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Abstract

The s-model with Wilson-fermions is considered in one-loop lattice pertur-
bation theory and in the hopping parameter expansion af large bare couplings.
Chiral symmetry restoration in the large cut-off limit of perturbation theory is
only possible if asymmetric counterterms are added to the lattice action. In the
hopping parameter expansion at infinitely large bare Yukawa-coupling or at zero
bare fermion mass dynamical parity doubling of the fermion occurs.

1 Introduction

The o-model [1] has different important applications in clementary particle theory: in quan-
tum chromodynamics it gives an effective description of the low-energy pion-nucleon system,
whereas in the standard elecroweak model it serves as a basis for the Higgs-sector. In faet, the
physics of a heavy Higgs-boson and heavy fermion doublet would be described in the standard
eleciroweak model to a gboci approximation by the #-model, because for such a system (if it
would exist) the scalar quartic coupling and the Yukawa-coupling would be strong and the
weak SU(2) ® U(1) gauge interaction would be a small perturbation.

A particularly interesting aspect of the o-model is the SU(2}L @ SU(2)g chiral symmetry
for vanishing fermion mass. In the non-perturbative lattice regularization scheme, where it
is natural to start with a massive theory and to obiain the massless fermion as a limiting
case, the chiral symmetry is not only broken by the non-vanishing mass, bui also by the
regularization at the cut-off scale. The-reason is fermion doubling on the lattice, which
always occurs for finite lattice spacing if some rather mild assumptions are fulfilled (2]. In the
case of free fermions the superficial fermion species ("fermion doublers”) can be kept at the
cut-off scale, therefore they are removed from the spectrum in the continuum limit. This is
achieved by adding a higher dimensional ” Wilson-term” to the lattice action [3]. The Wilson-
term, however, breaks the chiral symmetry explicitly also for zero (bare) fermion mass. The
important question is, whether the fermion doublers can also be removed from the physical
spectrum in the coniinnum limit of the interacting theory and whether at the same time the
chiral symmetry is realized?

There is an important point which has to be mentioned in this respect. In the o-model
both couplings are not asympiotically free and the only kpown fix point of the Callan-
Symanzik renormalization group equations is an infrared fix point (IRFP) at vanishing renor-
malized conplings [4]. Therefore, the continuum limit of the o-model is most probably trivial
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(non-interacting). Questions about the continuum limit have to be reformulated in such a
way that they refer to a guasi-continuum situation with very large but finite ratio of the
cut-off (A) to the physical mass scale (m). In this case the interaction can be non-zero, but
there are upper limits for the renormalized couplings which are going to zero as an inverse
power of the logarithn of the cut-off.

The physically relevant region of the bare parameter space where the lattice artifacts
of order m/A are negligible is called the scaling regior. This region is in the vicinity of
maulticritical points (C) where all the relevant physical masses are zero in lattice units. In
the ¢-model the physical particles are the fermion and the o- and nx-scalar bosons. The
expected critical structure is qualitatively shown by Fig. 1 in the plane of the two mass
parameters in the lattice action (called hopping parameters): « for the scalars and K for
the fermion. The bare quartic coupling (A) and bare Yukawa-coupling {G) are fixed in the
figure at some arbitrary values. The relevant points in the plane are below the line CyCCy
where the fermion mass in lattice units vanishes. The mass of the ¢- and n-boson vanishes,
respectively, along the curves C,C and C,C. Some of these lines may shrink to a point or
they may also coincide with each other. For instance, (,C may coincide with C,C and/or
with C,C. The vacuwmn expectation value of the o-field (2) is zero in some part of the plane
(called symmetric phese) and non-zero in the other part (called phase with sponiancously
broken symmetry). The question of the realization of the chiral symmetry arises along the
line C,CC,, which can be called chiral subspace. (Note that the chiral subspace has one
dimension less than the whole bare parameter space.) The standard assumption is that on
CyC the vacuum expectation value vanishes (v = 0) and the unbroken chiral symmetry is
rea.hzed by a massless fermion and massive degenerate o- and w-bosons. Aleng C,C the
vacaum expectation value is assumed to be non-zero in physical units (that is v/m, # 0) and
the spontaneously broken chiral symmetry is supposed to be realized by a massive fermion and
massive o-boson together with three massless 7’s as the Goldstone-bosons. If the couplings
have only the trivial IRFP at zero (Agq = Gr = 0), then the quasi-continuum theories in the
scaling region near O are equivalent for arbitrary values of the bare couplings (A, G). In the
present paper this will always be assumed.

The question is, what happens with the fermion doublers in the scaling region near the
critical point C'7 In particular, one would kike to show that it is possible to make the masses
of the fermion doublers much larger than the physical scale set by the o-boson mass. Since
the renormalized couplings can be non-zero there, the answer to this question requires the
knowledge of the spectrum of an interacting 4-dimensional guantum field theory. Of course,
to give a definitive answer is very difficult. For the formulation of the standard electroweak
model it is required that, according to the above standard assumption about the realization
of the chiral synunetry, the physical spectrum of the quasi-continuum theory in the chiral
subspace of the hroken phasc consists of a (possibly light) fermion doublet, an isoscalar
scalar Higgs-boson and three zero mass Goldstone bosons, which will be "eaten” by the
gauge bosons, once the chiral symmnetry is appropriately gauged.

In the present paper I shall consider lattice perturbation theory in the o-model with
Wilson fermions ( Section II). In addition, the double hopping parameter expansion in powers
of x and K near k = K = 0 will be investigated (Sections III and IV). The aim is to obtain
information concerning the above questions about chiral syimmetry and the physical spectrum
in the quasi-continuum limit of the interacting theory. The sununary and conclusions will be
discussed in Section V.
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2 Lattice perturbation theory

2.1 Lattice action

The scalar field in the o-model can be considered either as a doublet under the global SU(2),®
SU(2)s symuetry or as a foursvector under O{4), which is locally equivalent to SU{2}, &
SU(2)r. In the O(4)-notation the lattice field is ¢s., (5§ = 0,1,2,3; z = latlice point). The
doublet scalar field ¢, {4 = 1;2) can be extended to a 2@ 2 malrix @, as
¢ ¢ ) ,
@Ge=| w2 F | =0 AT, Wy 1
(% & ®

Here the other doublet field & is defined as ¢ = e4p¢2F, with the unit antisymmetric matrix
¢ap. The isospin is the vector-like diagonal SU(2) subgroup of SU(2)1 @ SU(2)r, therefore
the field component o, = ¢o, is isoscalar, the components 7, = $uay (s = 1,2, 3) are
isovector. In Eq. {1) 7, denotes the isospin Pauli-matrix, and over the repeated isospin index
2 an automatic summation is understood. This summation convention will be applied in this
paper for isospin- (s = 1,2,3) and O{4)-indices (§ = 0,1,2,3). The transformation properties
of the fields ¢ and ¢ with respect to SU(2)1, ® SU(2)g, respectively O(4} are:

¢ = Uy ol 4. = Oshor (2)
The connection between the group elements of SU{2), ® SU(2)r and O(4) is given by

a1, - 1 i
o7l = 5T (U7 UR) = S Ir (3U7 UL} = Ors (3)

where 75 stands for 75 = (¢,7,).

