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Abstract: 
We calculate the meson spectrum in the strong coupling approximation up to the first order in {3. 

We get 22 new particles which appear for the first time only at this order. These are interpreted as 
excited states. By defining "irreducible meson fields", the 'Susskind~flavours' are discussed and are 
physically interpreted as quark-flavours. 

Wir berechnen das Mesonenspektrum der QCD in der starken Kopplungsapproximation his zur 
ersten Ordnung in j3. Wir erhalten 22 neue Teilchen, welche erst in dieser Ordnung erscheinen. Diese 
werden als angeregte Zustiinde identifiziert. Weiterhin definieren wir irreduzible Mesonenfelder und 
diskutieren mit ihrer Hilfe die 'Susskind·flavours' die wir physikalisch als Quark-flavours interpretieren, 
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1 Introduction 

The calculation of the hadron spectrum in the framework of the lattice approximation of QCD [1],[2] is 
an important problem of the actual research in theoretical particle physics. However, there are many 
difficulties which prevent an immediate significant calculation of meson and hadron masses. One of 
these problems is the spectrwn doubling of lattice fermions [1]. The naive lattice approximation of the 
(Euclidean) Dirac equation describes, in the continuum, 16 species of Dirac particles [3]. Thus it is 
not immediately clear, what is a consistent lattice description of a single Dirac particle. K.Wilson [4] 
tried to solve this question by adding additional terms to the action in such a way that only one Dirac 
particle remains in the continuum limit. However, this procedure destroys important symmetries. 
In an other approach one describes the 16 Dirac particles of the naive lattice Dirac field by four 
independent 'staggered' fermion fields [5]. In this procedure one considers one component per lattice 
site instead of the four Dirac components. Restriction to one staggered fermion field formally reduces 
the number of Dirac particles by a factor of four. In the calculation of meson masses which we perform 
in this work, the quarks are described by staggered fermion fields. 

From a different point of view, this lattice Fermion problem has been investigated by P. Becher 
and H. Joos [6]. Their approach is based on the Dirac-Kahler equation [7], a generalization of the 
Dirac equation. This formulation uses geometrical concepts extensively. The Dirac particles are 
described by differential fonns. The DeRham isomorphism between differential forms and 'lattice 
fields' (cochains) is used to formulate the Dirac-KB.hler equation for free particles on the lattice. It 
can be shown that free lattice Dirac-Kahler fields are equivalent to staggered fermion fields. However, 
in the Dirac-Kahler formulation the appearance of four flavours becomes immediately clear. These 
four flavours appear on the lattice, because they are already described by the differential forms in the 
continuwn. The formulation of the gauge interaction of Dirac-Kahler forms is not so straight forward 
as the free case. There is a difference between Susskind formulation of interacting staggered Fermions 
and the interaction of DK-fields as first proposed by Becher and Joos ('coarse interaction') [B].There 
are physical differences between these schemes [9]. The Susskind interaction seems to have advantages 
because it is more symmetric. It is also a natural possibility in the Dirac-Kahler framework ('fine 

interaction'). 
All these different schemes can be used to describe quarks in the lattice approximation of the QCD. 

In this work we investigate the QCD with Dirac-KB.hler fermions. Its continuum action is 

S ~ j L>l\c(F,F)o+ ('f,(dA- 6A + m)+)o} (I) 

with F the field form of the gluon , (/J an inhomogeneous differential form describing Dirac-Kahler 
fermions, dA and 6A the covariant exterior differential and codifferential operator. (More explicite 
definitions are given in Sect.( 1.1 ). Because of the close connection of this formulation to geometry, we 
call the theory based on this Lagrangian 'geometric QCD'. The advantage of this theory is its straight 
forward lattice approximation. We use the Susskind coupling, because it preserves a maximum of the 
geometric continuum symmetry. Formally, Euclidean geometric QCD describes Dirac fields related 
by flavour transformations of an SU(4) symmetry group. Therefore its physical interpretation is not 
inunediately clear. In the lattice approximation the flavour symmetry gets restricted to a discrete 
synunetry. It is not clear, if the complete symmetry gets restored in the continuum limit of the 
interacting theory .(There is synunetry in the free case ·). Only dynamical calculations can reveal the 
possible physical content of geometric QCD. Here we shall calculate the meson spectrum to the first 
order of the strong coupling constant expansion, using a resummed hopping parameter expansion. The 
resumming technique we use was suggested by 0. Martin [10], and explicitly given to the zeroth order 
in f3 for naive fennions, together with some hints for a first order calculation. We explicitly developed 
the first order scheme and combined it with a consistent use of the synunetry of the problem. This 
procedure, together with the physical intuition, allows us to interprete the states appearing in the 

zeroth order calculation as ground states. The first order gives us, in addition to the non-excited 
states, excited states also, which we don't have in zeroth order. Our calculation has to be compared 
with other strong coupling calculations [11] ,[12] and numerical investigations [13] of the non-excited 
states. The calculation of the masses of the excited states are new. 

The large number of mesons which have been discovered- more than 20 explicitly calculated par­
ticles and at least 32 expected to be exist at the second order approximation- are mainly distinguished 
by different quantum numbers like spin, parity, charge parity, and flavour quantum numbers. The 
relation of these continuum quantum numbers to lattice quantum numbers is essential for the physical 
interpretation of the lattice calculation. The lattice quantwn numbers are defined by the irreducible 
representations of the lattice symmetry group of the staggered fermions. These were investigated by 
M.F.L. Goltermann [14], and in a more systematic and complete way by H. Joos and M. Schaefer [15]. 
We use these results in our calculation. 

In Section 2 we explain the Dirac-Kahler equation, its symmetry on the continuum and on the 
lattice. The resummed hopping parameter will be explained in section 3, where in the fourth section 
we introduce the multi-link operator, and calculate the zero order states. In section 5 we produce the 
first order calculation , and in the last section we find the physical discussion. 

2 Lattice Approximation of Geometric QCD 

2.1 From the continuum to the lattice 

As we mentioned in the introduction, there is a straightforward way to get from a field theory in 
differential forms to it's lattice approximation. For this, we give now the more explicit definitions of 
quantities appearing in the expression for the action of the geometric QCD, (Eq. (1)), together with 
the basic formulas of the differential calculus used . Afterwards we transcribe these formulas to the 
lattice and formulate, in this spirit, the action of the geometric lattice QCD. 

2.1.1 The geometric calculus in the continuum. 

On the {Euclidean) space-time manifold we consider inhomogenous differential forms 

+ = 1.p0 (z) + ";'p;dz'"' + ~'Pp;v(z )dz~-' Adz"+ ~'Pp;vp(z )dz~-' Adz" A dzP 

+~.Pn3.dz 1 A dz2 A dz3 A dz• = ~H +(z, H)dzH 
(2) 

Usually we swn over the same lower and upper indices. Often we use a multi-index notation with 

H = (Jlt,Jlz, .•. Jlh),Jlt <I-ll< ••. < P.h, and +(z,H) = ";'p;1,_.2 ... p;,. like ~.P(z)0 = +(z,0),'P12 = +(z,12} 
etc. On the linear space of differential forms we define some operations by their action on the basis 
elements dzH. 

(a) The main morphism A and antimorphism Bare: 

AdzH = ( -1 )hd:r:H (3) 

with the property 
A(+A '!<)~A+ A A'!< 

and 
BdzH ='(-1)"!\-ll,u,H (4) 

with the property 
B(+ A'!<)~ B'!< A B+ 

(b) Wedge left multiplication dP-+: 

dF'.dzH:::::: dzP 1\ d:tH = /Jp;,Hd7:HUp. 
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This operation is anti-conunuting 
d".fl' + ~-d":::; 0 

A similar operation cou1d be defined by wedge right multiplication. 

(c) The anti-derivation e,. •+ = tJ,. + 

tJ,.dzH = P,..adz.HIJJ, PjJ,H = ±1,0 

is defined by 

6JJ(+ Ail')= D.,+ At'+ A+ AfJJJIJ, 6,.dz." = giW, 6jJ1 = 0, 

This operation is also anti-commuting 
6,.6,_ + 6,_{JjJ = 0 

There is a "canonical anticommutation relation" between d,.andfJJJ 

{J,_d,. + d,.fJ,_ = giW 

(d) Clifford left multiplication dz_P V + 

dz" V dzH =: (fJ,. + d,.)dz.H 

In particular we get 
dz~' V dz" = (6,. + d,..)dz,_. = giW + dz~' Adz" 

·-= { 0 Jl-#0} 
1 Jl = II 

(5) 

(6) 

(7) 

(8) 

It was emphasized by E. Kabler {7] that Eq. (8) defines a destributive and assiociative product in the 

space of differential forms. For the basis elements dz.K it takes the fonn : 

dz.x v dz.L = Px Ldz.x I':..L, PKL = ±1 (9) 

(e) Differential operators: With help of the partial differential operator 8,. acting on the "coef­

ficients" !l'(z, H). of the differential forms and with the operations (b)-(d) one defines the following 

differential operators acting on the forms + 
Exterior differentiation: d := d~'8,.. 

Codifferentiation: 5 = 6~'8,.. 
Dirac·Kihler operator: 

d- 6 = dz"' v a,..= (d"' + 6"')0,.. 

It follows from (5), (6) and (7) that 

(d-o)' = -(<M + od) = a.a• = o 

(10) 

(11) 

This means that d- 5 is a "square root" of the Laplacian D, similar to the Dirac operator in the Dirac 

equation. 
It follows immediately from Eq. (5), (6) and (7) that the operator d,.. + 6,.. satisfies 

{d,. + 6,.,d,_ + 6,_} = 2g,.., ( 12) 

which is identical to the defining relations of the algebra of the Dirac-matrices: 1"-r" + 1,_.1,.. = 2giW. 

This means that d,. + 6,. defines a representation of the Dirac matrix algebra with the differential forms 

as representation space. In order to find the irreducible invariant subspaces of this representation, we 

construct the following matrix differential form : 

z = 2-'1' L(1")TBd". (13) 
H 
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iH = 1"1 . ·J""· Acting by dzllV on Z we get: 

dz" v Z = i.,T Z, ZVdz" = Zi.,r (14) 

This equation shows that the colullUls of Z span an irreducible representation space of the algebra 

defined by Eq. {12). In this basis {z:}. the differential forms decompose into invariant subspaces. 

The component tb~{z) with respect to this basis is defined by 

+ = L¢(x,H)dx8 = L:.P!(x)Z!, (15) 
H o,b 

where b denotes the columns, a the rows. From {14) and {15) we see that 1/>:(z), with fixed b, are the 

components of a vector in the irreducible subspace. With help of the completeness, and orthogonality 

relations of the 1-matrices, we get, from Eq. {15) 

1/>(z, H) = Tdf2trace(1"H1tjJ(z, H)), ,P(x) = L¢(z,H)o8
, 

H 

(16) 

With help of the equations (8), ( 14), and (16),we can establish the relation between the Dirac-Kahler 

equation and the Dirac equation. If the Dirac-Kahler equation 

(d- 6 + m)+ = (dz~' v a.,+ m)+ = 0 (17) 

is imposed on diffenential forms, then we get the Dirac equation for a vector {tbb} of the invariant 

subspace: 
(i.,a,.. + m)tbb(z) = 0. (18) 

The "vector" tbb(z) is a Dirac spinor. 
We add to the geometric calculus a last definition : 

(f) A scalar product for two differential forms is defined as 

( +, ~)(z) = L ¢'(z, H),P(z, H) = 2-d/' L ¢;'(• ),P~(x ), (19) 
H a,b 

This is sometimes considered as a volume form by the definition 

(+, 'l')o = (.P, ~)dz1234: (20) 

Now we have collected all the definitions and relations necessary for the understanding of the action 

of geometric QCD mentioned in the introduction. First we give the free action 

Sq = ~ j (~, (d- 6 + m)+)o = ~ j dx12341}i'(z)(i"'8,.. + m)¢b(z), (21) 

where the second form follows from the first by transformations of the type Eq. {16) and: 

;j;(zJl'l = '2::4>(z,H)o;(', (22) 
H 

The DK equation in the presence of a gluon gauge field follows from the free DKE (17) by the 

substitution of the covariant derivative D" = 8"- iA,.. for OwHere : A" = g~A~(z ),a the gluon index 

, ,\a the Gell-Mann SU(3)-matrices 4> = {<~'a = LH +,.( z, H)dzH}, o color index. Then the DKE with 

interaction becomes 
(dA- 6A + m).P = dz"' V D,..+ + m<l> = 0 (23) 
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The exterior differentiation d;t = d~-' D,. and codlfferentiation fJ = -fJ" D,. are covariant extensions of 

Eq. (11). From the gauge field 1-fonn A = A"dz~-' one defines the 2-form field F = dA +[A, A] ,By 

adding the action of the g}uon field, it is then straightforward to get the action of the geometric QCD: 

S = J { 2: 2 Tr(F, F)o + ("¥j{d;t- fJA + m)CI-)0 } (24) 

From the above discussion of the relation between the forms 1/J and the Dirac fields """(z), which leads 

to the two expressions for the free actions Eq. (21), one sees that geometric QCD describes formally 

the gluonic interactions of 4 species of quarks. The label b, which distinguishes these 4 fermion fields, 

is sometimes called 'f', the flavour index. 

