems is built-in in these models. Quantum fluctuations of mas-
sive states are blue-tilted, e.g. [253], such that the amplitude of the associated curvature perturba-
tions entering the Hubble horizon long after the end of inflation, are expected to be negligible. This
is the scenario which we consider in this paper and therefore we assume that the initial field value
φi is set by the classical minimum of the Hubble-induced SUSY potential in Sec. 7.5.1 and not by the
Bunch-Davies quantum distribution in Sec. 7.5.2.

♠29This problem also arises in the context of the Affleck-Dine Baryogenesis, where the inflationary perturbation leads to
the baryonic isocurvature perturbations [259–263].
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F Damping of the radial motion in the rotating complex scalar field model

F.1 Thermalization

Fermion portal. We assume that the complex scalar field φ is coupled to heavy fermions ψ charged
under some (hidden or SM) gauge sector Aµ (KSVZ-type interactions)

L ⊃ yψφψ
†
LψR +h.c.+ g ψ̄γµψAµ. (F.1)

At zero temperature, the scalar condensate decays into fermions pairs with a rate, cf. diagram a
in Fig. 57

Γφ→ψψ '
y2
ψ

8π
mψ, for mφ/2 > Max[yψφ, g T ]. (F.2)

If the fermion mass, either from vacuum yψφ or thermal origin g T , is larger than the scalar field mass,
then the scalar field cannot excite thermal ψ and it is dominantly depleted through scattering with
thermally-dressed fermions of the plasma, cf. diagram b in Fig. 57, with a rate [193, 194]

Γφψth→ψth '


y2
ψαT

2π2 , for αT > yψφ,

y4
ψφ

2

π2αT , for αT < yψφ< T,

α≡ g 2

4π
. (F.3)

The two regimes in Eq. (F.3) depend on whether the thermal width αT - the typical relaxation rate
of the fermion density towards thermal equilibrium - is larger or smaller than the fermion zero-
temperature mass yψφ. If the temperature is smaller than the fermion mass, T < yψφ, the heavy
fermions are absent of the thermal plasma. In that case, the scalar field can decay into gauge bosons
through a loop of fermions [195, 197, 198], cf. diagram c in Fig. 57

Γφ→A A ' bα2T 3

φ2 , b ' 0.01, for yψφ> T. (F.4)

For T < mφ, we replace T in Eq. (F.4) by mφ. The dependence on yψ in Eq. (F.4) appears in the loga-
rithmic running of α. So we conclude

Γφ '


for yψφ< T :


for αT > yψφ,

y2
ψαT

2π2 ,

for αT < yψφ,
y4
ψφ

2

π2αT ,

for yψφ> T : bα2 Max[T, mφ]3

φ2 ,

+
y2
ψmφ

8π
Θ

(
mφ/2−Max

[
yψφ, g T

])
. (F.5)

Figure 57: Quantum processes responsible for the thermalization of the coherent scalar field in KSVZ type

models. The scattering rates of a, b and c are respectively given by
y2
ψmφ

8π ,
y2
ψαT

2π2 and bα2T 3

φ2 , cf. Eq. (F.5). The black

blobs in the middle diagram stand for the thermal field corrections to the fermion propagator accounting for

plasma effects. The decay width is obtained from the finite-temperature analogue of Cutkosky’s rule [269].
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The scalar field keeps spinning after thermalization. The coherent oscillation is a very ordered
state and once the oscillation energy begins to be transferred into the thermal bath, the inverse pro-
cess which creates coherent oscillation is unlikely to occur. Therefore, the thermalization of the scalar
field, when the universe reaches the energy density

ρdamp = 3Γ2M 2
pl, (F.6)

transfers all the kinetic energy of the radial mode to the plasma φ̇→ 0. The kinetic energy of the an-
gular mode, aka the U (1) charge, can also be transferred to the thermal bath, e.g. in the form of chiral
charges of SM fermions. However, as shown by the supplementary material of [38], the creation of an
asymmetric fermion abundance costs chemical potential which leads to an energy density φ4θ̇2/T 2

and it turns out that it is thermodynamically favorable to keep the U (1) charge in the condensate with
energy density φ2θ̇2 as long as

fa À Tφ→ fa , (F.7)

where Tφ→ fa is the temperature when φ reaches fa . We check that this condition is satisfied in
Eq. (10.24). The washout of U (1) charge due to chirality flip mediated by Yukawa interactions is shown
to be negligible if the temperature of thermalization is smaller than [38]

Tdamp. 1012 GeV

( 〈φ〉
109 GeV

)2

. (F.8)

Using that the scalar field evolves in its quadratic potential as

φ=φini(T /Tosc)3/2, Tosc = g−1/4
∗

√
mr (φini)Mpl, (F.9)

we obtain that the axion rotation is preserved from wash-out from the onset of oscillation until the
final stage φ→ fa as long as

fa > 104 GeV

(
mr

fa

)3/5 (
Mpl

φini

)4/5

. (F.10)

The later condition is largely satisfied in the parameter space of our interest, and wash-out never
occurs.

Thermal corrections to the potential. The presence of the interactions in Eq. (F.1) generates ther-
mal corrections to the scalar potential [193, 194]

V (φ) = m2
rφ

2
(
ln
φ2

f 2
a
−1

)
+m2

r f 2
a +Vth(φ, T ), (F.11)

Vth(φ, T ) = 1

2
y2
ψT 2φ2Θ(T − yψφ)+aα2T 4 lnλ2

φφ
2/T 2Θ(yψφ−T ) a =O (1), α≡ g 2

4π
. (F.12)

The first Heaviside function stands for the Boltzmann suppression of the fermion ψ abundance in
the thermal plasma in the large vev limit yψφÀ T . In that case the thermal corrections are given by
the thermal-log potential, obtained after integrating out the heavy fermions [195, 197–199]. At small
vev value λφ < T , the running of the gauge coupling constant g becomes independent of φ, which
explains the second Heaviside function.

