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We investigate what the orbits of globular clusters (GCs) in the Fornax dwarf spheroidal (dSph)
galaxy can teach us about dark matter (DM). This problem was recently studied for ultralight
dark matter (ULDM). We consider two additional models: (i) fermionic degenerate dark matter
(DDM), where Pauli blocking should be taken into account in the dynamical friction computation;
and (ii) self-interacting dark matter (SIDM). We give a simple and direct Fokker-Planck derivation
of dynamical friction, new in the case of DDM and reproducing previous results in the literature
for ULDM and cold DM. ULDM, DDM and SIDM were considered in the past as leading to cores
in dSphs, a feature that acts to suppress dynamical friction and prolong GC orbits. For DDM we
derive a version of the cosmological free-streaming limit that is independent of the DM production
mechanism, finding that DDM cannot produce an appreciable core in Fornax without violating Ly-
α limits. If the Ly-α limit is discounted for some reason, then stellar kinematics data does allow
a DDM core which could prolong GC orbits. For SIDM we find that significant prolongation of
GC orbits could be obtained for values of the self-interaction cross section considered in previous
works. In addition to reassessing the inspiral time using updated observational data, we give a new
perspective on the so-called GC timing problem, demonstrating that for a cuspy cold DM profile
dynamical friction predicts a z = 0 radial distribution for the innermost GCs that is independent
of initial conditions. The observed orbits of Fornax GCs are consistent with this expectation with
a mild apparent fine-tuning at the level of ∼ 25%.
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I. INTRODUCTION

The Milky Way dwarf spheroidal (dSph) satellite
galaxies are broadly believed to be dominated by dark
matter (DM) [1, 2]1, and this fact combined with their
small sizes and nearby locations makes them interest-
ing test beds of the small-scale behavior of DM [4–10].
In fact, some of the basic predictions of the most com-
monly considered paradigm of DM — collisionless cold
dark matter (CDM) — may be in tension with obser-
vations (see, e.g., Refs. [11, 12]). Conclusive kinematic
data for a decisive test of CDM in dSphs is difficult to
obtain, but upcoming observatories may supply it [13].

One intriguing puzzle about the dSph galaxies con-
cerns the globular clusters (GCs) of the Fornax dSph
[14]: some of Fornax’s six known GCs [2, 15] have or-
bital decay times due to dynamical friction (DF) which
seem to fall significantly short of their age [14]. If esti-
mated näıvely based on the Chandrasekhar formula [16],
assuming the usual CDM cusp density profile (see, e.g.
Ref. [17]), one obtains an instantaneous DF time of less
than 1 Gyr for the most troublesome GC4. On the other
hand, the stellar content of the GCs is old, > 10 Gyr
[18, 19], as is much of the stellar content of Fornax itself
[20, 21]. It may seem unlikely then, that we observe some
of the GCs just a short time before they fall to the center
of the galaxy. We show a visualization in Fig. 1.
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FIG. 1. Orbital radius vs. time, calculated for the Fornax
GC4 assuming a slightly eccentric orbit. t = 0 represents to-
day. The orbit calculation assumes the CDM Navarro-Frenk-
White (NFW) [22] profile of Ref. [17].

Part of the scope of this work is to give an analytical
perspective on DF, allowing us to sharpen the GC tim-
ing puzzle. When the dust settles (in Sec. VI B, using
tools developed throughout the paper) we obtain reason-
ably robust predictions for the late-time distribution of
GCs: for a cuspy halo, the cumulative number of GCs

1 See, however, a contrary claim in [3].

contained within radius r has the form

F∆t(r) ∝
τ(r)

∆t
, (1)

where τ(r) is the instantaneous DF time (defined pre-
cisely in Sec. III), ∆t is the age of the system, and the
prefactor is proportional to the initial number of GCs
contained inside r ∼ 1 kpc. Up to the prefactor, the ra-
dial slope in Eq. (1) is insensitive to the assumed initial
distribution of GCs and can be calibrated observationally
from kinematics modeling. Eq. (1) substantiates the ex-
pectation that the fine-tuning associated with observing
a GC at short DF time τ � ∆t is of order τ/∆t.

We should say in advance that although the timing
puzzle is very interesting, our analysis suggests that the
possible tension it entails is not very severe. For a cuspy
CDM halo, when one takes into account projection ef-
fects and the fact that Fornax hosts not just one, but
a collection of GCs, then the timing puzzle may be as-
cribed to a mild (but quite persistent) chance fluctuation
with a probability of 25% or so. The lack of a ∼ 106 M�
nuclear star cluster in Fornax, the remnant of old tidally
disrupted GCs [23, 24], may exacerbate the tension.