2.1.2 The Lattice Formulation 

In the following we discuss the lattice approximation of geometric QCD. First we describe the calculus 

with lattice quantities in dose analogy to the geometric calculus in the continuum. Differential forms 

are approximated on the lattice by "cochains" +. Because of their physical meaning, we call these 

{general) 'lattice fields': 

'I'~ L 'l'(z,H).F·", tr·H([z',H'j) = tJ;,tJj1,. (25) 
,,H 

Here we use the notation of lattice quantities explained in Fig.1 . [z,H] denotes a h-dlmensional 

lattice cell located at X; f.i. [z,0] is the lattice point x, [z, 1] the link from x to ;t: + e1 (ef.' unit lattice 

'vector),[z,12] denotes the plaquette with the corners z,z + e1,z + e1 + e2,z + e2 ,etc. The simple 

"chains" Care defined as 

C ~ L a(z',H')[z',H1 a(z',H') = ±1 depending on orientation. (26) 
z',H' 

The basis element a.z.H of the cochains is defined as linear functional on the chains by 

d"'•8 ([z',H1) = tJ;,tJJ1,ah (27) 

where a is the lattice constant, which we put equal to one most of the time. The meaning of the 

lattice approximation of a continuous differential form, by a cochain of type Eq. (25), becomes dear 

by the foU~:wJng r_emark. Suppose a(z, H) in Eq. (26) is a lattice approximation of the characteristic 

function of a h-dimensional region g in spacetime, then we have by the usual definition of the integral 

lim +(C)= f + 
..... o )g 

(28) 

with+ according to (2), and +(z,H)-=- ¢{x, H) restricted to lattice points x in (25). (For the 

precise details we have to refer to the literature {20]). Based on the mapping ("De Rham mapping") 

of differential forms on cochains: (a= 1} 

¢(z, H)~ +([z, H]) ~ J 'I' 
[:r,HJ 

(29) 

we may associate with the operations on differential forms, the following operations on latticefie1ds,([6],[18]): 

(a) The main morphism A and antimorphism B. 

.Ad"•H ~ (-1)'<1"·", Bdz8 = (-1)•!•2-•ldzH (30) 

(b) The wedge multiplication 
f!Z•~-' A JY•H = Pf.',ntJ"'+e,.,y,r,,.uH, 

5 

,, [z,2[ [z'j 

,, z [z, 1[ z' 

' ' 
' ' 
' ' 

Y!:: y +!en 1 e1 = !e1 ----·---- ----+----· 
"r [y, 12[ ' 
' ' 
' ' 

y y'l= Y + !et ' 
' ' 

' ' 
' ' •' ' ----·---- ----+----· 

' ' 
' ' 
' ' 

' ' 
Figure 1: Illustration of the Lattice Notions 
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or in gf'neral 
d:r,K l. dy,H:;::; f>fi.H{J:r-i-t:K•IItF·KuH, with 

The wt>dge product is the ''cup product'" in a cubical cell complex. 
{c) The operation c-on the lattice 

c~'·:r ~dy.H = P".HJY'H -"tv+e~,y 

or in general 
CK.ot: --,JY•II = PK.HJY·H/K [J"'+~~.y 

(d) Clifford left multiplication: 

eK = L e,.. 

WEK 

cF•J.I v JY·H := (cF•"' 1\ -re"'·""...., )JY·H = PJ.I,H6"'+e,.,yfF+e~nH,,..6H 

or in general, as a non-associative product 

cr·H v JY· 11 = Pn.K6"'..-~H·Ycr+eA,H6K' A= H n K, H6.K = HuK ~A. 

(31) 

(32) 

(33) 

(e) Boundary, Coboundary and Translation operators. As the lattice analogue of the exterior differ­

entiation d follows from the de Rham mapping and "Stokes" theorem 

+r(C) ~ j d+ = j + ~ +(L'>C) = L+(C) 
C 6C 

(34) 

6 is our notation of the boundary operator acting on chains, l. the "dual" boundary acting on 
lattice fields (cochains). In a similar way we get as a lattice analogue of codifferentiation C the dual 

coboundary operator ..;j+(C) = +(vC), 'V coboundary operator acting on chains. With help of the 
translation operator T€,. and the difference operators at : 

Te,.d"'.H = cr-€,.,H' a:= Tc,.- 1, a;:= 1-T-E,. (35) 

one gets formulas for the dual boundary, dual coboundary, and the lattice Dirac Kahler operator: 

L = LL"a,; ~ LfL<F'")' a,; 'V LV" a;~ LfLe"·"-)a; 
" " " " 

6-~= "'t.F·"va- = d"va-v L..., 1-1 - " 
(36) 

which are very similar to Eq. (10). The operators {6"- \~/},which act as Clifford left multiplication 

by the constant differential form d" = Lor dx,,.. , satisfy the anticommutation relations 

{6"- ..;jv.,h,"'- 0"'} = 2g"·".Ttt (37) 

This shows that the lattice algebra of the Dirac 1-matrices is connected with translations. The 
boundary and coboundary operators satisfy (h-") 2 = (7")2 = 0. It follows from Eqs. {37,36,35), that 

the lattice Laplace operator is : 

(L- v)' == -(Lv + vL) == L -(L"v" + v" L") =a; a•+ (38) 

"'" 
The Dirac Kahler equation on the lattice is now given as 

(6- V + m)+ = 0. (39) 

where +, 6, 7 are defined above. If we multiply Eq. ( 39) by ( l. - ..;j ~ m) from the left side and 

use Eq. (38), we get that + is a solution of the correct lattice Klein-Gordon equation, known from 

7 

lattice approximation of scalar particles. No additional zero modes are introduced by the lattice 

approximation of the Dirac- Kahler operator in contrast to the "naive" lattice approximation of 
Dirac operator. There is the species doubling inherent of the Dirac-Kahler forms, which describe in 
the continuwn four Dirac fields. Thus we have formally 16 components ¢(~,H) at each lattice site. 
L. Susskind [5] introduced a useful formalism, where fermions are described by only one component 

per lattice site. For thls we subdivide the lattice into a fine lattice by adding all the central points of 
the lattice elements to the new lattice (see Fig.1 ). The lattice points of the fine lattice :fare therefore 

related to those of the old lattice by 

1 
Z"'" ~ + 2eH, eH =Lev. 

"'H 
(40) 

This equation also associates with each point of the fine lattice a multi-index Z __, H(Z). The definition 

of the so called "staggered" fermion fields ("Susskind ferm.ions"} consists now in the identification 

~(r, H)=~(>, H(>)) = x(>) 

The relation of the staggered fermion field to the "naive" Dirac field is given by (7,21) 

V>o(>) = o;;(x)x(>) ( 41) 

If </J(x,H) belongs to the solution of the DKE (39), then !Jio(z), for fixed i, satisfies the naive Dirac 

equation: 

(;JJ8tt + m)!Jib(x) = 0 a,.. =a: +a;; (42) 

Now we can formulate the lattice action of geometric QCD. With the inner product on the lattice 

(<P, 1jl )(z) = LH <P~(~, H)!JI(x, H), we get the lattice analogy of Eq. (21) 

S, = L{¥(x,H)((L- V + m)+)(x,H)} (43) 
>,H 

With help of definition {40) this action could be written as the following (with lattice constant a of 

the fine lattice) 

s, = L¥(x, H)[ L P~H a:+(x, H \ M) + L P~H a;+(z, H u {"}) + m+(z,H)l 
or,H I'EH ttr/.H 

Using Eq (40) we get 

s, = L {L i'.H [x(>)x(> + '·)- x(> + •.)x(>)] + mx(>)x(>)} 
;: Jl 2 

(44) 

finally we introduced lattice gauge fields U(Z,p:) on the fine lattice. With these we get the lattice 
action of geometric QCD 

s 
Sw 

U(P) 

s, 

Sw(u) + SnK 

-~ L (U(P) + u-'IP)- 2) (45) 
PEf 

U(Z,J.uJ) = u- 1(Z, v)U- 1(z + e.,,Jl)U(X + e", v)U(z-, 11 )...., exp(iF tt.,(x)) 

~ { ~ P;H [x(x)U(x), ")x(x +e.)- X(>+ e.)U-'(x,")x(x)[ + mx(x)x(x)} (46) 
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as the swn of the lattice approxi~ation of the action of the gauge field Sw(U) (due to K. Wilson), and 
the gauge invariant extension of the action of the staggered fermion fields, i.e. the lattice approximation 
of the Dirac Kiihler fields, Eq. ( 44 ). This action is invariant under the gauge transformations on the 

fine lattice 

x(") ~ g(z)x(z), 

U(Z,p)- g(Z)U(Z,p)g-1(Z + e~') 

x(z) ~ x(z)g-'(z) 
- I 
e~< = 2e~-' (47) 

The lattice approximation Eqs. (45,46) of the action of geometric QCD Eqs. (24) or (1) is the starting 

point of our dynamical calculations. 

2.2 The Symmetry of Geometric Lattice QCD 

The symmetry groups of the action of geometric QCD in the continuum Eq. (24} or Eq. (1) and on 
the lattice Eqs. (45,46) play a distinct role in our strong coupling calculation of the meson spectrum. 
For the physical interpretation of our results, the relation between these groups is important. In a 
geometrically transparent way these groups and their representations were discussed by M. Gockeler, 
H. Joos, and M. Schlifer {8],{15]; compare also ref.[21]. We quote a short resume of their results: The 
continuum geometric QCD describes four degenerate Dirac fields. Therefore infinitesimal spinorial 

Euclidean transformations, and SU( 4)-flavour transformations 

(M,.,+)~(z) 

(P.+)!(z) 

(T'+)~(z) 

' I ' (z,.&,.- Zv81-')CJ,.(z) + zbl-'1'v)cae<)c(z), Jl f:- 11, 

8~-'CJ~(z), 
I b 

2 .x~ +:(z), i = 1, ... 15. 

(48) 

generate a symmetry group Sf X SU(4) . ..\;denote the 15 Gell-Mann matrices for SU(4). There are 
additional symmetries, like space reflection (II.+):(z) = 1! c +~(II$z), (II.z) = ( -z1 , -z2 , -~3, ~4 ), 
charge conjugation, general phase transformations and chiral transformations for masses m=O. To 

some of these transformations we come hack only later. In order to understand the lattice restriction 
of Sf X SU(4) from a geometric point of view, we have to consider the relation between the trans­
formations of the Dirac components and that of the forms. Let us first regarq the structure of the 

flavour tra,nsformation. The solutions of the DKE, (17) 

(d-:- fJ +m)CJ = (dz~-'va~-< +m)+. (49) 

are invariant under Clifford multiplication with a constant differential form from the right. This 

follows from the associativity of the Clifford product: 

((d-; + m)+) V<(u) ~ ((dz" v a.+ m)+) v c(u) = 0 (50) 

H we write the constant forms c(u) in Dirac components as defined in Eq. ( 15): 

c(u) ~ :~.::U!z! (51) 
o,b 

then it follows from Eq. (14) that the Dirac components 1,/1~ of<} transform with the matrix ub: 

+vc(u)~L>i>!(•M (52) 
b 
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In the case where ub is an unitary matrix of SU( 4), this is the finite form of the infinitesimal flavour 

transformations in Eq (48) U =de;>.'. The finite flavour subgroup generated by the basis elements 
±d~H of the differential forms 

Ei)VdzH--+ ± L>P:(zhfe (53) 
b 

plays an important role in the lattice restriction of the flavour group. Following the suggestion of H. 
Joos [17] , we call this group of 32 elements "Kent-group". The operations d, 0 are invariant operations 
under the group 0( 4) of orthogonal transformations of Euclidean space-time. This means 

U(R)(d- ;)u-'(R) ~ d-; (54) 

where U(R) is the representation of the rotations R E 0(4)in the space of differential forms. For­
mula (54) simply means the possibility that one can interchange the calculation of the boundary and 
coboundary with the transition to a new orthogonal basis. From this we know that a transformed 
differential form, which is a solution of the DKE is also a solution. By infinitesimal rotation of the 
space-time O::fv in the plane (JL, 11) the form transforms infinitesimally as : 

G I 
01-'"i} = (z..,Ov- z,..&I-')CJ + z(S..,v V iJ- iJ V S~-<v)· (55) 

We have to distinguish these geometrical rotations of the differential forms, from the spinorial rotations 
of the Dirac components described by M~-'•" in Eq. (48). With help of Eq. (14),we may express this 
spinodal rotations o;,v --+ M~'•" of the differential forms as 

ozvi} = (z..,a.,- Zv81')<') + ~si'V V (}, S~'" = dz~' Adz,... (56) 

In both expressions (55) and (56) (z~-'8"- z,..8..,) expresses the "orbital" part of the 4 dimensional 
angular momentum. However in the geometric transformations we have, in addition to the spin part 

of the angular momentumS"" V CJ, also a flavour part-CJ V S~-'•"' The geometric rotations are composed 
of a spinor rotation and a flavour transformation. 