Impossibility to generate efficient thermalization when neglecting thermal corrections. Let’s first
assume that thermal corrections to the potential in Eq. (F.12) do not impact the scalar field dynamics.
This happens whenever the thermal mass of the scalar fields can be neglected at the time of oscillation
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Tosc ∼
√

mr,effMpl, see Eq. (8.1), ♠30

yψTosc.mr,eff, =⇒ yψ.
(
π2g∗

10

)1/4 √
mr,eff

M,pl
. (F.14)

The duration of the kination era reads, cf. Sec. 8.2

eNKD ≡ aKf

aKi
=

(
Min

[
ρdom, ρdamp

]
ρK,i

)1/6 ( ε
2

)2/3
, (F.15)

with

ρdom = 27V (φini)4

m6
r,effM

6
pl

, ρdamp = 3Γ2M 2
pl and ρK,i = 1

2
f 2

a m2
r,eff. (F.16)

From plugging♠31 Γ' y2
ψmφ

8π , cf. Eq. (F.5),φini ' Mpl, which corresponds to the l →∞ limit of Eq. (7.28)

and yψ.
√

mr,eff

M,pl
, cf. Eq. (F.14) we obtain

eNKD . 0.3 g 1/6
∗

(
mr,eff( fa)

fa

)1/3

ε2/3 < 1. (F.17)

So we conclude that whenever the conditions of neglecting the thermal mass in Eq. (F.14) is satisfied,
thermalization via fermion portal is not efficient enough to generate a kination era.

For this reason, in scenario I of Sec. 8, we must postulate the existence of an unknown mechanism,
other than thermalization via fermion or Higgs portal, to damp the radial mode.

The effects from the thermal mass are considered in scenario II of Sec. 9. Unfortunately, the sup-
pression of the angular kick and the delay of the matter domination prevents the onset of kination.

In scenario III in Sec. 10, instead of choosing a low Yukawa coupling yψ, we get rid of the thermal
effects at the onset of the radial mode oscillation by Boltzmann-suppressing the fermion abundance.

Higgs portal. In the previous paragraph, we have considered the fermion portal. If instead the scalar
condensate thermalizes through a Higgs mixing (DFSZ-type interactions)

L ⊃ λH|φ|2H †H . (F.18)

The thermal mass correction to the condensate is

Vth(φ, T ) =λHT 2φ2. (F.19)

The quantum processes responsible for the thermalization of the condensate are described in [270].
In contrast to the fermion portal (denoted by ψ), in the case of the Higgs portal (denoted by H) the
thermalization rates scale as the the forth power of the thermal mass. Indeed

Γψ∝ m2
th,ψ, and ΓH ∝ m4

th,H, (F.20)

with
m2

th,ψ = y2
ψT 2, and m2

th,H =λ2
H T 2. (F.21)

We conclude that the situation of the previous paragraph - to impose a small thermal mass prevents
thermalization to occur before the start of the would-be kination era - is even worse in the case of the
Higgs portal.

The larger dependence of the damping rate on the thermal mass in the Higgs portal, in Eq. (F.20),
is the reason why we focus on the fermion portal in the main text, cf. Sec. 9 and Sec. 10.

♠30We backward check that this coincides with yψφini. Tosc (the first Heaviside function in Eq. (F.12)) whenever the initial
field value φini is sub-planckian

Tosc

yψ
&

T 2
osc

mr,eff
'

Mpl(
π2g∗

10

)1/4
&φini. (F.13)

♠31We checked that yψ.
√

mr,eff
M,pl

implies
yψφdamp

Tdamp
. (bα2)1/3

(
mr,eff
Mpl

)1/6
and

Tdamp
mr,eff

. 1, leading to Γ' y2
ψmφ

8π in Eq. (F.5).
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F.2 Parametric resonance

In this paper we focus on the zero-mode dynamics. However, there may be circumstances where
higher modes get produced. We now introduce the framework to study early parametric resonance,
which may occur in the UV completion and may have important consequences on the whole dynam-
ics. The equation of motion of a complex scalar reads

Φ̈−a−2∇2Φ+3HΦ̇+ ∂V

∂Φ†
(F.22)

which after decomposing in polar coordinatesΦ=φe iθ, becomes

φ̈−a−2∇2φ+3Hφ̇+V ′(φ) =φθ̇2 −a−2φ(∇θ)2, (F.23)

φθ̈−a−2φ∇2θ+3Hφθ̇ =−2φ̇θ̇+2a−2∇φ∇θ. (F.24)

We can decompose (φ(x, t ), θ(x, t )) into the superposition of a classical homogeneous mode (φ(t ), θ(t ))
and small fluctuations (δφ(x, t ), δθ(x, t )) around it

φ(x, t ) =φ(t )+δφ(x, t ) =φ(t )+
(∫

d 3k

(2π)3 aφk uφ

k (t )e i kx +h.c.

)
, (F.25)

θ(x, t ) = θ(t )+δθ(x, t ) = θ(t )+
(∫

d 3k

(2π)3 aθk uθ
k (t )e i kx +h.c.

)
, (F.26)

with ai
k , ai †

k being the annihilation and creation operators of field i[
ai

k , a j †
k ′

]
= (2π)3δi jδ

(3)(k −k
′
), (F.27)

and the initial condition for the mode function ui
k at t →−∞ is given by

ui
k (t ) = e i (k/a)t

a
p

2k
. (F.28)

We now treat (δφ(x, t ), δθ(x, t )) as perturbations. We expand the potential around the background
solution

V ′(φ(x, t )) =V ′(φ)+V ′′(φ)∂φ+ 1

2
V ′′′(φ)∂φ∂φ, (F.29)

such that after spatial and quantum averaging 〈· · · 〉 we get, e.g. [39, 150, 271].