Many explanations were suggested for the GC timing
puzzle [25–39], of which an exciting class of ideas entails a
modification to the nature of dark matter, going beyond
CDM [33, 36–39]. In particular, Refs. [33, 38, 39] stud-
ied ultralight dark matter (ULDM) and showed that in
the particle mass window m . 10−21 eV, ULDM would
suppress DF enough to eliminate the timing puzzle. How-
ever, most of this mass range for ULDM has been scru-
tinized in the last few years, resulting in disfavoring ev-
idence [40–43]. Motivated by the fact that the combina-
tion of GC age and orbit measurements probes the de-
tails of the DM halo and microphysics, we extend the DF
analysis to additional DM models. The first model is de-
generate dark matter (DDM), in which the phase-space
distribution of DM in dSph cores is affected by Pauli
blocking [44, 45]. The second model is self-interacting
DM (SIDM), in which self-interactions between DM par-
ticles produce a cored isothermal distribution.

In Sec. II we focus on the microphysics and calculate
DF for CDM, DDM, and ULDM. Our results for DDM
are new; for ULDM, we make contact with a different
derivation in the literature; while for SIDM the micro-
physics of the DF calculation is argued to be similar to
that in CDM.

All three DM models can, in principle, naturally pro-
duce cored isothermal halos. As we show in Sec. III,
a cored isothermal distribution of DM suppresses DF
in part due to a phase-space effect (associated with the
“core stalling” [46] identified in past numerical work), as
the velocity of the inspiraling GC can become paramet-
rically lower than the DM velocity dispersion.

For ULDM, DF and the Fornax GC timing puzzle were
studied in recent works [33, 38, 39] and we do not review
them again. As noted above, constraints from galaxy
dynamics and from cosmological Ly-α analyses suggest a
similar behavior to CDM.
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For DDM (Sec. IV), we formulate a robust version of
the Ly-α bound that is insensitive to DM model building
and cosmological history, finding that it disfavors an ap-
preciable core. If one chooses to discount the Ly-α bound
(see, e.g. Ref. [33] for a qualitative discussion of concerns
regarding systematic uncertainties), then stellar kinemat-
ics does allow a considerable DDM core which could lead
to significant suppression of DF and prolong the settling
time of the innermost GCs.

For SIDM (Sec. V), stellar kinematics allows a consid-
erable core. If the SIDM cross section is as large as that
considered in Ref. [47], then the DF settling time for the
innermost GCs can be significantly longer than in the
cuspy halo CDM model.

The possibility that baryonic feedback deforms a CDM
cusp into a core is also considered. Since baryonic feed-
back is expected to deform the halo primarily within the
half-light radius [10, 17, 48, 49], the resulting core is spa-
tially smaller than the typical cores that were previously
suggested as an explanation to the GC timing puzzle
[17, 28]. In that sense, such a model is a hybrid be-
tween other cusp/core classes of density profiles that we
consider in this work, in the spirit of Ref. [2]. As a bench-
mark, we adopt the density profile fit in Ref. [10]. We
find that GC orbital decay times may be somewhat pro-
longed within the inner few hundred parsecs compared
to the pure cusp case. This baryon-induced core model
may therefore provide a better fit to the GC distribution
compared to the cusp case.

Our approach is mostly analytical. Of course, this has
limitations and one may be justified in expecting that
more progress would require numerical simulations. Ac-
cording to recent simulations in Ref. [50], reasonable ini-
tial conditions for the Fornax GCs (derived from the sim-
ulations) can lead to the observed configuration in a stan-
dard cuspy CDM halo. The timing puzzle may thus be
even less significant than the mild 25% that we find with
analytical tools. Nevertheless, we believe that analyti-
cal insight is important. Notably, as we demonstrate in
our analysis, it allows to identify which features of the
late-time state of a GC configuration are the result of
particular initial conditions and which are generic out-
comes of DF.

We summarize in Sec. VII. Many details of the calcu-
lations are deferred to the Appendices.

II. DYNAMICAL FRICTION: MICROPHYSICS

Dynamical friction can be described in terms of the
Fokker-Planck theory for the motion of a probe particle
(a GC in our case) traveling through a gas of spectator
particles (DM particles in our case). In App. A we de-
rive the Fokker-Planck equation as the small-momentum-
exchange limit of the Boltzmann equation, governing the
motion of a probe object in different background media,
accounting for the gravitational interaction between the
probe and the medium particles. Our calculation is di-

rect, in the sense that it simply amounts to computing
the collision integral while taking care to account for the
quantum statistics of spectator gas particles. Here we
bypass the details of the calculation, while utilizing the
main results.

The Fokker-Planck equation is characterized by a set
of momentum space diffusion coefficients, calculated in
App. A 1, A 2, and A 3 for the case of a medium com-
posed of a classical gas, degenerate Fermi gas, and Bose
gas, respectively. Of particular importance for our anal-
ysis is the diffusion coefficient D||, corresponding to the
diffusion in momentum parallel to the probe object’s in-
stantaneous velocity. The DF deceleration acting on a
probe with mass m? moving with instantaneous velocity
V w.r.t. the medium is computed as [51]

dV

dt
=
D||

m?
V̂

= −4πG2m?ρ

V 3
CV. (2)

In the second line, to compare the DF arising in different
types of media we define the dimensionless coefficient C
as follows [33]:

C = −
V 2D||

4πG2m2
?ρ
, (3)

where ρ is the mass density of the medium.
Different microphysics properties of the medium (in

our case, the DM galactic halo) predict different results
for C. In the next subsection we discuss three scenarios.