Summarizing, we can express an element g of the symmetry group of the DKE as a direct product 

g = (f) ® (a, s) = (/,a, s) with ( /) E :F ( fl.avourgroup ), (a, s) E Sf , that is the "spinorial Euclidean 
group generated by translations (a,l) and spinor transformations (O.s) .Thus Q -:::::: :F x Sf (up to 
a factor Z2 ). We may decompose any element g into geometric transformations (s,a,s) with the 

generators OJl.v Eq. (55) and another flavour transformation {7) = fs-1, 

g ~ (J) a (•,a,•) ~ (1•,a,•) ~ 1/,a,R(•)J. (57) 

In this new notation, the group multiplication gets the form 

(!,a, s) o (f,a',i) = (JJ',R(s)a' +a, ss'), 

If, a, R( •)] a If' ,a', R(.')] ~ If •f' ,->, R(•)a' +a, R(•)R(•')J. (58) 

The symmetry group of the DKE on the lattice as a restriction of the continuum symmetry was 
extensively studied by H. Joos and M. Schafer Before we quote their proposition on this subject, 
we make some explanatory remarks. First we remark that the restriction of the translations and 

geometric rotations to a symmetry of the lattice approximation of the DKE (39) is obvious. The 
continuum translations are restricted to the lattice translations 

T :J TL == {[l,a, 1]}{a I a= b(n1 ,n2,n3 , n4), n; E Z} 

The lattice constant 'b' of the coarse lattice r we set most of the time equal to 1. The lattice 
restriction of the geometric rotations follows also geometrically. The geometric rotations are restricted 
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to the symmetry groupW4 of the 4~dimensional cube. W4 is generated by the rotations RJ.<"' in the 
(~,v)-plane by 'lf/2, and by a space reJlection n~. The symmetry of the DKE on the lattice under 
these transformations follows immediately from Eq. (34). It is a little more difficult to find the 
lattice restriction of the flavour transformations. Since the Clifford product defined in Eq. ( 33) is not 
associative, the argument given in the continuum, Eq. (50), can not be applied directly. However the 

Clifford product defined in Eq. (33) satifies [8]: 

(cf"-"HnL•H V JY•K) V d::-eunx,L = cf"•H V (tf!I·K V d"'L). 

Therefore we can conclude similar as in Eq. (50), with help of Eq. (59), that 

t:dKo); + ..... t:<J V (dK)-\ 

(59) 

is a symmetry transformation of the DKE. A direct calculation leads to (dK)2 = [-ex], i.e. the flavour 
transformations generate translations. The group FT L generated by the t:dK contains TL as a normal 

subgroup with the factor group FL = :FT L!TL ~ JC4 , the Kent group mentioned in Eq. (53) 
After this preparations we can quote the proposition on the lattice restriction of the symmetry 

group of the DKE by Joos and Schiifer: 

PROPOSITION 2.1. The lattice restriction of g is 

K 1 
9L = {[t:d , - 2ex +a, Rj I a E TL, R E W4 } 

with the composition law 

I K 1 I I I L 1 I I £d ,-
2

eK+a,R o t:d ,-2eL+a,RJ 

= {u'p{R,R o L)iJK,RoLdK.O.RoL, -~(ex+ ReL) + Ra' + a,RR'J. 

It is a synunetry group of the free DKE if it acts on staggered fermion fields according to 

(I•Jx)(y, H(v)) 
(IR]x)(y,H(y)) 

(,dKx)(y,H(y)) 

x(y- a"e,_.,H(y)), H(y- a~-'e,_.) = H(y), 

p(R,H(y))x(r'y,H(r'y)), R E W,, 
1 1 

t:Pn{v),KX(Y + 2ex, H(y + 2ex )). 

(60) 

(61) 

where the sign p{R, H) is the same as the sign in the transformation of the basis differentials of the 
continuum: Rdz.H = R- 1 V dzH V R = p(R, H)dzR-'oH. 

A direct calculation shows that also the action S(X, x, U), (Eq. (46)} with gauge interaction, is 
invariant, if U( z, p) is formed as link fields under translations and geometric rotations, and as 

under flavour transformations. 

1 
(,dKU)(z,~) = U(z + :i'K,~) 

2.3 The Representations of the Lattice Fermion Group {h 

(62) 

The representations of 9L and some of its subgroups play an important role in our investigations. The 
ineducible representations of 9L give the quantum numbers of the lattice states. Thus we shall base 
the discussion of the particle content of the different strong coupling approximations on this represen­
tation theory. By this method we get systematic relations between the lattice particle states and the 
continuum states. Further, as usual in quantum mechanics, the use of irreducible representations of 
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symmetry groups allows a simplification of our meson mass calculations. The representation theory 
of ~h was extensively studied by H. Joos and M. Schii.fer and others [14]. We shall summarize their 
results and collect the formulas which we explicitly use in our calculations. According to a proposition 

by Joos and Schiifer, the irreducible (unitary) representations of fh are determined by a 'momentum 
star' Stj, a 'flavor orbit' 0k and a 'reduced spin' f7. The representations (h ~ U(g) related to mesons 

('representations with even flavour orbits') have, in an appropriate basis 

I 
j, k, u) 
p, L, n 

the following form: 

U(a) I j, k, 
p, L, 

u ) = ei(p.a) 'I j, 
n p, 

k, " ) 
L, n 

(63) 

U(R) I j, k, u ) = L I 
p, L, n 

n' ' 

~' ) D~'n(X(R,L,p)), j, k, 
Rp, w(R,p)oL, 

(64) 

U('dK) I j, k, a ) = ,•r,,;..J,••h,«l I j, k, a ) 
p, L, n p, L, n 

(65) 

We shall explain these formulas for the case we use later. 
The momentum p varies over the Brillouin zone of the coarse lattice: - ~ :; PJ.< :; ~- In an 

irreducible representation of !h, pis restricted to a set {RpiR E W4}, called momentum star Stj. As 
an example we consider the St4 of 8 momenta: 

St4 : (P~-':::: (O,O,O,±E),(O,O,±E,O),(O,±E,O,O),(±E,O,O,O). (66) 

The representations of the flavour translations(Eq. (65)) are !-dimensional and characterized by the 

vector eL. The eL transforms under rotations: ReL ..... eRL· For the characterization of an irreducible 
representation of (h we may choose a reference momentum p E Stj , for instance in our case p = 
(0, 0, 0, E). The group of rotations, which leaves p invariant transform the eL of a flavour orbit into 
each other. In our case this group is W3, the eL of the different flavour orbits 0k are the singlet orbits 

((o, o, o, o, )), {(o, o, o, 1)), {(1, 1, 1, o)}, {(1, 1, 1, 1)) 

and the triplet orbits: 

{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}, {(0, 1, 1, 0), (1, o, 1, 0), (1, 1, o, 0)}, 

{(1, o, o, 1), (0, 1, 0, 1 ), (0, 0, 1, 1, )}, {(0, 1, 1, 1), (1, o, 1, 1), (1, 1, o, 1 )}. 

(67) 

(68) 

The group of rotations, which leaves p and a representative eL (underlined in Eq. (68) invariant is 

called the reduced spin group Sj,k· The irreducible representations D~•n(R) of this group determine 
the reduced spin a. In our case of St4 the reduced spin group of the singlet orbits is W3. That 
of the triplet orbits is the group D4 x Z2. The 3·dimensional cubic group W3 has 10 irreducible 
representations: 

( 1 ±)w .. (l'±)w
3

, (2±)w,, (3±)w,, (3'± )w, (69) 

The integer denotes the dimension of the representation, ± refers to the parity. D 4 is the symmetry 

group of the square in the ( 1,2) plane, Zz the reflection of the 3 axis. Do~ X Z2 has also 10 irreducible 
representations: 

{1 ± )Dt, (1'± )Dt, (1"±)Dt, (1"'± )n,, (2±)D, (70) 

These representations are explicitely given (see the Appendix). w(R,p), and X(s, L) are Wigner type 
rotations defined in {15]. If we consider only states refering top and €£ (as we do in our calculations), 

and rotations R of the reduced spin group, then w( R, p) = z( s, L) = R . 
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3 The Resummed Hopping Parameter Expansion 

In this chapter we shall explain the method of the "resummed hopping parameter expansion". For 

details we refer to 0. Martin (10]. Until now coarse lattice site labels are denoted by unbarred variables. 

From now on, all site labels ,with or without a bar , refer only to the fine lattice , unless otherwise 

specified . We have derived in Chapter 2 the gauge invariant action of interacting staggered lattice 

fermions 

S, = ~ { ~ P"H(zj~[x(z)U(z,p}x(z + e")- X(z + e.)U-'(z,p}x(z)) + mx(x)x(z)} 

"m L x(z,)(z,JQ[U]Jz,)x(x,) (71) 
:.,,:., 

which has {,h as synunetry group. The sum is over the sites of the lattice, and the directions ±~ = 

±1,±2,±3,±4; f>-~H(Z) = P,..H(~ by definition. Here we introduced for later use the ahreviation 

Q,,,, "(z,]'I[U]Jz:,) 

QZ;.z, 

Qz2z, = m[bz2,:.:, + Qz2z1] 
1 

= 2m L P,.,H(~6z~oz~,,z+~,.U(Z,p) 
Z,±JJ 

(72) 

In order to calculate the correlation function (: M(z )M(y) :) = (M(z )M(y))- {M(z )){M(y)) of the 

·local meson field M = 7J E .. X .. (z)x,(z), we use the path integral formula: 

(xx(z)xx(!i)) = ~ j j V[UJV[x.xlx(z}x(<)x(!i)x(!i)e-<s,+rnxl>+<liUJJxl, (73) 

(x(z)x(z)) = ~ j j V[UJV[x,xJx(z)x(z)e-<s,+mxi>+OIUJhl, (74) 

Here S9 denotes the pure gauge action: 

s, = -~I;(U(D) + u-'(o)- 2) (75) 
0 

where U(D) is the parallel transport around a plaquette. The sum in Eq. (75) goes over all plaquettes 

of the lattice r. Integrating Eq. (73) over the "Grassmann variables" X(z),x(z) we get 

1 J 1 (' M(z),M(z) ') = z V[U]m,(zJ'I-'Jjj)(jjJQ-'Jz)detm(/exp-s,. (76) 

where Q is given by Eq. (72). The normalization factor is 

Z = j j V[U]V[x,X]e-159+rnX(t+Q[U])x) = j j V[U]det(mQ)e- 5• (77) 

The following calculation will be performed effectively in the quenched approximation where 

detmQ ~ 1 (78) 

Substituting Eq. (78) into Eq. (77), we get Z=l in the zeroth and first orders in /3. One can see this by 

expanding e~s. and using the orthogonality r~lation for matrix elements u:13(g) of irreducible group 
representations of dimension dim [UX]: 

[ dp(g)U.,,(g)U~ •.•• (g) = "m1 u'•·•'''·" 
lsu(3J w 

(79) 
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Substituting Eq. (78) in Eq. (76) we get in the same approximation the following expression: 

(' M(x),M(x) 'l = j V[UJ~,(xJ<r'l!i)(jjJQ-'I>V5'. (80) 

for the correlation function of the local meson fields. This is the main formula for the following 

calculations. Since Q is of the form Q = m(l + Q) we can expand q-1 in a geometric series: 

1 00 

'li,'.,[UJ =:;;; 2:1 -1)"Q" 
n=O 

(81) 

From Eq. (72), we see that (Z21¢1'X1 ) :f. 0 only if Z11 Z2 are neighbouring points. Therefore we may 

describe {Zzli:JniZt) with help of a sum over paths C~2 ;;1 of length n from Zt to Xz, which are generated 

by the links 11' connecting such neighbouring points. The contribution to the matrix element of Qn 
associated with such a path is the product of the factors associated with a single link according to 

Eq. (72). This leads to the well known hopping parameter formula for the quark propagator with 

interaction 
" 1 00 (-1)" (z,J('I)"Jz,) = :;;; L 2m L II p(l.)U(l"), 

n=O C~2 ,i", l,.EC" 

(82) 

Thus we see that the contribution to the coefficient of the n,th power of the hopping parameter K = ~ 

associated with the path en is the parallel transport U(e) along the path, modified by the factors: 

P(l,.) = PJJ,H(z) for the links l,. = [X, p], J.t > 0, P( -lJJ) = -p(lJJ) . These factors are characteristic for the 
propagation of staggered fermions. Now we insert the expression Eq. (82) into Eq. (80), and perform 

the integration over the gauge fields U( lJJ) in strong coupling approximation. First, we consider the zero 

order in /3, i.e. we set e-s. = 1. The integration in Eq. (80) over products U(e;y)U(et~~} of parallel 

transports associated with the quark and antiquarkline respectively. Because of the orthogonality 

relation Eq. (79) we get a non-zero contribution only if, for each link l,., the link LJJ is contained with 

the same multiplicity in e;Y u e t11:x nJ. This implies that the area enclosed by e;Y U e 1~ = C is zero, 

and that 01,.ECU(l,...) = 1. We call this type of quark anti-quark paths C:" q(j-treegraphs". Because 

of P{lJJ)P( -lJJ) = -1, we get for such graphs C with 2N links: 

II P(l.) II P(()=(-1)N, 2N=n+n1 

t,.Ec:;, t~ec;~ 

These considerations lead to the following evaluation of Eq. (80) in zero order of f3 : 

oo(_1)N 
(' M(z)M(!l) ')=I; -= T"'(N). 

