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Abstract:

Dissertation We calenlate the meson spectrum in the strong coupling approximation up to the first order in 5.
zur Erlangung des Doktorgrades We get 22 new particles which appear for the first time only at this order. These are interpreted as
des Fachbereichs Physik excited states. By defining “irreducible meson fields”, the *Susskind-flavours’ are discussed and are
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physically interpreted as quark-flavours.
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Wir berechnen das Mesonenspektrum der QUD in der starken Kopplungsapproximation bis zur
ersten Ordnung in . Wir erhalten 22 neue Teilchen, welche erst in dieser Ordnung erscheinen. Diese
werden als angeregte Zustdnde identifiziert. Weiterhin definieren wir irreduzible Mesonenfelder und
diskutieren mit ihrer Hilfe die 'Susskind-flavours’ die wir physikalisch als Quark-flavours interpretieren,
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1 Introduction

The calculation of the hadron spectrum in the framework of the lattice approximation of QCD [1],{2] is
an important probiem of the actual research in theoretical particle physics. However, there are many
difficulties which prevent an immediate significant calculation of meson and hadron masses. One of
these problems is the spectrum doubling of lattice fermions [1]. The naive lattice approximation of the
(Euclidean) Dirac equation describes, in the continuum, 16 species of Dirac particles [3]. Thus it is
not immediately clear, what is a consistent lattice description of a single Dirac particie. K.Wilson [4]
tried to solve this question by adding additional terms to the action in such a way that only one Dirac
particle remains in the continuum limit. However, this procedure destroys important symmetries.
In an other approach one describes the 16 Dirac particies of the naive lattice Dirac field by four
independent ‘staggered’ fermion fields {5]. In this procedure ene considers one component per lattice
site instead of the four Dirac components. Restriction to one staggered fermion field formally reduces
the number of Dirac particles by a factor of four. In the calenlation of meson masses which we perform
in this work, the quarks are described by staggered fermion fields.

From a different point of view, this lattice Fermion problem has been investigated by P. Becher
and H. Joos [6]. Their approach is based on the Dirac-Kahler equation [7], a generalization of the
Dirac equation. This forrmlation uses geometrical concepts extensively. The Dirac particles are
described by differential forms. The DeRham isomotphism between differential forms and ‘lattice
fields® (cochains) is used to formulate the Dirac-Kihler equation for free particles on the lattice. It
can be shown that free lattice Dirac-Kihler fields are equivalent to staggered fermion fields. However,
in the Dirac-Kahler formulation the appearance of four flavours becomes irnmediately clear. These
four Ravours appear on the lattice, because they are already described by the differential forms in the
continuum. The formulation of the gauge interaction of Dirac-Kahler forms is not so straight forward
as the free case. There is a difference between Susskind formulation of interacting staggered Fermions
and the interaction of DK-fields as first proposed by Becher and Joos (‘coarse interaction®) {8]. There
are physical differences between these schemes [9]. The Susskind interaction seems to have advantages
because it is more syrumetric. It is also a natural possibility in the Dirac-Kahler framework (‘fine
interaction’).

All these different schemes can be used to describe quarks in the lattice approximation of the QCD.
In this work we investigaie the QCD with Dirac-Kahler fermions. Its continoum action is

§ = j{zig,map)o 1 (®,(ds — 64 + m)@).,} (1)

with F the field form of the gluon , ¢ an inhomogeneous differential form describing Dirac-Kihler
fermions, d4 and §4 the covariant exterior differential and codifferential operator. (More explicite
definitions are given in Sect.(1.1). Because of the close connection of this formulation to geometry, we
call the theory based on this Lagrangian ‘geometric QCD’. The advantage of this theory is its straight
forward lattice approximation. We use the Susskind coupling, because it preserves a maximmm of the
geometric continunm symmetry. Formally, Euclidean geometric QCD deseribes Dirac fields related
by flavour transformations of an SU(4) symmetry group. Therefore its physical interpretation is not
immediately clear. In the lattice approximation the flavour symmetry gets restricted to a discrete
symmetry. It is not clear, if the complete symmetry gets restored in the continuum limit of the
interacting theory .(There is symmetry in the free case }. Only dynamical calculations can reveal the
possible physical content of geometric QCD. Here we shall calculate the meson spectrum to the first
order of the strong coupling constant expansion, using a resummed hopping parameter expansion. The
resumming technique we use was suggested by O. Martin [10], and explicitly given to the zeroth order
in A for naive fermions, together with some hints for a first order calenlation. We explicitly developed
the first order scheme and combined it with a consistent nse of the symmetry of the problern. This
procedure, together with the physical intuition, allows us to interprete the states appearing in the
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zeroth order calculation as ground states. The first order gives us, in addition to the non-excited
states, excited states also, which we don’t have in zeroth order. Qur calculation has to be compared
with other strong coupling calculations {11} ,[12] and numerical investigations (13] of the non-excited
states. The calculation of the masses of the excited states are new.

The large number of mesons which have been discovered - more than 20 explicithy calculated par-
ticles and at least 32 expected to be exist at the second order approximation- are mainly distinguished
by different quantum numbers like spin, parity, charge parity, and flavour quantum numbers. The
relation of these continuum quantum numbers to lattice quantum numbers is essential for the physical
interpretation of the lattice calculation. The lattice quantum numbers are defined by the irreducible
representations of the lattice symmetry group of the staggered fermions. These were investigated by
M.F.L. Goltermann [14], and in & more systematic and complete way by H. Joos and M. Schaefer [15].
We use these results in our calcalation.

In Section 2 we explain the Dirac-K&hler equation, its symmetry on the continnum and on the
lattice. The resummed hopping parameter will be explained in section 3, where in the fourth section
we introduce the muliti-link operator, and calculate the zero order states. In section 5 we produce the
first order calenlation , and in the last section we find the physical discussion.

2 Lattice Approximation of Geometric QCD

2.1 From the continuum to the lattice

As we mentioned in the introduction, there is a straightforward way to get from a field theory in
differential forms to it’s lattice approximation. For this, we give now the more explicit definitions of
quantities appearing in the expression for the action of the geometric QCD, (Eq. {1)), together with
the basic formulas of the differential calculus used . Afterwards we transcribe these formulas to the
lattice and formulate, in this spirit, the action of the geometric lattice QCD.

2.1.1 The geometric calculus in the continuum.
On the {Euclidean) space-time manifold we consider inhomogenous differential forms

® = ©"(2) + pudz? + hou(2)ded Adz? + Rpu,(z)det A dov A de? (2

+ip1aadel Ade? Aded Adet = Y g B(2, H)deH )
Usually we surn over the same lower and upper indices. Often we use a multi-index notation with
H= (,U-]., B2y -fih)y i1 < ftg < e < i, and ‘E(ziﬂ) = Pupn..pn like ‘p(z)[) = §(z,ﬁ)w Y1z = §(3912)

etec. On the linear space of differential forms we define some operations by their action on the basis
elements dz¥.

{a) The main morphism .4 and antimorphism B are :
AdzH = (—1)de® (3)
with the property
A(® A F) = A A AD
and
h[h{l!dzﬁ

BdzH =(~1) (4)

with the property
B(® A ¥) = BY AB$

(b) Wedge left multiplication d#&:
d*.def! = de* A d2¥ = j, gd=tTV®
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This operation is anti-commuting
& d +d".d" =0 (5)

A similar operation could be defined by wedge right multiplication.
(c) The anti-derivation e¢,~% = §,%

§,dz% = pude . jp=+1,0
is defined by
v My 0 u#0
S (FAR)=8,2A P+ AR AT, § dz” = g, §,1=0, ¢ = r
This operation is also anti-commuting
8,6, + 8,8, =0 (6)
There is a "canonical anticommutation relation” between d,andd,
5,d, + d 8, = g* (7
(d) Clifford left multiplication dz* v &
de* v dz¥ = (6, + d,)dz™ (8)
In particular we get
de* v dz¥ = (5, + d,)dz” = ¢** + dz¥ Ade”

It was emphasized by E. Kahler {7] that Eq. (8) defines a destributive and assiociative product in the
space of differential forms. For the basis elements dzX it takes the form :

dz® v de® = f)x_[,d::KAL, prr =31 (9

() Differential operators: With help of the partial differential operator 8, acting on the "coef-
ficients” p(z, H), of the differential forms and with the operations (b)-(d) one defines the following
differential operators acting on the forms &

Exterior differentiation: d = d*d,
Codifferentiation : ¢ = §#3,
Dirac-Kahler operator :
d-§6=de*va, = (d+ 88, {10}

It follows from (5), (6} and (7) that
{d— 8y = —(db + 6d) = 8,6" = O (11)

This means that d - § is a "square root” of the Laplacian O, similar to the Dirac operator in the Dirac
equation.
1t follows immediately from Eq. (5), (6) and {7) that the operator d,, + 4, satisfies

{dy + 8, du + 80} = 29 {12)

which is identical to the defining relations of the algebra of the Dirac-matrices: y#y* + y¥y* = 2¢".
This means that d,, + §,, defines a representation of the Dirac matrix algebra with the differential forms
as representation space. In order to find the irreducible invariant subspaces of this representation, we
construct the following matrix differential form :

7= 2—d,’2 Z(‘)’H)TBdH. (13)
F:

3

yH = g ymn Acting by detV on Z we get:
de¥ v Z = 72, Zvde® = ZyT (14)

This equation shows that the columns of Z span an irreducible representation space of the algebra
defined by Eq. (12). In this basis {z2}. the differential forms decompose into invariant subspaces.
The component ¥2(z) with respect to this basis is defined by

&= e, Hyde? = 3 yh(2)20, (15}
H ab

where b denotes the columns, a the rows. From (14} and (15) we see that- ¢ (), with fixed b, are the
components of a vector in the irreducible subspace. With help of the completeness, and orthogonality
relations of the y-matrices, we get, from Eq. (15}

#lz, H) = 2 Hrace(vH (2, H)), B(z) =Y olz, H1Y, (16)
H

With help of the equations {8), (14}, and (16),we can establish the relation between the Dirac-Kahler
equation and the Dirac equation. If the Dirac-Kihler equation

{d— 8§+ m)e = (de¥vad, +m)E=10 (17

is imposed on diffenential forms, then we get the Dirac equation for a vector {¢*} of the invariant
subspace:
(¥48, + m}g(z) = 0. : (18)

The "vector” ¢t(z) is a Dirac spinor.
We add to the geometric calculus a last definition :
{f) A scalar product for two differential forms is defined as

(3, %)(x) = 56" (2, H)(z, H) = 27973 ¢z )ei(=), (19)
H

ab
This is sometimes considered as a volume form by the definition
(8,8) = (B, ¥)de™ . (20)

Now we have collected all the definitions and relations necessary for the understanding of the action
of geometric QCD mentioned in the introduction. First we give the free action

1 =
Se= [@a- 54 mlo= T [ e B @) o, + (), (21)
b
where the second form follows from the first by transformations of the type Eq. {16) and :
2l =Y Bz, H)nd (22)
H

The DK equation in the presence of a gluon gauge field follows from the free DKE (17) by the
substitution of the covariant derivative D, = 8, — 4, for 8, .Here : A, = g2 4%(2),a the gluon index
, A, the Gell-Mann SU(3)-matrices & = {®, = 3. $a(z, H)dz¥}, o color index. Then the DKE with
interaction becomes

(da — 64 + m)® = dz* v D& + md =0 (23)



" The exterior differentiation d4 = d* D, and codifferentiation § = —# D), are covariant extensions of
Eq. {11). From the gauge field 1-form A = A.dz" one defines the 2-form field F = dA + [A4, A} .By
adding the action of the ghuon field, it is then straightforward to get the action of the geometric QCD:

5= [{ FF0+(@{dA-6A+m1¢)} (24)

From the above discussion of the relation between the forrs ¢ and the Dirac fields $b(z), which leads
to the two expressions for the free actions Eq. {21), one sees that geometric QCD deseribes formally
the gluonic interactions of 4 species of quarks. The label b, which distinguishes these 4 fermion fields,
is sometimes called ’f’, the flavour index.

