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Caustics in a Cubic SU(2) Lattice Model
with Anti-periodic Boundary Conditions
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Absiract

In order to investigate the weak coupling limit of lattice gauge theories it has been
suggested recently to apply the semiclassical approximation to the Schridinger equa-
tion in the Hamiltonian formalism. This method is used to study pure SU{2) gaunge
theory on a cube with sides of length one lattice constant and with anti-periodic
boundary conditions. We show the existence of caustics, i.e. envelopes of families of
classical trajectories where the groond state wave function peaks, and describe their
shape.

* Supported in part by BMFT and by Doktorandenstipendium der Stadt Hamburg

Introduction

In their article on ‘Caustics in a Simple SU(2) Lattice Gauge Theory Mode]® {1] Bartels
and Wu considered pure SU(2) in the Hamiltonian formalism of Kogut and Susskind [2]. The
dependence of the Hamiltonian operator?
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on the coupling constant ¢* which becomes small in the continuum limit {see e.g. [3, ch.
12]} led them: to apply the semiclassical approximation in analogy with the usual short wave
asymptotics [4,app. 11] known from quantum mechanics (WKBJ approximation) and optics
{eikonal approximation). Substituting the ansatz

¥ = Adeet” (2)

into the Schrodinger equation with Hamiltonian (1) one obtains the Hamilton-}acobi equation
and from it the equations of motion of a mechanical system with many degrees of freedom.
In order io analyse the ground state of {1) Bartels and Wu examined the resulting classical
trajectories for the gauge field on one and two plaquettes with free boundary conditions. As
the classically allowed region consists only of an isolated point, the origin, the trajectories
of interest which leave in all possible directions of configuration space have zeroc energy and
their action § = i§ is purely imaginary. At large distances the wave function

¥ o= A TS (3)

is therefore suppressed. But at intermediate distances regions exist where neighbouring tra-
jectories intersect. On these focal surfaces or caustics the prefactor A which represents
fluctuations around the classical paths and can also be interpreted as the square root of their
density [{5,ch.11-18} grows large and competes the exponential decay. In the limit ¢ — 0
A behaves like const. - g7 where the positive fractional power p depends on the shape of
the caustic and may be inferred by transforming it to its normal form {cp. [1,sect.4.2-4.3];
for the general theory see [4,app.12] or [6!). This enhancement of the ground state wave
function on the caustics may yield a significant contribution to physical observables.

The goal of this article is to extend these studies to another simple model, namely pure SU/(2)
on a cube with anti-periodic bonndary conditions. Whereas for a cube with free boundary
conditions the Hamiltonian depends on five SU(2) group elements after gauge fixing on
the maximal tree [7] and a cube with periodic boundary conditions still depends on nine
parameters (cp. [8]) this model has essentially only three degrees of freedom and is therefore
comparable in complexity with the two-plaquette model. We show that it also has caustics
which strongly resemble those of the two-plaguette model, but are a little closer to the origin.
Due to the more complex potential with four inequivalent minima they show a much richer
structure which may be interpreted as a first hint at a self-repetitive pattern.

In the first part of this report we briefly collect the necessary definitions of the Hamiltonian
lattice formalism, introduce the model under investigation and derive the equations of motion

'T is the electric part and plays the role of kinetic energy, whereas the magnetic part V pravides the potential.



after gange fixing. In the second part the result of the nwnerical analysis, the shape of the
caustie formed by the first and second foeal points. 15 presented and compared with the
fndings of Bartels and Wa for the two-plaquette model.

Hamiltonian Oprrator and Equations of Motion

For a lattice cauge tlheory with arbitrary continuous gauge group G the electric and
magnetic parts of the Hamilionian (1) are given by ‘3. ch. 15
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The lattice constant g will be set cqual to one in the sequel. The sum in ¥V extends over
all plaguettes P of the Iattice .\ and ggp is the product of the group elements on the links
surrounding £. whereas the sum in T extends over all links A in A, gx is the gauge field on
link A and J? the quadratic Casimir operator of G which 1s vealised as a differential operator
m the group paraiueters. Let