A. Classical gas

This is the appropriate limit for a halo composed of
a gas of classical particles. We will adopt this limit to
describe DF in the ordinary CDM model, as well as for
the SIDM model2. For a homogeneous classical gas with
an isotropic distribution function fv(v), DF is described
by the Chandrasekhar formula [16] (see also App. A 1),

Cclass = 4π ln Λ

∫ V

0

dvmv
2
mfv(vm), (4)

where ln Λ is the Coulomb logarithm. If the gas distri-
bution function is a Maxwellian with velocity dispersion
σ, fv(v) = (2πσ2)−3/2exp(−v2/(2σ2)), we have

CMax = ln Λ

(
erf(X)− 2X√

π
e−X

2

)
(5)

→ ln Λ

{
1 V � σ
√

2
3
√
π
V 3

σ3 V � σ
,

2 This is a good approximation for the SIDM cross-sections of in-
terest, which are small enough such that SIDM particles travel
across distances larger than the size of the system without col-
liding with each other. See Sec. V.
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where X ≡ V/(
√

2σ) and where in the second line we
show the asymptotic scaling of C at large and small X.

B. Degenerate Fermi gas

This is the relevant limit for DF at the core of a halo
supported by the degeneracy pressure of light fermionic
DM (DDM model [44, 45]). In the high-degeneracy limit
we have fv(v) = 3/(4πv3

F )θ (vF − v), where θ(x) is the
Heaviside function, the Fermi velocity vF is related to
the medium density via

ρ =
gm4v3

F

6π2
, (6)

m is the mass of the particles and g is the number of
degrees of freedom (e.g. g = 2 for Weyl fermions). The
calculation in App. A 2 gives the following limiting be-
havior,

CDDM → ln Λ

{
1 V � vF
V 3

v3
F

V � vF
. (7)

Thus, in both limits V � vF and v � vF , we find
that DF in a degenerate medium is equivalent to DF in a

classical medium with the replacement σ →
(

2
9π

) 2
3 vF ≈

0.17vF . Note that the three-dimensional velocity disper-
sion associated with the classical isotropic Maxwellian
distribution is 〈v2

x+ v2
y + v2

z〉 = 〈v2〉 = 3σ2, while the dis-

persion for the degenerate distribution is 〈v2〉 = (3/5)v2
F .

Therefore, the pressure in the different types of media
matches when vF ≈ 2.2σ. Similarly, Eqs. (7) and (5) tell
us that DF in these media match when vF ≈ 5.8σ. We
note that the form of Eq. (7) agrees with the results of
Ref. [52]3

As an aside, it is interesting to note that to leading or-
der inm/m?, the diffusion coefficient of a classical gas has
the same functional form with respect to the distribution
function as the diffusion coefficient of a degenerate gas
(c.f. Eq. (A12) and Eq. (A21)). This is somewhat sur-
prising, because the Fokker-Planck calculation took into
account Pauli exclusion in the medium whereas Eq. (4)
does not. Moreover, according to Eq. (4), only particles
with velocities smaller than the probe object’s contribute
to the DF. For the case of degenerate matter, one could
have expected that the opposite should happen: only
particles close to the Fermi surface contribute to DF. We
refer the reader again to App. A 2 for the detailed com-
putation that leads us to Eq. (7).

Finally, note that above we evaluated DF in the zero-
temperature limit and not in the finite-temperature limit.
In Sec. IV we consider a finite-temperature density pro-
file, so we should keep this caveat in mind. We have
not explored DF of degenerate matter within the more
sophisticated treatment of Refs. [53, 54].

3 We thank P.H. Chavanis for pointing it out to us.

C. Bose gas

This is the relevant limit for the case where halo parti-
cles follow the Bose-Einstein statistics, as in the ULDM
model. The diffusion coefficients can be obtained either
by solving a Langevin equation with stochastic fluctua-
tions of the gravitational potential [38] or, as we do in
App. A 3, by using a kinetic equation4. Both approaches
provide identical results.

Up to a slight modification of the Coulomb logarithm,
DF for the bosonic gas includes a contribution to the
C term that is identical to that of the classical gas in
Eq. (5). In addition to this, ULDM large-scale density
fluctuations (manifested by Bose-enhancement terms in
the kinetic theory computation) cause additional velocity
drift that can be characterized by an extra term to C →
C + ∆C, with5

∆C = ln Λ

(
meff

m?

)(
erf(Xeff)− 2Xeff√

π
e−X

2
eff

)
, (8)

where meff = π3/2ρ/(mσ)3 is the ULDM mass
enclosed in an effective de Broglie volume and
Xeff ≡ v/

√
2σeff with σeff = σ/

√
2. Nu-

merically, meff ≈ 1.2 × 106
(
10−21 eV/m

)3
[ρ/(3 ×

107 M�/kpc3)][(10 km/s)/σ]3 M�. With these numbers
and keeping in mind a typical GC mass m∗ ∼ 105 M�,
the ∆C effect becomes quantitatively important in For-
nax for m . 3× 10−20 eV.