N 4m 
(83) 

where Tzy(N) is the number of q'ij zero order graphs of "length" N connecting "f andy. In order to 

evaluate the expression, Eq. (83), we have to discuss the structure of q(j-zero order graphs in more 

detail. Let us comider a simple quark path en from y to x, which is described by an ordered set 

of unit vectors en = { eJJ,, ... e~<»}. The first step goes from y to y + eJJ1 ,the second from y + e~, to 

Yt + e,., + e~2 and so on. Along the path en we may return to y a last time with the step eJJ, in 

such a way that the subpath er = {e,.,, ... e~J incloses zero area. Then we caller = Do a dressing 

of en at y of zero order. We continue to the pointy+ e,.,+, and determine there the dressing of zero 

order in the same manner. Continuing in this way, we decompose the quarkpath en into dressings D; 

and remainders U~J i.e. en= DofJJIDtf,...l"'DmfJJm.' The path without dressing~= {f,...,, ... ,J,. ... } 
is called a quark trunk. It has important property that 

'~· f- -/Jli+t 
(84) 
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This means geometrically that ~ is not backtracking. The representation of a quark line by a quark 
trunk and dressings allows an important reordering of the sum in Eq. ( 83 ). One may consider a qq 
zero order graph as consisting of a non-backtracking quark line With dressings and a strictly parallel 
non-backtracking anti quark line with its own dressings. Therefore we may bring Eq. (83) in the fonn 

~ { ~ '"}'" (' M(z)M(y) ,) = _1_ "" ( -1 )" B,,(n) ""d,. (~) 
m2 ~ {2m)2n L;-- 4m2 

(85) 

the sum L,. d,.( ~ )2~ = 2ma-1 is the contribution of all dressings of zero order at a given point 
of a non-backtracking quark, or antiquark line B..,11{n}. Eq. {85) shows that one can restrict the 
SlUlWlation over all paths to a swnmation over all non-backtracking paths, if one "renonnalizes" the 
hopping parameter 2!,. to ~ . Following Martin, we calculate now the contribution of the dressing 
with the technique of generating functions . For this we define 

~ 

W(•) = Z::d..z" (86) 
7=0 

where d.. the number of closed paths from x to x enclosing zero area. If we would calculate (X( z )X( z }} 
according to Eq. (74} by the hopping parameter method combined with zero order strong coupling 
approximation, the result would be (X{z)x(z}} = W(-~ ). Therefore the behaviour of this function 
for m2 ---+ 0, decides on the spontaneous chiral synunetry breaking in this model {10]. We shortly 
indicate the calculation of W(z). A closed path C = {ft, .. /;,/;+1 , .. {2~} starting from x, enclosing 
zero area, is called tree graph oflenght r. It is called an irreducible tree graph (lTG), if no subgra.ph 
C f = {It, ... /;},i < 2r exists, which ends in x. Let I(n) be the nwnber of irreducible tree graphs of 
length n and K( z} the corresponding generating function 

K(z) = L I(n)z" (87) 
n=l 

The number d,. of all tree graphs of length r is then 

d..= I: J(n,)J(n,) ... J(n;) (88) 
n 1+n3+ ... n;::or 

It follows from Eqs. (86) to (88) that 

~ ~ 1 
W(•) = ~d,.z" = ].;:, Km(z) = 1- K(z) (89) 

In order to calculate K{z) we remark that one can compose an lTG oflenght n from a first double line 
of length 1, and an arbitrary tree graph beginning at z + ft, of length n·l. Because of irreducibility 
no first step of the irreducible components of this arbitrary graph is allowed in direction - p. Since 
in d dimensions we have 2d direction, this consideration leads to the recursion formula 

(
2d- 1)' J(n) = 1(1) L I(nz)l(nz) ... l(n,) --u-

nl+n3+···'?""n-1 

1(1) = 2d,J(O) = 0 

Multiplying both sides by zn, and swmning over n we get the equation 

~(2d-1)' ' 2d• 
K(z) = 2d.z ~ --u- K (z) = 1 _ ('-:.,')K(z) 

Solving this for K(z) leads to 

K(z) ~ d(1 - v'1- (2d- 1)4z) 
(2d 1) 
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(90) 

(91) 

(92) 

and hence we can get W(z) from Eq. (89). With help of K(z) we calculate the renormalized hopping 
parameter a. We remark that the dressing at a site is composed by ITG's. In order to avoid over­
counting of the paths one has to take into account the nonback tracking conditions. This leads, as in 
Eq. (90) to, 

(
2d-1)' d, = L J(n,)J(n,) .. .I(n,) --u-

n1 +n2 + ... np=~ 
(93) 

Thus we get the renormalized hopping parameter o:: 

~ (2d-1)" 
2ma-• = Ld,•" = ~W(•) --u- - 1- (';<'JK(•) (94) 

with z =-~,or with help of (92) 

a= m + ../m2 + 2d- 1 (95) 

and therefore from Eq. (85) 

1 ~ (-1)" (' M(z)M(y) ,) =--, L --, B,,(n). 
m n=O o 

(96) 

For the final evaluation of Eq. {96) we generate the paths between x andy = 0 step wise. Classifying 
the paths oflength n by the last direction JL we get for their nwnber B,.,o:ll(n) = B,.,,,..(n) the recmsion 
relation 

B.,.(n + 1) = L B._,_,,(n). (97) 
vop.-ll 

We do not sum over JL = -v, because the paths are not backtracking. Now we do the Fourier 
transformation of Eq. (96) and Eq. (97). For the Fourier formations BP,/l( n) of B,,/l(n), follows from 
Eq. {97) the recursion relation 

with 

iJ, .• (n + 1) = L ,;(,,<,)iJ,,.(n) = L M~(p)B.,,(n) 
vop.-ll 

MJLV = ei(p,ev){l - 6,.,-v ). 

Inserting Eq. {98) in the Fourier transformation of Eq. (96) leads to 

1 J ~ ( 1)" ('M(z)M(O)') = m' dpe-i(,,•)~ :, ('M"(p)( 

_1_ J d -i(,.•)<T ( 1 ) ( 
m2 pe " 1 + ~M(p) 

(98) 

(99) 

(100) 

The matrix M(p) is an operator acting in the 8 ( =2d)-dimensional space of the "step vectors" spanned 

by the basis{{;= (0, 0, .. i, 0, .. ). It follows from Eq. (96), that we have to count paths, which start in 
all directions at y=O and end from all directions at x, therefore we have in Eq. (100): ~ = l:~-'~'"" The 
poles of the Fourier transformation of the propagator determine the "masses" of the mesons. These 
are determined by the equation 

deZ(M(p) + n'I) = 0 (101) 

We discuss this "mass spectrum" for the different meson quantum numbers following from the repre­
sentation theory of the synunetry group of staggered fermions. The method of the "resurnmed hopping 
parameter expansion" which we explained here in the zero order of {3, will be extended to first order 
in section 5.1 . 
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Figure 2: The Multi-link Operator 

4 The Propagator for Muliti-link Meson Operators in Zero-Order 

Approximation 

4.1 Multi·link operators 

It is the aim of this Section to investigate meson field operators composite of quark and antiquark 

fields, which allow the description of the whole variety of meson quantum numbers associated with 

.the symmetry group (h of lattice fermions. (Compare Sect. 2.3). It is seen from Eqs. (16), (41) that 

the 16 spinor components with different ftavours in the continuum are mapped on !-component lattice 

fields defined on 16 different sites of the fine lattice. This is one reason why we need for our purpose 

gauge invariant bilocal products of quark fields, which we call multi-link fields. Such fields are also 

neeessary for the description of rotationally excited meson states. 

We define the multi-link meson operator ML.F(z) as 

ML•~(z) = ei•(~L+feuu+~p,z)X(z)PH(z),FU(F)x(z + ep) 

" (L.F(z)x(z)U(F)x(z + •F) (L.F(z) ~ ±! (102) 

F is a path from x to z + e 1, F = ( z, ,it, .. JiJ ), fo = e~, e 1 = '£.: iii with a notation explained in Fig.2. 

We call F the multi-link-path. U(F) is the parallel transport from x to z+e! along the multi-link-path 

F. 
U(F) = U{z,pt)U(z + Ji1o1'2) .. .U(z + ep- Ji!>PJ) (103) 

F is an ordered multi index corresponding to the point Z = e ,,as defined in Eq. ( 40): F = F( e 1 ), eF = 

L.,.EFfi· eLisa vector defining the irreducible representation of the flavourgroup (see Eq, (67,68)). 

A special case is e1234 = (1, 1,1, 1). i = 0 or 1 for an even or odd number of links ofF, respectively. 

The multi-link operators are transformed under the different symmetry transformations in the 

following way: 
a) Gauge transformations. Under gauge transformations the fermions transform as : 

x(z +eJ) --t g(z+e,)x(z +e,) x(•) ~ x(x)g-1(x) (104) 

and the gauge fields U(z, p) as U(z, p)---> g(z )U(z,p)g-1(z + ii). It follows that U(F) transforms like 

U(F) ~ g(z)U(F)g-'(x + e1) (105) 

and hence that ML,.F is gauge invariant. 
b) Flavour transformations. We shall prove that 

( cdk ML.;F} (z) = e''""h.~xl ML,J'(z +ex) . (106) 
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For the proof we show first that the formula 

PH(,+eK),FfJH(,),Ki>H(z+ep),K PH(:<),F = ei"(fe,H+eJ,eK) (107) 

is correct. From the definltion of fJH,K in Eq .(9) and the associative law of Clifford multiplication it 

followsthat 

Pn,KPHc.K,L = {JH,Kt:-.LPK,L 

In a similar way we get from the antimorphism B in Eq. ( 4) 

Pn,KPK,H = (-l)hlt+r 

with h = ordH, k= ordK, r = ord(H6K). We note that: H(z + eJ) = H6.F and calculate 

i>H(z),FfJH(,+et),KiJH(x),KfJH(or:+t::K),F 

PF,K{JH,Kc.FPH,Kt:.FPK,F = PF,KPK,F 

PH,K6.FPF,KfJH,KfJHD.K,F = 

( -l)fk-<»>d(F6.K)ei"{j"lm+ep,eK) 

(lOB) 

(!09) 

(110) 

With help of formula Eq. (107), we prove Eq. (106) by direct calculation starting from the definition 

of the flavour transformation of the X fields in the proposition, Eq. (61): 

(cdhML,F) (z) ei"(~L+f~mt+ep,z)X(z + e~o)U(z + e.r., F)x(z + €J + ek)PH(:>:),kPH(z+e1).KPH(z),F 

ei,(eL,~K)ML•~(z + e.r.) 

c) Geometric Rotations. Under the rotations of the lattice the multi-link operator is transformed as 

[ML•~](z) = p(R, F)MR-'L.R-'F(R-tz) (111) 

In order to proof this from transformations of the x( z) (Eq, ( 61)) we need the formula 

p(R, H(x- •F)) ~ PH(•),FPH(R-'•),R-•FP(R,H(x))p(R,F) (112) 

which follows immediately from 

R-1 ( dz 8 V dzF) R R- 1 (PH(:>:),FdzH.O.F) R = p(R,H(z- F))PH(z),FdzR-'(H.O.F) 

(R-1dz 8 R V R-1dzF R) = p(R, H(z))p(R, F)PH(R-'z),R-'Fdz(R-'H)L'l.(R-'F) 

The transformation law Eq. (111) follows then by direct calculation as in (b). 

d) Charge Conjugation. The action of the staggered fermions, Eq. (46) 1 is invariant under charge 

conjugation C defined the following way 

c, xc(z) = PH(z),1234XT(z) ~(z) = -fiH{z),t234XT(z) u0 (x,~) ~ U"(x,~) (113) 

The transposition X---> XT refers to the colour index, u~(z,~t) is the complex conjugate of U(z,p). 