The fermion doublet fields will be denoted by ¥, and 4. Using the projections on the left-
and right-handed components P = %(1 +5), respectively Pp = {1 — ), the transformation
properties of the fermion fields are:

= [U7* Py + Uz Pals
From Eqs. (3-4) follows that the fermion bilinears
T, (§=10,1,2,3) (5)
with s = (1, —#757,) transform as a four-vector with respect to O(4).

Using these fields, the lattice fermion action of the g-model can be written as

8§ = Z {ptﬁs,eﬁs; + Mpsetse )’ — & Z PS5etii®se

?! = 4. [PaUL + PrUg) (4)

M(‘J’zd"x} + GQSSZ(&::I‘S"!%) -K Z('J)z-}—ﬁ['r + Tu}TpZ)} (6)

The summation ¥, over the neighbours is performed here over both positive and negative
directions. The normalization of the fields is left arbitrary here. It can be chosen according to
convenience: in perturbation theory the simplest choiceis k = K = %, whereas in numerical
studies a frequent convention is # = 1 — 23 and M = 1. The Wilson-parameter r > 0
is required for removing the degeneracy of the fermion doublers. It is expected to be an
irrelevant parameter in the sense that it should not influence the physical content of the
model in the scaling region. Taking into account the freedom of field normalizations, the
number of independent relevant bare parameters in the above action is four.

3

2.2 i-loop effective potential of the scalar field

The field normalizations are chosen in perturbation theory in such a way that x = K = %
The propagator of the scalar field A%, and of the fermion field AY, is on a periodic finite
lattice given by

1 . 1 1 M. — iy k
AP — — -i{k,x—y) . Alﬁ - = "(ks? yy 7
D N e G

Here 37, denotes a summation over the Brillouin-zone of momenta and N is the number of
lattice points. The bare mass parameters in the propagators are defined (for general field

normalization) as
#
o = = — (8)
K
and

: M
My = Mo + gkz M= — — 4r (9)

A reminescent notation of the trigonometric functions appearing in lattice perturbation theory
is:

. & = = 1
k, = ZsinEp- k, =sink, ky, = -z-sin(2ku) (10}

On an infinite lattice the summation over the Brillouin-zone is replaced by an integral:

iZHLf’[’f' " d'k : (11)
N k (271')‘ —xJ—m - J=r
The fermion propagator mass M, in Eq. (9) shows that, due to the Wilson-term proportional
to r, the fermion doublers at the corners of the Brillowin-zone with k, = 7 get an additional
mass contribution which is finite in lattice units. {In the present paper usually always lattice
units are used, in other words the lattice spacing is @ = 1.) In the continuum limit when
the physical masses go to zero in lattice units, the ratio of the fermion doubler masses to the
physical masses tends to infinity, at least in the propagator. If this remains true after the
inclusion of the interaction then. as anticipated, the fermion doublers are decoupled from the
physical spectrum.

Important properties of the interacting system can be expressed in terms of the effective
action of the scalar field Tj¢]. In the 1-loop approximation I'|4] is given by

T[¢] = Saie} + éTr log (Dig]a®} — Trlog (M|g|AY) (12)

Here S, denotes the pure scalar part of the action in Eq. (6), D is the second derivative
matrix of the action with respect to the scalar fields and M is the fermion matrix standing
between ¢ and % in the fermionic part of the action.

The effective potential V,¢;(¢) is defined by the effective action for z-independent fields.
In the 1-loop approximation it is

2
Vo) = %F[qbs: = ¢s = (o, 7.)] = %(z:r2 + 72+ Aa* + 71'2)2
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Ly ; UM+ ) 'Tr{[(a iyeram ) (Mo — iy I-)]‘} (13)

The lowest order terms are in dctajl
i
Vepsloym) = -2—0(02 + 78+ Ae? + )

1 {12A s 2 482 2
N lam T T g
8G M, 4Gt ., .. BGEMP

BT T o AR R 7 O
3 3p03
L SE Mo e RCML
(M3, + ki) 3(ME + kPP
2G1 166G M 16G* M}

+m(02+r2)2* Waa(az +27) + W o'+ } (14)
The 1-loop effective potential of the scalar field shows the explicit chiral symmetry break-
ing due to the fermion propagator mass M. Because of the Wilson-parameter, the symmetry
breaking terms are non-zero also for a vanishing bare fermion mass (Mp = 0). In order to
find the symmetric points of the model the symmetry breaking has to be compensated by
appropriate counterterms. In other words, one has to find the set of points in the bare pa-
rameter space where all the symmetry breaking terms vanish. It is clear from Eq. (14) that
this is only possible if additional symmetry breaking bare parameters are introduced in the
action, The symmetric points have to be localized in this higher dimensional space. The
simplest symmetry breaking counterterm is linear in the o-field. Such an "external magnetic
field” is required in the symmetric phase in order that the point o = 0 be a minimum of the
effective action. (In the broken phase with non-zero vacuum expectation value the situation
is more involved. This will be discussed in the next subsection.) At 1-loop the coefficient of

the linear term o, in the action (6) has to be (for x = K = i}

2

.= 1 Z 8G M, (15)
M2+ &

This is finite in lattice units, therefore the external magnetic field is cubically divergent in

physical units.

The other non-symmetric terms appearing in Eq. (14) have to be compensated in a similar
way by explicit connterterms in the action. (The higher dimensional terms in Eq. (13) need
not be compensated because they are expected to be negligible in the continuum limit.)
The necessity of extending the parameter space to higher dimension becomes also apparent
if one tries to find the critical points where the masses vanish. According to Eq.(14) the
critical value of the bare parameter ul for vanishing m-mass and fermion-mass is {see also the
expressions for the renormalized masses given in the next subsection):

1 20 8G?
2 1 _ 8GY
Madm) = Zk:{ F ey 1}2} ()

The same condition for the g-mass is, however:

Haelo) = %Z {A

k

2 221 1232
24\ 8G 4672 (k?) } an

-t = s - —
ke %Tz(kz}z + k2 [%T'z{kz)z + kz]z

Thezefore, in the space of symmetrical bare parameters the critical points where the m-mass
and ¢-mass vanish are distinct. In order to find a common critical point one has to goin a
higher dimensional space with non-symmetric couplings. In addition, this common critical
point has to be on the boundary of the broken phase where the vacuum expectation value of
the o-field changes from zero to non-zero. This will be discussed in the next subsection.