The kinetic theory result summarized above assumed
that the scale size of the system – e.g., the radius r of a
GC orbit – is much larger than the effective de Broglie
wavelength of the ULDM particles,

rdB ≈
2π

mσ
≈ 300

(
10 km/s

σ

)(
10−21 eV

m

)
pc, (9)

and thus much larger than ULDM quasi-particle excita-
tions or than the soliton core that is ubiquitously found
in ULDM simulations (see Ref. [33] for a review). For
r < rdB, the treatment above breaks down and must
be modified by taking into account large-scale coherence
effects of the ULDM. This can be done via solving the
Schrödinger equation, as shown in Refs. [33, 39], which
indeed found that DF becomes suppressed at r . rdB.
We refer the reader to Refs. [33, 39] for more details on
DF and the Fornax GC puzzle in the context of ULDM.
Here we only note that for m & 10−20 eV, where r � rdB

and meff � m∗ for the Fornax GCs, DF in the ULDM
medium becomes quantitatively similar to DF in a clas-
sical medium.

4 While this paper was being prepared for publication, Ref. [55]
appeared which also presents a kinetic theory derivation of the
ULDM diffusion coefficients.

5 Formally, the ∆C term is there also for standard CDM but is
negligible unless the individual DM particles are extremely mas-
sive.
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III. DYNAMICAL FRICTION IN A CDM HALO:
CORE VS. CUSP

It is natural to define an instantaneous DF time, τ , via

τ =
V 3

4πG2m?ρC
, (10)

such that (including here only the DF effect)

V̇ = −1

τ
V. (11)

A crude estimate of the time scale it would take a GC
to settle down to the dynamical center of a halo can
be obtained by computing τ , using the current instanta-
neous position and velocity of the GC. Assuming a CDM
NFW distribution, and plugging an estimate of the dark
matter density and velocity dispersion corresponding to
the present observed position of each GC into Eqs. (5)
and (10), the result we find is summarized in the column
marked τCDM (highlighted in blue) in Tab. I. For GC3
and GC4 the DF time estimated in this way is 2.6 and
0.9 Gyr, respectively, much shorter than the age of the
system.6

However, estimating an orbital decay time from the
instantaneous value of τ can be misleading. In a real-
istic galaxy, the DM phase-space distribution and with
it the instantaneous value of τ could change along the
orbit of the GC. To obtain a better estimate of the ac-
tual settling time one could track the orbit of the GC
semi-analytically, using the phase-space-dependent value
of τ along the orbit [32, 46, 62]. Some details of this
calculation are given in App. E.

The semi-analytic integration reproduces results from
N -body simulations [17]. To demonstrate this, we use
Eqs. (5) and (10) while reading the CDM density and ve-
locity dispersion from the N-body simulations of Ref. [17]
to integrate the orbit of a GC. In Fig. 2 we compare our
results to two different scenarios from [17].

The first scenario, denoted NFW, contains a cuspy
NFW-like halo (the density profile of this model is shown
in Fig. 11). The orbit of a GC in this halo is shown by
the blue dashed line for the simulation of [17] and by a
blue solid line for the semi-analytic tracking. The second
scenario, denoted ISO, contains an isothermal core halo
(also shown in Fig. 11). The GC orbits are shown by
the red lines. Again, the semi-analytic method (solid)
compares reasonably well with the simulation (dotted).

The results have a mild dependence on the choice of
the Coulomb log, and we make slightly different choices
for the different scenarios. For NFW we follow Ref. [28]
in setting

ln ΛNFW = ln
bmaxσ

2

Gm?
. (12)

6 Our estimates are larger than those previously obtained in
Ref. [33]; we discuss the differences in Sec. VI.

However, instead of the bmax = 0.25 kpc used in Ref. [28],
we adopt bmax = 0.5 kpc. For ISO we follow [33, 46]

ln ΛISO = ln
2V 2r

Gm?
. (13)

We have checked that changing the definition of the
Coulomb log according to different prescriptions in the
literature changes the predicted infall time of GCs at the
level of a few tens of percent. This would not be crucial
for our main results.

NFW

ISO

Semi-Analytic

Simulation

0 10 20 30 40
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0.50
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t [Gyr]

r
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c
]

FIG. 2. Radius of an infalling GC with mass m? = 3×105 M�,
based on the simulations of Ref. [17]. In dotted blue (thick
dotted red) we plot the simulation result (Fig. 3 in Ref. [17])
for the NFW (ISO) halo. In solid lines, we plot our semi-
analytic integration. Horizontal dot-dashed lines show the
radii rf where Mhalo(rf ) = m?, in which the semi-analytic
treatment should break down.