2.1.2 The Lattice Formulation

In the following we discuss the lattice approximation of geometric QCD. First we describe the calculus
with lattice quantities in elose analogy to the geometric calculus in the contimuum. Differential forms
are approximated on the lattice by "cochains” #. Because of their physical meaning, we call these
{general) 'lattice fields’

&= &=z, H)", &H ([’ /') = 83,58, {25)
EN

Here we use the notation of lattice quantities explained in Fig.1 . [z, H] denotes a h-dimensional
lattice cell located at x ; f.i. [, 8] is the lattice point x, [z, 1] the link from x to z + €; (e, unit lattice
Vector),]#, 12] denotes the plaquette with the corners z,z + &1, + €1 + €2, + €3 setc. The simple
?chains” C are defined as

C= Y a(z,H)z',H'] a(z,H)=H41  depending on orientation. (28)
oy

The hasis element d®¥ of the cochains is defined as linear functional on the chains by
([, ) = 82,65 (27)

where a is the lattice constant, which we put equal to one most of the time. The meaning of the
lattice approximation of a continuous differential form, by a cochain of type Eqg. (25), becomes clear
by the following remark. Suppose a(z, /) in Eq. (26) is a lattice approximation of the characteristic
function of a h-dimensional region g in spacetime, then we have by the usual definition of the integral

lim #(C) = fceb (28)
with & according to (2), and &(z,H) = ¢{z. H} restricted to lattice peints x in (23). {For the

precise details we have to refer to the literature [20]), Based on the mapping ("De Rham mapping”}
of differential forms on cochains: (a=1})

oo )= ¥l W)= [ @ (29)

f=.H]

we rmay associate with the operations on differential forms, the following operations on lattice fields,({6],{18]):

{a) The main morphism .A and antimerphism B.
AdH (T, Bde® = (-1)T da® (30)

(b) The wedge multiplication
P N ﬁ“'H6=+='“yd=’”UH,
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Figure 1: Tilustration of the Lattice Notions



or in general

7B p el [‘)A‘_Hﬁr+t’('ydz‘h—ug’ with e = Z e, (31)

nek
The wedge product is the “cup prodnet™ in a cuhical cell complex.
{c) The operation ¢— on the lattice

T —'d‘"’H — ‘-)H‘de~ﬂ-u6?+=,..y

or in general i
(‘h""ﬁdy'" - ‘(-)K.de.H,fKéa'-th (32)

(d} Clifford left multiplication:
Py = (A +etE ) H = P gETremy FrreunnmoH
or in general, as a non-associative product
du-.H v dy.K — ﬁH.Ké*H"'yd'H“HAK, A=HNK, HAK = HUK ~ A, (33)

{e} Boundary, Coboundary and Translation operators. As the lattice analogue of the exterior differ-
entiation d follows from the de Rham mapping and "Stokes” theorem

#1(C) = Ldé - Lg@ = 3(AC) = AB(C) (34)

A is our notation of the boundary operator acting on chains, A the "dual” boundary acting on
lattice fields {cochains). In a similar way we get as a lattice analogue of codifferentiation é the dual
cohoundary operator U&({C} = #{7C), vV cohoundary operator acting on chains. With help of the
iranslation operator T, and the difference operators Bf :

T, dH = &=l ar=T, -1, 3, =1-T,, (35)
one gets formulas for the dual boundary, dual coboundary, and the lattice Dirac Kéhler operator:
A=Y Aor=3Y (S a*)aal v = YV =)0 e 8
I noT H PR

A-g=) d*ve;

v a3, (36)
which are very similar to Eq. {10). The operators {:ﬂ” - ﬁ?”}, which act as Clifford left multiplication
by the constant differentiat form ¥ = ¥ d™# , satisfy the anticommutation relations

{8 =987 - ) = 20T, (37)

This shows that the lattice algebra of the Dirac y-matrices is connected with translations. The
boundary and coboundary operators satisfy {A")2 = (¥")? = 0. It follows from Egs. (37,36,35), that
the lattice Laplace operator is :

(A-v)P == (A7 +vA) == T —(A"9" + ¥"&") = a7 0mF (38)

[y

The Dirac Kihler equation on the lattice is now given as
(A-v+m)d=0. {39)

where &, A, are defined above, If we multiply Eq. (39) by (/:\. -V - m) from the left side and
use Eq. (38), we get that ¢ is a solution of the correct lattice Klein-Gordon equation, known from
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lattice approximation of scalar particles. No additional zero modes are introduced by the lattice
approximation of the Dirac-Kahler operator - in contrast to the "naive” lattice approximation of
Dirac operator. There is the species doubling inherent of the Dirac-K&hler forms, which describe in
the continuum four Dirac fields. Thus we have formally 16 components ¢(x, H) at each lattice site.
L. Susskind [5] introduced a useful formalism, where fermions are described by only one component
per lattice site. For this we subdivide the lattice into a fine lattice by adding all the central points of
the lattice elements to the new lattice (see Fig.1). The lattice points of the fine lattice ¥ are therefore
related to those of the old lattice by

i
E:z+§e5, ey = Zeu (40)
HEH .

This eguation also associates with each point of the fine lattice a multi-index ¥ — H(Z). The definition
of the so called "staggered” fermion fields {”Susskind fermions”) consists now in the identification

oz, H) = ¢(%, H(T)) = x(Z)
The relation of the staggered fermion field to the “naive” Dirac field is given by (7,21)
Va(%) = 7{(Z)x(7) (41)

If ¢(z, H) belongs to the solution of the DKE (39}, then ¢,(2), for fixed i, satisfies the naive Dirac
equation:

(Y8, +migi(z) =0  F, =8l +8] {42)

Now we can formulate the lattice action of geometric QCD. With the inner product on the lattice
(6, ¥)(z) = Sy ¢ (2, H)4(z, H), we get the lattice analogy of Eq. (21)

S = Y {8z, H)((A - v + m)®) (2, H)} (43)
= K

With heip of definition (40) this action could be written as the following (with lattice constant a of
the fine lattice)

S = Zi(z,ﬂ){ by f’izu’ia;@(z,ﬂ\{p}n ¥ 'E"‘T'Ha;@(z,HU ful) +m¢I>(z,H}]
o H peH uEH

Using Eq {40) we get

Sq=3 {Z BB [ (2)x(z + &) - X(Z + 8x(2)} + mf(f)x(i)} (44)

I M

finally we introduced lattice gauge fields U(Z, 1) on the fine lattice. With these we get the lattice
action of geometric QCD

5 = Sw(u)+ Spx
Sw o= -4 Y (UPY+ U P)-2) (45)
PcT
U(P) = UE,pv)= U YT, )U T + &, p)U(T + &, v)U(F, u) ~ exp(iF,,(Z))
> {Z %E[Y(E)U(f)! pIx(T +2.) — X(T+ 2 )U (2 0)x(F)] + mi(i}x(f)} (46)

z Lg

5,



as the sum of the lattice approximation of the action of the gauge field Sy {U) (due to K. Wilson}, and
the gauge invariant extension of the action of the staggered fermion fields, i.e. the lattice approximation
of the Dirac Kihler fields, Eq. (44). This action is invariant under the gauge transformations on the
fine lattice

x(Z) — a(E)x(2), x(7) -+ X(T)g (=)
U(z,) - 9@V g N7+ % = g (o)

The lattice approximation Eqs. (45,46) of the action of geometric QCD Eqs. (24) or (1) is the starting
point of our dynamical calculations.

2.2 The Symmetry of Geometric Lattice QCD

The symmetry groups of the action of geometric QCD in the continuum Eq. (24) or Eq. (1) and on
the lattice Eqs. (45,46) play a distinct role in our strong coupling calculation of the meson spectrum.
For the physical interpretation of our results, the relation between these groups is important. In a
geometrically transparent way these groups and their representations were discussed by M. Gockeler,
H. Joos, and M. Schifer [8],[15]; compare also ref.[21]. We quote a short resume of their results: The
continuum geometric QCD describes four degenerate Dirac fields. Therefore infinitesimal spinorial
Euclidean transformations, and 5U(4)-flavour transformations

1
(M. 2)5(2) = (2.8, — 2,8, )%5(z) + E(T#Tv]u'}t{z)a B#D,
(PB)ifz) = 8,5(=), {48)
. 1.