φ̈+3Hφ̇+V ′(φ)+ 1

2
V ′′′(φ)〈δφ2〉 =φθ̇2 +φ〈δθ̇2〉+2θ̇ 〈δφδθ̇〉−2a−2φ〈∇δθ∇δθ〉 , (F.30)

φθ̈+3Hφθ̇+3H 〈δφδθ̇〉 =−2φ̇θ̇−2〈δφ̇δθ̇〉−〈δφδθ̈〉+2a−2 〈∇δφ∇δθ〉 , (F.31)

for the zero mode, and

δφ̈+3Hδφ̇+V ′′(φ)δφ+ k2

a2δφ= δφθ̇2 +2φθ̇δθ̇, (F.32)

δφθ̈+φδθ̈+3Hδφθ̇+3Hφδθ̇+ k2

a2δθ =−2δφ̇θ̇−2φ̇δθ̇, (F.33)

for the higher modes, where

〈δφ2〉 =
∫

d 3k

(2π)3

∣∣∣uφ

k

∣∣∣2
, 〈δθ2〉 =

∫
d 3k

(2π)3

∣∣∣uθ
k

∣∣∣2
, 〈δθδφ〉 = 0. (F.34)

Since [φ, θ] = 0, all the quantum average of cross terms in Eq. (F.30) and (F.31) vanish and we get

φ̈+3Hφ̇+V ′(φ)+ 1

2
V ′′′(φ)〈δφ2〉 =φθ̇2 +φ〈δθ̇2〉−2φ〈k2

a2δθ
2〉 , (F.35)

φθ̈+3Hφθ̇ =−2φ̇θ̇, (F.36)
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We conclude that the Noether charge
nθ =φ2θ̇, (F.37)

is conserved during parametric resonance. Note that from using Eq. (F.36), Eq. (F.33) simplifies to
[271]

δθ̈+3Hδθ̇+ k2

a2δθ =−2δφ̇θ̇

φ
− 2φ̇δθ̇

φ
+ 2φ̇θ̇

φ2 δφ (F.38)

In order to address the question of whether parametric resonance is a successful mechanism for
damping the radial mode φ̇ → 0 or not - an important question for scenario I in Sec. 8 - we need
to solve the system of Eqs. (F.32), (F.33), (F.35) and (F.36). We leave this question for further study.

G Detailed solution of field evolution in the rotating complex scalar field
model

G.1 The angular kick

The angular EOM, Eq. (7.17), can be rewritten as a Boltzmann equation for the U (1) charge nθ

ṅθ+3Hnθ = − ∂V��U (1)

∂θ
, with nθ ≡φ2θ̇. (G.1)

which is equivalent to

d

d t

(
a3nθ

) = −a3 ∂V��U (1)

∂θ
⇒ d

d a

(
a3nθ

) = − a2

H 2

∂V��U (1)

∂θ
. (G.2)

This equation suggests that the U (1) charge production rate is proportional to the potential gradient
in the angular direction. Numerical simulations plotted in Fig. 26 show that the charge generation
can possibly start even before that the field starts to roll in the radial direction at 3H ' mr,eff. Once
the field value φ drops substantially, the explicit breaking term becomes negligible, see Fig. 58, and
the U (1) charge nθa3 becomes conserved.

We can determine the angular kick by integrating Eq. (G.2)

a3nθ(a)−a3
i nθ(ai ) = −

∫ a

ai

d ã
ã2

H

∂V��U (1)

∂θ
=

∫ a

ai

d ã
ã2

H
2lΛ4

b

(
φ

M

)l

sin(lθ), (G.3)

where ai is the scale factor of the universe in the far past, where we plugged the explicit breaking
potential in Eq. (D.3). The production rate of the U (1) charge nθ behaves differently accordingly to
whether the radial mode φ has started rolling 3H < mr,eff, or not.

• Before oscillation: the field initially stands at φini, see Sec. 7.5. Assuming the universe is domi-
nated by the background energy density ρ∝ a−q , the corresponding charge generation is

a3nθ(a)−a3
i nθ(ai ) = 2lΛ4

b

(
φini

M

)l ∫ a

ai

d ã
ã2

H
sin(lθ), (G.4)

' 2lΛ4
b

(
φini

M

)l sin(lθini)

Hinia
p/2
ini

∫ a

ai

d ã ã2+q/2, (G.5)

a3nθ(a)−a3
i nθ(ai ) ' 2lΛ4

b

(
φini

M

)l sin(lθini)

Hinia
q/2
ini

(
2

6+q

)(
a6+q −a6+q

i

)1/2
, (G.6)
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where we approximate sin(lθ) ∼ O (1) ∼ sin(lθini) and take it out of the integration. The late-
time contribution dominates the charge generation such that we have the U (1) charge evolu-
tion

n(a) '
(

4l

6+q

)
Λ4

b

(
φini

M

)l sin(lθini)

H
, (G.7)

and we see that the field receives a kick even before the time of oscillation with θ̇∝ aq/2. The
U (1) charge is maximally generated at the onset of oscillation

nθ(aosc) '
(

4l

6+q

)
Λ4

b

(
φini

M

)l sin(lθini)

Hosc
'

(
12l

6+q

)
Λ4

b

(
φini

M

)l sin(lθini)

mr,eff
, (G.8)

and the corresponding angular velocity reads

θ̇osc '
(

12l

6+q

)
Λ4

b

(
φini

M

)l sin(lθini)

mr,effφ
2
ini

, (G.9)