PR e (5]

be aun arhitrary element of the gange group with the generators A, in the algebra of G
unormalised according to

Tri A, Al - éope G

the metric teusor of the group at g 1s then given by
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g
Matg) = rTri'E_q_J—q\{q_ (AR {

1
ERCR AR

This definition is unigue up to the positive multiplicative constant « {for further information
see 19, sect. IT and app. A, and references cited therein}. The Casimir operator J? is identical
to the corresponding Laplace-Beltrauy operator except for its sign.
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2 _ L 1 [ 1yab )
-Jg) = Algi = Mig) 260,,3!1'(91-MM ) {9‘}]5{;5 18]
where M({g) — det{M.stg)) and (AL"! )“b[g_! is the inverse metric tensor.

The group SU(2) we are concerned with as well as its algebra canu be represented by the Pauli
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matrices and therofore each elewent g © SU(2] may be written as

3 3
g — cxp(s >__: o= gt o1 z\_: ¥,
a=i a=1
3
o uo__ l R N A
with y = cosr, kS (}1\1‘ )7} Ao, (5')
a=

o, "
— snr for " #0
0 otherwise a=0

As SU(2) is isomorphic to the three-dimensional sphere $* < R it can also be parametrised
by the angles &. Y and » which are related to the y* via
y = cos@
y = sin®sindcos )
2 g (9)
y° = sin@sindsing

y* = sinQrcosd.
Because the generators now obey
Triio, top) — —28gp (8"}

we have to scale the metrie tensor and do so in agreement with references ‘1] and {8| te obtain

i
A LigtO 9.5 = 4 sin® © . (7
sin® @ sin’ 7
The Laplacian reads
. 1. & a (g)
AT @ 2 = f s = 2e0tB— g
(@(O.0.510 = {55, ~20t®z5  ve! &)
with
glo.d ! a(,;al 1
—lgiE s —— == (s - a— s
(lgiov. =21 i Dg_smt A sinz 1; 6;2

After the sennclassieal approximation has been investigated for pure 57(2) on one and two
plaguettes with free boundary conditions in ;1! one wishes to employ this method to larger
lattices. A model comparabel in complexity with the two-plaquette case results if one imposes
anti-perindic boundary conditions on ihe gauge ficlds on a cube {see fig. 1). Let g{m.n) =
gin.mi P — gln.mit = SU(27 be the gauge field on the directed link connecting point m
with point n: we then require

gi1.2) = gi3.4) — (0.6} = g(7,8) = k{1).
gil.4; = gi3,2) = g{5.8) = ¢{7,6) = k{2] {10}
and 2(1.6) = g(3.8) — g{5.2) — ¢{7.4) = k(3%



The anti-periodicity of the g(m,n) imphes that only two of the eight gauge transforma-
tions

g(m,n) — h(m)g(m,n}h{n) ", k(i) € SU(2), (11}
in the corners of the cube are independent. The notation has been chosen in such a way that a
transformation by A € SU(2) at the origin (corner no. 1) implies the same transformation in

all odd-nnmbered corners {and analogously for the even-numbered ones). This gauge freedom
can be used to simplify the Hamiltonian

g= L4 i.]’z(k(i))
2=
2

(12)
.+.

p 2{6 — Tr((k{1)k(3)")")

2
— Tr((k(3)k(2)")") — Te{(R(2)R(1)")*)}.
Fixing the gauge on the maximal iree of the lattice, viz. setting k(3) = 1, and choosing
{1) = K(1)k(3)! and £(2) = k(3)k(2)! (13)

as new variables, the procedure described by Bronzan [7) results in

B L4 2T + T2 - IneTaee)

: (14)
2 26— THE)) = Te(e(2)) — TV,

where 1
Ti(9(2)) = F (€ +2°F) (15)

with £ = £x § and p= iV as well as J2 = J% = J2. The 5; (g(®,1,)) are given in
j1] . But the Hamiltonian (14) is still invariant under a ‘global’ transformation of the loop
variables

i) — s8(i)s™Y, s € SU(2). (16)

As the gauge invariant ground state wave function ¥ can only depend on the relative angle
9, = 3(2) — J(1) between the I(i} and is invariant under rotations of them around each other
only three of the six angle-variables in {1} and !(2) are relevant, namely