(Tidd(z) = g,\zb{i;(a:), i=1,,,.15.
generate a symmetry groap $€ x 5U(4). X denote the 15 Gell-Mann mairices for SU(4). There are
additional symmetries, like space reflection (I, #)(z) = 42 #¥(ILz), (IL=z) = (—=2', 2%, -z%,z%),
charge conjugation, general phase transformations and chiral transformations for masses m=0. To

some of these transformations we come back only later. In order to understand the lattice restriction
of 5£ x SU{4) from a geometric point of view, we have to consider the relation between the trans-
formations of the Dirac components and that of the forms. Let us first regard the structure of the
flavour transformation. The solutions of the DKE, (17)

(d— 6+ m)d = (dz* v 8, + m)3. (49)

are invariant under Clifford multiplication with a constant differential form from the right. This
follows from the associativity of the Clifford product:

((d—~ 6 + m)B) vV e(u) = ({de* v 8, + m)&) v e(u) =0 (50}

If we write the constant forms ¢(u) in Dirac components as defined in Eq. {15):

cfu) = EuZZ: (51)
ab .
then it follows frem Eq. (14) that the Dirac components 1% of & transform with the matrix f :
&V c{u) - Z qbz(a:)uﬁ ) (52}
b
9

In the case where uf is an unitary matrix of SU(4), this is the finite form of the infinitesimal flavour
transformations in Eq (48) U = ezt

. The finite flavour subgroup generated by the basis elements
+dzH of the differential forms

edvde - iZy’:g(x)‘yf‘ (53)
b

plays an important role in the lattice restriction of the fiavour group. Following the suggestion of H.
Joos {17], we call this group of 32 elements “Kent-group”. The operations 4,4 are invariant operations
under the group O(4) of orthogonal transformations of Buclidean space-time. This means

U{R)(d- U YR)=d-§ (54)

where U(R) is the representation of the rotations R € ((4)in the space of differential forms. For-
mula (54) simply means the possibility that one can interchange the calenlation of the boundary and
coboundary with the transition to a new orthogonal basis. From this we know that a transformed
differential form, which is a solution of the DKE is also a solution. By infinitesimal rotation of the
space-time 65, in the plane (g, ») the form transforms infinitesimally as :

1
858 = (2,8, — 2,8,)% + 55wV E=—2 VS, (55)

We have to distinguish these geometrical rotations of the differential forms, from the spinorial rotations
of the Dirac components described by M, , in Eq. (48). With help of Eq. (14),we may express this
spinorial rotations §;, , — M, of the differential forms as

8,8 = (2,0, — 2u0,)3 + %sw V3, Su = dz, A da,. (56)

In both expressions (55) and (56) (x.d, — .0,) expresses the “orbital” part of the 4 dimensional
angular momenturn. However in the geometric transformations we have, in addition to the spin part
of the angular momentum $,,., v &, also a flavour part-2 v 5, .. The geometric rotations are composed
of a spinor rotation and a flavour transformation.

Summarizing, we can express an element g of the symmetry group of the DKE as a direct product
g = () ® (a,s) = ([, e, s) with (f} € F {favourgroup)}, {a,s) € §& , that is the "spinorial Fuclidean
group generated by translations (a,l} and spinor transformations (0.s) .Thus ¢ ~ F x 5€ (up to
a factor Z;). We may decompose any element g into geometric transformations {s,a,s) with the
generators 87, Eq. (55) and another flavour transformation {f) = fs7',

g={(fo(s,a,5) = (Fs,4,8) = {f,a, R(s)]. {57)

In this new notation, the group multiplication gets the form
(fiasso (fa',s') = (£, R(s)a + a, 85'),

[f e, R(s)] o [f,a', R(s")] = [fsf's ™", R(s)a’ + e, R(s)R{(s')]. (58)

The symmetry group of the DKE on the lattice as a restriction of the continmum symmetry was
extensively studied by H. Joos and M. Schifer . Before we quote their proposition on this subject,
we make some explanatory remarks. First we remark that the restriction of the translations and
geometric rotations to a symmetry of the lattice approximation of the DKE (39) is cbvious. The
continuum translations are restricted to the lattice transiations

To2T == {[1,&,11}{{1 |a= b{nlaﬂﬂsnga"“)’ n' e Z}

The lattice constant ‘b’ of the coarse lattice T we set most of the time equal to 1. The lattice
restriction of the geometric rotations follows also geometrically. The geometric rotations are resiricted
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to the symmetry groupW, of the 4-dimensional cube. W, is generated by the rotations R, in the
{u,v)-plane by x/2, and by a space reflection Il,. The symmetry of the DKE on the lattice under
these transformations follows immediately from Eq. (34). It is a little more difficult to find the
lattice restriction of the flavour transformations. Since the Clifford product defined in Eqg. {33) is not
associative, the argument given in the continuum, Eq. (50) , can not be applied directly. However the
Clifford product defined in Eq. (33) satifies [B]:

(@Fcnond y @Ky y gioennnid o goH oy (R oy g=l), (59)
Therefore we can conclude similar as in Eq. {50), with help of Eq. (59}, that
ed®: # o v (d¥)Y,

is a symmetry transformation of the DKE. A direct calculation leads to (d¢%)? = {—eg}, i.e. the flavour
transformations generate translations. The group ¥ 7 generated by the ¢d® contains 77, as a rormal
subgroup with the factor group Fr = FT /Tt = K4 , the Kent group mentioned in Eq. (53)

After this preparations we can quote the proposition on the lattice restriction of the symmetry
group of the DKE by Joos and Schafer:

PROPOSITION 2.1. The lattice restriction of G is
13
Gy = {;ed",mie,; ta,R|ec T, ReW,}
with the composition law
K 1 A 1 opt
|ed 13K +a, R}oje'd ,—Ee,-,+ a' R

1
= [e€'p{R, R o L)jg, pord® 2FoL, - 5lex + Rep)+ Ra'+ a,RR). (80)

It is a symmetry group of the free DKE if it acts on staggered fermion fields according to

lalx)y, H()) = x(y - a¥eu, H(y)), H{y - o¥ey) = Hiy),
{RxNy, H(z)) = p(R, Hp))x(E ™'y, H(R™ ')}, Re W,
(ed®*X)w H(¥)) = ePugy)ax(y + %ex,ff v+ %ex))- (61)

where the sign p{R, H) is the same as the sign in the transformation of the basis differentials of the
continuum: Rdz¥ = R-1v dz¥ v R = p(R, H)de8 "8,

A direct calculation shows that also the action S{%,x,U), (Eq. (46)) with gauge interaction, is
invariant, if U(z, 4} is formed as link fields under translations and geometric rotations, and as

(d¥0) 2, ) = Ule + penon) (62)

under fiavour transformations.

2.3 The Representations of the Lattice Fermion Group G|

The representations of G, and some of its subgroups play an important role in our investigations. The
itreducible representations of Gy, give the quantum numbers of the lattice states. Thus we shall base
the discussion of the particle content of the different sirong coupling approximations on this represen-
tation theory. By this method we get systematic relations between the lattice particle states and the
continuum states. Further, as usual in quantum mechanics, the use of irreducible representations of
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symmetry groups allows a simplification of our meson mass calculations. The representation theory
of Gy was extensively studied by H. Joos and M. Schifer and others [14]. We shall summarize their
results and collect the formulas which we explicitiy use in our calculations. According to a proposition
by Joos and Schifer, the irreducible (unitary) representations of G are determined by & 'momentum
star* $i;, a ‘flavor orbit’ @ and a reduced spin’ ¢. The representations G — U{g) related to mesons
{‘representations with even flavour orbits’} have, in an appropriate basis

j’ k, o
p. L, n
the following form:
koo N ipeyld k@
oy B 7Y Z| bk 7 N Do, (X(R,L,p)) (64)
po Ly n [ 72wl Rp, w(R,pye L, nf fTmMTTTES
U(edK) h koo — ilpier) ginleniex) B okoo (65}
» L, n D L, n

We shall explain these formulas for the case we use later.

The momentum p varies over the Brillouin zone of the coarse lattice: - < p, < §. In an
irreducible representation of Gy, p is restricted to a set {Rp|R € Wy}, called momentum star 5¢;. As
an example we consider the Si, of 8 momenta:

Sty : (P, = {0,0,0,£E),{(0,0, +E,0),(0, £ E,0,0),(+E,0,0,0). (66)

The representations of the flavour transiations(Eq. {65)) are 1-dimensional and characterized by the
vector er. The g transforms under rotations: Rer — egr. For the characterization of an irreducible
representation of Gp we may choose a reference momentum p € St; , for instance in our case p =
{0,0,0, E). The group of rotations, which leaves 7 invariant transform the ey of a flavour orbit into
each other. In our case this group is Wa, the ey, of the different flavour orbits @; are the singlet orbits

{{0.0,0,0,)},{(0,0,0,1)},{(1, 1, 1,01}, {(1,1,1,1)} (67)
and the triplet orbits:

{(1,0,0,0),(0,1,0,0},(0,0,1,0)}, {(0,1,1,0),(1,0,1,0),(1,1,0,0)},
{{1,0,0,1),(0,1,0,1),(0,0,1,1,}}, {{0,1,1,1},(%,0,1,1},(1,1,0,1}}. (68)

The group of rotations, which leaves § and a representative €z (underlined in Eq. (68) invariant is
called the reduced spin group $;i. The irreducible representations D, (R) of this group determine
the reduced spin o. In our case of Sty the reduced spin group of the singlet orbits is W3. That
of the triplet orbits is the group D4 x Z;. The 3-dimensional cubic group W3 has 10 irreducihle
representations:

(li)W:!(1&)“&'(zi)Wu{si)Wsa(sri)Ws (69)

The integer denotes the dimension of the representation, + refers to the parity. Dy is the symmetry
group of the square in the (1,2) plane, Z; the reflection of the 3 axis. Dy x Z; has also 10 irreducible
representations:

{li)Dn (l’i)Dq ' (lui)Dn (lmi)Du (Zi}D; (70)

These representations are explicitely given (see the Appendix). w(R,p), and X (s, L} are Wigner type
rotations defined in [15]. If we consider only states refering to p and €, (as we do in our calculations),
and rotations R of the reduced spin group, then w(R,p) = 2(s,L} = R .
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3 The Resummed Hopping Parameter Expansion

In this chapter we shall explain the method of the “resummed hopping parameter expansion”. For
details we refer to 0. Martin [10]. Until now coarse lattice site labels are denoted by unbarred variables,
From now on, all site labels ,with or without a bar , refer only to the fine lattice , unless otherwise

specified . We have derived in Chapter 2 the gauge invariant action of interacting staggered lattice
fermions

F

5= % {2 bun(a3REW(E WX + ) — X(7 + €U F mx(2) + mf(E)x(i)}

=m Z (72 )(F21Q V) Z1)x(31) (1)

2,71

which has Gy, as symmetry group. The sum is over the sites of the lattice, and the directions tp =
1, 42,43, %4 f_uH(z) = A B Py definition. Here we introduced for later use the abreviation
Qz,z, = (Z2|QU]|Z1}

Q=5 = mifn s + Q;QEI]
- 1 _ _
sz = o~ ¥ b nimbn 26, 242, U(E ) (72}
Ftp
In order to calculate the correlation function (: M{z)M(y):) = {(M(2)M(y)) — (M{z)}{M(y)) of the
Jocal meson field M = 715 o ¥alZ)xa{z), we use the path integral formula:

Gx@Rd®) = 5 [ [ PIIPbe Wx(E)x(E)xta(pe (SR, (73)
@) = [ [ DI e()x(z)e SR 9, (74)

Here $, denoies the pure gauge action:
Sy=-B2 (U(M) +U7(D) - 2) (78)
5]

where /(D) is the parallel transport around a plaquette. The sum in Eq. {75) goes over all plaquettes
of the lattice T'. Integrating Eq. (73) over the “Grassmann vatiables™ ¥(z), x(2) we get

¢ M@, M) ) = 5 [ DU 5 ER IR R det Qe . (79)
where Q is given by Eq. (72). The normalization factor is
7= f/D[U]D[X,i]e—(5.+mi(1+¢[ffl)x) - ,[,[D[U] det(m@)e 5 (77)
The following calculation will be performed effectively in the quenched approximation where
detmQ =1 {78)
Substituting Eq. {78) into Eq. (77), we get Z=1 in the zeroth and first orders in 3. One can see this by

expanding e~“+ and using the orthogonality relation for matrix elements U:‘s(g) of irreducible group
representations of dimension dim {{/*}:

1
d, U, Ut;, , = =, g 79
fs e 9)Va,8(9)U5pr(9) = i 0aarda,p (79)
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Substituting Eq. (78) in Eq. (76) we get in the same approximation the following expression:

( ME),ME D = [ D)5 (107 BHEQ e - (30)

for the correlation function of the local meson fields. This is the main formula for the following
calenlations, Since Q is of the form @ = m(1 4+ Q) we can expand @~ in a geometric series:

D= S e (81)
n=0¢

From Eq. (72), we see that {Z;]Q|%1) # 0 only if Z,,%; are neighbouring points. Therefore we may
describe (ig!Q_"ﬁl) with help of a sum over paths CZ 5, of length n from Z, to 2, which are generated
by the links I, connecting such neighbouring points. The contribution to the matrix element of or
associated with such a path is the product of the factors associated with a single link according to

Eq. (72). This leads to the well known hopping parameter formula for the quark propagator with

interaction
. S 1 & —1\® .
ElQrE) = —3 (5] 2 I #EaU(.), {82)
m m
n=0 €2 = lecen
Thus we see that the contribution to the coefficient of the n** power of the hopping parameter x = E_Tl

associated with the path C™ is the parallel transport U(C) along the path, modified by the factors:
B(1.) = B pz) Tor the links l, = [E, ], p¢ > 0, {~1L,) = —5{l,.) .These factors are characteristic for the
propagation of staggered fermions. Now we insert the expression Eq. (82) into Eq. (80), and perform
the integration over the gauge fields t/(1,,) in strong coupling approximation. First, we consider the zero
order in 3, i.e. we set e~ = 1. The integration in Eq. (80} over products U(CZ,)U(C 1y} of parallel
transports associated with the quark and antiquarkline respectively. Because of the orthogonality
relation Eq. {79) we get a non-zero contribution only if, for each link I, the link [_, is contained with
the same multiplicity in C,, U C#,™. This implies that the area enclosed by €, UC o= C is zero,
and that Ht,.eE U(l.) =1 . We call this type of quark anti-quark paths C:% gg-treegraphs”, Because
of L )p(~1.) = —1, we get for such graphs & with 2N links:

H Al) H ﬁ(l:;):{fl}}v! 2N =n+n'

lely,  HECH
These considerations lead to the following evaluation of Eq. (80) in zero order of 3 :

s N
(MEME) =Y, () Tl (83)
N

where Tgg{ N) is the number of ¢f zero order graphs of "length™ N connecting # and §. In order to
evaluate the expression, Eq. (83), we have to discuss the structure of ¢g-zero order graphs in more
detail. Let us consider a simple quark path C" from y to x, which is described by an ordered set
of unit vectors C" = {e,,,...€,.}. The first step goes from y to y + e, ,the second from y + e, to
1 + ey, + €., and so on. Along the path C™ we may return to y a last time with the step ¢, in
such a way that the subpath C? = {e,,,...e,,} incloses zere area. Then we call CF = Dy a dressing
of C™ at y of zero order, We continue to the point y 4 e,,,, and determine there the dressing of zero
order in the same manner. Continuing in this way, we decompose the quarkpath C™ into dressings D;
and remainders {f,.) i.e. C" = Dofu D fu,.. D fy.- The path without dressing § = {f., ., fun}
is called a guark trunk. It has important property that

fui # —Frin ‘ (84)
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This means geometricaily that ¥ is not backtracking. The representation of a quark line by a quark
trunk and dressings allows an important reordering of the sum in Eq. (83}). One may consider a q¢
zero order graph as consisting of a non-backtracking quark line with dressings and a strictly parallel
non-backtracking anti quark line with its own dressings. Therefore we may bring Eq. (83) in the form

. b= 1Sy Basdn) "
CMEM)D = 5 S0 G {Zd,(m,) } (35)

the sum E,d,(m)" = 2ma! is the contribution of all dressings of zero order at a given point
of a non-backtracking quark, or antiquark line B,y(n). Eq. {85) shows that one can restrict the

summation over all paths to a summation over ail non-backtracking paths, if one "rencrmalizes” the
hopping parameter % to % . Following Martin, we calculate now the contribution of the dressing

with the technique of generating functions . For this we define

Wi(z) = f:a,z’ {86)
=0

where d, the number of closed paths from x to x enclosing zera area. If we would calculate {3(2)x(z))
according to Eq. (74) by the hopping parameter method combined with zero order strong conpling
approximation, the result would be {¥{z)x({(z)} = W(_T:ﬁ) Therefore the behaviour of this function
for m* — 0, decides on the spontaneous chiral symmetry breaking in this model [10]. We shortly
indicate the calculation of W(z). A closed path C = {f1,..fi, fit1,.-f2o} starting from x, enclosing
zero area, is called tree graph of lenght r. It is called an irreducible tree graph (ITG), if no subgraph
Ct = {fi,---fi},i < 2r exists, which ends in x. Let I(n} be the number of irreducible tree graphs of
length n and K{(z) the corresponding generating function

K(z) =Y I{n)" (87)

n=1

The number d, of all tree graphs of length r is then
d. = Z I{(n) I {ny)d{n;) (88}

nyng +.np=r

It follows from Eqs. {86) to (88) that

W(z) = Zd.,.z = EK""(Z

m=0

89
K(z) (89)
In order to calculate K(2) we remark that one can compose an I'TG of lenght n from a first double line
of length 1, and an arbitrary tree graph beginning at z + f;, of length n-1. Because of irreducibility
no first step of the irreducible components of this arbitrary graph is allowed in direction — f. Since
in ¢ dimensions we have 2d direction, this consideration leads to the recursion formula

=11 % I(m)(ny).d(n) (Zd‘ 1)” H1)=24,7(0)=0  (90)

ny Rz tanp=n—1 2d
Multiplying both sides by z", and summing over n we get the equation
2 f2d — 13! 2dz
K(z) = 2d.z (7) Kiz)= 2% (91)
§ 2d 1- (2K (2)
Solving this for K(z) leads to

K(z) - - VT (@d-1j4z)

{2d - 1) (92)

15

and hence we can get W(z) from Eq. (89}. With help of K(z} we caltulate the renormalized hopping
parameter ar. We remark that the dressing at a site is composed by ITG’s. In order to aveid over-
counting of the paths one has to take into account the nonback tracking conditions. This leads, as in
Eq. (90) to,

4= % HnI(n)I(ng) (2d' 1);, (93)

2d
n g dLnp=r

Thus we get the renormalized hopping parameter a:
> 2d — 1\" 1
1= d,z" = K'(2) ( ) = {94)
LD W) T EKG)

with z = —ﬁg, or with help of (92)

a=m+vVm?y2d—1 {95)
and therefore from Eq. (85)

( M{z)M(y) 3} = m2 Z (02) (n). {96)

For the final evaluation of Eq. {96) we generate the paths between x and y = 0 step wise. Classifying
the paths of length n by the last direction p we get for their number Bog.(n) = B .(n)} the recursion
relation

Bueln +1) = Z Bz e, (1) , (97)
vE—n
We do not sum over p = —wv, because the paths are not backtracking. Now we do the Fourier

transformation of Eq. (96) and Eq. (97). For the Fourier formations B, .(r) of B, .(r), follows from
Eq. (97) the recursion relation

Bpunt+1)= ¥ &PIB, (n) = 3 Mu(p)B.p(n) (98)
vE—p ¥
with )
M, =P g, ). (99)

Inserting Eq. (98) in the Fourier transformation of Eq. (96) leads to

= dpe‘*"’-"‘E( 2) e

_ 1 ~ilpe)eT 1
= o [ (—l+“—]:M(p))E (100)

The matrix M(p) is an operﬂtor acting in the 8 {=2d)-dimensional space of the "step vectors” spanned

by the basis {T (0,8,. 1, 0, ..} It follows from Eq. (96), that we have to count paths, which start in
all directions at y=0 and end from all directions at x, therefore we have in Eq. {100): £ = 3, £.. The
poles of the Fourier transformation of tke propagator determine the "masses” of the mesons. These
are determined by the equation

(s M(z)M(0}:)

det{M{p} + o1 = 0 {101)

We discuss this "mass spectrum” for the different meson quantum numbers following from the repre-
sentation theory of the symunetry group of staggered fermions. The method of the "resummed hopping
parameter expansion” which we explained here in the zero order of 8, will be extended to first order
in section 5.1 .
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Figure 2: The Multi-link Operator

4 The Propagator for Muliti-link Meson Operators in Zero-Order
Approximation

4.1 Muiti-link operators

It is the aim of this Section to investigate meson field operators composite of quark and antiquark
fields, which allow the description of the whole variety of meson quantum numbers associated with
the symmetry group G, of lattice fermions. {Compare Sect. 2.3). It is seen from Eqs. (16), (41} that
the 16 spinor components with different flavours in the continuum are mapped on 1-component lattice
fields defined on 16 different sites of the fine lattice. This is one reason why we need for our purpose
gauge invariant bilocal products of quark fields, which we call multi-link fields. Such fields are also
necessary for the description of rotationally excited meson states.
We define the muiti-link meson operator MP7(z) as

MEF(z) = erlevtianctery(a)sg, J0(F)x(z + er)
CTREW(FIdz+er) (P (z)= 1 (r02)

F is a path from X to £ + €5, F = (2, fi1, ..fif), b = €y, €5 = ¥; fii with a notation explained in Fig.2.
We call F the multi-link-path. U{F)is the parallel transport from x to 2+ ey along the mmlti-link-path
F.