• After the oscillation: gradients of the potential in angular and radial directions kick the field
into an elliptic orbit whose size redshifts over time. In App. G.2, we determine the dynamics of
the radial mode as a function of the shape of the U (1)-symmetric potential

V (φ) ∝ φp =⇒ 〈φ〉 ∝ a−6/(2+p). (G.10)

Assuming that the Hubble factor evolves as H ∝ a−q/2, then the U (1) charge generated after
oscillation 3H < mr,eff, in Eq. (G.3), reads

a3nθ(a)−a3
oscnθ(aosc) ∼

∫ a

aosc

d ã ã
(6+q)(2+p)−12l

2(2+p) −1. (G.11)

Depending on the values of q , p, and l , we obtain three regimes

a3nθ(a)−a3
oscnθ(aosc) ∼


a

(6+q)(2+p)−12l
2(2+p) for l < (6+q)(2+p)

12 ,

log a for l = (6+q)(2+p)
12 ,

a− 12l−(6+q)(2+p)
2(2+p) for l > (6+q)(2+p)

12 .

(G.12)

In the first and second cases, the U (1) charge continues to increase after the oscillation, while
in the third case at large l , the U (1) charge stops being efficiently produced after a few Hubble
times and the U (1)-symmetry is restored. Assuming a radiation-dominated universe (q = 4),
the estimated U (1)-symmetry after the oscillation demands that l is greater than 10/3 and 5 for
quadratic (p = 2) and quartic (p = 4) potentials, respectively. Hence, in this work we consider
cases l ≥ 4 in order to neglect explicit breaking terms at later time.

G.2 After the kick

The U (1)-conserving and the U (1)-breaking potentials excite the field in the radial and angular direc-
tions, respectively. As argued in App. G.1, after a few Hubble times of field evolution, for l ≥ 4 we can
neglect effects coming from the U (1)-breaking terms.
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Figure 58: For each l , we show the ratio of the U (1)-violating potential to the U (1)-conserving one, assuming

nearly-quadratic potential, along the θ = 0 direction which has the maximum V��U (1). For l > 2, the conserving

potential always dominates at small field values φ¿ M, and the U (1) charge, defined in Eq. (7.19), is conserved

in the subsequent evolution.

Exact solution. We now derive an exact analytical solution of the complex scalar equation of motion
in a quadratic potential without Hubble friction, e.g. [272, 273]. For φÀ fa , the nearly-quadratic
potential in Eq. (7.4) is approximated to V = m2Φ†Φ/2 = m2φ2/2, where m is a constant or a slowly-
changing variable. The U (1)-charge conservation in Eq. (7.19), and the radial EOM in Eq. (7.16), give

φ̈+3Hφ̇+ ∂V

∂φ
− Y 2

φ3a6 = 0, (G.13)

where Y ≡ a3φ2θ̇ = is the conserved comoving U (1) charge. We use a set of dimensionless parameters

τ ≡ mt , h ≡ H

m
, u ≡

√
m

Y
a3/2φ, (G.14)

which simplifies the charge conservation equation to θ̇u2 = m and the EOM to

0 = u′′+
[

1−u−4 − 3

2

(
h′+ 3

2
h2

)]
u ' u′′+u − 1

u3 , (G.15)

where · · ·′ denotes the derivative w.r.t. τ, and where we considered the oscillation time scale to be
much faster than a Hubble time h → 0, which becomes true after oscillation has started 3H ' mr,eff.
The differential equation in Eq. (G.15) can be understood as the equation of motion of a scalar u
evolving in a potential

V (u) = u2 +u−2

2
, (G.16)
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whose minimum is at u = 1, or equivalently θ̇ = m. Its corresponding constant-of-motion Eu satisfies

dEu

dτ
≡ d

dτ

(
u′2

2
+ u2 +u−2

2

)
= 0, (G.17)

with Eu ≥ 1. The parameter Eu can be related to the energy density of the scalar field

ρΦ = φ̇2

2
+ φ2θ̇2

2
+V = mY Eu a−3. (G.18)

We just found that the energy density of a complex scalar field evolving in a quadratic potential, red-
shifts as matter ρΦ∝ a−3.

To find the exact solution to the EOM, we rewrite Eq. (G.17) as

u′2 = 2Eu −u2 −u−2 ⇒ U ′2 = −4U 2 +8EuU −4, (G.19)

where U ≡ u2. Integrating this equation, we deduce∫
d t =

∫
dU√

−4U 2 +8EuU −4
⇒ 2(τ+ψ) = − tan−1

(
Eu −U√

−U 2 +2EuU −1

)
,

⇒ u(τ) =
√

(E 2
u −1)1/2 sin(2τ+ψ)+Eu . (G.20)

where ψ is a phase which depends on the initial conditions. In u-space, the orbit is a fixed-sized
ellipse, so the orbit in field space φ is an ellipse whose size scale as a−3/2, i.e. an ellipse that spirals
towards the origin as illustrated in Fig. 24 or by our animation.. The parameter Eu is related to the
orbit eccentricity and to the previously defined parameter 0 < ε≤ 2 in Eq. (8.3)

m2φ2 = ρΦ = mnθEu ⇒ 1

Eu
= nθ

mφ2 = ε

2
⇒ ε = 2/Eu . (G.21)

For Eu = 1 or ε = 2, the orbit is essentially circular, while for large Eu or ε→ 0 the orbit has a large
eccentricity and starts to resemble the trajectory of a real scalar field.