We can gain some insight on the difference between the
DF settling time in the cusp vs. the core profiles. In the
central part of a cuspy NFW halo, the density scales as
ρ ∝ 1/r and the circular velocity scales as Vcirc ∝ r1/2.
Let us simplify matters by assuming (as was often done
in previous works) that the GC moves on an approxi-
mately circular orbit, V = Vcirc. With this, considering
the NFW halo of Ref. [17] and using Eq. (5), we find7

CMax ≈ 0.3(r/kpc)0.5 ln Λ. The DF time τ defined in
Eq. (10) then scales as τ ∝ r2. This is a rough estimate:
if we use the simulation data of Ref. [17] for σ and ρ
we find a similar but slightly different scaling, τ ∝ r1.85,
plotted in solid blue in Fig. 4. The important point is
the approximately power law decline of τ towards small
r. This is the cause of the fast orbital decay of the GC
in the cuspy halo model.

The situation is different in a cored halo. In a core, the
density ρ ≈ ρ0 = const., the circular velocity Vcirc ∝ r,
while a Jeans analysis shows that for an isotropic ve-
locity distribution the velocity dispersion is constant

7 Ref. [33] assumed that V = Vcirc and also took Vcirc equal to
the velocity dispersion σ, which would lead to a constant CMax.
While this is roughly correct, for the NFW halo of Ref. [17] we
find mild radial dependence of Vcirc/σ ∝ r0.23, as shown in Fig. 3.
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TABLE I. Some details of Fornax GCs. For the galactic center of Fornax we use an updated measurement [21], based on
surface brightness modeling. This estimate is ≈ 160 pc off relative to the center defined by previous works [2, 17, 19, 33, 35, 50],
leading to different projected radii of GCs. We set the distance to Fornax as 147± 4 kpc [18]. We estimate the error on r⊥ by
propagating the distance error, added in quadrature with a 13 pc [21] uncertainty on the center. For relative radial velocities
∆vr, we use the galactic radial velocity RVFornax = 55.46 ± 0.63 km/s [56] and set ∆vr = RVGC − RVFornax, adding errors in
quadrature. For GC6, the values correspond to a small sample of stars, likely contaminated by background [15]. rc/h refers to
the King radius for GC1-GC5 and half-light radius for GC6. The CDM instantaneous DF time (Eq. (10)) estimates are based
on the NFW profile of [17]. The instantaneous DF times of DDM and SIDM are based on Secs. IV and V.

m? [105M�] r⊥[kpc] ∆vr[km/s] rc/h [pc] Refs. τCDM [Gyr] τ
(135)
DDM [Gyr] τSIDM [Gyr]

GC1 0.42± 0.10 1.73± 0.05 3.54± 1.18 10.8± 0.3 [18, 19, 56–58] 119 122 79.3
GC2 1.54± 0.28 0.98± 0.03 3.9± 0.7 6.2± 0.2 [18, 19, 58, 59] 14.7 7.12 8.82
GC3 4.98± 0.84 0.64± 0.02 4.94± 0.66 1.7± 0.1 [18, 19, 60, 61] 2.63 1.48 2.21
GC4 0.76± 0.15 0.154± 0.014 −8.26± 0.64 1.9± 0.2 [18, 19, 60, 61] 0.91 10.7 14.8
GC5 1.86± 0.24 1.68± 0.05 3.93± 0.77 1.5± 0.1 [18, 19, 56, 60, 61] 32.2 30.1 20
GC6 ∼ 0.29 0.254± 0.015 −1.56± 1.36 12.0± 1.4 [15, 50] 5.45 16.1 22

σ ≈
√
Gρ0rc [46], where rc is the core radius (see

App. D). This implies Vcirc/(
√

2σ) ∼ r/rc, as corrobo-
rated in Fig. 3 by comparing to the simulation data from
[17]. At r < rc the low-velocity approximation in Eq. (5)
gives C ∝ (r/rc)

3 ln Λ. The (r/rc)
3 factor can be thought

of as a phase-space suppression of DF: it arises from the

factor
∫ V

0
dvmv

2
mfv(vm) in Eq. (4), because the veloc-

ity dispersion inside an isotropic core is greater than the
circular velocity (which we assumed to match the instan-
taneous GC velocity).

Altogether, referring to Eq. (10), an isotropic core pre-
dicts an approximately constant τ (see also Ref. [25]),

τ ≈ 3
√
π√
2

σ3

4πG2m?ρ0 ln Λ
(14)

≈ π

2
√

3

r3
c
√
ρ0√

Gm? ln Λ

≈ 1.95
4

ln Λ

(
rc

1 kpc

)3
3× 105 M�

m?

(
ρ0

3× 107 M�
kpc3

) 1
2

Gyr .

In the second line we used Eq. (D4) and in the third
line we used values relevant for Fornax GCs. Again, we
can compare this estimate to numerical simulations. The
dashed red line in Fig. 4 shows τ as calculated by using
the velocity dispersion and density read off the cored ISO
model of Ref. [17]. τ is approximately constant in the
core, exceeding the value of τ found for the NFW halo.