U(F) = Ulz, p)U{e + gir, p2).-Ulz + er — pig, p1y) {103)
F is an ordered multi index corresponding to the point = e;,as defined in Eq. (40): F = Flej),ep =
Youcr B er is a vector defining the irreducible representation of the flavourgroup (see Eqg. (67,68}).
A special case is ey234 = (1,1,1,1). f = 0 or 1 for an even or odd number of links of JF, respectively.
The multi-link operators are transformed under the different symmetry transformations in the
following way:
a) Gauge transformations. Under gauge transformations the fermions transform as :

X(z +e5) - glz +es)x(z + e5) X{(z) — X(z)g (=) (104)
and the gauge fields Uz, s2) as U{z, u) — g(2){z,p)g~(z + ). It follows that U(F) transforms like
U(F) = g(2)U(F)g (= +e5) (105)

and hence that MI¥ is gauge invariant.
b) Flavour transformations. We shall prove that

(EdkMLJ") (2) = ™ Ened DT (2 4 eg) (106)
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For the proof we show first that the formula
Pl (x texc W FPH(z)KPH(ztep) K PH{z)F = €T BT es 2K (107)

is correct. From the definition of jg i in Eq .(9) and the associative law of Clifford multiplication it
followsthat

PR.KPHAKL = PHKALPK.L (108)

In a similar way we get from the antimorphism B in Eq. (4)
paxpKa = (-1 (108)
with h = ordH, k= ordK, r = ord(HAK). We note that: H(z + ¢;) = HAF and calculate

PH(x).FPH(ztes) K PH(z),KPH(z+ex ) F = PREAFPRKPHEKPHAKF =

PREPRKAFPEKAFPRF = prEPRF = (-1fFordFskigrifanster.ex) (110}

With help of formula Eq. (107), we prove Eq. {106} by direct calculation starting from the definition
of the flavour transformation of the y fields in the proposition, Eg. (61) :

(ed*ME7) (2) = erlertfontertly(y 4 e )U(z + e, FIX(2 + €5 + €x)oH(a)kH (s ter) K PH()F
— eiw(eb,eK)ML.f(z + ek)

¢} Geometric Rotations. Under the rotations of the lattice the multi-link operator is transformed as
[M71(z) = p(B, PYMFE LA (R ) (111)
In order to proof this from transformations of the x(z) (Eq. (61}) we need the formula
(R, H(z - er)) = py(z) FPHA-1 o), R pP(R. H(z))p(R, F) (112)
which follows immediately from
R (de¥ vde")R = R (paia)rds"SF) R = p(R, H(z - FY)puyz) pde® AR
= (B7'dz"Rv R™'dz" R) = p(R, H(z))o(R, F)pa(por)por pdat B HIMRTE)
The transformation law Eq. {111) follows then by direct calculation as in (b},
d) Charge Conjugation. The action of the staggered fermions, Eq. {46), is invariant under charge
conjugation C defined the following way
C: XC(’-‘) = ﬁH(:).ny‘X"T(z) 70{3) = *ﬁH{z).uM}(T(‘ﬂ) UC(Z, u) = U(x,p) {113)
The transposition y — x? refers to the colour index, U/*(2, ) is the complex conjugate of U{z, x).

This transformation corresponds to charge conjugation in the continuum. This transformation of the
basic fields implies for the composite meson operators

c 1) .
(M%) (2) = () 5 emenem M T (o o) (114)

where —F is the path from z + ey to x: (2 + ep, —fiy, —fip_1,..s —fla )
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Figure 3: Screening at the Zero Order

4.2 The 2-point functions of multi-link operators

In the following we calculate the expectation value of A4%F(z)AMD7 (y} in zero order of strong
coupling approximation by the methods explained in Chapter 3. After fermion integration we get in
quenched approximation a formula similar to eq. (80).

(: MM @My = [ [ DOV )57 WU (FWE N2 ) (41Q ) expl—5,).

(115)
We insert for {z|Q!|y) the hopping parameter expansion Eq. (82} and perform the D{U}-integration
in zero order of . In order to get non-vanishing contributions, a part of the quark and anti-quark
lines must screen U(F} and U(F’) and the remaining parts must enclose zero area. We show a typical
example of the screening of multi-link of fig.2 in Fig.3 . The summation over all zero order graphs
from point z to point y can be performed essentially by the same procedure as in Chapter 3, with the
result that we can represent (: MBF () mLF(g) :) in a way similar to Eq. (100}

1

Wﬁ@»f‘m (116)

(: MEZ (2)mB7'(0) 1) = 515 / dpe~ =)yt (p, F, L}

where n! is the hermitian conjugate of . In the following we have to discuss the dependence of
7} {p, F,L} on the multi-link operators and the relation of M (p) to M(p).

First we discuss the different ways in which the zero order graphs screen the mwlti-ink 7 =
(2, ft1,..it5). We call the non-backtracking line directed towards z, the quarkline, As it is explained
in Fig.3 the quark line screens the part of F from ¥ to x. The quark line meets F for the first time
in Z. The non-back tracking anti-quark line is uniquely determined by the quark line. It screens F
from « + e; to T. We classify the paths by this point . In order to avoid overcounting, the quark
line must come to Z not along the direction —; (in the notation of the figure), because in this case it
would meet F at the first time in x* and not in 7. By the same reason it can not come along —p7;.
We have the same situation with respect to the multi-link path F” from 0 to ep, where the quark line
leaves F' at ¥, and screens it from €4 to §. The remaining part of F is screened by the anti-quark
line.

Now we consider the double lines from ¥ to T. The summation of these zero order graphs can be
performed with help of Eq. (100) of Chapter 3. as explained there, the function

—i{p.x 1
Sulen ) = g [ dpe 0Lt (117)

“14 —fM‘{'(P)
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describes the summation over all zero order graphs beginning at ¥ with first step 5, and come to =
with last step ji. From the forbidden directions of the non-back tracking quark and anti-quark lines
at the points Z and ¥ discussed above, follow restrictions on the initial and final steps of the trunks.
These we describe by a sum #!(Z}, 7(3) over all allowed step vectors:

a(F) = E §L for T interior point of F
BE— -1
Mez)= 3 & e tep)= Y €l {118)
uE—m pipy

Therefore the summation over all allowed trunks from ¥ to Z may be denoted by #!(2)5(Z, F)n(¥).
The final expression for the multilink two point function now contains a factor af H,ne}-mh, pll.),
which comes from the parts of the quark and anti-quark lines screening F, as well as the factor
e"”(f-’”"+°!+’L""];3H(,)_F given in the definition {Eq. (102}) of the multi-link operator. There are
similar factors for . Thus we get

(: MEF ()M 0) :) = ot Afz) A0} 0D 3 () S(Z, TIn(E) (119}
55
with Az, F) = einlfemn 02 ppree) P Miuerense, #1,). Before the evaluation of Eq. (119}, we prove
some important properties of the "screening factor” A(z, F}.
Lemma: (1) A{z, F) independent of x: A(e,F)= A(F).
(2) A(R™YF) = p(R, F)A(F), where p(R, F) is defined in Eq. (61).
Proof: N .
Besides the vectors e, = (0,0,1,0) we define the vectors g, = ¥, <, &.. One easily verifies the
following formulas

in{e,—ev.en) 5 ax{e, —eu, eu) =

(@) PH(z4o)u =€ Pz (DD Hieesy = € Ay Hix)
te) errleperitin(e,en) o pirleiasivenies) (120}

With help of these we get the behaviour of the three factors of A(z,F) under transtation. From
associativity, Eq. {108), we get
PH(z)F = PH{z)or PH(z 481 hoa s PH{z 4614801 W0 for F = (01, ..y00)}
and therefore by Eq. (120.2)
in{e, —

) By eF= Y € (121)
wEF

PH(z+0),F = €

For the second factor, Hi..efz.zh, Al = Bouy (2} Prag Bz 1y }or Preg H (b iy +onniig o1 with the conven-
HOD Pr(a),—y = —PH{z}u We et with help of Eq. (120.b}

I )= Tl T ) (122)

Tn€Ferirtitey LueFautey

For the third factor we get immediately eirliennstepeti) o pinlfeaserepv)gin(fonster ), Multiplying
the phases which the three factors of A(z, F) get due to translation and using ¥, = ¥, (mod2) and
Eq. {120.¢), proves the translation invariance of Az, F).

In order to prove the second part of the lemma we put x=0. Then we have the following

’
AF) = (U] Bt Bt +osses) (123)

i=1
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n{F) is the number of negativ y;. For the evaluation of A(R~!F) we use Eq. (112), which leads to

f
ARTVFY = (-1 [T o8, o R, | Dlpiz]-ors Dlitg ) A(F)
i=1
We remark that p( R, ||| pg]..., &|pgl) = p( R, F), and that the product n,-jﬂ p(R, ||} is the product
of minus signs generated by the rotation R, i.e. {—1)*F+=(F™'F}  This completes the proof of the
Lemma. In the future we restrict F' to such multi-links which are generated from F by rotation:

F' = R-'F. Then we can use the lemma to evaluate the factor A% (2)A7'(0) as function of p(R, F)
and p{ R, F'). We rewrite Eq. (119):

. gLF LE Gy - o * —it5. 2)5l(E ! A(5
(- ME7@MET(0)5) = ool R P) S 2 [ pexp =ith @) g )
_ _ (124)
#(2) = nl(@)e " (Prente) »ii(g) = n(g)et B hz=7-az,
with nl{Z), 5{y) defined in Eq. (118). From Eq. (97) we get for S,.(z,¥):
1 .
At E s;w("c - i,y) = Sz, y) {125)
pE—p
and hence for §,,(z,y) = ™7 ¥L)E (2 y):
1 z - in(epeL )G
- E Z Sﬂvtz i 1 y) =€ (e L)Suv(ziy) (126)

PFE—I

‘This formula helps us to perform the summations over g (following from Eq. (118), Fandy in Eq. (124).
If we do the sum over g at the point Z = z + e, Eq. (126) shows that this results in the substitution
Wtz +ef) — —{_ple’i’("*‘b’ef‘ﬁ!). Adding and subtracting this term and summing over p at
the point T = z + e — jiy, with help of Eq. (126), leads to the substitution: #t(z + e, — iy} —
—.f_w_le“-"“""‘l'"f‘f‘f‘i‘l'*‘). Following this procedure and shifting the integration variable p to
P + €1, we get our main result which we anticipated in Eq. (115) and which we formulate as a
proposition.