0, =0(1), ©;=0(2) and 9, =I(1) - H2) (17)

(cp. 11, sect. 4.1}). The ansaiz ¥ = Aei® together with p, = 8,5 now leeds to the
semiclassical Hamiltonian function and the corresponding equations of motion. But in the
limit g* — 0O the classically allowed region shrinks to those points where the potential is
minirnal and the trajectories of interest all lie in the forbidden region (V > E} as can be seen

by multiplying the Schradinger equation by g%. We therefore make the ansatz ¥ = Ae” &* s
instead. As § = —15, the momenta '

P= - = —ig- = —ip (18)

and also the time # = it are purely imaginary. Fhe resulting equations of motion for #, 7 and 7

G _ o b _ o o
& e & e )

where
H = H(x,p,t) = H(z.ip. —4t), (20)

are formally equivalent with the canonical equations

dz 8H dp 8H
= = e - o= - (21)
dt ap dt ar

of a Hamiltonian function
H(z,5,t) = — H(2,ip, ~it) = T(z,5,1) — V(z). (22

In other words, imaginary time can be avoided by reversing the sign of the potential. When
computing the equations of motion we furthermore used that

Tr((£(1}4(2))%) = 4(cos ©; cos O, — cos . sin O sin )2 — 2, (23)
and the potential can therefore be written as
V = 8{3 - cos’ 0, — cos® B,
— (c0s O} cos Oy — cosV, 5in @, sin ©4)7} (24)

In fig. 2 it is shown in sections of different ¥,. In contrast to the potential in the two-plaguette
model [1] it has four gauge in-equivalent minima. Apart from the obvious symmetry of the
total Hamiltonian under exchange of ©, and @, it is also invariant under

G -0, 0, -0, P, o711, (25)

From the Hamiltonian function with the potential turned around which for siinplicity is again
denoted by H,

2

1
H= - o+ ——
g2 { Po, ™ sin® (o Ps,

2
— 3 . P,
sin® ©,

— cos¥,.ps,po, + (ot @) cot @, cas ¥, — 1)pg,? (26)

+ pé, +

+ sin#,.pg, {cot O2pa, + cot O1pe,)}
— ;é; 13- cost O - cas® O,
- {cos @) cos Oy — cos ¥, sin @, sin 2,)° I
one obtains the equations of motion of the angles

6, = 2pa, — cosPppe, + sind, cot Gapy,.

(;)2 =2pe, — cost.pa, +sind, cot Oy py_,

! + ! + cosd, cot Oz cot O — 1} (27-2)
——— +cosd, co co -
sin® @, sin® @, : ! po-

b =2{
+ sind.(cot D2pg, + cot O1po, ),

5



and their cauonical momenia

. 1 .
Po, = 5 1(2cot By — cosd, cot O,)ps.? ~ sind,pe,po,}
sin” O,
+32{sin®; cos B ~ (c0s O cos Oy - cos . sin Oy sin O, )

(5in @, cos Op + cosd, cos @ sin @y .

- {(2cot ©; ~ cosd, cot Oy )py,’ - sind,ps_pe,}
s 2 {27.b)
+ 32{sin B, cos By < (cos @) cos Oy — cos d,. sin O sin O )-

-(cos @y 5in @y + o5, 5in @, cos Oz )},

Po, =

P9, = sin ﬂr{COt @, cot @ng‘_z — p@lpgz}
— cos ¥, {cot @, pa, + cot Ozpe, }py.

— 32sind, sin @ sin O2{cos O cos O - cosd, sin Oy sin Gz},

where the overall factor of g* has been dropped.