This transformation corresponds to charge conjugation in the continuum. This transformation of the 

basic fields implies for the composite meson operators 

(ML,J') C (z) = ( -1/112+1) ei,..(eL,ep) ML,-.1' (z + ep) (114) 

where -:F is the path from z + e1 to x: (z + ef, -ft,, -PJ-t. .. , -ftl). 
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Figure 3: Screening at the Zero Order 

4.2 The 2-point functions of multi-link operators 

In the following we calculate the expectation value of ML,F(z)ML,.:F'(y) in zero order of strong 
coupling approximation by the methods explained in Chapter 3. After fermion integration we get in 
quenched approximation a formula similar to eq. (80). 

( ML·"'I•)ML.F'Iy)) ~ J J V[U](L"I•)(L,F'Iy)UIF)UI.r')(ziQ~'Iy)(yiQ~'iz)expl-5,). 
1115) 

We insert for {ziQ-11y) the hopping parameter expansion Eq. (82) and perform the D[U]-integration 
in zero order of fi. In order to get non-vanishing contributions, a part of the quark and anti-quark 
lines must screen U(:F) and U(:F') and the remalning parts must enclose zero area. We show a typical 
example of the screening of multi-link of fig.2 in Fig.3 . The sununation over all zero order graphs 
from point z to point y can be performed essentially by the same procedure as in Chapter 3, with the 
result that we~ represent (: ML,F(z)ML,F'(o) :) in a way similar to Eq. (100): 

(' ML''(z)ML,T'(o) ') ~ ~' J dl"~;(p,•)"llp,J',L). . , 
1 
.. , , "(p,F',L) 1116) 

where 71f is the hermitian conjugate of 7J. In the following we have to discuss the dependence of 
71f(p,F,L) on the multi-link operators and the relation of ML(p) to M(p). 

First we discuss the different ways in which the zero order graphs screen the multi-link F = 
(z,jlh .. p/)· We call the non-backtracking line directed towards z, the quarkline. As it is explained 
in Fig.3 the quark line screens the part ofF from Z to z. The quark line meets F for the first time 
in Z. The non-back tracking anti-quark line is uniquely determined by the quark line. It screens :F 
from z + e1 to Z. We classify the paths by this point Z. In order to avoid overcounting, the quark 
line must come to Z not along the direction -}1; (in the notation of the figure), because in this case it 
would meet Fat the first time in x' and not in Z. By the same reason it can not come along -JL,:i-1. 

We have the same situation with respect to the multi-link path .F' from 0 to er, where the quark line 
leaves .F' at fj, and screens it from e1, toy. The remaining part of :F is screened by the anti-quark 
line. 

Now .we consider the double lines from y to Z. The sununation of these zero order graphs can be 
performed with help ofEq. (100) of Chapter 3. as explained there, the function 

I J -i(p,x) f 1 {.., 
SIW(z,y) = ml dpe {,.1 + ~ML(p) 1117) 
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describes the sununation oVer all zero order graphs beginning at Y with first step ii, and come to Z 

with last step ft. From the forbidden directions of the non-back tracking quark and anti-quark lines 
at the points Z and y discussed above, follow restrictions on the initial and final steps of the trunks. 
These we describe by a sum TJI(;i:), 17(Y) over all allowed step vectors: 

"'(l') ~ 2:= '~ for f interior point of :F 
1-'¢-r.-<i.l">-1 

"'I•) ~ 2:= <~ "'lz+<t) ~ 2:= {~ 1118) 

''*-'"' P.i-P.J 

Therefore the sununation over all allowed trunks from f.i to Z may be denoted by 1'JI(z)S(Z,Y)'7(!f). 
The final expression for the multilink two point function now contains a factor a.f f11 EF P(l,.), 

p ~.2+<t ,.. 

which comes from the parts of the quark and anti-quark lines screening F, as well as the factor 
ei•{i"mt+e,+e~,.,,.,)PH("'),F given in the definition (Eq. (102)) of the multi-link operator. There are 
similar factors for :F'. Thus we get 

( ML·"'Iz)ML,F'IO)) ~ of+f'Aiz)A'IO)e'*•·•l L "'I>)Six,ji)"IY) 1119) 
;:E:'-" 
fiEF' 

with A(z, F) = eiw(/~Im +~,,x)pH(x),F nl,.EF~.•+•t P(l.,J Before the evaluation of Eq. (119), we prove 

some important properties of the "screening factor" A(z, F). 
Lemma: (1) A(z, F) independent of x: A(z,F) = A( F). 
(2) A(R- 1F) = p(R,F)A(:F), where p(R,F) is defined in Eq. (61). 
Proof: 
Besides the vectors e., 
following formulas 

" (0,0,1,0) we define the vectors~ L:vs,.e.,. One easily verifies the 

(a) Pn(x+V),p = eiw{~v-e,..,e,.)pH(x),p (b)i)p,H(x+V) = ei1<(!0_,.-~,..ev)p,.,H(x) 

(c) ei""(!O.,.,e,..)+i:r(!O.,..,e,.) = eiw{~ml+~,..e~) (120) 

With help of these we get the behaviour of the three factors of A(z, F) under translation. From 
associativity, Eq. (108), we get 

PH(x),F = PH{x),u,PH(x+iT 1 ),a~···•PH(,+iT 1 + .. if,_ 1 ),<r., 

and therefore by Eq. {120.a) 

PH{;o+V),F = ei1<(!~-<,,ep)PH(;o),F> 

f<n' F = (at.···•O"n) 

eF = """'e 
L "' p,EF 

1121) 

For the second factor, ni,.EF~.~+•, P(l,.):::: P,.,,H(;o)P,.2,H(z+P.d"''pl"t·H(:r:+[.,+ .. ;.,_,)>with the conven­

tion PH(x),-p = -PH(;o),p• we get with help ofEq. (120.b) 

IJ P(l,.) = e'"(I:;~, (!0.,., -~,.,.~,.) IT P(l,.) 1122) 
I,.EF~+<>.~+~+•t l,.EF~.~+•t 

For the third factor we get immediately e•.,.(f.,,lH+"t·'"+VJ = eiw(/em•+•t•")ei.,.(/em•+~,.xl, Multiplying 

the phases which the three factors of A(z, F) get due to translation and using L.,., = I:'", ( mod2) and 
Eq. (120.c), proves the translation invariance of A( z, :F). 

In order to prove the second part of the lemma we put x=O. Then we have the following 

I 

AI F) ~ 1 -1)"'"'1 rv, . .~.H,., + ·"·~>~ 1123) 
i~t 
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n(F) is the number ofnegativ J!i· For the evaluation of A(R- 1F) we use Eq. (112), which leads to 

f 

A(R-' F)= ( -l)n(FJ+n(n-'FJ fl p(R,I"•I)p(R,I"'I61"'1···• 6I"JI)A(F) 
i=l 

We remark that p(R, IJLti6IP21···· 6IP.tl) = p(R, F), and that the product nf=l p(R, IJ.t;l) is the product 

of minus signs generated by the rotation R, i.e. ( -1)n{F)+n{R-' F) , This completes the proof of the 

Lenuna. In the future we restrict :F' to such multi-links which are generated from :F by rotation: 

:F' = R- 1 :F. Then we can use the lemma to evaluate the factor A :F ( z )A:F' ( 0) as function of p( R, F) 
and p(R, F'). We rewrite Eq. (119): 

( ML,F(z)ML,J"(O)) = a'f p(R,F)p(R,F') ~ ~' f dpoxp -i(p,z);j1(z) I+ ;!,~L(p) ;j(ii) .. 
.;;t(z) = 11t(z)e-i.-(J>+ .. r,,.O.:o) ,ii(y) = 1J(Y)e+i ... (P+"L•.c.y) 

with 7Jt(z),7J(Y) defined in Eq. {118}. From Eq. (97) we get for Sp.,(z,y): 

I >' . 
-

02 
L.J Spv(z- p,y) = S#<'(z,y) 

<4-• 

and hence for 5p.,(z
1
y) = ei.,..(::o:-y,.,L)S,....(z,y): 

- ~ L Spv(z- ~,y) = ei.-{e,.,eL)S,.....{z,y) 
<4-• 

(124) 
6z = Z- z, 

(125) 

(126) 

This formula helps us to perform the sununations over p (following from Eq. (118), ~andy in Eq. (124). 

If we do the sum over p. at the point Z = z + e,, Eq. {126) shows that this results in the substitution 
:.;;t(z + e1) ----* -e-J'fe-i•(P+"L•et-titl. Adding and subtracting this term and sununing over p. at 

the point Z = z + e1- flJ> with help of Eq. {126), leads to the substitution: .;;t(z +ell- P,t) -
-e_,.

1
_

1
e-i.,..(p+ .. L,eriiri<t-d. Following this procedure and shifting the integration variable p to 

p + eL, we get our main result which we anticipated in Eq. (115) and which we formulate as a 

proposition. 

PROPOSITION: The 2-point function of the multi-link operator ML·""(z), Eq. (102), is, in zero order 

strong coupling approximation, 

(' ML·'(x)ML,>"(O) o) = a'f p(R,FJ-',jdpoxp -i(p, z),t(p,F) , I L "(p,F)(127) 
m 1+ ~M (p) . 

where 

F' = n-1r, , 1(p,F) = -2 L; {~~·-•·(•.E:::••l +I;{! 
p.;E:F Gllv 

"(p,F') = -2 L; {,·,e'·(>.E:::,;•,) +I;{. 
J.<;E:F' ailv 

and ML(p) = M(p) = M(p + eL) defined in Eq. (99). 

4.3 The group theoretical analysis ~f the particle content and the spectrum at 
{3~0 

Now we determine the quantum numbers ofthe particle states described by the propagator of the multi­

link operators calculated above. For this we construct "irreducible field operators" with transformation 
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properties which match the quantum numbers of the particles. These quantum numbers of the particles 

on the lattice are described in Sec. 2.3 by the irreducible representations of the symmetry group ~h­

They are the "momentum star", the "flavour orbit" and the "reduced spin". We consider in our 

calculation mainly particle states belonging to the momentum star St4 with a reference momentum 

p = (0, 0, 0, iE). In this case E can be interpreted most directly as energy in the "rest system", i.e. as 

mass in the continuum limit. We expect from continuity of the propagator in the momentum p that 

the consideration of other stars does not lead to qualitatively different physical results. In Eq. (106) we 

showed how the multilink operator transforms under flavour transformations. This transformation rule 

(after Fourier transformation) is the same as that of a state vector of the irreducible representations of 

gL described in Eq. (65). We have already defined the multilink fields in such a way that their flavour 

transformation property matches those of the particle states! This means that the fields "carry" the 

same flavour quantum number L as the particles. 
In order to match also the reduced spin u, the following meson operators are considered 

M:;;::,.,(z) = L D:;.,m,(,-')p(,){i.L,s-'F (128) 
•ES•,L 

where S4,L is the group of rotations of W3 which leave 1 invariant: S4,L = {sis-1L = L,s E 

W3}.D"' ,(s) denotes an irreducible representation of S4 L· The transformation law of ML,o ,(z) 
under ti;:'rotations of S4,L follows from Eq. (111) by the u'sual calculation: m,m 

(i•IM:;;~mbl) = ~ n:;.,,.(,)M~::,..V'•) (129) 

In the momentum star St4 which we consider, S4 r is the reduced spin group of the reference flavour 

I defined in Sec. 2.3. The Fourier transformed fieid M~" , = L::oeip:o ML,<r ,(z),p =Pi= (0, 0, 0, iE) 
transforms according to Eq. (129) as ,m m,m 

(i•JM:;;~m•(Pil) = L n:;.,,.(•)M~::,.,(Pil (130) 
;n 

This means, precisely like the corresponding state vector with momentum Pi in the irreducible repre­
sentation of 9L with reduced spin a as described in Eq. (63). 