PROPOSITION: The 2-point function of the multi-link operator MEF(z2), Bq. (102), is, in zero order
streng coupling approximation,

(: M7 ()M (0) 1) = 020 p R F) 5 [ dpese im0y F) 3 st 0)

where

FoRF, ppF) = 2 g, e BEIR) T

meEF allv
o= i—1 =
2 F) = -2 % P L3 g,
WEFT ally

and M%(p) = M(F) = M(p + ez) defined in Eq. (99).

4.3 The group theoretical analysis of the particle content and the spectrum at

B=0

Now we determine the quantum numbers of the particle states described by the propagator of the muiti-
link operators calculated above, For this we construct irreducible field operators” with transformation
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properties which match the quantum numbers of the particles. These quantum numbers of the particles
on the lattice are described in Sec. 2.3 by the irreducible representations of the symmetry group Gr.-
They are the "momentum star”, the "flavour orbit” and the "reduced spin”. We consider in our
calculation mainly particle states belonging to the momentum star 5ty with a reference momentum
7 = (0,0,0,E). In this case E can be interpreted most directly as energy in the "rest system”, i.e. as
mass in the continuum limit. We expect from continuity of the propagator in the momentum p that
the consideration of other stars does not lead to qualitatively different physical results. In Eq. (106) we
showed how the multilink operator transforms under flavour transformations. This transformation rule
(after Fourier transformation) is the same as that of a state vector of the irreducible representations of
Gy, described in Eq. (65). We have already defined the multilink fields in such a way that their flavour
transformation property matches those of the particle states! This means that the fields "carry” the
same flavour quantum number L as the particies.
In order to match also the reduced spin &, the following meson operators are considered

(I
MES(2) = 3 Dowls Mpls, F)MMSTF (128)
LI %
where 547 is the group of rotations of W3 which leave L invariant: $4p = {s|]s7'L = L,s €

W3}.D7, (s} denotes an irreducible representation of 54z. The transformation law of Mﬁ;‘:ﬂ,(z}
under the rotations of §4,r follows from Eq. (111} by the usual calculation:

(lsiMEs (=) = 3 Dol s)ME (s 0) (129)

In the momentum star Sty which we consider, §, 7 is the reduced spin gronp of the reference flavour

T, defined in Sec. 2.3. The Fourier transformed field Mﬁl’:". =3, e‘P’Mf',l';“,{x),p =p; = (0,0,0,iE)
transforms according to Eq. (129) as

(o155 (2s)) = 3 Dyl )M ol p3) (130)

This means, precisely like the corresponding state vector with momentum p; in the irreducible repre-
sentation of G with reduced spin ¢ as described in Eq. (63}

According to the particle description by quantum fields, a pole in the 2-point function of Mi‘;,(p‘,—}
indicates the existence of a particle with the lattice quantum numbers: flavour L and reduced spin o.
Thus we calculate this 2-point function with help of the expression Eq. {127). Inserting the definition
Eq. (128) into Eq. (127) we get for the propagator of Mﬁ;‘;(t} in momentum space

o BT 1 ,
{: M (p)ME2(0) 1) == (Rn(p, F)) T 3wy e P08

with

AESy L mEeF! atle

Ri(p,F) = Y Dol (-2 S g, PED) +§:5..y) (132)

Because of p*(5, F)} = 1, the p(5,F) in Eq. (127) is compensated by the p(5, F) in the definition
of the meson field Eq. (102) . With sp; we denote the permutation of the step directions ;2 under
the rotations S. U(s)f, = £, defines a representation s — (s} of Syf in the step space. As usual
5. D2 (571 ),,, for fixed n, projects on an invariant subspace in which U{s) is represented as the irre-
ducible representation D?(s). Since p = p; + e is invariant under s € $4,1, the expression B )
is independent of s and the matrix ML (p) = €™#(1 — §,._,,) commutes with U{s). Combining these
two facts, namely that M‘f"‘,(p) decomposes inte blocks with respect to the quantwm number ¢ and
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L o cosh B (37, (P)sue)
{1, 1,1, 1) (1+)W3 Mo(l:!o) (U__ N 15)
{1,1,0,1} | (1*)p, | Mo{ag)+2 | (17,15}
0,0,1,1} | (1%)p, | Molag) +4 | (177,15}
(0,0,0,1) | (11w, | Molag)+6 | (07F,15)

ol 20| b e

Table 1: Quantum Numbers of the Zero Order Mesons

that the vectors (Rn),Eq. (132}, belong to a subspace with quantum number 7, leads to the result ihat
the propagator of the meson field ME“(z) has a pole, only if ML(p) has an eigenvalue — % for an
eigenvector lying in an invariant subspace with the quantum number o, i.e. in an invariant subspace
belonging to the representation I?(s} in the step space of the reduced spin group 5, 1. An explicite
calculation leads to the following decomposition of the representation U(s) in the step space:

U(s) = 3(1%hw, + 25wy + (3w, (133)

for the reduced spin group W; associated with the singlet flavour orbits, Eq. (67), and to
Uls)~4(1%)p, + (17 )p, + (1"*)p, + (27 )p, (¥34)
for the reduced spin group Iy x Z; of the triplet flavour orbits, Eq. (68), where My = M;::’;ﬂ At

the zero order a = ag = m + vm? + 2d — 1. It is easy to see, by substiluting @ in My form = 0,
that the state # 1 having cosh E = 1 is just the expected Goldstone boson, which comes out as result
of the spontaneous chiral symmetry breaking{10].

5 The Calculations in First Order

5.1 The 2-point function in first order of 2

In this chapter we extend our considerations, which were restricied up to now to zero order sirong
coupling approximation, to include the terms in next order. First we consider the modifications of the
resummed hopping parameter expansion explained for zero order in Chapter 3. For this we evaluate
Eq. (80), after inserting Eq. (82}, without setting e 5 = ¢85 equal to one , as it was done in
zero order. We get terms linear in 3, if a combination of quark and antiquark paths of the hopping
parametier expansion (Eq. (82)) encloses a single plaquette (see Fig.4) . In this case the integration
over the lattice gluon fields , using the orthogonality relations ,Eq. (79} , gives a result different from
zero, because the parallel transports along the gg-lines around the single plaquette get "compensated”
{"screened”™) by the plaquette terms of the action (Eq. (45)) in the expansion e #% ~ 1 — 85, . The
evaluation of Eq. (80) leads to an expression of type Eq. (83):

1 =/ -1\ (1) At
MM = 3 (525) T4 (135)
2.

Here TLQ(N ', B) is the weighted number of g§ zeroth and first order graphs of "length™ N’ connecting
x and y. The expression of the propagator, Eq. (135), also has to include some of the higher order
terms. For the summation in Eq. (135) we proceed like in Chapt. 3 by separating the gg-graphs
in "dressings” of the q lines, (§-lines) and trunks. The first order correction to the "renormalized”
hopping parameter a~1, Eq. {95), follows from the inclusion of a "plaquette” in the tree graphs of the
dressing. Examples of such graphs are the same as those shown in fig.4 but include only one plaquette.
0. Martin [10] has calculated o up to first order by methods simnilar to those explained in Chapter 3.
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Figure 4: A Firsi Order gg Path

(a): Step (u) (b): Step {vp —v) (c): Step (ur)

Figure 5: The First Order Steps

His result is

z 24 16(d - 1)° i + ,B\D ap=m+ vm? +2d-1 {1386)
' =agt w708 = N = m -
O Bt r2d-1) 0" ro
with §' = 52— = § for QCD .
After the renormalization of the hopping parameter we can represent Eq. {135) in the form

{: M(zIM(y):) = ;152: (%)N B!} (N, %) . (137)

where B,(.f.j(!\r', o—"?;) refers to trunks generated by N steps. In first order calculation there are three
(]

types of basis steps denoted by ey, ey oy €uenor (), (v, g, ~#), {pt, ¥} (see Fig.5) . The first two types
shift x to x+pu, the last type shifts x to ¢ + e, + e,. Any path from 0 to z which is a combination of
these steps we cal! a first order trunk. As in Chapt. 3 we classify the trunks by their last steps. In
four dimension we have 8 different steps of the first type. Because of y # +v there are 48 different
steps of the second type. The last type has 24 different steps because it is symmetric in the indices
g, v. This makes all together §+24448=80 different (first order} steps. We represent the paths of N
steps as a vector with components refering to this classification

5 < n) pin

Bz,D (ns ;;oi = (B,‘; )aBLu]!BL:)_p) (138)
Its components are the weighted'numhers of the paths of the corresponding type. A step enclosing a
plaquette contributes a factor % to the weight. The factor 8' results from the integration over the

o
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Figure 6: The non-backtracking Conditions

lattice gauge field. The factor . ol follows from the fact that a step w1th plaquetie containes four links
instead of two as in zero order. The equation in (137) is the sum of these components. We need to
find a recursion formula which relates B(") to Bi* Y
-1
B =Y MY, (139)
o

where s runs over the index of the 86-dimensional step space, and also denotes the shift by the steps.
In our method of organizing the summation over all paths in dressings and summation over trunks,
one of the main problems is to avoid overcounting. This leads in first order to the following conditions
for consecutive steps described by the step matrix.
1. Step {p) cannot be followed by step (—p} or by step (v — p— v} . (Fig.6.a}
2. A step : {p,v) canmot be followed by steps : {—p,~¥), (—p}, (—¥) , (Fig.6.b)
nor by steps {p', —p, —p} , (', —v, —p") (Fig.6.c).
3. If we have the steps {u) or {uv — p} , we have a factor 2 in the corresponding step matrix element,
because the qunark and antiquark lines of the trunk can be interchanged (Fig.5.b,Fig.5.c). However if

the step {v, p1, —») is followed by a step {i', ») we have only a factor 1, becanse the interchange would
lead to backtracking (Fig.6.d).

4. Since we have the equivalence of the two consecutive steps (v, p) & {—w, g, v) with {&, g, ) @ {p, v},
we have to omit one of these (Fig.6.e). From these conditions we construct the step matrix M,,s up
to first order in A'. We give the matrix M, explicitly for the Fourier transform B,(,:,]:
B =3 M8, Y {140)
o

For the shift {u} and (v, ¢, —»} we get then a factor eP»,p_, = —p,; for a step (ur) a factor eilputen),
Thus with the summation convention for repeated indices the matrix M., is given by:

B = em {(1- 6B (L 80 8 DBET 4 (- ) - 80 B
BU) = prenetme {21 - 6, )(1 - 6 ) BT
£ A =G (=8 )1 b (1= 60 ) B
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+ (L= Gn) (L~ S )2 - by = 8) BLT)Y

=g
BY) . = grem {20~ 6,001 - a,,.p)ﬁf“-” +2(1 - 6 )1 — 83BN
+ (1= )1 = 62 - 6,0, ) BLT) (141)

The Kronecker symbols 4 i this equation guarantee the fullfilment of the above conditions 1 to 4. The
factor 8 = :i‘; associated with first erder steps was explained above., The recursion relation Eq. (140)
(3

and the explicitly written matrix Eq (141) allow us the sunmation in Eq. (137), with the result
1 R N s AL,
o dpe Eo =) & M (p)é
n=

L —itpe)er [ ___ L
L [ apeieg (u;l,mp))‘f (142)

In the case of the propagator for local fields we have for the initial and final step vector £ : £, =
L, = {u), (s, ¥, — ), (£, ). We discuss the more general cases connected with mmlti-link operators of
different flavours in the following sections. Finally we want to emphasize again that the step matrix
above generates trunks related to higher orders in 4. However the different plaquettes which may
appear in the same trunk are separated.