We can calculate the average angular speed

θ̇ = m

u2 = m

(E 2
u −1)1/2 sin(2τ+ψ)+Eu

, (G.22)

by averaging over a time T = nπ, n ∈N+, which is larger than the oscillation period but less than the
Hubble time scale

〈θ̇〉 = 1

nπ

∫ nπ

0
dτ

m

(E 2
u −1)1/2 sin(2τ+ψ)+Eu

= m, (G.23)

where we have integrated an elliptic integral♠32. We find that the averaged angular velocities becomes
independent of the initial value θini in Eq. (G.9) and converges towards an attractor solution. This is
confirmed by the numerical integration of the equations of motion in Fig. 26.

♠32We can freely choose the phase ψ such that the sine becomes a cosine and the elliptic integral reads∫ 2π

0

d x

a +b cos x
= 2π√

a2 −b2
.
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Exact solution (bis) : quartic potential. Even if we don’t use it in our work, it may be useful for
further studies (of axion dark matter for example [80]) to give the analog of Eq. (G.20) for a quartic
potential. When adding a quartic term to the potential V = 1

2 m2φ2 + 1
4λφ

4, the Eq. (G.15) becomes

⇒ u′′+u + 4α

a3 u3 − 1

u3 = 0, with α≡λY /(4m3). (G.24)

We now consider φÀ m/
p
λ, such that the linear term u corresponding to 1

2 m2φ2 can be dropped
and Eq. (G.24) becomes

ν′′+4αν3 − 1

ν3 = 0 =⇒ 1

2
ν′2 = Eν−Vν = 2Eν−2αν4 − 1

ν2 , (G.25)

with ν ≡ a−1/2u and with ′ denoting the derivative with respect to the conformal time η ( md t =
dτ = adη) and where we have dropped Hubble depending terms. The motion can be interpreted as
a scalar ν oscillating in a potential Vν = αν4 +1/(2ν2), with the constant of motion Eν = ν′2/2+Vν.
Introducing the new variables V ≡−ν2/

p
2 and s ≡ ηpα, we deduce(

dV

d s

)2

= 4V 3 − 4Eν
α

V − 2

α
. (G.26)

It is known that the Weierstrass elliptic function ℘(s; g2, g3) solves the differential equation of the
form [274] (

d℘(s)

d s

)2

= 4℘3(s)− g2℘(s)− g3. (G.27)

Therefore, Eq. (G.26) has a solution as an elliptic orbit described by ℘(s; 4Eν/α, 2/α). Applying one
of the properties of ℘, namely ℘(u; g2, g3) = k2 ℘(ku; g2/k4, g3/k6), the exact solution to Eq. (G.25)
reads

ν2 = −p
2V = −

p
2

α
℘(η; 4αEν, 2α2). (G.28)

Virial theorem. The Virial theorem in classical mechanics is a well-known tool, e.g. [275], for study-
ing the averaged behavior of a stable system. We now use it to study the dynamics of a complex scalar
field in a central potential during the early universe. The EOM in Eq. (7.16) and (7.17) can be written
in terms of kinetic K and potential V energy densities as

d

d t
(K +V ) = φ̇

(
φ̈+ ∂V

∂φ
+φθ̇2 + φ2

φ̇
θ̇θ̈

)
+ Ṫ

∂V

∂T
, (G.29)

= − (3H +Γ)φ̇2 −3Hφ2θ̇2 + Ṫ
∂V

∂T
, (G.30)

= − (6H +2Γ)Kφ−6HKθ+ Ṫ
∂V

∂T
, (G.31)

where Kφ ≡ φ̇2/2 and Kθ ≡ φ2θ̇2/2 are the kinetic energy in radial and angular modes, respectively.
After 3H ' mr,eff, the field oscillates fast compared to the expansion and damping rate. The average
over many field cycles but over a time shorter than the H−1 reads

d

d t
〈K +V 〉 = − (6H +2Γ)〈Kφ〉−6H 〈Kθ〉+ Ṫ

∂V

∂T
. (G.32)

We introduce the Virial parameter G , e.g. [275]

G ≡ ∑
i=φ,θ

pi · ri = φ̇φ+φ2θ̇θ, (G.33)
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where rφ =φ and rθ = θ, and pi ≡ ∂L /∂ri . By taking its time derivative, we deduce

dG

d t
= φ̇2 +φ2θ̇2 +φφ̈+φ2θ

(
θ̈+2

φ̇

φ
θ̇

)
, (G.34)

= φ̇2 +φ2θ̇2 −φ∂V

∂φ
− (3H +Γ)φφ̇−3Hφ2θ̇θ, (G.35)

' 2K −φ∂V

∂φ
, (G.36)

where we used Eq. (7.16) and (7.17) in the second step, and where we neglected the damping terms
in the last step. The Virial theorem states that whenever the system is stable, the averaged kinetic and
potential energies are related

〈dG

d t
〉 = lim

∆T→∞
G(T +∆T )−G(T )

∆T
= 0, =⇒ 〈2K 〉 = 〈φ∂V

∂φ
〉 . (G.37)

which resembles the Virial theorem for a real scalar [193, 194]. For convenience, we consider the field
behavior before the damping term becomes effective and deduces the average EOM from Eq. (G.32)
and (G.37)

d

d t
〈K +V 〉 = −6H 〈K 〉+ Ṫ

∂V

∂T
=⇒ d

d t
〈φ∂V

∂φ
+2V 〉 = −6H 〈φ∂V

∂φ
〉+ Ṫ

∂V

∂T
. (G.38)

Monomial potential. From plugging the potential V ∝ φn into Eq. (G.38), we obtain

(n +2)
d

d t
〈V 〉 = −6Hn 〈V 〉 =⇒ d

d t
〈ρΦ〉 = − 6n

2+n
H 〈ρ〉 =⇒ d ln〈ρΦ〉

d ln a
= − 6n

2+n
, (G.39)

with 〈ρΦ〉 is the average total energy density of the field

〈ρΦ〉 = 〈K +V 〉 = (2+n)〈V 〉/2. (G.40)

We deduce the redshift laws of 〈ρΦ〉 and 〈φ〉

〈ρΦ〉 ∝ a− 6n
2+n , and 〈φ〉 ∝ a− 6

2+n . (G.41)

For the quadratic and quartic potentials, the complex scalar field behaves like matter (ρΦ ∝ a−3,
φ∝ a−3/2) and radiation (ρΦ∝ a−4, φ∝ a−1), respectively. The scaling ρΦ∝ a−3 is confirmed by the
exact solution in Eq. (G.18). We show that, cf. Eq. (G.54), that Eq. (G.39) holds without any average
after radial damping φ̇→ 0.