According to the particle description by quantum fields, a pole in the 2-point function of ML,cr ,(pj) 
indicates the existence of a particle with the lattice quantum numbers: flavour Land reducedm~;in q, 

Thus we calculate this 2-point function with help of the expression Eq. (127). Inserting the definition 

Eq. (128) into Eq. (127) we get for the propagator of M~~n(z) in momentum space 

( ' ML•"(p)ML•"(O) ') ~ (R,(p F))1 I R"(p F')(l31) 
' 1 + ~ML(p) ' 

with 

R"(p,F') = L: v:;._"(,-') (-2 L: {_., ..• •·(>.I::::·•·,) + L{w) 
•ES!,L p.,EF' aUv 

(132) 

Because of p2( S, F) = 1, the p( S, F) in Eq. (127) is compensated by the p(S, F) in the definition 

of the meson field Eq. (102) . With Sit; we denote the permutation of the step directions p. under 

the rotations S. U(s)~., = ~.v defines a representations----> U(s) of S4,L in the step space. As usual 

2:. D':nn(s- 1 )~•P.• for fixed n, projects on an invariant subspace in which U(s) is represented as the irre­

ducible representation Du( s). Since p = pj + t:L is invariant under s E S4,L, the expression ei.,..(P,:L •Ji;) 

is independent of sand the matrix M{:v(P) = ei><,.(l- h"~',-") conunutes with U(s). Combining these 

two facts, namely that M{;,v(P) decomposes into blocks with respect to the quantmn number 0' and 
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# L u coshE W , (n)sut<1) 
I (1,1,1,1) (l+)w3 Mo(ao) (0 '15) 
2 (1,1,0,1) (l+)Dt Mo(oo) + 2 (1 .. , 15) 

3 (0,0,1,1) (l+)Dt Mo(oo) + 4 (1 .. , 15) 

4 (0,0,0,1) (t+)w3 Mo(oo) + 6 (0 +,15) ---

Table 1: Quantum Numbers of the Zero Order Mesons 

that the vectors (Rf.I),Eq. (132), belong to a subspace with quantum number a, leads to the result that 
the propagator of the meson field ML,6(z) has a pole, only if ML(p) has an eigenvalue - ;!t for an 
eigenvector lying in an invariant subspace with the quantum number a, i.e. in an invariant subspace 
belonging to the representation D""(s) in the step space of the reduced spin group 54,£· An explicite 
calculation leads to the following decomposition of the representation U(s) in the step space; 

U(s) ~ J(I+)w, + {2+)w3 + (3'+)w3 (133) 

for the reduced spin group W3 associated with the singlet flavour orbits, Eq. (67}, and to 

U(s) ~ 4(I+)v, + p-)n. + (I"'+)n. + (2-)v. (134) 

for the reduced spin group D4 x Z2 of the triplet flavour orbits, Eq. (68}, where Mo = a•-~s:z
2

+ 7 . At 

the zero order a :::: a 0 = m + ../m2 + 2d- 1. It is easy to see, by substituting a in Mo form = 0, 
that the state # 1 having cosh E = I is just the expected Goldstone boson, which comes out as result 
of the spontaneous chiral symmetry breaking[! OJ. 

5 The Calculations in First Order 

5.1 The 2-point function in first order of {3 

In this chapter We extend our considerations, which were restricted up to now to zero order strong 
coupling approximation, to include the terms in next order. First we consider the modifications of the 
resmnmed hopping parameter expansion explained for zero order in Chapter 3. For this we evaluate 
Eq. (80}, after inserting Eq. (82}, without setting e-Sg ::::: e-tiS, equal to one , as it was done in 
zero order. We get terms linear in {3, if a combination of quark and antiquark paths of the hopping 
parameter expansion (Eq. (82)) encloses a single plaquette (see Fig.4) . In this case the integration 
over the lattice gluon fields, using the orthogonality relations ,Eq. (79}, gives a result different from 
zero, because the parallel transports along the qij-lines around the single plaquette get "compensated" 
("screened") by the plaquette tenns of the action (Eq. ( 45)) in the expansion e-IJS~ ,.._, 1 - {359 • The 
evaluation ofEq. {80) leads to an expression of type Eq. (83): 

. . - I ""' ( -I )N' (t) , (. M(z)M(y) .) ---, L ~, T,,,(N ,~). 
m N' 4m 

(135) 

Here TJ:J(N', {3) is the weighted munber of qij zeroth and first order graphs of "length" N' connecting 
x andy. The expression of the propagator, Eq. (135), also has to include some of the higher order 
terms. for the summation in Eq. (I35} we proceed like in Chapt. 3 by separating the qij-graphs 
in "dressings" of the q lines, ("ij-lines) and trunks. The first order correction to the "renormalized" 
hopping parameter a-1 , Eq. (95), follows from the inclusion of a "plaquette" in the tree graphs of the 
dressing. Examples of such graphs are the same as those shown in fig.4 but include only one plaquette. 
0. Martin [10] has calculated a up to first order by methods similar to those explained in Chapter 3. 
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Figure 4: A First Order qq Path 
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Figure 5: The First Order Steps 

His result is 

2 2 16(d-1)3
, ' 

a = a 0 + 2( , d ){3 =an+ /3D, a 0 a 0 t2-l 
,ao = m + .Jm2 + 2d -1 (136) 

with f3' = ~;:;:- = ~ for QCD . 
After the renormalization of the hopping parameter we can represent Eq. ( 135) in the form 

l 00 (-1)N ( ~') (' M(z)M(y) ') =--, L --, S~~J N,-,- . 
m N a a 0 

(137) 

where Bi~~(.i\1·, ~) refers to trunks generated by N steps. In first order calculation there are three 
• types of basis steps denoted by ep., e.,,p.,-.,, ep.,.,,or {p), {v, p, -v), (J.L,v) (see Fig.5). The first two types 

shift x to x+ p, the last type shifts x to z + ep. + e.,. Any path from 0 to z which is a combination of 
these steps we call a first order trunk. As in Chapt. 3 we classify the trunks by their last steps. In 
four dimension we have 8 different steps of the first type. Because of J.L f. ±v there are 48 different 
steps of the second type. The last type has 24 different steps because it is synunetric in the indices 
p, v. This makes all together 8+24+48=80 different (first order) steps. We represent the paths of N 
steps as a vector with components refering to this classification 

jj ' (n _!!'_) = (sin) sin) sin) ) 
z, ' 2 p. ' P." ' J.'l'-p. a, (138) 

Its components are the weighted numbers of the paths of the corresponding type. A step enclosing a 
plaquette contributes a factor g;_ to the weight. The factor {3' results from the integration over the 

"• 
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Figure 6: The non-backtracking Conditions 

lattice gauge field. The factor ~ follows from the fact that a step with plaquette containes four links .. 
instead of two as in zero order. The equation in (137) is the sum of these components. We need to 

find a recursion formula which relates B!?l to Hin-t) 

B(n) = "M ,B(n-t) 
"'•' L u rt:-e,,,•' 

•' 
(139) 

where s runs over the index of the SO-dimensional step space, and also denotes the shift by the steps. 
In our method of organizing the sununation over all paths in dressings and summation over trunks, 
one of the main problems is to avoid overcounting. This leads in first order to the following conditions 
for consecutive steps described by the step matrix. 
1. Step (p) cannot be followed by step ( -p} or by step (v- Jl- v} . (Fig.6.a) 
2. A step: {p,v} cannot be followed by steps: {-p,-v), {-I-'), {-v}, (Fig.6.b) 
nor by steps (p', -p, -p'} , {p', -v, -p') (Fig.6.c). 
3. If we have the steps {pv) or (pv- p} , we have a factor 2 in the corresponding step matrix element, 
because the quark and antiquark lines of the trunk can be interchanged (Fig.5.b,Fig.5.c). However if 
the step (v;p, -v) is followed by a step (p',v) we have only a factor 1, because the interchange would 
lead to backtracking (Fig.6.d}. 
4. Since we have the equivalence of the two consecutive steps (v, Jl) «H -v, p, v) with (v, J.l, -v) El) (J.l, v), 
we have to omit one of these (Fig.6.e). From these conditions we construct the step matrix M.~· up 

to first order in {3 1
• We give the matrix Mu• explicitly for the Fourier transform fJ~:'}: 

iJ(n) ~ "M •(p)iJ(n->) 
p,• L.... u p.•' (140) 

•' 
For the shift {Jl) and (v, p, ~v} we get then a factor eiP",P-p = -pJl; for a step {pv) a factor ei(p,.+p.,). 
Thus with the summation convention for repeated indices the matrix Mu' is given by: 

B(n) ~ e''•' {(1- 0 ' )iJ(n->) + (1- 0 ' )(1 ~ 0 ' )iJfn->) + {1- 0 ' )(1 ~ 0 ' )B"(n->)} Jl' I"' -p Jl ll -Jl ll -v JlV 1-' -v ,.. Jl J.W-Jl 

B-(n} · _ R.ll,ip,.1+ip.,• { 2( 1 - 6 )(1 -' )B-(n-1) 
Jl'"' - tJ -Jl'll v_':''ll Jl 

+ 2(1- '•'-•){1 ~ '•'-v){1- Ov•-•){1- Ov-v)Bl~->) 
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+ (1- 6~,_.,)(1- 611,_11 )(2- hv'!J.- h!J.'!J.)B~:=-~} 

jj{•J ~ ""•''•' {2(1- 0 ' )(1- 0' )iJ(•->) + 2(1- 0, )(1- 0, )iJ(n->) l''v'-p.' fJ -v 1-' f.J f.J !J "-v "-JJ ~-'" 

+ (1- o,,_.,)(l- s.,._.)(2- cjJ.,,.)B~:=-~} (141) 

The Kronecker symbols {j in this equation guarantee the fullfilment of the above conditions 1 to 4. The 
factor {3 11 = ~associated with first order steps was explained above. The recursion relation Eq. (140) .. 
and the explicitly written matrix Eq (141) allow us the summation in Eq. (137), with the result 

1 f 00 

( 1 )" (' M(z)M(O) ,) ~ m' dpe-i(,,•l ~ :, ~TM"(p)~ 

_1_ f dpe-i(,,z)~T ( 1 ) ~ 
m2 1 + ~M(p) (142) 

In the case of the propagator for local fields we have for the initial and final step vector ~ : ~. = 

1, s = {p), {Jt,v, -J.L), (p.,v). We discuss the more general cases connected with multi-link operators of 
different flavours in the following sections. Finally we want to emphasize again that the step matrix 
above generates trunks related to higher orders in {3'. However the different plaquettes which may 
appear in the same trunk are separated . 

Now we analyze the symmetry properties of ML(p) = M(p+ eL)· From the four dimensional W 4 
symmetry of the lattice it follows that under four dimensional rotations of the lattice any vector of 

the step space B"(p) = (B1"l(p),B1>,:l(p),B~:~Il(p)) transforms as: 

I I ""( ) (iJ(n) ( -> ) iJ(•) ( -> ) "(n) ( -> J) 
8 B p ~ 6_ 1Jl S p, 6_ 11lr'v 8 p ,B,_1Jl,-1,._ 6_11l S p (143) 

where 8 E W 4 ,W4-four rotational group and p = (j},p4 ). 

In the center mass system (P = 0), we see from (143} that the matrix ML(p)is invariant under 
the spacial rotations of W3 , which means: 

D(l)M ~ MD(•') (144) 

if 8 1 E W3, s'P = 0, s'eL = eL and D(s') is the representation of the group W3 in the step space . This 
representation is defined on the step basic eJl .. " in the following way: 

D( s') ( eJl, eJl"' e.,,._ll) ::: ( e~'-'ll, e 31-1 Jl•'-' "' e,•-•1"•'-' v~3'-'ll) (145) 

Now we will use the known group theoretical techniques for choosing a new basis of the step space in 
such a way, that the representation in the step space decomposes into invariant subspaces of D(s'). 
According to Schur's Lemma the matrix ML decomposes then into block matrices, which correspond 
to the irreducible representations of W3 [19]. The decomposition into these invariant subspaces corre­
sponds to a representation of D( s') defined in ( 145) by a direct sum of irreducible representations of 
W3 given in the Appendix . 

D(s)::::::: 11(1+)w, + 10(3-)w, + 10(2+)w, + (l'+)w, + (3+)w, + 3(3'-)w, + 2(3'+)w, (146) 

The same procedure can be applied for the synuntry group 54,r;, which holds for the triplet flavours 
with representative element of the flavour orbiter;. In this case the D(s') decomposes into irreducible 
representations of 54,£= D4 X Zz as: 

U( s) ~ 21(1 + )v. + 10{1 ~)v. + 11(1"'+)D, + 13(2- )v1 +( 1'+)v. +3(1111
- )v. +3(2+ )v, +2(1"+)v. (147) 
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In order to get the pole of the meson propagator we solve Eq. ( 101) for every one of these matrices. For 
the evaluation of the determinants of the matrices which have dimensions up to 21 , we used partly the 
'Reduce3 Program' on the computer. The results are given in the Tables.1,2,3 . For P = {0, 0, 0, E), 
the sub-matrices ML(p), in the subspaces belonging to the last four representations in Eq. (146) and 
in Eq.(147), do not depend on the energy E, therefore they do not give any poles. Surely they give 
poles in the second order calculations at /3. So there are poles in the subspaces of the representations 
(t+)w,,(3-)w,,(2+)w,,(1+)n •• (1-)n •• (1"'+)n.,(2-)v •. It will tum out that these representations 
determine the reduced spin 0' in Tables 1,3 . For some of the L , the poles are at co&hE > 0 ; for 
the rest,the poles are at cosh E < 0. The first ones are listed in Tables 1,3 . The latter ones have no 
physical meaning, they belong to L's with the opposite fourth component. 

The considerations up to now are purely formal. These poles still have not yet a physical interpre· 
tation because they are not associated with qanttim numbers of precisely defined expectation values of 
field operators. These will be constructed in the following section from the one link-operators , which 
seem to be enough to describe the physics at the first order approximation. 