Now we analyze the symmetry properties of MZ{(p} = M(p + ). From the four dimensional W
syrmmetry of the lattice it follows that under four dimensional rotations of the lattice any vector of

-n
the step space B (p) = (Bu")(p) Btn}(p B IJ(p)) transforms as :

-

(s M(2)M(0) 9

618" (p) = (B0 7 00 B s (5700 B (570 0)) (143)

where s € W, ,W,-four rotational group and p = (f, p4).

in the center mass system (§ = 0), we see from (143} that the matrix M%(p)is invariant under
the spacial rotations of W3, which means:

D(s')M = MD(s") (144)

if s' € W3,s'F=0,s'er = e and D(s') is the representation of the group W3 in the step space . This )
representation is defined on the step basic e, ., in the following way:

D("J) (em e e#Vﬁu) = (es"‘ €=ty €grml =1y gim1 p) (145)

Now we will use the known gronp theoretical techniques for choosing a new basis of the step space in
such a way, that the representation in the step space decomposes into invariant subspaces of D(s').
According to Schur’s Lemma the matrix ML decomposes then into block matrices,which correspond
to the irreducible representations of W3 [19]. The decomposition into these invariant subspaces corre-
sponds to a representation of I}s') defined in (145) by a direct sum of irreducible representations of

Wy given in the Appendix .
D{s) = 11(1F hsr, +10(37 ), + 1002 hwry + (17 Juw + (3% )wy, + 303" Jw + 203w, {146)
The same procedure can be applied for the symmtry group § 47> Which holds for the triplet flavours

with representative element of the fiavour orbit ez. In this case the (s} decomposes into irreducible
representations of 5, 7 I=Dix &y as

U(s) = 21(1%)p, +10(17)p, +11{1"*) 0, +13(27 }p, +{1" ), +3(1"" " }p, +3{2% }p, +2{1"*)p, (147)
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In order to get the pale of the meson propagator we solve Eq. (101) for every one of these matrices. For
the evaluation of the determinants of the matrices which have dimensions up to 21, we used partly the
'Reduce3 Program’ on the computer. The results are given in the Tables.1,2,3 . For p = {0,0,0, E},
the sub-matrices MEL(F), in the subspaces belonging to the last four representations in Eq. (146) and
in Eq.(147), do not depend on the energy E, therefore they do not give any poles. Surely they give
poles in the second order calculations at . So there are poles in the subspaces of the representations
(15w, (37 dwss (28w, (1), (17 )1, (1™ )b, (27 )p,. It will turn out that these representations
determine the reduced spin o in Fables 1,3 . For some of the L , the poles are at coshE > 0 ; for
the rest,the poles are at cosh E < 0. The first ones are listed in Tables 1,3 . The latter ones have no
physical meaning, they belong to T's with the opposite fourth component.

The considerations up to now are purely formal. These poles still have not yet a physical interpre-
tation becanse they are not associated with qantim numbers of precisely defined expectation values of
field operators. These will be constructed in the following section from the one link-operators , which
seem to be enough to describe the physics at the first order approximation.

5.2 The first order approximation of thie one link-field operator

For the one link-field operator :
ML“"(Z) = etmlertenns +!uv!)f(t)ﬁﬂ(=)‘yU(z, Bx(z +e,) {148)

we caleulate the two point function (: MES(2)MEF(0) :) up to the first order of 4. As we mentioned
before , the quark line starts from the point e, and goes to the point x, the anti-quark line goes from
z + €, to 0. The two lines are non-backtracking and can include at most the area of one plaquette.
Because of the links [f(2, ji), and U(0, i) in the expressions of M“#{z) and MZ*+'(z), the two lines
{quark and anti-quark lines} also have to screen these gauge fields up to the first order of 5. We
show in Fig.7 the possible screenings up to first order. In this figure we see that the trunk until the
point y is of the same form as we have already discussed above . Explicitly , it could be characterized
by its Jast step before y, which could appear in 80 different forms. The possible steps after y are
then restricted, by the conditions (1-4) and by the form of the screening which follows. In Fig.7 the
possible screenings are given together with the steps B, etc. after the point y. The factor 2 in Fig.(a)
comes from the interchanging of two lines . In the Fig. (a) the path from z to z + ¢, and also the
contribution of figure (d) are included in the renormalization of the hopping parameter up to the first
order.
There are signs related to trunks with given steps after y and the screenings described in Fig.7 above.
These signs are composed by the sign factors in the definition of the link operator (148) and by the
M1} of the links of the quark lines. For convenience we represent this sign by factor A(x) given in
(119) as;

Az, p) = et ig o) bubie) (149)

times the signs given in Fig.7.
In chapter 4 we gave the transformation properties of A{z, ) for general multi-links. Now we write
the analogrof Eq (124) for the one link field operators. We get:

(s MER(2) M54 (0) ) = Col R, Wp(R, ') [ diexp —i(p, 2)iT(2) W) (150)

1
1+ L ML{p)

where §j = 37, 1,, the sum is taken over the last steps s shown in Fig.7. ME(p) is the B0 x 80 matrix
defined in (141}
The expression §,, defined as :

1

S,p=gl——
rd s 1+ ;]"]‘ML(P)

Tt (151)
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is the Fourier representation of the weighted number of paths from 0 to x with initial step {s} and
final step (s').
From Fig.1 we get explicitly the expression of 7 as:

3
)= M2+, (nwfp + 7+ Enu-,._u) . (152}
4 v

Substituting (152) in (150) we can calculate the two point function of the meson field operator,
Eq.(114), Mf,’;"’m,(pj) of the lattice quantum numbers ¢ and L as:

{: ME“(IME7(0) 2) = (i (u)T 7 () (153)

1
1+ L MEp)
Here 77{j:) is defined similar to Eq. (132} as

) = 3, Dra(s7 s n) (154)

1395

From the physics point of view it is the most important step of our calculation to determine the
quantum numbers L, o for which these meson propagators have poles. We use the decomposition of
the matrix M “(p) into submatrices acting in subspaces of given symmetry described by representations
D7 as described in Sect.5.t and in the Appendix . By the group theoretical structure of 77 ,Eq. (154),
one sees that the vector in the step space 7 has ¢-symmetry. It follows then from the orthogonality
of vectors with different symmetries, that according to Eq. (153}, the meson fields A5 (p) couple
only to poles which lay in a subspace of the step space with the same symmetry o and L. The position
of the poles is determined by the solution of Eq. (101}

In the Tables 1,3 , we summarize the masses, i.e.cosh E as function of the ‘renormalized quark rnass’
a (Eq. (136)) and of A together with the lattice quantum numbers o and L. The correspondence to
the continumm quantum numbers (7€, (n)su(4)): also included in the tables, we discuss in the next
Section. For the states which appear already in zero order the quanturn numbers are given in Table
1, Sect.4.3. The first order corrections to cosh £ can be calculated from the following equation:

4Cy coshE + 2C 1 coshE + Co —2C; = 0

The different Cy, €, C; are defined for every one of these states in Table 2. The a = a®, a0 = of are
defined in Eq. (136). The solution of the last equation in the first order of 8’ generaly is given by:
Co b €0 om a2
= -—= - =—(C — +2C —1/2 = — = 155
cosh rYel C:( wo + 5+ 20x{ye — 1/2)) Yo o {155)
where we redefined the values :

Cy = 3T, G =Cr+ 8¢ Cp=Co+ B'Cy

and o _
_ [ . oC
CIZ_ID+C; CUZJ

3a

D+ ¢
da o

The states # 5-14 given in Table 3 appear for the first time in the first order calculation.
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cosh E

Cz = (aj + a0)F’

Cy = —a* —a® 4 F'(—a] ~ 2a% + 60ag — 7)
Cp = a® — 5a* + a® + Ta? 4 B'(—29af — 170} + 454 + 41)

Cy = (203 + 4af + 2a0)
Cy = a® — @® + #'(6a} + 27ad + 12al + 17a0 — 6)
Co = —a% + 2a® — 6a® — 2a® 4 7a® + §'(17a} — 50af — 9402 — 984, — 3)

€y = /(243 + a5 + 2a0)
Cy = a® — a® + B(14a} + 21ad — 12a} — 250, + 2)
Co = —a® — 245 — 6a* + 2a° + Ta® + B'(—9af — 12243 + 6ad + 282, + 19)

Cy = f'(~3ai — ag)
Cy = —a* +a® + A'(—21ad + 3022 + 68ag — 17)
Cy = a® + 5a* + o® — Ta? + §'(49a] — 54} — 36laq + 61)

Table 2: First order correction of the zero order Mesons

# L o cosh £ G, (M) su)
5 1(0,6,01) ] (37w, %‘:_38 + 2_!5"1(:_9:35 (1*-,15)
6 [0LLL0] 6w |kt gty | (0°19)
71(0,0,0,0) | (2%)w, *g—:";ﬁ + —-—-—-——”ﬁ.‘(';;:H (2tt,1)
8 (1! 1,1, 1) (2+ )Wg %;—11 + ?_E"l:o:-l (2"*, 15)
9 [O.0.00)] (o, | ity t ey | (O219)
10 | (1,1,0,1} | {17)p, 2_’6;-{7_1;_3} _ {7_-:.5% (6* ,15)
11| (0,0,1,0) | {1"H)p, m - et (2 18)
2100 | (7)o [ 4585+ sfatn LC19
13 1 {0,0,1,1) | (27)p, z‘p’f’fﬁa + faad (1+,15)
ulaneg] ehe, [ -k et | 079

Table 3: Meson states appearing in First Order
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6 Physical Discussion