The result that DF is suppressed in a cored halo, in
comparison to a cusp, is consistent with the finding of
Refs. [2, 28, 63], further confirmed in Refs. [17, 32, 46,
62].8 In the next two sections we consider this perspective
in exploring DM models that predict a cored halo.

8 The core stalling observed in N -body simulations was initially
ascribed in Ref. [63] to a failure of the Chandrasekhar formula.
However, as we explained here (see also Ref. [46]), semi-analytic
tracking using the Chandrasekhar formula along the orbit repro-
duces this result.

NFW ISO

1.2 r0��� 1.24 r

0.1 0.2 0.5 1 2
0.1

0.2

0.5

1

2

5

r [kpc]

V
c
ir
c
/σ
r

FIG. 3. The ratio of the circular velocity Vcirc to the radial
velocity dispersion σr, reproduced from Ref. [17] for NFW
(thick blue) and isothermal (ISO, red) halos.

NFW

ISO

0.2 0.5 1 2

0.5

1

5

10

50

r [kpc]

τ
(r
)
[G
y
r]

FIG. 4. Orbital decay time calculated using ρ and σ from
Fig. 1 of Ref. [17] and assuming a test object on a circular
orbit. NFW denotes a cuspy profile, and ISO denotes an
isothermal cored profile. We use here the GC mass m? =
3× 105 M�.
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IV. DEGENERATE DARK MATTER (DDM)

Ref. [44] (see also [45]) made the interesting obser-
vation that light fermionic DM would produce a core in
dSphs, if the DM particle mass m is light enough to place
the halo in the degenerate regime. We call this model de-
generate DM (DDM). The DDM core scale radius rc can
be estimated via

rc =
A

G
1
2 ρ

1
6
0 (gm4)

1
3

(15)

≈ 681

(
ρ0

107 M�/kpc3

)− 1
6
(

gm4

2× (120 eV)4

)− 1
3

pc,

where ρ0 is the core central density and where A =(
9π/27

)1/6 ≈ 0.78. In App. B we give a derivation of
Eq. (15), modeling the dSph halo by a maximum entropy
configuration (at fixed total mass and energy, similarly
to Ref. [64])9. The maximum entropy halo is isothermal,
scaling as ρ ∝ 1/r2 at large r. Between the degenerate
core and the 1/r2 regime there are intermediate features
that depend on the temperature.

Inside r . rc DDM particles are described by a degen-
erate distribution function with Fermi velocity vF related
to their mass density via Eq. (6). DF for this system is
characterized by Eq. (7), so inside the DDM core, where
ρ and vF are constant, Eq. (10) yields a constant DF
time,

τDDM ≈
3π

2G2gm4m? ln Λ
(16)

= 4.8
4

ln Λ

105 M�
m?

2× (150 eV)4

gm4
Gyr .

Note that if one inserts the DDM halo core radius (15)
into Eq. (14), one obtains the same parametric depen-
dence as in Eq. (16). This is a result of the similarity
between Eqs. (5) and (7). The interesting feature of the
DDM model is that it produces the core due to Pauli
blocking.

Naively, Eq. (16) suggests that DF in a DDM core
could be arbitrarily suppressed by decreasing m. This
happens because decreasing m at fixed ρ is tied to in-
creasing vF . The DF effect on Fornax GCs is thus an
interesting test bed of DDM, and in Sec. IV C we explore
this point in more detail. Before entering that discussion,
however, we first consider observational limits on m.

First, the Fermi velocity cannot be arbitrarily high in
a gravitationally bound halo [66]. In Sec. IV A we make

9 Our approach in App. B is similar to that of Ref. [44], but differs
in that we include also non-zero temperature solutions. Such
solutions were noted but not implemented in Ref. [44]. We find
that these solutions could expand the range of applicability of
the DDM model in dSphs. Ref. [65] also considered non-zero
temperature solutions, albeit without comparison to data (We
thank P.H. Chavanis for pointing this out to us.)

this analysis more precise by fitting stellar line-of-sight
velocity distribution (LOSVD) data to the DDM halo
model; we find that while the Fornax LOSVD data in-
deed constrains m & 100 eV or so, this constraint by
itself would still allow a significant modification of DF
compared to the CDM prediction.

A second and much tighter constraint comes from cos-
mological structure formation as observed through Ly-α
forest statistics. We show in Sec. IV B that this con-
straint directly affects the same combination, gm4, that
appears in Eqs. (16) and (15). Imposing the Ly-α con-
straint excludes DDM from making an appreciable core
in Fornax on scales r & 100 pc, meaning that DDM
could not significantly affect the orbits of GCs. While
earlier work on DDM argued that a non-thermal produc-
tion mechanism for DDM could avoid the cosmological
constraint, we formulate a rather robust version of the
bound which appears difficult to evade.

A. Stellar LOSVD constraints on DDM in Fornax

In this section we summarize the results of a Jeans
analysis for the DDM model in Fornax10. The DDM
profile is described in App. B and the details of the Jeans
analysis are given in App. C.