2.3 Renormalized quantities

In the limit of a very large cut-off the bare perturbation theory is not useful because of the
appearing logarithmic divergences. The physical quantities have to be expressed by power
series in the renormalized couplings. In this way the renormalized perturbation theory is
obtained which gives a good approximation, provided that the rewormalized couplings are
small and the physical scales involved are not far away from each other. The divergent field
normalizations have to be factored out from the Green's functions. For instance, for the o-
field the normalization factor Zg, can be defined from the effective action (12) by the small
momentum behaviour of the function

1 ; &'r
Zlk) = — -y 7
(k) N % ¢ 80,00y |, .. o (18)
The definition is
1
= s Z Z(k) (19)
u>0 s k0
In }-loop order this gives:
Zpy = 1—72{ 2+ B ’[8+ = M,.(8 — k%) + 2 k]

(M2 4 B [422 e MA R+ B )+ 16r Mk - b+ 2M2A(8 — &) + 2rM3,(8 - B )]

+(M3, + k) '16ME, [i-z + oMok R+ 'rzM,.;j:z]}

=2

G? 8 4k
P - — _ — — Lo 20
7w g{(Mfk-i—k’)"’ (Mfk+k2)3} . (20)

The last line shows the logarithmically divergent terms explicitly. A similar expression can
be obtained for Zg,, too

The field normalization factor Zp,; for the fermion can be defined together with the renor-
malized fermion mass My by the low momentum behaviour of the inverse fermion propagator:

Tulk) = Zay {Mp + ik -1 + O(?)) (21)



The 1-loop result for Zgy is
— 26? 2 LIy-2 2 B2y g2
Zﬂful—TZ(#o‘Fk) (M7, + &%) (22)
k
The 1-loop renormalized fermion mass My is given by
-1 z_Gz_ PN L TR P S+ T ’
MpZzy = Mo+ Sug+ BV N ME A+ B M (23)
¥

The renormalized mass and the renormalized couplings of the scalar fields can be directly
obtained from the effective potential {14}. In what follows only the mass and couplings of
the o-field will be explicitly given, but very similar expressions can also be obtained for the
corresponding quantities with the x-field. The renormalized o-mass-squared pk is given by

v, 1 247 8a? 16G2 M7
2 g-i - <f! P - _ _ Trk 24
Pt = T KON DN i o by Sl e S

o=w=0
The 1-loop renormahized quartic coupling of the #-field can be obtained from

o 18V,
Ao Zps = 24 8ot

oe=x=0

—48)? 2G¢ 16G* M2, 16G* M},
(25)

1
A= h e — a. a
W zk:{(#% + k) *or, B (0, + B (M3, + B)s
The renormalized Yukawa-coupling G, of the o-field to the fermion can be defined by the
value of the o7 vertex function at zero external momenta. The 1-loop result is given by

1 2G3 - _ -
CroZrsZpt = Tous(0,0,0) = G + A 3o(us+ BN TUME + ETYHR - ME) {26)
*

Up to now, it was assumed that the vacuum expectation value of the o-field is zero. This
is trne in the symmetric phase, but there is also a phase with broken symmetry, where the
vacuum expectation value is non-zero. If the coefficients of the asymmetric counterterms
in the action are considered to be functions of the symmetric ones, the expected critical
structure can still be visualized by Fig. 1. One way to determine the vacuum expectation
value in perturbation theory is to consider a generic situation when the o-field is

Or = gy + ¥ (27}

where v is the vacuum expectation value. » can be considered as an unknown function of
the bare parameters to be determined later. Substituting Eq.(27) into the action (6) one
obtains another action in terms of the shifted field oq,, which has by assumption no vacuum
expectation value. The scalar part of the action becomes more complicated {e. g. omm and
goo couplings appear: see in Ref. [5]), but the form of the fermion part does not change.
The only difference in the fermion part compared to Eq. (6) is that the bare fermion mass
M is replaced by M + Gv. The effective potential and the renormalized quantities can be
calculated in the same way as before. The results are guite similar to the previously given
ones, only some additional terms appear which are proportional to

w® = 4d’ (28)
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(Note that in the perturbation series A and G? are considered on equal footing.} The value of
the vacuum expectation value v is determined by the requirement that the effective potential
has a minimum at ¢y = 0. This equation at the 1-loop order is

1 124 12X 1 8GM,,
= 24wt = . — -y 29
0 v{}tn+u NEE‘ ,uf,+k2+,u.§+k"‘]}+€ NZ,‘:Mfk-!-kz ( )

Here the contribution of the term linear in the o-field (¢) is already included. The bare mass
squares of the scalar fields are:
1l =l 4 12x0° pl = pd o dd? (30)

In the symmetric phase (v = 0) the parameter € is given at 1-Joop by Eq. (15). In order to
reproduce the expected singularity structure near the multicritical point ') it is necessary to
add to ¢ a term proportional to v. A convenient choice 1s

1 8G Mk 8¢%w
- c _ 31
S s =
In this case Eq. {29) has two solutions: v = 0 and the one given by
i 12X 12 8G*
r_ 2 b i _ _ _ 32
e Ng{uzwﬁymkz M3k+k2} #2)

The two solutions correspond to two local minima of the effective potential. The absolute
minimum in the symmetric phase is v = 0, in the spontaneously broken phase ©: # 0. For the
choice in Eq. (31) the non-zero solution tends to zero in lattice units on the critical line C,C
where the m-boson mass is zero (see Fig.1).

Note that by the choice in Eq. (31) it is achieved that the vacuum expectation value is
zero in the whole region left to the line C,C in Fig. 1 and non-zero right to C,C. As it was
discussed in the introduction, from the point of view of the realization of chiral symmetry it
is enough that v is zero on the zero mass fermion line C4C and non-zere, in physical units,
on the line €. C. In the above case v is zero in lattice units on C,C toa, but v/m, has a
non-zgero limit if this line is approached from the right.

2.4  Scaling behaviour

The physically interesting region in the bare parameter space is the scaling region where
the cut-off dependence is negligible. In this region it is important to know the curves of
constant physics (CCP’s), where the dimensionless physical quantities are constant and only
the lattice spacing (cut-off) changes. The general procedure for obtaining equations for these
curves in perturbation theory is described in detail in Ref. [5].