The caustics consist of focal points, i.e. points of intersection of trajectories infinitesimally
close to each other. Let

z{t) = (O1(t), Oat), 9-({)) (28)

be a trajectory and

2(t) + 8a(t) = (0,1} + 810,01}, Ox(t) + & O2(1), I,(t) + 69.(1)). (26)
I=1lor2
two neighbouring ones with the &'z infinitesimal. For times not too large the deviations &te

will stay small. A focal point is reached when the volume of the parallelepiped spanned hy
7. #'r(#) and 2 2(¢) vanishes, i.e. when

o, #e, o,
det | ®, #0, 80, -0 1301
g, &4, 89,

{ep. also fig. 3). To determine the shape of the caustics one therefore has ro soive the equations
of motion {27} for three neighbouring trajectories and compute the determinant (30). Instead
of searching for an analytic solution — an obviously rather hopeless task  the integration was
performed numerically on a computer using the well-known Runge-Kutta procedure {cp. e.g.
[10]) for the reference trajectory (28) and the less consuptive Euler-Cauchy procedure 10
for the small deviations &'z {29) and a linearised version of equations {20} which we do not
reproduce. These were derived with the help of REDUCE, a program designed for algebrair
manipulations, and will not be reproduced here.

To fix the starting values for the momenta the quadratic approximation of the Hamiltonian
operator

2
HQ = 5 TQ -+ VQ (31}

2w

can be nzed. The substitution

Fr= 05 <A 132)
diagonalises the potential
Voo 16000 - 0t o F) = 8135 - 2 (33)
and the kiuetic energy
To = Az — Dz, Vi V= 1Ay - 3440 (34)
\’v"}]ere 6 a a
A -V Vi=(g L= ) 35}
g (811 drs Ors 35
For £ = 0 one obtaing _
2 .
5. 41\5'5(5‘: +'f§ - Ty -T2 (38)
ﬂl]d }1(—’[1((‘ .
(2
. LR Y . - 9 )
pe;,start n 4\,/3(A02 COSﬁTOf) ~
— {37)
I
PO o = 774\; 3 sin?,. 0,0,

The following section describes the results of the numerical analysis.

The Shape of the Caustic

As outlined in the last sectiou we traced the trajectories of the semiclassical approxima-
tion and determined their first and second focal points. Te begin with. a rough panoramie
view of the position of the caustics will be given. In a second step we shall describe their
shape in more detail and compare it with the rwo-plaquette model for TPM for shortj inves.
tigated by Bartels and W 1 . Finallv we shall ge into detail ahour the zich Hne structure
of the caustic.

As derived above the configuration space of the sennelassical trajectories is three-dimensional

i the cube model (CAMT and parametrised by the angles @5, &3 and ¥, as in the TPM.
Because of the sviumerry under exchange of € and 9y we shall also use the coordinates

Os 16 Oy

{38}

b | b LS =

and B - 10 -0
When following the trajectories one finds the first two focal points in a refatively small region

T isee fig. 4) which ix centered around the point (@y - ]7—0 7 Qs =07, — T,;) |. For the third

[



and fourth focal point there is a similar region of accumulation I'" around (€ = }ﬂw; Gp =0;
P = %w) although it is not localised as precisely as I'. This has to be attributed not least to
numerical inaccuracies in the determination of the positions of the focal points. It should be
comparable to the size of a single step of our integration procedure and therefore not exceed
+0.001 7 at the first focal point but of course increases with time. These deviations from
the true positions should at most result in a deformation and displacement of actual canstics
but not lead to fake focal surfaces. This view is supported by singularity theory: As all the
caustics encountered are ‘generic’ or ‘in general position’ they are stable and their shape is
preserved under small perturbations (for a rigorous formulation of this statement see e.g. [8]).

The caustic in the region T looks by and large the same as that of the TPM (s. fig.5
which is almost identical with fig.8 in [1]). There is a line in the CM resembling the fold
singularity (= Whitney’s tuck = cusp) given by the line joining A, B and Cin fig. 5 as well as
a point corresponding to the bottle neck F (= hyperbolic umbilic). These focal surfaces are
Lagrangean singularities, i.e. singularities of the projection map of the six-dimensional phase
space to the three-dimensional configuration space. In the classification given by Arnold et
al. [8] the cusp is called Aj, the bottle neck D] and the surfaces connecting them A, (for
a brief introduction see {4, app. 12}). The normal forms of these caustics were used in [1] to
construct the ground state wave function in the vicinity of the caustics. All singularities in
the CM are also of types Ay, A3 and D] . The peosition of the caustic here is closer to the
‘drigin and the {1}, = 0)-plane than in the TPM as has been conjectured for larger lattice
models by Bartels and Wu. The fold ABC intersects the plane of symmetry (@5 = 0) and
the (¥, = 0)-plane at

Og(B) ~ 0.76x ~ 2.39 in the TPM
whereas Og(B) = 0.66w ~ 2.07 in the CM

and the value of &, in F is given by

9,(F) =~ 0.53r ~1.66  in the TPM
and by 3 (F) 2 0.0Tr ~0.22  in the CM.