Thermal mass. From plugging the potential V =λT 2φ2/2 into Eq. (G.38), we obtain

d

d t
〈φ2〉 = −3H 〈φ2〉− Ṫ

T
〈φ2〉 =⇒ φ2 ∝ a−3T −1 and V ∝ a−3T. (G.42)

We conclude that in a radiation-dominated universe, a scalar field dominated by its thermal mass
redshifts like radiation.

G.3 The radial damping

Amount of rotation. The parameter ε expresses the amount of rotation generated by the explicit
breaking at the time of oscillation tosc, cf. Eq. (8.3)

ε = φ2θ̇/2

V (φ)/mr,eff
, (G.43)
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From Eq. (8.9), we deduce that ε becomes a conserved quantity through Hubble expansion dε/d a = 0,
as soon as V (φ) become dominated by its quadratic term. It can be rewritten in terms of the ratio
between energy densities as

ε =
(ρθ

V

)(
mr,eff

θ̇

)
, with ρθ ≡ θ̇2φ2/2. (G.44)

Since 〈θ̇〉 = mr,eff, see Fig. 26, we deduce the rotational energy density to be an ε fraction of the poten-
tial energy density

ρθ = εV (φ). (G.45)

Note that ε≤ 1 from preventing the field to spin upward.

ε=φ2θ̇/(2ρr (φ)/mr,eff),

φ2θ̇ = constant,

θ̇after = mr,eff,

=⇒ ρθ

∣∣∣
after

= ερr (φ) (G.46)

Drop of energy density during radial damping. During the radial damping φ̇→ 0, see Sec. 7.6, the
elliptic orbits becomes a circular one. During this process, the scalar field kinetic energy is damped
but the rotational kinetic energy is preserved. Therefore, after the radial damping the total energy
density of the complex scalar field drops by

ρafter
Φ = ερbefore

Φ =⇒ φ2
after = εφ2

before, (G.47)

where the second equation assumes the quadratic potential. φbefore is the field value just before ther-
malization, and it can be computed from Eq. (G.41)

ρosc
Φ

ρbefore
Φ

=
(

adamp

aosc

)3

=
(
φosc

φbefore

)2

=⇒ φbefore = (ρbefore
Φ )1/2

mr,eff(φosc)
, (G.48)

where we used that the energy density just after oscillation can be written as ρosc
Φ = φ2

oscmeff(φosc)2.
In Fig. 59, we show that the result in Eq.(G.47) is confirmed by numerical integration of the equations
of motion.
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Figure 59: Numerical integration of the equations of motion in Eqs. (7.16), (7.17) and (7.18). The energy density

(left) and the radial value (right) of the complex scalar field drops by a factor ε after the radial damping. The

larger ε, the larger the rotational energy density produced during the initial kick and the smaller the energy drop

during the radial damping. The extreme case ε= 1 corresponds to a trajectory which is already circular right after

the initial angular kick.

Impact on kination duration. We now study the impact of the energy drop in Eq. (G.47) on the
duration of the kination era. As shown in Fig. 27, we must consider two possible scenarios, depending
on whether the radial damping occurs before or after the scalar domination. For the sake of simplicity
we assume an instantaneous drop in energy density at the time of radial damping.

• Damping before domination. The energy transferred to the thermal bath is negligible. How-
ever, the ε factor in the energy density in Eq. (G.47) delays the time when the scalar field domi-
nates the energy density of the universe

ρ′
dom = ε4 ρ4

Φ

ρ3
rad

∣∣∣∣∣
at oscillation

= ε4ρdom, (G.49)

where ρdom is the domination energy scale without energy drop during damping (case ε = 1)
and where we have used Eq. (G.79).

As a consequence of the energy drop, the kination era ends earlier and is then shorter

ρKD, f =
ρ2

KD,i

ρ′
dom

=
ρ2

KD,i

ρdom

(
1

ε

)4

and
aKD, f

aKD,i
=

(
ρ′

dom

ρKD,i

)1/6

=
(
ρdom

ρKD,i

)1/6

ε2/3. (G.50)

• Damping after domination. A substantial amount of energy is injected in the thermal bath. For
ε=O (0.1), the radial damping reduces the scalar energy by a factor O (10), so that the produced
SM radiation dominates the energy density. Later, the domination of the energy density by the
rotating scalar generates a second matter era at

ρ′
dom = ε4ρdamp, (G.51)

The scale of kination ending and its duration are given by Eq. (G.50) after replacing ρdom by
ρdamp

ρKD, f =
ρ2

KD,i

ρdamp

(
1

ε

)4

and
aKD, f

aKD,i
=

(
ρdamp

ρKD,i

)1/6

ε2/3. (G.52)

Note that the presence of the radiation era in between the two matter eras could leave a distinc-
tive imprint in the SGWB.
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Too small ε kills the kination era. In Eqs. (G.50) and (G.52), we have seen that the kination duration
receives a suppression factor ε2/3. This implies the existence of a lower bound on ε below which no
kination era is generated

Requiring
aKD, f

aKD,i
≥ 1 =⇒ ε≥

[
ρKD,i

max(ρdom,ρdamp)

]
, (G.53)

for both damping before and after the scalar domination. In Sec. 9, we show that the scenario II,
in which thermal corrections to the potential are present at the onset of the radial mode oscillation,
necessarily predicts a value of ε smaller than Eq. (G.53).