In order to define the CCP’s in the bare parameter space one has to choose a set of
independent physical quantities (Fy, ..., Fy) and a set of bare parameters (g1,...,94). In the
present case it is assumed that there are 4 independent relevani parameters. These can be
taken as

a=X g2 =G g3 = uﬁ; 91 = Mru2
_ #he
=

F1 = ARy Fy; = GRes Fy Fy= IWE (33)



If the last physical quantity Fj is the reference gquantily parametrizing the curves, then the
differential equations for the functions {g,(Fy), ..., g4{ F4)} are given by
dgi(Fy)

el (22)
dFy " aet, (%)

(i=1,...,4) (34)

ga=gs{g1,92.91,F1)

where dety(---) is the 4 x 4 determinant of the derivative matrix and detg'k](- --} denotes its
3 x 3 subdeterminants. ‘

From the above expressions for the renormalized quantities the right hand sides can be
easily worked out. The obiained formulas include also small scale breaking corrections which
go to zero in the continuum limit as powers of the lattice spacing. The last two equations
(i = 3,4) give also the dependence of the mass parameters along the CCP’s. Here only the
first two equations determining the behaviour of the couplings A and G will be considered
in some detail. The scale breaking corrections will also be neglected. In this case only the
logarithmically divergent terms have to be considered. The usual parameter along the CCP’s
is the logarithm of an inverse mass in lattice units, in our case 7 = log Mz'. The equations
for i = 1,2 in (34) can be written with this parameter as

dX dA
i =BG = 20
R

ity _ dG

/
Using Eq. (34) and the general structure of the perturbation series it can be shown that the
Callan-Symanzik S-functions on the right hand sides are given by

dAp, g,
MG =2 | ME2 + pd
pove) =2 (i + i)
G g G g,
26 = 2{ M I
'BG( ’ ) ( ¢ aMﬂz * #o a'ua )Mo:MR (36)
The 1-loop result, neglecting scale breaking corrections, is
_ 1 2 2 4 o1t 3
BXG) = oo (96)7 + 16G?A — 46*) Bo(3,G) = o= 4G (37)

It can be shown that the logarithmically divergent terms remain unchanged if in the definition
of the rencrmalized couplings in Egs. (25-26) the o-fields are replaced by w-fields. Therefore
the universal 1-loop terms in the g-function are O(4}-symmetric.

According to Eqs. {35-37), for decreasing lattice spacing the couplings (A, G) increase
slong the CCP’s. It can be shown using the last two equations in (34) that in the {x, K)-
plane in Fig. 1 the point corresponding to a given CCP moves closer and closer to the
multicritical point C. The triviality of the continuum limit implies that no CCP with non-
zerc renormalized couplings can reach C, because the lattice spacing is zero on C. Therefore
the CCP’s have to go to (A = o0, G = o). Of course, the perturbative form (37) of the
A-functions is only valid if A and G are small.

Up to now the change of the bare parameters was considered for fixed renormalized quanti-
ties. Lt is also possible to fix the bare couplings (A, G) and ask how the renormalized couplings
change in the vicinity of the multicritical point €. This behaviour is determined by another
set of A-functions. In the 1-Jloop approximation, however, the functional forms are the same
as Bq. (37). The derivation of these scaling equations is similar to the case of the ¢* theory
[6,7). The only difference is that in the o-model there are two mass parameters, therefore
the ratio of two renormalized masses can, in general, also be fixed (as F; in Eq. {(33)). In the
broken phase one way of exploiting this freedom is to stay in the chiral subspace where the
fermion-scalar mass ratio is a function of the two rencrmalized couplings.

Near the multicritical peint €, where the renormalized couplings are small, the 8-functions
for the renormalized couplings are given to a good approximation by perturbation theory. On
the boundary to the region with larger couplings initial conditions are needed. These can be
obtained in the symmetric phase by a high order hopping parameter expansion, similarly to
the pure ¢* theory [7}. The hopping parameter expansion in models with fermions can also
give an independent non-perturbative information about the physical spectrum, in particular
concerning the fermion doublers. The question of the spectrum has to be cleared before
going on with a perturbative investigation of the realization of chiral symmetry in the scaling
region.

3 Hopping parameter expansion

3.1 General formulas

In this Section the general formalism of the hopping parameter expansion at (x = K = 0)
will be considered. The generating function of the connected Green's functions is defined as

Wi, =log 100 (39)

where [ is an integral over the field variables:

30,7 = [ldgaias] exp{—S+Z[Js:¢sz+(anz) —(ﬁﬂb«)]} (39) -

In the double expansion according to the powers of x and K the Green’s functions at an
arbitrary point of the bare parameter space (X, G, k, K'} are expressed by the Green’s functions
at (A, G,k = 0,K = 0). In the generating function of the connected Green’s functions at
(k = K = 0) the integral in Eq. {39} is:

I[J': 7?;"-1]0 = jidq&d&d"!’] eXp {Z [*.Wﬁszﬁbs:c - A(‘ﬁs:‘f’s:)z

_M(":E;z'd':c) - Gé.ﬁ'w("f)rr.‘id‘m) + Jsrps2 + ("Z’:’?-E) - (ﬁz":bz)]} (40)
This can be factorized into a product of integrals over the field variables of a single lattice
point.
In order to write down the master fermula for the hopping parameter expansion of con-
nected Green’s functions, lei us introduce a shorthand notation for index repetitions:

(f}g = fu;fvz"'.fu:.
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Omitting a {Jyq)-independent facter in I, the master formula is:
Kme"

log I17.1,} = min MY N

lerimlywin[SX bl Y In 10 Elw
(T 0 (85 (2000 (Bl + o], brwsénly,)  (42)
Here the index positions for the repetitions of more complicated expressions (in square brack-
ets) are explicitly indicated. The notation < --- >3 stands for a connected expectation value
in the (k = K = 0) poini, where in the definition of connectedness the hopping terms in the
square brackets are considered as single entities. Such connected expectation values of mono-
mial functions of the field variables can be expressed by the ordinary connected expectation
values, where every field variable is considered to be a different entity. Namely, the con-
nected expectation value of monomials < - >™ is a sum of products of ordinary connected
expectation values << --- »>°. The sum is over the different partitions of the set of points
representing the field variables (cb,,v;_,,v,i’z} in such a way, that the subsets representing the
ordinary connected expectation values are “held together” if the points belonging to the same
monomial are considered to be connected. In the point (¢ = K = 0} the connected expec-
tation values < ... >§ are non-zero only if all the points are at the same lattice site. As a
consequence, every tern: in Eq. {42) gives rise to a sum of terms, which can graphically be
represented as connected clusters of points, where every cluster is at some lattice site and the
different clusters are held together by the links corresponding to the hopping terms. (Several
clusters can occupate the same lattice site.) The contribution of a graph depends only on
the topology of the graph but not on its embedding in the lattice. Collecting together graphs
with the same topology one obtains the linked cluster ezpansion [8].
In order to work out the contribution of a linked ¢luster expansion graph it is necessary to
evaluate the single site :ntegral appearing in Eq. (40). The Grassmann-integral in the general

case is:

[ dbav exo {~M(9) - Galéy) - Gr($T.8) + (4n) — (7)}

= [(M +Ga) + Gzz”] exp {- (M + Go)in) — Gm,(7L.n)] [(M + Go)* + c‘wﬂ]“
(43)
In the case of a large bare Yukawa-coupling or small bare fermion mass it is convenient to use
the freedom in the normalization of the fermion fields and put the coefficient of the coupling
term equal to unity. Using the notation F = M/G one obtains

j didp exp {~F(d9) — o(§9) ~ m($T0) + (n) - (i)}

=[P+ op s v exp { - ((F + oYim) - T [(F o4 ] T} (a)

In the case of G = oo or M = 0 the chiral invariant combination (¢? + n?} appears on the
right hand side. If, in addition, the bare quartic coupling is also infinite then the length of
the scalar field is frozen to ¢ + #? = 1, and the result of the Grassinann integration is

exp {— [o(iim) — m (AT} = exp { —ps(ATFn)} (45)
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Substituting back the result of the Grassmann-integration, the integral over the scalar
fields in the general case is:

+oo
Iir(J,5) = f_ dadsrexp{—(0'2 +7%) - Me? + 2" =1 + Joo + Jum,

4

H(F + 0)jo+ miJUF + o) + 777} [(F + o) + 7] (46)

Here the second form in Eq. {(44) was taken, the normalization of the scalar fields was fixed
by g =1 — 2}, and the fermion bilinear current was introduced as

js = —(iT§n) (47)

The generating function of the connected expectation values at {x = K = 0) is given by the
integral Iir as L)
R AF Jay 1z
W(J,imle = 2:,105 T (0,0) (48)
As it was noted before, the field normalization in Eq. (44} and the use of the bare parameter
F is convenient for small F. If F is large, the original parametrization with M and G is
better. We are, however, mainty iterested in the chiral limit M — 0 where, for any finite G,
also ' — 0.

3.2 The F =0 limit

It is possible to give a series representation for the integral Typ(J, ) in general, but here only
the important special case F' = 0 will be considered in detail. In this case the integral over
the scalar fields can be expressed by the parabolic cylinder function D,{z) [9}:

Zso( 1) = 1
el - 85— 208 860,20 -3y SNy e
Ta0.0) 1y T R T iy Inglng MV NN + 1))

M6+ 2y Doen(=— 22
s dsI (@Jrir I o)™ I’(ﬁ()(;i))? DG 2( (I@ Vv2X) )
-\

3y
Here, besides the Cronecker §'s, also §, was used, which is defined as 8, = 1 forn > 0 and

(49)

zero otherwise.
In the limit of very large bare quartic coupling (A — o0} the asymptotic behaviour is

r6+ 1) Doy (A5 —v2) I RS T)
TOVANE Doy (s — v2Y) .
therefore Eq. (49) at X = oo is simpiified 1o

Too{ . 7) (T +7)s(F+ Dsl”
Teza(0,0) NZO 4NN +1)! (51)

+0007%) (50}

In order to obtain the generating function of the connected 1-site expectation values, the
expansion of the logarithm of Z{Jj}/Z(00) is needed. For instance, in the simple case of
(X = oo, F = 0) let us define

N

S [+ 915t + 3)s (52)

J)
log Tooal0,0) — ?;o(zms
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The coefficients Cay are given by

= M) (=1y™m — 1)
O = 3 eiamssanie Snimins e nylngtngl - - (1120w (213 (3140 -

i,y iz, -=1

The first few of them are:

Ci=1; Cy=~1; Co=5 Cs= 56 Cio—1092; Cpy = —32670; Cy, = 1387815
(54)
In the case of (A = co, F' = 0) the general formula for the connecied 1-site expectation
value is:

(¢Sg= ce qssl,z"/-)b::l:%balr e 1]’&;2"}'«:;:)2 =

k! = (kg + kg + k)l
= é & e
RHOEI(E +1 - 1I(E +1)! ME:U kit ko SBhathe Tk Wy Ty
) H 63-"31' Z U’P;Hn:ulbf(n; T Pgunmb.(r) (55)
GeHH(5:5;)} (5:55) (1)

Here Ygeynys;s,)) is 2 summation over all different pairings of the O(4)-indices 51, 5;, -+, S
and ¥, means summation over the permutations {w{1},m(2), --,m({)} of {1,2,-.-,{} with
parity o..

From Eq. (55) an important general property of the linked cluster expansion at (A =
oo, F = D) follows. Namely, in the clusters (also called vertices ) representing the connected
expectation value < --- >%, the sum of the number of scalars {m,) and of the number of
fermion pairs {41, ) is always even. Using Eq. (49} it can also be shown that this is true for
F = 0 at an arbitrary value of A. This is a general consequence of the exact chiral symmetry
of the vertices at F — @. The chiral symmetry breaking due to the Wilson parameter in the
fermion hopping term occurs only on the links. On the contrary, for F # 0, as it is shown by
Eq. (46), the chiral symmetry is also broken in the vertices, therefore the sum of the number of
scalars and of the number of fermion pairs can also be odd. An immediate consequence is that
for F = 0 in the region of convergence of the hopping parameter expansion the expectation
value of the scalar fields and of the fermion bilinears is zero:

{$se) = ($eTstbe) =0 (56)

This follows from the fact that on a hypercubical lattice the number of links on a finite ciosed
curve is even. Therefore, the contribution of a graph to the above expectation values can
only be non-zero if the number of links (the order of the hopping parameter expansion) is
infinite.

Another similar consequence is that within the convergence radius of the hopping param-
eter expansion at (F = 0) the fermion propagator vanishes for even lattice distances of the
initial and final points:

{Beby) =0 if |2 — y| even (57)

In momentum space this means that the fermion propagator is the same at (ky + 7,k +
7, ks + m kg + 7) as at (k1, k2, k3, k4). The reason is that the sum of coordinate differences
is even{odd) if the lattice distance defined by the minimum number of connecting links is
even(odd). In particular, if the fermion propagator has a pole corresponding to a particle at
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(ky = k2 = k3 = kg = 0) then it has also a pole at (ky = k; = k3 = k4 = 7) corresponding to
a particle with opposite intrinsic parity. (For the discussion of the quantum numbers of the
additional pole see also the next Section.} This proves that:

In the convergence region of the hopping paremetfer expansion at an arbitrary non-zero
value of the bare Yukawa-coupling (G # 0} in the chiral limit (M = 0), or at any finiie bare
mass M in the case of G = oc, the fermion spectrum is parity-doubled.