In Fig. 5 we plot LOSVD data of Fornax [10] along-
side fits of the density profile presented in App. B. Our
fitting procedure is based on a simple χ2 minimization,

where χ2 ≡
∑Ndata

i=1 (σLOS,i − σLOS(ri))
2/σ2

i and σi is the
reported uncertainty for radial bin i. At a given particle
mass m, our fit has three free parameters: the degen-
eracy parameter µ0/T , the central core density ρ0, and
the stellar velocity anisotropy parameter β, taken to be
constant in r.

DDM, β=-0.1, m=135 eV, χ2/d.o.f=1.85

0 500 1000 1500 2000
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10

15

20
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]

FIG. 5. LOSVD compared with data [10] for DDM with g =
2. The best-fit parameters of the profile are µ0/T = 3 and
ρ0 = 3.9× 107 M�/kpc3.

10 For previous analyses, see Refs. [44, 45, 67–70].
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In Fig. 6 we plot the circular velocity compared to
the Fermi velocity, which we define using vF (r) ≡√

2µ(r)/m, for the m = 135 eV fit. As can be expected,
the circular velocity scales as V ∝ r, whereas vF remains
constant at small radii. This leads to a suppression of
DF, as explained in Sec. III.

Vcirc(r)=
GM (r)

�

vF(r)

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30
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ie
s
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m
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FIG. 6. The circular velocity Vcirc and the Fermi velocity vF
for the DDM halo with m = 135 eV, ρ0 = 3.9×107M�/kpc3,
µ0/T = 3 and g = 2. The vertical lines show the estimated
orbital radii (r = r⊥ × 2/

√
3) of the three GCs closest to the

dynamical center of Fornax, c.f. Table I.

B. Structure formation constraints on DDM

The free streaming of light DM suppresses the matter
power spectrum [71], notably constrained via Ly-α forest
statistics [72–74], with details depending on the cosmo-
logical DM production mechanism. Refs. [44, 45] consid-
ered non-thermal mechanisms for cosmological produc-
tion of DDM, aiming to bypass the Ly-α bounds. With
such mechanisms in mind, values of m in the ballpark
of 100 eV were considered in these works. We now re-
visit the cosmological bound and formulate a conserva-
tive limit that is insensitive to the cosmological produc-
tion mechanism of DM. Our results suggest that mech-
anisms of the kind proposed in [44, 45] should not be
able to produce m < 1.4 keV without tension with the
nominal Ly-α bound.

The instantaneous DM free-streaming wavelength kFS

depends on the DM velocity dispersion11,

kFS(z) ≡
√

3

2

H(z)

cs(z)
'
√

3

2

H(z)

σ(z)
. (17)

Here z is the redshift, H(z) is the Hubble rate, we have

11 This formula is correct up to an order unity factor relating the
speed of sound cs and the velocity dispersion σ [75]. This factor
is unimportant for our analysis.

set σ(z) =
√
〈v2〉 and

〈
v2
〉

=

∫
d3p p2

m2+p2 f(p)∫
d3pf(p)

. (18)

Bounds on warm DM (WDM) [74] effectively constrain
kFS(z). Specifically, they apply to z . 106, where density
perturbations on comoving scales of the order of λ ≈
(1 + z)/H(z) ≈ 0.5 Mpc enter the horizon and begin to
evolve under their own gravitational potential.

We can convert the WDM limit of Ref. [74] into a
bound on DDM by the following prescription. At a
given energy density, the coldest possible distribution
function of DDM is the fully degenerate distribution
f(p) = θ(pF − p), where the Fermi momentum pF is
related to the energy density via

ρ =
g

(2π)3

∫
d3p
√
m2 + p2f (19)

=
g

16π2

[
pF

√
m2 + p2

F (m2 + 2p2
F )−m2 sinh−1

(pF
m

)]
≈

{
gmp3

F

6π2 pF � m
gp4
F

8π2 pF � m
.

The pF parameter redshifts as pF ∝ (1+z). The velocity
dispersion for this distribution is

〈
v2
〉

= 1− 3

(
m

pF

)2

+ 3

(
m

pF

)3

arctan
(pF
m

)
≈

{
3p2
F

5m2 pF � m

1 pF � m
. (20)

Using Eq. (20) we can calculate kFS(z), compare this
to the kFS(z) of WDM, and cast the bounds of Ref. [74]
into the most conservative, maximally-cold DDM model
by matching the kFS(z) curves of the two models. To re-
call, WDM was defined [74] by the distribution function

fWDM = (exp(p/T ) + 1)
−1

, where T ∝ (1 + z). Com-
paring the DM mass density for DDM and WDM in the
nonrelativistic regime, we have

ρ =

{
gmp3

F

6π2 DDM
3ζ(3)gmT 3

4π2 WDM
. (21)

Matching the density in the two models implies:

(T/m)WDM

(pF /m)DDM

=

[
2

9ζ(3)

(
gm4

)
DDM

(gm4)WDM

] 1
3

. (22)

On the other hand, still in the nonrelativistic regime we
can compare the velocity dispersion in the two models,