G.4 After the radial damping

In this section, we reproduce the results from [38] and derive the evolution of the radial φ and angu-
lar θ̇ field values, their energy density ρΦ and equation of state ωΦ, in an arbitrary U (1)-symmetric
potential V (φ), after that the radial mode has been damped φ̇/φ¿

p
V ′′ .

Radial evolution. In the limit φ̇→ 0, the radial EOM in Eq. (7.16) takes a simple form

θ̇2φ = ∂V

∂φ
=⇒ θ̇2 = 2

∂V

∂φ2 , (G.54)

We inject it in the equation of conservation of nθ =φ2θ̇

d(a3nθ)

d a
= 3a2φ2θ̇+2a3φθ̇

dφ

d a
+a3φ2 d θ̇

d a
, (G.55)

=⇒ 0 = 3a2φ2θ̇+2a3φθ̇
dφ

d a
+a3φ2 4φ

2θ̇
· dφ

d a
· ∂2V

(∂φ2)2 , (G.56)

=⇒ a
dφ

d a
= −3φθ̇2

2θ̇2 +2φ2 ∂2V
(∂φ2)2

=
−3φ ∂V

∂φ2

2 ∂V
∂φ2 +φ2 ∂2V

(∂φ2)2

, (G.57)

From which we obtain

d lnφ

d ln a
=

−3 ∂V
∂φ2

2 ∂V
∂φ2 +φ2 ∂2V

(∂φ2)2

. (G.58)

Angular evolution. Starting from Eq.(G.54), we can write

d ln θ̇2

d ln a
= 2

a

θ̇2

dφ2

d a
· ∂2V

(∂φ2)2 = 4
φ2

θ̇2

d lnφ

d ln a
· ∂2V

(∂φ2)2 = 2
φ2

∂V
∂φ2

d lnφ

d ln a
· ∂2V

(∂φ2)2 , (G.59)

where d lnφ
d ln a is given by Eq. (G.58).

Energy density evolution. After radial damping, the kinetic energy of the radial mode vanishes such
that the energy density of the complex field reads

ρΦ = 1

2
φ2θ̇2 +V (φ) = φ2 ∂V

∂φ2 +V (φ). (G.60)

Taking the derivative with respect to φ, we get

dρΦ
dφ

= 2φ
∂V

∂φ2 +2φ3 ∂2V

(∂φ2)2 + ∂V

∂φ
= 2φ

(
2
∂V

∂φ2 +φ2 ∂2V

(∂φ2)2

)
. (G.61)
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Now taking the derivative with respect to a

a
dρΦ
d a

= dρΦ
dφ

·a
dφ

d a
=

[
2φ

(
2
∂V

∂φ2 +φ2 ∂2V

(∂φ2)2

)] −3φ ∂V
∂φ2

2 ∂V
∂φ2 +φ2 ∂2V

(∂φ2)2

 = −6φ2 ∂V

∂φ2 ≡ −6ρθ, (G.62)

where ρθ is the kinetic energy density of the angular field

ρθ ≡
1

2
φ2θ̇2 = φ2 ∂V

∂φ2 , (G.63)

we deduce

d lnρΦ
d ln a

=
−6φ2 ∂V

∂φ2

φ2 ∂V
∂φ2 +V

. (G.64)

Equation of state. Using φ̇ → 0 and Eq. (G.54), the equation of state of the complex scalar field
becomes♠33

ωΦ =
1
2φ

2θ̇2 −V
1
2φ

2θ̇2 +V
=
φ2 ∂V

∂φ2 −V

φ2 ∂V
∂φ2 +V

. (G.66)

Example: Nearly-quadratic potential. This is the scenario considered in this work. The potential
and its derivatives read♠34

V = m2φ2
[

log

(
φ2

f 2

)
−1

]
+m2 f 2,

∂V

∂φ2 = m2 log

(
φ2

f 2

)
,

∂2V

(∂φ2)2 = m2

φ2 . (G.68)

From using Eq. (G.58) and (G.59), we deduce the evolution of the radial and angular compo-
nent of the scalar field after radial damping

d lnφ

d ln a
=

−3log
(
φ2

f 2

)
2log

(
φ2

f 2

)
+1

and
d ln θ̇2

d ln a
= −6

2log
(
φ2

f 2

)
+1

. (G.69)

Using Eq. (G.64) and (G.66), we deduce the evolution of the complex scalar field energy density
ρΦ and its equation of state ωΦ

d lnρΦ
d ln a

=
−6log

(
φ2

f 2

)
2log

(
φ2

f 2

)
−1+ f 2

φ2

and ωΦ = φ2 − f 2
a

2φ2 log φ2

f 2
a
− f 2

a +φ2
. (G.70)

♠33As a sanity check, we can use

ρ̇+3H(ρ+P ) = 0 =⇒ d lnρ

d ln a
= −3(1+ω), (G.65)

to show that Eq. (G.64) and Eq. (G.66) are consistent with each others.
♠34Note that is the minimum of potential is not vanishing Vmin 6= 0, then the evolution of the energy density and EOS
becomes

d lnρ

d ln a
=

−6log

(
φ2

f 2

)
2log

(
φ2

f 2

)
−1+ f 2

φ2 + Vmin
m2 f 2

and ωΦ = φ2 − f 2
a

2φ2 log
φ2

f 2
a
− f 2

a +φ2 −Vmin/ f 2
a

. (G.67)

In order to generated a kination EOS, in this work we assume Vmin ¿ m2 f 2.
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For φÀ fa we have