5.2 The first order approximation of the one link-field operator 

For the one link-field operator: 

ML'"(z) = eill'(eL+"nu+e,.,z)X(z)fiH(z),vU(z,jL)x(z + e,.) (148) 

we calculate the two point function (: ML•P(z )ML,p'(O) :) up to the first order of /3. As we mentioned 

before , the quark line starts from the point e,.• and goes to the point x, the anti-quark line goes from 
z + e,. to 0. The two lines are non-backtracking and can include at most the area of one plaquette. 
Because of the links U(z,jJ), and U(O, ,i') in the expressions of ML•"(z) and ML,,.' (z), the two lines 
(quark and anti-quark lines) also have to screen these gauge fields up to the first order of {3 . We 
show in Fig. 7 the possible screenings up to first order. In this figure we see that the trunk until the 
point y is of the same fonn as we have already discussed above . ExJijcitly , it couJd be characterized 
by its last step before y, whicll could appear in 80 different fonns. The possible steps after y are 
then restricted, by the conditions (1-4) and by the fonn of the screening which follows. In Fig. 7 the 
possible scr~gs are given together with the steps Bp.v etc. after the pointy. The factor 2 in Fig.( a) 
comes from the interchanging of two lines. In the Fig. (a) the path from x to z + e,. and also the 
contribution of figure (d) are included in the renormalization of the hopping parameter up to the first 
order. 
There are signs related to trunks with given steps after y and the screenings described in Fig. 7 above. 
These signs are composed by the sign factors in the definition of the link operator (148) and by the 
P(l~o<) of the links of the quark lines. For convenience we represent this sign by factor A{x) given in 

(119) "" 
A(z,p) = ei..-(rmt+r,.,z)pH(z),JlfJ/'.H(z) (149) 

times the signs given in Fig. 7. 
In chapter 4 we gave the transformation properties of A(z,.F) for general multi-links. Now we write 
the analo~fEq {124) for the one link field operators. We get: 

(' ML••(z)ML·•'(O) ,) ~ Cp(R,~)p(R,~') J dpexp -i(p,z).;Tp\ + ;!,~L(p) >i(Y) (!50) 

where r, = L:. '~•• the sum is taken over the last steps s shown in Fig.7. ML(p) is the 80 x 80 matrix 
defined in (141). 
The expression S$$' defined as : 

T 
1 

Tl•' S,_, = Tl. 1 + ,!rML(p) (!51) 
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is the Fourier representation of the weighted number of paths from 0 to x with initial step (s} and 
final step {s'). 
From Fig.1 we get explicitly the expression of i] as: 

fJ(IJ) = L Tl• + 2T/-I' + L ( Tl,.v-1' + T/-~>" + ~T/v-~>-v) • 
' " 2 

(152) 

Substituting (152) in (150) we can calculate the two point function of the meson field operator, 
Eq.(114), .M.;;:~m,(Pj) of the lattice quantum numbers q and Las: 

T 1 ·<r{ ') ( ML••(p)ML·•(o) o) "(>j"(~)) I+ ;!,ML(p)ij ~ (153) 

Here i]""(p) is defined similar to Eq. (132) as 

·i"l~) = L n:. .• V')>iV'~) (154) 
•ESi,L 

From the physics point of view it is the most important step of our calculation to determine the 
quantum numbers I, u for which these meson propagators have poles. We use the decomposition of 
the matrix ML(p) into submatrices acting in subspaces of given synunetry described by representations 
D"' as described in Sed.5.1 and in the Appendix. By the group theoretical structure of i]u ,Eq. (154), 
one sees that the vector in the step space i]u has u-synunetry. It follows then from the orthogonality 
of vectors with different synunetries, that according to Eq. (153), the meson fields ML,u(p) couple 
only to poles which lay in a subspace of the step space with the same syrrunetry d and L. The position 
of the poles is determined by the solution of Eq. (101). 

In the Tables 1,3, we summarize the masses, i.e.cosh E as function of the 'renormalized quark mass' 
a (Eq. ( 136)} and of /31 together with the lattice quantum numbers u and I. The correspondence to 
the continunun quantum numbers u·-C, ( n)su(4)), also included in the tables, we discuss in the next 
Section. For the states which appear already in zero order the quantum numbers are given in Table 
1, Sect.4.3. The first order corrections to coshE can be calcuJated from the following equation: 

4C2 cosh2 E + 2Ct cosh E + Co - 2C2 = 0 

The different C0, C1o C2 are defined for every one of these states in Table 2. The a = o:2, ao = a~ are 
defined in Eq. (136). The solution of the last equation in the first order of /31 generaly is given by: 

Co {3' - Co - 2 coshE = ------=-- =-(C1 y0 +- + 2C2(Yo -1/2)) 
2Ct C 1 2 

where we redefined the values : 

=d 

C2 = 13'C2 Ct = Ct + tJ'c; Co= Co+ {3'C~ 

- ac1 , 
Ct = 8aD+C1 G·o = OCo D + C~ 

a a 

c, 
Yo=- 2C

1 

The states # 5-14 given in Table 3 appear for the first time in the first order calcuJation. 
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# coshE 
c, (a,;+ ao)J3' 

I C1 = -a4 - a3 + jj'( -a~ - 2~ + 60ao- 7) 
Co= a5 - 5a4 +a3 + 7a2 +/3'(-29~ -17afi+ 45ao+41) 

c, - )3'(2% + 4a,; + 2ao) 
2 C1 =as- a3 + {j1(64 + 27~ + 12a~ + 17ao- 6) 

C0 = -a6 + 2a5 - 6a4 - 2a3 + 7a2 + {31 (17a~- 50~- 94a~- 98ao- 3) 

c, - J3'(2a,; + 4a,; + 2ao) 
3 C1 =as- a3 + {3'(144 + 21a~- 12a~- 25ao + 2) 

Co·= -a6 - 2a5 - 6a4 + 2a3 + 7a2 + {31
( -94- 122a~ + 6a~ + 282a0 + 19) 

c,- )3'( """ ao) 
4 C1 = -a4 +a3 + {J'(-21~ + 30a5+ 68ao -17) 

Co= as+ 5a4 + a 3 - 7a2 + {j'(49~- 5~- 361ao + 61) 

Table 2: First order correction of the zero order Mesons 

# L q coshE (i' ,(n)su«>) 
5 (o, o, o, 1) (3 )w, s::+~ (J+ ,15) 

6 (1,1, 1, 0) (3 )w, .... 21+~ (1 +,15) 

7. (0, o, o, 0) (2+)w3 ~+~+2 ... " (2++,1) 
+1 

8 (1,1,1,1) (2+)w, ""-='+ ~ (2 , 15) 
-

~ +1 2 'ao+1 
9 {0, o, 1, 0) (I )D, I ~ + s#i-ao ":t~ (0 , 15) 

10 (1,1,0,1} (1 )D, i#r..*"~ - 1 .. "'~ (o+ ,15) 

11 (0, 0, 1, 0) (1111+)Dt rn "eo-~ 2{:J J.ao+l - 2 3a +1 (2+ ,15) 

12 (1, 1, o, 1) (1111+)Dt \~+~ (2 • 15) 

13 (0,0,1,1) (2+)n~ I~+~ (1+,15) 

14 (1, 1, o, 0} (2+)Dt - 3~::~~) + 6;1!(~ 0 ~1 (1 ,15) 

Table 3: Meson states appearing in ~irst Order 
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6 Physical Discussion 

In the following we analyze the results which we got from our calculations. These are summarized in 
the two Tables (1) and (3). The table (1) contains the 4 multiplets of states which appear already 

in the zero order calculation [11],[10]. It gives cosh E, E energy, as a function of a= a 2 (136) , {31
, 

together with the lattice quantum numbers L and cr. E and mare expressed in units of the inverse 

lattice constant of the 'fine' lattice. The first order corrections to the energy of these states are given 
in Eq. (155) supplemented by Table 2.lt is possible to see after lengthy calculation, that the state #1 
still has zero mass for m = 0, as it has at the zero order. This justifies our interpretation of # 1 as the 
Goldstone boson of the spontaneous chiral symmetry breaking [10]. It is also simple to note that most 
of the mesons get mass different from zero for zero quark mass. This gives us a hint to getting mass by 
totally dynamical effects . The Table (3) contains additional10 multiplets of states which appear for 

the first time in the first order calculation. The multiplets # 5-8 are singlets, those from# 9-14 are 
triplets. They represent alltogether 22 particles. The masses of these multiplets as a function of {3 1 for 
different quark masses m are also shown in the Fig.9 . These curves show clearly how the masses of 

the states # 5 - 14 go to infinity like -log {3 for {3 --+ 0. There is an intuitive picture of this feature of 
the strong coupling approximation on the lattice. The quark antiquark pathes of the first order, Fig.4 
, describe a relative motion of the quarks over one lattice distance. This relative motion admits states 
with more complex lattice quantum numbers, like those we find for the states # 5-14 in Table 3. In 
analogy to conventional quantum mechanical states, where higher angular momenta, radial quantum 
numbers etc. are characteristic for excited states, we may regard these states heuristically as 'excited 

lattice states'. This picture is in agreement with the usual interpretation of the dynamics of lattice 
QCD by a confining potential. In strong coupling approximation the string constant of the linear 
potential is "- "" -log{J . In such a potential the energy difference between ground state and excited 
states goes to infinity, if "- --+ oo like in our case. However, the significance of this dynamical picture 
can be seen only from a detailed comparison between continuum and lattice physics. 

There is a group theoretical method for relating lattice quantum numbers to continuum quantum 
numbers, i.e. to the quantum numbers of physical particles. We have described in Sect.2.2 how 

the symmetry group of the lattice 9L is a subgroup of the symmetry group G of the DKE in the 
continuum. The quantum numbers of the 'physical particles' described by geometric QCD, like spin, 
parity, SU(4)-multiplets are determined by the irreducible representations of g : (j,.0 ,(n)su( 4))· 

Therefore the lattice approximations of these particles should have lattice quantum numbers L, d etc. 
given by irreducible representations of C:h , which are contained in the restrictions of the continuum 

representations to 9L: (j"0 ,(n)su( 4))1L· The lattice quantum numbers related in this manner to 
the physical quantum numbers first were calculated by M.F.L. Golterman [14], and later in a more 
systematic way by W. Neudenberger, who uses the same notation as we do. The Table 4 is due 
to Neudenberger [22] It contains the representations with St4 ,(see Sect.2.3), which are contained in 

continuum representations with low spins. From this we can read off immediately the continuum 
quantum numbers of lowest spin which could be associated with the 14 lattice multiplets of Table 1 
and Table 3. These quantum numbers were added to these Tables. 

The charge parity C needs some additional remarks. For local meson operators, and for the 1-link 
operators, C can be calculated easily from Eq. ( 113) . However, triplet. states contain states of different 

C, like in the continuum iso-spin multiplets contain different C states, therefore C is not given for 
these multiplets . 

The main question in the physical discussion of our results is of course, how well these represent 
the states of an SU(4) quark model. For tltis we compare the spectrum on the lattice up to the 

first order with that of an usual SU(4) quark modeL This is shown in Fig.8. We see, there is only 
partial agreement between the quantum numbers of the ground state and the first excited states. This 

illustrates also the limited justification of our picture of interpreting the states of Table 3 as excited 
states. For a comparison of the masses we have chosen the following procedure. For the physical 
states we have chosen the energy oft-he SU(2)-ftavour triplets. In order to get the energy values of the 
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I P I si.• I L I o-+ I o- I 1-+ I 1- I 
(O,O,O,B Z2 x D, (1,0,0,0) (I) !W (I) ,(2)- (2)•' 1')-

(0, 1, 1,0) (I') !W (IJ ,(W (2) ,(1')-
(1,0,0, l) !W (I) (2) ,(1 )- (1) ,(2) 
(0, 1, 1, 1) !W (I ) (2) ,(1 ) (I) ,(2) 

w, (0,0,0,1) (I) (I) !W (3) 
(1, 1, 1, I) (I) (I) !W (3) 
(1, 1, 1,0) (I) (I) (3)' (l) 

:~-+ 2- 3+ 3-

(1') ,(1') ,(1"') ,(2) (I) ,(1") ,(1"'), 2) (1) ,(1') ,(1 ) ,2(2)- (1')-,(1")-,(1")-,2(2) 
(1) ,(1) ,(1) ,(2) (I) ,(1 ,(1')-,(2) (1) ,(1) ,(1) ,2(W (1) ,(1) ,(1) ,2(2) 
(1) ,(1 ) ,(1 )-,(2) (I) , I ) ,(1 ) ,(W (I) ,(1 )-,(1 )-,2(2) (1) ,(1") ,(1') ,2(2) 
(1 , 1 ,(1) ,(2) q, 1 • 1' > ,(2) <1)-.(1 )-,(1 -,2(2) (1) ,(1" , 1') ,2(2r 

2 , >') 2 , 3') (I') ,(3) ,(3') (I') ,(3) ,(3') 
(W,(3'J- (2) ,(3') (1')-,(.,-,(3)- (1') ,(3) ,(3) 
2 ,(3) (W,(3) (I) ,(3) ,(3') (I') ,(3) ,(3') 

Table 4: The Lattice quantum numbers and their corresponding continuum numbers 

lattice states of Fig.S for quark masses m = 0, /31 = 0.15 , we have to choose for the lattice constant 
of the fine lattice b =0.4f . 