In the following we analyze the resulés which we got from our calculations. These are summarized in
the two Tables (1) and (3). The table (1) contains the 4 multiplets of states which appear already
in the zero order calculation [11],[10]. Tt gives cosh E, E energy, as a function of a = o® (136) , #,
together with the lattice quantum numbers L and ¢. E and m are expressed in units of the inverse
lattice constant of the *fine’ lattice. The first order corrections to the energy of these states are given
in Eq. (155) supplemented by Table 2.1t is possible to see after lengthy calculation , that the state 1
still has zero mass for m = 0, as it has at the zero order. This justifies our interpretation of #1 as the
Goldstone hoson of the spontaneous chiral symmetry breaking {10j. It is also simple to note that most
of the mesons get mass different from zero for zero gquark mass. This gives us a hint to getting mass by
totally dynamical effects . The Table (3) contains additional 10 multiplets of states which appear for
the first time in the first order calculation. The multiplets # 5-8 are singlets, those from # 9-14 are
triplets. They represent alltogether 22 particles. The masses of these multiplets as a function of 8’ for
different quark masses m are also shown in the Fig.9 . These curves show clearly how the masses of
the states # 5 - 14 go to infinity like — log 8 for 3 — 0. There is an intuitive picture of this feature of
the strong coupling approximation on the Jattice. The quark antiquark pathes of the first order, Fig.4
, describe a relative motion of the quarks over one lattice distance. This relative motion admits states
with more complex lattice quantum numbers, like those we find for the states # 5-14 in Table 3. In
analogy to conventional quantum mechanical states, where higher angular momenta, radial quantum
numbers etc. are characteristic for excited states, we may regard these states heuristically as ’excited
lattice states’. This picture is in agreement with the usual interpretation of the dynamics of lattice
QCD by a confining potential. In strong coupling approximation the string constant of the linear
potential is k ~ ~log8 . In such a potential the energy difference between ground state and excited
states goes to infinity, if £ — oo like in our case. However, the significance of this dynamical picture
can be seen only from a detailed comparison hetween continuum and lattice physics.

There is a group theoretical method for relating lattice quantum numbers to continuum guantum
numbers, i.e. to the quantum numbers of physical particies. We have described in Sect.2.2 how
the symmetry group of the lattice Gz is a subgroup of the symmetry group G of the DKE in the
continuum. The quantum numbers of the ‘physical particles’ described by geometric QCD, like spin,
parity, SU(4)-multiplets are determined by the irreducible representations of § : (j'c,(n)SU“)}.
Therefore the lattice approximations of these particles should have lattice quantum numbers L, o etc.
given by irreducible representations of Gy , which are contained in the restrictions of the continuum
representations to Gy, : (j*c,(n)su(4)}|L. The lattice quantum numbers retated in this manner to
the physical quantum numbers first were calculated by M.F.L. Golterman [14], and later in a more
systematic way by W. Neudenherger, who uses the same notation as we do. The Table 4 is due
to Neudenberger [22] It contains the representations with $t4,(see Sect.2.3), which are contained in
continuurn tepresentations with low spins. From this we can read off immediately the continuum
quantum numbers of lowest spin which could be associated with the 14 lattice multiplets of Table 1
and Table 3. These quantum numbers were added to these Tables.

The charge parity € needs some additional remarks. For local meson operators, and for the 1-link
operators, C can be calculated easily from Eq. (113) . However, triplet states contain states of different
C, like in the continuwum iso-spin multiplets contain different C states, therefore C is not given for
these multiplets .

The main guestion in the physical discussion of our results is of course, how well these represent
the states of an SU(4) quark model. For this we compare the spectrum on the laitice up to the
first order with that of an usual SU{4} quark model. This is shown in Fig.8 . We see, there is only
partial agreement hetween the quantum numbers of the ground state and the first excited states. This
illustrates also the limited justification of our picture of interpreting the states of Table 3 as excited
states. For a comparison of the masses we have chosen the following procedure. For the physical
states we have chosen the energy of the SU{2}-flavour triplets. In order to get the energy values of the
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Table 4: The Lattice quantum numbers and their corresponding continnum numbers

lattice states of Fig.8 for guark masses m = @, #' = §.15 , we have to choose for the lattice constant
of the fine lattice b =0.4f .

In comparison with the physical guark model spectrum there are many lattice states missing. Of
course for a significant comparison with the continuum, i.e. for  — co one has te go to higher order
calculations. From this point of view, we can expect that new states will appear at the second order
calenlation. This we mentioned already in Section 5 together with formulas (146} (147). There the
last four representations do not depend on E in first order. But it is easy to see that they depend on E
in second order of 4. So one can expect additional 16 mmltiplets, 8 of these are singlets, the other 8 are
triplets. There are additional 32 particles in this order. Of course it is difficult to calculate the energy
of these states explicitly, because the step matrix becomes of the order 1008 x 1000. The appearence
of these additional states suggests the following conclusions. As we have seen, the construction of
meson fields as irreducible representations of the lattice symumetry group from one link fields give us
also the particles, which begin to appear at first order in 3. Similarly it should be possible to check
by the same procedure, that the two link meson field operators give us also those particles, which
begin to appear at the second order of . From these facts we conjecture that one may get in higher
approximations on the lattice all the physical flavour states, which are described by geometric QCD.
In this spirit we believe that we have explained in this paper the first steps of a non-perturbative
treatment of bound states in a strong coupling regime. ’

31

A  Definition of the Reduced Spin

For reference momenta p = {0,0,0,p4) and singlet flavour orbits the reduced spin ¢ is defined by
the irreduceble representations of the rotation- reflection group Wi, This group is generated by the
rotations by x/2 in the (12)-and {23)-plane: R'%, B?* and the space reflection II. There are altogether
10 irreducible representations defined in the following way:

(1), Rl RB® -1 I s 41

(1), : R -1 BB -1 I +1

(2w, R"»—'%(\}E f) R“H(_Ol (1’) M 41

{158}
0 -1 01 19 0
(3% )w, : R?— |1 0 o el oo -t I %1
00 1 01 0

(yi)WJ =~ (Si}W.\ ® (IH-)W:

For the same p and triplet flavour orbits the reduced spin group is Dy x Z;. As asubgroup of W;
it is generated by

0 10 010 1 0 0
A -1 0 0 B~ P 00 O3+ 01 0
0 01 001 9 0 -1
The 10 irreducible representations of Dy x Z; are given by
(1*)p, : A~—1 Bw1 Ty s %1
(1), ¢ A=t B -1 My — +1
"f)p, : A~ -1 Bt Mz — 1
("o, - 7 (157)
(l""i)p‘ A -1 B -1 My — 41

o i 0 LR
(2%)p, : AH(O !.)B (10 My — +1
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A Symmetric Vectors in the Step Space

In order to define the invariant subspaces of the step space spanned by the basic vectors e, .., we give
first the following definitions:

41 42 43

Fr, = erte_, Fy = €pk €0k, Fr = e-onte_qgk

+1 32

Tk =  Ege-0 * €o-k-0s T]. = £€_0k0 + €_0_k0,y

43 Fy 158
T = ero-k T €_kox, Ty = er_o—k L€ g ok, ( )
+ + + &

En = en-qte_i—p, Eqy Ele + Epi

+ + E Es

Emw = Ew- Eu € = ente

+
Now we define the vectors egg, T™, T™T which transform under the trivial representation {1)w, :

+™ +
€0y €0y ™= zk>0Fiu n=123 10 = ET:: Exis
+ 4n o (159)
T = TViseTe  n=1234 Ty =Y Eug
By

For the representation (3}w,,where the basic vectors are wh, k = 1,2,3 (corresponding to three
dimensional space vectors) the base vectots of the corresponding step subspace are ;

=F,, n=123% wd =S e wi=T,, 7=1234%

wi = ¥ Egry wf = Ty Epnyr
In the above formulas we sum over negative and positive values of . We also denote the spacial
variables by | and k, so that they have the values I,k = +1, +2, 43 the time variable we denote by 0.

For the {2)w, representation we have the two dimensional basic denoted by @4, ©; ,the vectors of
the step suhspace are:

(160)

+"l +n +n 4n +n

9?=“F3+F3! .0’2‘=2F1_F2_I':3: , n=123

: g T L
ov T = -1, + 7, o] =21 - T, —T5, n=1,234

+ +

E + + +

OF™ = Sy(bay - Bay) 07 = YlEpy + Egn - Eguy) (161)

+

H
0”“’ =Yulfan - Epn) 02" = Vi€ + 6{3‘1 - %un)
0, B S Brag - Blan), E‘”" = Su(2Egsy — B — Ean)

We define the vectors of the (11)p, representation space in the following way:

n i n " 0 +
€ps €0, Tl = Zh:],? FI: T'z = F:h n= 1:21 3; T] = E;Zoﬂ €313
+ n + n
+ h X +
T8 = Yess “u TP = V12T T =7, n=1,234;
+ + :
T, =% E{(s} T =3i, Emy vt o= T Epy
By <o By
{162)

33

The vectors of the (1 }p, representation are:

n

= Fy; n= 1,2,3 TG:ZIM EHI;
. 0 _ {163)
r=r, n=12,34 Y. =Y.0Bus w =3, Eng
Eny <0

The vectors of the (1'*)p, representation are:

7 4" + +
™=F-F, n=123 TL Y s €at — Eimar €3
wd A A i t
I T=p,-Ty n=1,234 T, =314 Eys)— Li=s1 By (164)

+ + By
t = Tiet Bpa) — Liets Epg

For the (2%)p, representation we have a two dimensional basis denoted by (@, @) .The vectors of
the step subspace are:

)
“Fz+tF1, 0’;=F,+:F,n_123
' 1’\
oy —Tz +iTy, ar T ~T1+eT2 m=1,2,34
I:{,.} -t pa By _ +
OY™ = (Bqag) — Blaeny) + ilEgany - Bpoy)y 05 = (Bpsny ~ Eysay) + il By ~ Egg-n)s
s L+ + B .
= (E[sz] Elauz]) + i Efz1) — Epz-1)s 0, ™ = (E[31] E[a_l]) + '(EEM] - E[svzl)

9:”‘ = (E(sz} - 3{3,2}) + i(${31} - é{3—1})- @2{ " = (“-’{31} - 9{3—1}) + t'(JE{M} - 3{3-2})
(165)

These are all base vectors of the invariant subspaces , which have a physical pole in cosh E.
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Figure 7: The Screening Pathes in First Order
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Experiment Theory (F= (15))
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Figure 8: Comparison of the Physical Meson Spectrum with the First Order Calculation
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Figure 9: Curves of the masses of the mesons, depending on 3, with their lattice

quantum numbers.In every Figure we find five curves for the quark
masses m = 0,0.25,0.5,1,2,3. They could be distinguished by their
increasing values near § = 0 as function of the quark mass.
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