φ ∝ a−3/2, θ̇ ∝ a0, ρΦ ∝ a−3, ωΦ ' 0, (G.71)

and for φ' fa we have

φ ∝ a0, θ̇ ∝ a−3, ρΦ ∝ a−6, ωΦ ' 1. (G.72)

Example: quartic potential. For the sake of the comparison, we consider the potential

V = λ2 (
φ2 − f 2)2

,
∂V

∂φ2 = 2λ2 (
φ2 − f 2) ,

∂2V

(∂φ2)2 = 2λ2. (G.73)

Eq. (G.58) and (G.59) From using Eq. (G.58) and (G.59), we deduce the evolution of the radial
and angular component of the scalar field after radial damping

d lnφ

d ln a
=

−3
[
φ2

f 2
a
−1

]
3φ

2

f 2
a
−2

and
d ln θ̇2

d ln a
=

−6φ
2

f 2
a

3φ
2

f 2
a
−1

. (G.74)

Using Eq. (G.64) and (G.66), we deduce the evolution of the complex scalar field energy density
ρΦ and equation of state ωΦ

d lnρΦ
d ln a

=
−12φ

2

f 2
a

3φ
2

f 2
a
−1

and ωΦ = φ2 + f 2
a

3φ2 − f 2
a

. (G.75)

For φÀ fa we have

φ ∝ a−1, θ̇ ∝ a−1, ρΦ ∝ a−4, ωΦ ' 1

3
, (G.76)

and for φ' fa we have

φ ∝ a0, θ̇ ∝ a−3, ρΦ ∝ a−6, ωΦ ' 1. (G.77)

The evolution of ρΦ and ωΦ in nearly-quadratic and quartic potentials are shown in Fig. 60. Only
the matter phase induced by the nearly-quadratic potential can allow the initially sub-dominantΦ to
dominate the energy density of the universe and, later, generate a kination-dominated era. For this
reason, in this work we focus on a nearly-quadratic potential. In Fig. 28, we show the evolution of φ,
θ̇, ρΦ and ωΦ in the nearly-quadratic potential, obtained after numerically integrating the equations
of motion in Eqs. (7.16), (7.17) and (7.18).
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Figure 60: Evolutions of the energy density (left) and the equation-of-state (right) of the complex scalar field,

rotating in a nearly-quadratic or quartic potential after its radial motion has been damped. Both cases lead to a

kination EOS whenφ→ fa . ForφÀ fa , the quartic potential gives a radiation EOS while the quadratic potential

gives a matter EOS

G.5 Derivation of the cosmological-history relations

In this appendix, we derive the expression used in Sec. 8.2, neglecting the factor (ε/2), and for which
we refer to App. G.3.

Matter domination. After the field starts oscillating at 3Hosc = mr,eff, it redshifts like matter and
induces a matter-domination era as soon as it dominates the energy density of the universe when

ρdom ≡ V (φini)

(
aosc

adom

)3

' 3H 2
oscM 2

pl

(
aosc

adom

)4

, (G.78)

where we have neglected the change of relativistic degrees of freedom in the thermal bath. We obtain

adom

aosc
' M 2

Plm
2
eff(φini)

3V (φini)
and ρdom = 27V 4(φini)

M 6
Plm

6
eff(φini)

. (G.79)

Radial damping. The decay of the radial mode, occuring at the rate Γ, dissipates the radial kinetic
energy when

Γ ' H =⇒ ρdamp = 3M 2
PlΓ

2, (G.80)

after that the universe has expanded by

adamp

adom
=

(
ρdom

ρdamp

)1/3

=
[

9V 4(φini)

M 8
PlΓ

2m6
eff(φini)

]1/3

. (G.81)

Start of kination (starting). The scalar field reaches the kination-liked equation of state when the
radial field-value settles down to its final VEV φ→ fa , when the energy density is

ρKD,i =
�
��

1

2
φ̇2 + 1

2
φ2θ̇2 +V (φ→ fa) ' 1

2
φ2θ̇2 =⇒ ρKD,i ' 1

2
f 2m2

eff( f ), (G.82)

where the radial kinetic energy vanishes after H < Γ and where we assume the vacuum energy to
vanish at the minimum. The duration of the matter era reads

aKD,i

min(adom, adamp)
=

(
ρdamp

ρKD

)1/3

. (G.83)
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End of kination. The period of kination lasts until the energy density of the scalar field drops below
that of thermal bath. The value of the radiation energy density depends on whether entropy has
been injected during the damping of the radial mode. This depends on whether radial damping has
occured after domination ρdamp < ρdom, or not. Its energy density at the end of kination era follows
the scaling law

ρrad = ρKD, f =


ρdom

(
adom
aKD, f

)4
, if ρdamp > ρdom,

ρdamp

(
adamp

aKD, f

)4
, if ρdamp < ρdom.

(G.84)

Similarly, the scalar field which has undergone a period of matter folowed by a period of kination has
the energy density

ρΦ = ρKD, f =


ρdom

(
adom
aKD,i

)3 (
aKD,i

aKD, f

)6
, if ρdamp > ρdom,

ρdamp

(
adamp

aKD,i

)3 (
aKD,i

aKD, f

)6
, if ρdamp < ρdom.

(G.85)

From the above two equations, we deduce the energy density at the end of kination ρKD, f

ρKD, f =


ρ2

KD,i

ρdom
, if ρdamp > ρdom,

ρ2
KD,i

ρdamp
, if ρdamp < ρdom,

(G.86)

and the duration of the kination era

aKD, f

aKD,i
=


(
ρdom

ρKD,i

)1/6
, if ρdamp > ρdom,(

ρdamp

ρKD,i

)1/6
, if ρdamp < ρdom.

(G.87)
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