In comparison with the physical quark model spectrum there are many lattice states missing. Of 
course for a significant comparison with the continuum, i.e. for j3 ....... oo one has to go to higher order 
calculations. From this point of view, we can expe<:t that new states will appear at the second order 
calculation. This we mentioned already in Section 5 together with formulas (146) (147). There the 
last four representations do not depend on E in first order. But it is easy to sw that they depend on E 
in second order of j3. So one can expect additional16 multiplets, 8 of these are singlets, the other 8 are 
triplets. There are additional 32 particles in this order. Of course it is difficult to calculate the energy 
of these states explicitly, because the step matrix becomes of the order 1000 x 1000. The appearence 
of these additiC?ital states suggests the following conclusions. As we have seen, the construction of 
meson fields as irreducible representations of the lattice synunetry group from one link fields give us 
also the particles, which begin to appear at first order in {3. Similarly it should be possible to check 
by the same procedure, that the two link meson field operators give us also those particles, which 
begin to appear at the second order of {3. From these facts we conjecture that one may get in higher 
approximations on the lattice all the physical flavour states, which are described by geometric QCD. 
In this spirit we believe that we have explained in this paper the first steps of a non-perturbative 
treatment of bound states in a strong coupling regime. 
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A Definition of the Reduced Spin 

For reference momenta p = (O,O,O,p4.) and singlet flavour orbits the reduced spin u is defined by 
the irreduceble representations of the rotation- reflection group W3 • This group is generated by the 
rotations by 1r /2 in the (12)-and (23)-plane: R 12 , R 13 and the space reflection II. There are altogether 
10 irreducible representations defined in the following way: 

(1±)w, : R 11 ......... I R 13 ,_.,. 1 II,........ ±1 

(l'±)w, : R 11 ,_. ~1 R23 ,_. -1 II,........ ±1 

(2±)w, : Rt2 ,_. ! ( 1 ~) R 13 
,_. ( ~1 n II,_. ±1 

'v"i ( 156) 

R"~ u -1 

Y) R"~ 0 0 

~1) (3±)wl : 0 0 II- ±1 

0 1 

(3'±)w3 ~ (3±)w3 ® (1'+)w, 

For the same p and triplet flavour orbits the reduced spin group is D4 x Z2. As asubgroup of W3 
it is generated by 

A~ 
( 

0 1 0 ) 
~1 0 0 
0 0 1 

B~ 0 ~ n rr, ~ ( 
The 10 irreducible representations of D4 X z1 are given by 

(l±)D! A~1 B~1 

(1'±)n. A~1 B ,_. -1 

(l"±)D! A ..... ~1 B~ 1 

(lm±)Dl : A,_. ~1 B ,_. ~1 

(2±)n. : A~ ( ~, n B,_.(~~) 
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1 0 
0 
0 0 ~1 ) 

n3 ....... ±1 

113 1--t ±1 

n3,.... ±1 

n3,.... ±1 

n3 ,_. ±1 

(157) 



A Symmetric Vectors in the Step Space 

In order to define the invariant subspaces of the step space spanned by the basic vectors el' ,..,, we give 

first the following definitions: 

±' ±' ±' 
F, e~r: ± e_,, F, = eo~o ± eo-J., F, = e-ok ± e-o-1., 

±' ±' 
T, = eo~r:-o ± eo-Jr:-o, T, - e-oko ±e-o-leo, 

±' ±' (!58) 
T, €,1,0-k ± €-Jr:Ok. T, €Jc-O-k ± €-k-OJr:, - -

± ± ± ± 
E" = €fie-/ ± €-f-leh E{lle} = Elk +E~r:1 

± ± ± ± 
E[!Jr:] - Elk -E~r:l e,. - elk± e-1-k 

+ 
Now we define the vectors e±o, T", yn,T which transform under the trivial representation (1)w3 

eo, e-o, 
+" 

T" = L:k>oFk, 

+ +" 
yn,T = E~e>o T1e 

n=1,2,3; 

n = 1,2,3,4; 

T0 = L:•>• 1;kli 
•>• 
1<0 

+ 
T + = E•>B E{lk} 

E{lk} 1>0 
1<0 

(159) 

For the representation {3)w
3
,where the basic vectors are wi, k = 1, 2, 3 (corresponding to three 

dimensional space vedors) the base vectors of the corresponding step subspace are : 

wk = F,., n = 1,2,3; 

wt = E1 .E{Ik} 

wt=Etetk 
wk = Lt E[!Jr:)· 

n' 

wk = T,., n' = 1,2,3,4; (160) 

In the above formulas we sum over negative and positive values of l. We also denote the spacial 
variables by l and k, so that they have the values I, k == ±1, ±2, ±3 the time variable we denote by 0. 

For the (2)w~ representation we have the two dimensional basic denoted by 0~o 02 ,the vectors of 

the step sul;tspace are: 

+" +" 
0} = ~F2 +F3, 

1 T+ +n' +n' 

+" +" +" 
~2=2F1 --f2-~3• , n=1,2,3; 

n'T+ +" +" +n 
e~· =~T2 +T3, 0

2
' =2T1 ~T2 -T3 , n=1,2,3,4; 

• + + 
0~{r•} = L:1(E{21} ~ E{3l}) 

+ 
0;{r•} = L:,(t{21}- t{31}), 

.t1,•J r' + l 0 1 = L;, Et31J - E[21] , 

1-{n} + + + 
0 2 = 2:,(£{21} + E{3l} ~ E{ll}) 

+ 
0;{n} = E,(!{2t} + !{31}- t{Il}) 
.!ilk)+++ 

02 = Li(2E[3l) - E[21] - E[IIJ) 

We define the vectors of the (1 +)v. representation space in the following way: 

eo, e_o, 

+ rg = L:t=±2 e tli 
+ 

T~ = EI>O E{13} 
E{U} 1<0 

+" 
Ti = Lk=l,2 F~r: 

+ +" 
T~·T = Lk=1,2 T,. 

+ 
T! = E1=±2 E{tl} 

E{ri} 
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+" TZ = F 3 , n = 1,2,3; 

+ +" 
T~,T = T 3 n = 1,2,3,4; 

+ " + w = L...IE[t3] 

0 ~ + . l' 1 = L.,I>O e3/, 
I<O 

(161) 

(162) 

The vectors of the (1-)ni representation are: 

l'" = F3 n=1,2,3; yo:::: 2:l>• e3li 
1<0 

_n 

T"•T = T3 n = 1, 2, 3, 4; l'- = r;,>" E{i3} 
E{l•} I<O 

w- = L;, E[J3) 

The vectors of the (1111+)D" representation are: 

+n +" 
T"=F 1 -F2 n=1,2,3 

+ +" +" 
l'"·T=T1 -T2 n=1,2,3,4; 

+ .... + + 
w = LA=±t E[J3) - 2:!=±2 E[!3J 

T~ L:i=±t 1;31- L:i=±11;3l 
+ + 

T + = 2::1=±1 E{i3} - L:t=±t E{i3} 
E{l•} 

(163) 

(164) 

For the (2+)D4 representation we have a two dimensional basis denoted by (01 , 0 2 ) .The vectors of 

the step subspace are: 

01 = F 2 +iF1 , 
n' n' 

n',T- - .-
01 = T2 + tT1 , 

.t{lk} + + . + + 
0 1 = (E{32}- E{3-2}) + t(E{3t}- E{3-t}), 

,ti,•J + + .+ + 
0 1 = (E[32J- E[3-2J) + t(E[3tJ- E[3-1J), 

~~. + + . + + 
0 1 = (e{32}- e{J-2}) + t(e{3t}- e{3-t}), 

02 = F 1 +iF2 n = 1,2,3; 
n' n' 

n'T- - .-
02' =T1 +tT2 .n=1,2,3,4; 

.!{It)+ + .+ + 
0 2 = (E{3t}- E{3-t}) + t(E{32}- E{3-2}), 

1-lr•J + + · + + 
0 2 = (E[3tJ- E[3-tJ) + t(E[32]- E[3-2J) 

+ 
0;{u) = ("ti{31} _1;{3-t}) + i(t{32}- t{3-2}) 

(165) 
These are all base vectors of the invariant subspaces , which have a physical pole in cosh E. 

References 

[1] K.G. Wilson:Phys.Rev.D10(197 4)2445. 

[2] P.Becher, M.Boehm, H.Joos: 'Gauge Theories of the Strong and Electroweak Interactions'. John 
Wiley and Sons 1984.(B.G.Teubner 1981). 

[3] L.H.Karsten, J.Smit:Nud.Phys.183(1981)103. 

[4] K.G.Wilson:New Phenomena in Sub-Nuclear Physics. A.Zichichi (ed.), Plenum Press New York, 
1977. 

[5} L.Susskind:Phys.Rev.D16( 1976 )3031. 

[6] P.Becher, H.Joos:Z.Phys,C-Particles and Fields 15(1982)343 . 

[7] E. Kaehler:Rend.Mat.Ser. V, 21(1962)425. 

[8] M.Goeckeler, H.Joos:'Progress in Gauge Field Theory', (Cargese 83) p.247. G. t'Hooft et.al. (ed.) 
1984 Plenum Press New York. 

[9] O.Napoli:Phys.Lett.B183145. 
P.Mitra, P.Weisz:Phys.Lett 1268(1983)355. 

[10] O.Martin:'Large N Gauge Theory at Strong Coupling with Chiral Fermions', 
PhD Thesis Caltech. 68·1048. Phys.Lett.114(1982)152. 

34 



[11] H.Kiuber-St.ern, A.Morel, B.Peterson: Nud.Phys.B190{FS3)( 1981 )504. 
Nucl.Phys.B215( 1983)527. Phys.Lett.114( 1982)152. 

[12) W .Kerler:N-u.d.Phys.B202{ 1982)437. 

[13] J.P.Gilchrist, G.Schlerholz, H.Schneider, M.Teper: 
Phys.Lett.136B( 1984),Nucl.Phy$.B248(1984 )29. and lit.era.ture quoted there. 

)14] M.F.L.Golt.ennan. J.Smit:Nud.Phys.B245{1984)6I. 
M.F .L. Golterman:Nud.Phys.B273( 1986)663. 

[15] H.loos,M.Schaefer:Z.Phys.C-Particles and Fields 34(1987)456. 'The Representation Theory of 

the Symmetry Group of Lattice FeMnions as a Basis for Kinematics in Lattice QCD'. 

{16] H.Kiuber-Stern, A.Morel, B.Peterson:Nud.Phys. B215(1983)527. Phys.Lett.114(1982)152. 

[17) N.Salingaros:J.llfath.Phys. 22(1981)226, 23(1982)1. 
H.W.Braden:J . .Math.Phys. 26(1985)613. 
We suggest to call this group JC4 which does not have a generally accepted name (H.W.Braden) 

in honour of this workshop: 'Kent Group'. 

[18] A.N.Jourjine:Dimensional Phase Transitions: Spinors,GaugE Fields, and Background Gravity on 

a Cell Complez. Madison Preprint MAD/TH/86-9. 

[19] M.Hamennesh:'Group Theory and its Applications to Physical Problems'. Pergamon Press, 

London-Paris 1962. 

[20] G.I.Shilov:'Fundion of several real11ariables ·. Nauka Press, Moscow 1976. 

[21] H.Joos:On Geometry and Physics of Staggered Lattice FeMnions, 

in 'Clifford Algebras and Their Applications in Physics' 

J.S.R.Chisholrn and A.K.Cornrnon (ed.), D.Reidel Publishing Company (1986). 

DESY 86/ 044. 

[22] W.Neudenberger:Diplomarbeit Hamburg 1987. 

35 

X 

X 

y rr ( 

Fig.a. 
~s •. , ~2~s •.• , (~ ~ ~) 

~2{3B.,, ... ,-v, (p,' -:f- -p,ll-:/:- /.') 

.t 
x=y 

Fig.d. 

X 

Fig.g. 
+/3B- ... ., 

y ~ ) I 

Fig. b. 
-!3B ... ,.,,- ... 

A 

L...~~~Y 

X 

Fig.e. 
+/3B-j.l 

Cil ' ~y 

Fig.h. 
+f3B.,_J.I_" 

rt 

Figure 7: The Screening Pathes in First Order 
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Figure 8: Comparison of the Physical Meson Spectrum with the First Order Calculation 
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Figure 9: Curves of the masses of the mesons, depending on {J, with their lattice 
quantwn numbers.In every Figure we find five curves for the quark 
masses m = 0, 0.25, 0.5,1, 2, 3. They could be distinguished by their 

increasing values near {3 = 0 as function of the quark mass. 
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