The position of the point F' shows clearly that the caustic in the CM is compressed to about
one seventh its size in the TPM. We therefore presume an even stronger peak of the ground
state wave function in this region in the CM than in the TPM.

Up to now the similarities of the caustics in the CM and the TPM have been stressed. There
are however striking differences which even conceal the parallels at first sight. We shall
describe them separately for the upper (with respect to fig. 5, ¥, > #,.(F) ~ —0.07x) and the
lower (¥, < 9,(F)) part. Because of the (&1 & ©;)-symumetry it is sufficient to regard only
one half of the cube, e.g. that with ©a > 0. In the TPM one thus obtains the picture shown
in fig. 6 for the upper part where for ease of visualisation not only the edge of the caustic
Erpas but also some lines of intersection with planes of constant @4 are drawn. In the CM
on the other hand the part of the caustic aiming at C (@ = 0,©; = 7 or equivalently
Ox = Oa = I) is twisted (cp. fig. 7). But this is still not the full shape for the line joining
the points B and C is placed slightly above the (¥, = 0)-plane and is joined to it by a seam
BB'C (cp. fig.8). Fig.9 shows a detail of this upper part viewed along the ©;-axis under an
angle of 45° from above. The pattern consisting of the hyperbolic umbilic F, the sharp edge

8

FD in the plane of symmetry, the seam BB'C and the twist is depicted in fig. 9.a whereas
fig. 9.b shows a net of focal points lying on Zeay. Fig. 10 demonsirates the formation of
the seam in the (@5 = 0)-plane. Fig.10.a gives not the focal points but the semiclassical
trajectories themselves. The part of Egar which originates from them is just the envelope of
these curves (fig. L0.b).

To determine the exact position of the point B' in the plane of symmetry given by ©4 = 0
we have to follow irajectories close to the axis @4 = ¢, = 0 and find the point of intersection
with it: Their linearised equations of motion read

éE = POy
1 {39.a)
Poy = 32(5 + c05205)sin @y
and .
9, = 2{3cot’ Oy + 1)ps, + 2 cot Og pay Ir (39.b)
Pe. = — (Poy’ + 32sin® Og cos 205 ) ¥, — 2ot Og po; pa, - .
With
V3
Ox{t) = arccol( 5 sinh(-4v/6t 4 const.)) (40}
solving (39.a) for the boundary conditions
Jim Og(t) = lim_poy(t) =0, (a1)

the problem reduces to the determination of the first zero of 9-(t) in equations {39.b) which
can be cast into the form

4k, dd,
i z{=? 4 3) =+ 24, =0 (42)

{z* +1)(=* +3)

where ¢ = sinh(—~4v/6#). Thus already in this approximation to the full equations (27)
an analytic solution is hard to obtain. The numerical results agree with those for the full '
equations (@5, (B') = 0.666 7).

Fig. 11 displays one half of the lower part of Loas. Since the lateral faces of the {0,, 0y, ¥,)-
cube, that is to say the (@; = 0), (©; = 7), (O = 0)- and (@3 = w)-planes, should be
contracted into lines, because e.g. group elements in the (@; = 0}-plane with the same @,
but different ¥, are actually ideniical, the points C in figs.6-8 and T in fig. 11 have to be
identified. Thus it does not come as a surprise to see that part of the lower half of Zops
pointing at T=C approach the equivalent pari of the upper half. But not only T and the
symmetrical point R (cp. fig.5) but the whole line RST is ‘lifted’ to larger values of &, than
shown in fig. 11. As the point U of the TPM corresponds to U’ in the CM which is no longer
in the corner of the ecube but at Og ~ 0.74n ~ 2.34, 4. = 0, the lower part of Lopr as a
whole looks like a triangular bowl (RTTU’) in the middle of which a mountain with summit
F rises {cp. fig.12). This bowl is not smooth however, but has a ridge FU' (just as the line
FD in the upper half of Lcas) because the line TU' intersects the plane of symmetry with
non-zere angle. Fig.13 displays the projection of half of the lower part of Zcpr onto the
plane of symmetry in its structure (fig. 13.a) as well as with the help of a net of focal points