Therefore, the removal of the lattice fermion doublers by the Wilson-term in the action
cannot be completely succesful: out of the 16 lattice fermion species at least 2 is left in the
physical spectrum. This is in conflict with perturbation theory, where it seems that all the
fermion doublers are removed by the Wilson-term. An explanation may be, that perturbation
theory gives a good approximation only for (¥ # 0). This would also mean that the limits
G — 0and M — 0 cannot be interchanged. In view of this the conjectured eritical structure
in Fig. 1 has to be conironted with the hopping parameter expansion, too.

4 Random walk approximation to the hopping param-
eter expansion

The hopping parameter expansion is expected to give a good quantitative description of the
physical properties of scalar-fermion models in regions of the symmetric phase where the
correlation length is up to 2-5, provided that high enough orders are available. Based on
the experience in pure ¢! models {7] and taking into account the general structure of the
linked cluster expansion graphs in the ¢-model, the required order for F = 0 could be aronnd
16-26-th. To work out such a high order is in principle possible but non-trivial. In order
to obtain first a qualitative insight, in this Section the so called random walk approzimation
to the hopping parameter expansion will be considered, which was succesfully applied in the
strong gauge coupling region for some problems in QCD (10]. In the present context this
approximation is equivalent to a partial resummation of the series within specific classes of
the linked cluster expansion graphs. In this Section only the case (A = oo, F = 0) will be
considered, but the qualitative structure is the same also for ' = 0 at any other A. In the
(%, K)-plane the line & = 0 will be considered in detail, which is the simplest, because a pure
fermionic description is possible, As it will be clear from the discussion below, the x = 0
line corresponds to an interacting sealar-fermion theory. It is also the most inferesting case
because, according to the random walk approximation, the multicritical point C is at & = 0.

The lattice action at (A = G = o) or at (A = oo, M = 0), for an appropriate choice of
the fermion field normalization factors, is

5= Z {¢Sm(15mr3¢z) - ﬁz¢5:+ﬁ¢’5: - KZ(’J’:-##["" + 7#]1;):)} (58)

One possibility is to perform first the fermion integration. The result is an effective scalar
action Sfﬁ containing the logarithm of the determinant of the fermion matrix M[¢]. This
determinant can be evaluated by using

det{M[g]) = y/det(M[9]) - det( M|d]) (59)
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where ¢ is defined as gs, = (02, — 7). The effective scalar action can be written as

Sty = R bserate + 2 L TeMy[g] + KM} (60)

P 2n

where the matrices M) ; are defined by

Mide = 3 byern [Ps(tﬁsg + dse)r + Ts{bsy + ¢s=)’)’u]

Mage = 3 Syatiralr + 7 )7 + 1) (61)
Frey
Sf” in (60) is valid for every & and K in the (A = G = co) plane. For x = 0, instead of the
fermion integral, one can also perform the integration over the scalar fields. The result is an
effective fermion action, Using relations like Egs. (51-52) one obtains

S = —K Y (Baralr + 1ea) - T Y 4-—~N?;j'v)! [(@Tsw)@.Tsp)]”  (62)

gt * N=1

This action is equivalent to Eq. (60) for & = 0. For the derivation of ihe hopping parameter
expansion in powers of K the form in Eq. (62) is more convenient. The result is, of course,
identical to Eqgs. {42,55).

4.1 'The boson propagator

Let us first consider the random walk approximation for the - and w-boson propagator at
(A = G = oo,k = 0). For x = 0 the scalar fields do not propagate, they can only appear as
external lines in the linked cluster expansion graphs. In general, the scalar Green’s functions
at & = 0 can be obtained from purely fermionic ones by replacing the external scalar lines
with fermion-antiferntion pairs having the same quantum numbers. Therefore, instead of the
scalar propagator, it is enough to consider the propagator of a fermion antifermion pair

Gt 2)etas = (P Pastasthe) = %Zgi(kw—vlé(k)cd.uﬁ (63)
k

The space coordinates are denoted, as usual, by #,y,- -, whereas a,b,c,d, - stand for the
components of the fermion fields, that is they summarize both isospin- and Dirac-indices: for
instance, a = (4, a) where A is the isospir- and « the Dirac-index.

The linked cluster graphs for the above fermion-antifermion pair propagator can be di-
vided into reducible and irreducible ones. The reducible ones are those, which can be separated
in two disconnected parts by cuiting a fermion- and an antifermion line ending in the same
vertex. The random walk approximation corresponds to summing up the chains of the sim-
plest {or of a few simple) irreducible graphs by a.recursion relation generating the chains.
The simplest irreducible graph for the propagator of a fermion-antifermion pair is a pair of
fermion-antifermion lines on a link connecting two neighbouring sites. A reducible chain of
such graphs is illustrated by Fig. 2. The récursion relation sunuming up these chains is:

- 1
Gk )edas = -1 [P sl S F}.ndrg,cb]
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_ KT Z o=k {F;,cd [(7' - ’T“)P;(T + 7»)] e [(7' - 'YM)P;LG, [F;(T + 'I"u)l }é(k)ef.cb (64)

ce

Using the relations
Tr{ivsr,riTE} = Mipey,nTE = 0 {85)
it can be shown, that the subspace of the fermion-antifermion quantum numbers correspond-

ing to the o- and -bosons is invariant and diagonal with respect to the equation in (64).
Therefore, defining the projection to the (#,7) quantum numbers by

1 . _
Gly,z)rs = ~T1,2G(y, 2)caab50a = I Z 6_'“’:_5')@(]5)1'5 (86)
P

the solution of Eq. (64) in the (o, %)-sector has the form:
G(k)rs = brobs0Gy (k) + 61,51 = br.0650)C(k) (67)

Substituting Eqs. (66-67) into Eq. (84) one obtains for the o-, respectively, =-boson propa-
gator

G,(k) =20 [1 _ ;Kzu s - fc")]ﬂ

Golk) = 20 [1 - gK’(l 4PN - ch’)]_l (68)

For vanishing Wilson-parameterr = 0 there is no difference between G, and G, in accordance
with the exact O(4) chiral symmetry. The critical values of the hopping parameter K, where
the propagators have a zero energy pole in lattice units, are:

1 1

Kl(o)= s pr Kl (m) = 200 + %)

2001 — ) e (69)

If r # 0, the critical hopping parameter for the m-boson is always smaller than for the o-
boson. This situation can be changed, however, if more complicated irreducible graphs are
taken into account. {See the discussion below.)

4.2 The fermion propagator

As it was shown in the previous Section, in the convergence region of the hopping parameter
expansion the fermion is parity doubled. In the random walk approximation this is mani-
fested by the fact that the simplest reducible chain for the fermion propagator has irreducible
elements consisting out of two links. As it is shown by Fig. 3, the simplest fermion propaga-
tion proceeds via an oscillation between a fermion and a fermion-antifermion-fermion state.
Defining the fermion propagator as

- ¢ 1 . N
G(y,:c)p,ﬂ = ('gbbyfbax) = R;Ze't(k.t-v)G(k);m (70)
&
the recursion relation summing up the graphs in Fig. 2 is in momentum space given by
- 5K .
Glkha = = 2 e™™ [r(2r +1) - (2 4 2]
m
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M e [ 1= 0+ 2], (R (71)

This has the solution:

3 - -
Gk = iii [(2r -+ 1)r(8 — &%) -+ 27" + 2)iy - B

-{1 S @ s - Bt 2 K1~ ys - iy ;z}

ca

{[1 - ﬂ“‘[(21* +1)rf(8 - K+ a(r® + 2)!?’]] i 25551"2(1 — )8 - 1}’)%2} (72)

The critical hopping parameter where this fermion propagator has a zero energy pole is given

by

KA = gy
T 80r2(2r2 + 1)

This is also larger than E.(r) in Eq. (69). For instance, in the case of r = 1 we have
K, (5)=01581... and K.(f) = 0.2541....

The doubling of the fermion spectrum is explicitly displayed by the fermion propagator
in Bq. (72): besides the pole at ky = &y = &y = 0,k = —iaE there is also a pole at
ki=hky=ky=m, k4 =7 +iaB; (eE — 0). The quantum numbers of the two poles are best
1dent1ﬁed by consxdeﬂng the propagation of a specific fermion-antifermion-fermion composite
state y. The relevance of such states in the fermion propagator is already clear from Fig. 3.
The appropriate compositefermion operators are:

(73}

1 ; N :
Xz = EI‘S"I’)Z(.‘;‘)TPS“J;E) X= = E(¢wr3¢:)#'=rs (74)

It follows from Eqs. (2-4) that the chiral transformation properties of x and Y are:

= |Ug*PL+ U Prlxs T = X<[PrUr + Polz] (75)

This corresponds to the transformation properties of the fermion fields in Eq. (4}, 3f the
left- and right-handed components are interchanged. Therefore, x and x describe composite
mirror fermions. The composite mirror fermion operators also appear in the fermion effective
action {62), which can be rewritten as

1
- 03\5 - - N
S::‘j = KE(’(,!‘J?.'.,;[T + pel) = Z Z (.,,\”,4\ [(Xzfrf'r} + ("I’zxx)] (76)
T T N=1
A large class of linked cluster graphs for the x-propagator has the form illustrated by Fig.
4. In particular, in the random walk approximation the fermion propagator represented by
the curly bracket in Fig. 4 has to be replaced by Fig. 3. Considering only the class of graphs
in Fig. 4, the y-propagator can be expressed by the g-propagator through

H(y, m)nb = (l—ayxr.-z,\'c = R? Z(T + Yu)ac (J’ — b+ F)cd(r + 7 u)db (77)

e

There are also off-diagonal propagators between the fields 3 and x which can be obtained
similarly. In the random walk approximation corresponding to Eq. (72) the whole 262 matrix
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can be easily obtained, For brevity, let us here consider only the case v = 1. In momentum
space the 282 (¢, x) propagator matrix s:

Lg? 8 kr 424y -k K|(8 — *)? + 4&%)
1 BE(8 — k2)2 + 4k7 ( K8 — k3)? + 4k K2[(8 - k*)? + 4k*)(8 — k? — 2iy - k) )
(78)
The residua of the two poles at ky, = kg = k; = O,ky = —ieE and ky = ka2 = ky =m kg =
7 +iaE; (eE — 0) can be written as

+1 8K..(f)
const - ( 8K, (f) 64K.(f)? ) "

Therefore, appart from a field renormalization factor 8K..(f) for the x-field, the eigenvector
belonging to the non-zero eigenvalue at the first pole (upper sign in Eq. (79)) is: (s +
x)/v2. The eigenvector belonging to the non-zero eigenvalue at the second pole {lower sign
in Eq. (79)) is: (¢ — x)/+v/2. It 1s natural to define the parily operator in such a way that
it interchanges 9 with x. In this case the two poles correspond to two degenerate fermion
states with opposite intrinsic parity.

4.3 Critical structure

Summing up the simplest irreducible graphs in the random walk approximation for the o-
and 7-bosons and - and y-fermions results in different critical hopping parameters. The
smallest critical hopping parameter is obtained for the 7-boson: K. (x). At K = K..(m) the
high order graphs of the type in Fig. 2 are not suppressed any more, they can be arbitrarily
long. This has an important effect also on the propagators of the other particles. For instance,
in the irreducible part of the fermion propagator in Fig. 3 the fermion-antifermion pair on
the first link can be replaced by a long fermion-antifermion graph of the type in Fig. 2, if
this pair has the quantum numbers of a 7-boson (see Fig. 5). The sum of the contributions
in Fig. 5 diverges at X = K (), therefore the sum over the chains of such graphs in the
fermion propagatoer is expected to diverge even earlier.

In order to see. how this works out in detail, let us write the recursion relation {71)
summing up the reducible chains of graphs for the fermion propagator in momentum space
as

ke = KGOkl + K23 €™ GOR)elr + 7 Joa Gk e (80)

The factor G{") contains the propagator of a bosonic fermion-antifernion pair between two
neighbouring points. This can be written as

é‘”("‘)b« = Zei“k'u [*B‘,(i" - Ar,u)bu + Byel(r — 7#)6:13 (81)

Here, for completeness, also the propagation of the ¢-boson is included. B, and B, are
functions of the Wilson-parameter r and of the hopping parameter K':

ihy ki 5. 2 2
B, = B,(r.K) 80]\ a0 2¢ Go(k) = j%hg,-ﬂ [552(1—”]
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23+1

3 8 3 [5 . 2 ]

.= B, =2 Gok) =2 byiyy IoKH1 82

B = B K) = gy S Gulb) = {3 b [5K 04 ) (82)

Hete hy, is the number of paths of length n on the lattice between two neighbouring points:

. Ee'kn Z P LA L% Z Py (83)

V1aiidn L Thntte !
The solution of Eq. (80) is:

Glk)sa = K [r(8 — B*)(B. — B,) + 2i7 - K(B. + B,)] _

A1 K [r(8 - k%)~ 2i7 -] [r(8 - F*)(B. ~ B.} + 2iv- k{Bx + B,)] };’ (84)

Replacing here B, by the first (j = 0) terms in Eq. (82), one obtains Eq.{72). The critical
hopping parameter in Eq. (84) is the solution of the equation

1
T 84r2[Bo(r, Koo (£)) — Bu(r, Kor(F))]

Again, if only the first terms in B,, are taken intoc account, then the previous result in
Eq. (73) is reproduced.