9



{fig.13.b). In fig. 14 we have tried to put things together and draw half of the upper and
lower part in one picture.

This still does not completiely finish the analysis of the caustic Bops constituted by the first
and second focal points. For trajectories with a starting value of ¥, g4t > 0.97 which get
closer and closer to the corners of the cube the amount of computer time needed to determine
the positions of the focal points as accurately as it was done for the other curves rises quickly.
We did not investigate these parts of the caustic which connect to the lines ADC and RST
hecause they do not affect the central structure of Z¢as and hence the parallels with Trpar.

Conclusions

In this study of the pure SI/{2) lattice gauge theory in the Hamiltonian formalism on a
cube with anti-periodic boundary conditions it has been shown that the occurence of caustics
as found by Bartels and Wu is not limited to the models investigated by them but obviously
is a pertinent feature of the underlying theory. This is also confirmed by their recent work (8]
on a large N lattice. In comparison with the two-plaquette model studied by these authors
the caustic in the cube model shows a far more detailed structure which may be interpreted
as the first sign for the onset of a self repetitive pattern as seen in the ‘cones inside cones’
described in [8], a picture which hopefully may be brought in contact with renormalization
group ideas [11] and the conventional views on the behaviour of theories near a critical point.
All this lends support to the expectation that caustics may contribute significantly to the
vacnum structure of gauge theories.
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Figure Captions 7 8

- ? -~
-~ . -~ .
Fig. 1 The cube with anti-periodic boundary conditions. 6 - & 5 >
The full lines refer to k{1), the broken lines to k(2} and the dotted lines to k(3). pd : ¢ - :
Fig. 2 The potential V(©,, ©;,9,) for ¥, =0,1n, ... .« : S : ~
Fig. 3 Al a focal point det (%, §'z, §%2) =0 :
Fig. 4  The regions I’ and IV in the configuration space spanned by ©,, ®; and 9, A ; V
Fig. 5  The caustic of the two-plaquette model. : 4 . 3
: : . y N :
ABC: cusp . P < : —
F  : bottl k : -~ : -~
ottle nec o - . &
Fig. 6 One half of the upper part of the caustic of fig. 5 with lines of constant @4 = ) -
Fig. 7 Half of the upper part of the caustic A 2
modified by the twist in the part approaching C
Fig. 8  Half of the upper part of the caustic in the cube model with twist and seam Fi g 4
= 1
Fig. 9.2 Structure of half of the upper part of the caustic in the cube model Vi 9, 3 8, 3 "?;r- = O) V{ e,, e, y "-Tr = 3.' ™ )
viewed along the &;-axis under an angle of 45° from above; -

BB’: intersection of seam with plane of symmetry
F : bottle neck
FD : sharp edge

{1) : line @A =0, 9, =0
{2): Ba =0, ¥, =9{F)
(3): Oy =Ox(B'),0a =0
(4) : Oy =0x(B'), 4, =0

Fig. 9.b Same as fig. 9.a with a net of focal points on half of the upper part of the caustic
Fig.10.a Trajectories in the (@ = 0)-plane forming the seam

Fig.10.b Envelope of trajectories depicied in fig. 10.a

Fig.11 Half of the lower part of the caustic of fig. 5 with lines of constant @a

Fig.12  Half of the lower part of the caustic in the cube model

Fig.13.a Structure of half of the lower part of the canstic in the cube model
projected onto the plane of symmetry

Fig.13.b Same as fig. 13.a with a net of focal poinis on one half of the lower part of the caustic

Fig.14 Structure of one half of £y, the caustic formed by the first and second focal points
in the cube model
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