The number of different curves on the four-dimensional hypercubical fattice connecting
two neighbouring sites h, grows with the length » asymptotically as 8". Therefore, the series
for B,, in Eq. (82) diverge at K = K. (o,#). For K — K, (m) the combination (B, + B,)
tends to +oo and, consequently, the solution of Eq. (85) for the critical value of the hopping
parameter. K..(f) is somewhat.smaller than K. (r}. These are, of course, still results of a
partial resummation of the hopping parameter series. The diverging fermion propagators
can, howevcr, themselves inciuded in the irreducible boson propagator graphs which, after
resummation, make the critical hopping parameter for bosons again somewhat smaller than
. the critical hopping parameter for fermions. This procedure can be repeated many times.
It is plansible that the final outeoime is & common multicritical point € at some hopping
parameter K = K. smaller than K (7} in Eq. (69). At (X = G = co,x = 0) the strongly
interacting elementary ferm.mn % ptoduces fermionic and bosonic bound states, which can

K{fY (85)

be thought of as being bound states of each other in a boot.strap manner. This suggest the
critical structure of the lattice g-model at A = G = co as shown in Fig. 6. The critical
lines of = and o and of the fermions are separated from each other at x # 0, because of the
additional graphs containing scalar internal lines. These are more effective for the bosons
than for the fermions. On the liné K = 0 the fermions do not propagate at all and the model
is reduced to a pure O(4)-symmetric ¢* model. Appart from the fermion parity doubling,
Fig. 6 can be considered as & degenerate version of the expected critical structure in Fig. 1:
the line CyC is reduced to a single point in Fig. 6.

5 Summary and discussion

The form of the effective potential and of the renormalized quantities in 1-loop perturbation
theory shows, that in order o find the expected critical structure with chiral symmetry in the
vicinity of the point with vanishing bare couplings one has to add asymmetric counterterms
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to the action. However, this is only a necessary condition and the guestion of the restoration
of the chiral symmetry near the multicritical points, where the physical masses vanish in
lattice uniis, can only be answered if the spectrum of physical states is established. For the
formulation of the standard electroweak model the usual assumption about the spectrum is,
that in the o-model the chiral symmetry is realized in the symmetric phase by a massless
fermion (and massive degenerate - and 7-bosons), and in the spontanecusly broken phase
by a massless triplet of Goldstone-bosons (and a massive fermion and ¢-boson). Ia the lattice
regularized o-model with Wilson-fermions this is contradicted in the limit of infinitely strong
bare Yukawa-coupling at any bare fermion mass, or in the limit of zero bare fermion mass
at any non-zero bare Yukawa-coupling, by the general structure of the hopping parameter
expansion at vanishing hopping parameters. As it was shown in Section 3, the structure of
the hopping parameter expansion implies the parity doubling of the fermion spectrum. The
parity partner of the original fermion can be considered as a remnant of the latfice fermion
doubling. From this point of view the hopping parameter expansion is in conflict with lattice
perturbation theory, where it seems that all the lattice fermion doublers are removed from
the physical spectrum by the Wilson-term in the-action. The clash of perturbation theory
with the hopping parameter expansion in the massless fermion limit can indicate the non-
commutativity of the zero fermion mass limit with the zero Yukawa-coupling limit.

The dynamies of the fermion parity doubling was investigated in detail in Section 4 within
the random walk approximation to the hopping parameter expansion. It turned out, that the
parity doubling is realized by a composite mirror fermion field. In an interesting limit of the
model at infinite bare couplings and zero scalar hopping parameter the fermion propagation
on the lattice proceeds by an oscillation between the elementary fermion and its composite
mirror fermion partner. This mechanism of parity doubling seems to be at work also in other,
more general, scalar-fermion models.

Of course, the solution of the specirum problem in an interacting 4-dimensional quan-
tum field theory is very difficult. The hopping parameter expansion can only be expected
to reproduce the physical content of the model in a limited range of the symmetrc phase,
where the correlation lengths are not larger than, say, 2-5. It is, however, plausible that in
the o-model the Liischer-Weisz procedure [7} is applicable, in the same way as in pure scalar
¢* theory, Then, due to the triviality of the continuum limit, at these correlation lengths
the renormalized couplings are already small encugh for the application of the perturbative
Callan-Symanzik renormalion group equations, and for the application of renormalized per-
turbation theory in general. The renormalization group equations can also be continued over
the multicritical point into the scaling region of the phase with spontaneously broken sym-
metry. In the broken phase the fermion parity doublet is transformed into a mirror pair with,
in general, different masses [11]. Even if in the present paper the hopping parameter expan-
sion was considered in detail only in an approximation, and even if generally much less is
known about the properties of scalar-fermion theories than about the pure scalar ¢* theories,
it seems rather plausible that in the o-model with Wilson-fermions the physical spectrum
consists out of the o- and w-bosons and a mirror pair of fermions.

Where can one hope to avoide the mirror partners of the fermions in a non-perturbative
lattice formulation? It is, in principle, possible that some other lattice fermion formulation
does not have this dynamical fermion doubling property. It is also possible that a chiral
symmetry without mirror fermions can only be realized in some other, more complicated,
meodels, In this case one has to find, however, the connection of such models to the standard
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electroweak model. In the framework of the s-model a possible attifude is to assume, that
the model with a chirally asymmetric spectrum can be reached, if it exists, as some limit
of the model with a mirror pair of fermions. In this case it is convenient to start with a
formulation where the mirror fermions are included in the action at the level of elementary
fields [11]. The important advantage of such & formulation is the possibility of a local chiral
SU(2)L ® SU(2)r symmetry which can be gauged in the way it is required in the standard
model. In this case the question to be answered is, whether there exists some limit of the
extended model where the mirror partners of the fermions are removed from the physical
spectrum.
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Figure captions

Fig. 1.  The expected critical structure in the (%, K)-plane as explained in the text.
The couplings (A, G) are fixed at an arbitrary value. The scaling region is in the vicinity of
the multicritical point C.

Fig. 2. A reducible chain of graphs for the propagator of a fermion-antifermion pair
which is obtained by repeating the simplest irreducible graph.

Fig. 3. The simplest type of reducible graphs for the fermion propagator.

Fig. 4. The class of graphs for the propagator of the composite mirror fermion which
can be reduced to the propagator of the elementary fermion, represented in the figure by the
curly bracket.

Fig. 5. A more complicated irreducible part of the fermion propagator, where the
propagation of the fermion-antifermion pair between neighbouring sites is given by a graph
like in Fig. 2. A large effect near K. (w)} is given by this graph if the fernion-antifermion
pair has the guantum numbers of a m-boson.

Fig. 6. The tentative critical structure in the (x, K )-plane at A = G = oo suggested by
the random walk approximation to the hopping parameter expansion. C is the multicritical
point and the critical lines where the ¢- and #-boson masses or the mass of the fermion pair
(4, x) vanishes are indicated by the corresponding letters,
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