〈v2〉DDM

〈v2〉WDM
≈ 3ζ(3)

75ζ(5)

[
(pF /m)DDM

(T/m)WDM

]2

=
3ζ(3)

75ζ(5)

(
9ζ(3)

2

) 2
3

[(
gm4

)
WDM

(gm4)DDM

] 2
3

,(23)
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where in the second line we used Eq. (22). We illus-
trate the comparison in Fig. 7. For model parameters
of interest to this discussion, the ratio of velocity dis-
persions is redshift-independent at z . 106. We can
therefore conclude that the WDM constraint of Ref. [74],
mWDM > 2.96 keV at the 95%C.L. for g = 2, implies the
constraint:

gm4
DDM > 2× (1.4 keV)

4
. (24)

WDM 2.96 keV

WDM 1 keV

DDM 150 eV

DDM 500 eV

DDM 1450 eV

5.0 5.5 6.0 6.5 7.0 7.5 8.0
10-4

0.001

0.010

0.100

1

Redshift Log10[z]

V
e
lo
c
it
y
d
is
p
e
rs
io
n
<
v
2
>

FIG. 7. A comparison of the velocity dispersions (in natural
units) of WDM and DDM for various particle masses. Includ-
ing CMB data, Ref. [74] puts a bound of m > 2.96 keV on
WDM (95% C.L.), for which we plot the velocity dispersion
as the green solid line.

We expect that model-building around the bound of
Eq. (24) would be quite difficult. No production mecha-
nism should be able to create a colder distribution func-
tion for DDM. In particular, the skewed momentum dis-
tribution scenarios of Ref. [45] and the scalar decay mod-
els of Refs. [44, 76] should all satisfy this bound. Using
Eq. (15), we find that Eq. (24) constrains the DDM core
in Fornax to rc . 20 pc, irrelevant for the orbits of GCs.

The Ly-α analyses may be affected by systematic un-
certainties related, among other things, to the thermal
history of the inter-cluster medium and other baryonic
effects [74]. Keeping this caveat in mind, it seems sen-
sible to take Fig. (7) with a grain of salt. If we allow
kFS of the (coldest possible) DDM model to exceed the
nominal bound of Ref. [74] by, say, a factor of ∼ 4.5, we

could relax Eq. (7) to gm4 > 2× (500 eV)
4
. With such

a (rather ad-hoc) relaxed bound we could allow a DDM
core rc . 80 pc, still irrelevant for GC orbits in Fornax.
Going down to m = 150 eV (still at g = 2), which would
allow a DDM core radius of rc ≈ 385 pc encompassing
some GC orbits, would amount to kFS being smaller by
a factor of 20 than the nominal WDM bound.

C. Orbital decay time in DDM

As we have seen, Ly-α analyses exclude DDM from
producing a core extending to the observed orbital po-

sitions of GCs in Fornax. This means that DDM would
not change the standard CDM predictions for the DF set-
tling time of the GCs. Nevertheless, given that the Ly-α
bound is subject to some debate, it is interesting to see
what DDM could do to DF subject only to the LOSVD
constraints of Sec. IV A.

In order to estimate the instantaneous DF time scale τ ,
we use Eq. (10), with a modified Eq. (7). In order to in-
terpolate between a quasi-degenerate core and a classical
gas in the outskirts of the halo, we adopt

CDDM =
1

1
0.5 +

v3
F

V 3

ln Λ , (25)

such that in the regime V � vF , we retrieve CDM-like
behavior, c.f. Sec. III. For ln Λ, we adopt the choice for
ln ΛISO, c.f. Eq. (13).

We use the GC masses and projected radii collected
in Table I, combined with the density profile derived in
the LOSVD fits. We correct for the projection effect by
relating the assumed true orbital radius to the observed
projected radius of the GC via rtrue/r⊥ = 2/

√
3. We

also assume that the GCs are on circular orbits, setting
Vtrue/Vcirc(rtrue) = 1. (This de-projection procedure is,
of course, simplistic: we will shortly report a more com-
prehensive treatment.) The results are summarized in
Table I. For m = 135 eV we find näıve orbital decay time-
scales of 1.48 Gyr and 10.7 Gyr for GC3 and GC4, respec-
tively. For comparison, using the approach of Ref. [33]
for cuspy CDM we find 2.63 Gyr and 0.99 Gyr. There-
fore, while the näıve DF time of GC4 in DDM is much
longer than in cuspy CDM, for GC3 the näıve time in
cuspy CDM actually exceeds that of DDM.

However, as discussed in Sec. III, the instantaneous τ
can be misleading when comparing different halo mor-
phologies: a realistic estimate of the GC settling time
requires orbit integration. We turn to this analysis next,
finding that the real orbit settling times of both GC4 and
GC3 are in fact longer in DDM compared with cuspy
CDM.

To obtain a more comprehensive estimate of the DF
settling time and the impact of projection effects, we
use the orbit integration explained in App. E with ini-
tial conditions that we vary as follows. For each GC,
we scan the range rtrue ∈ [1, 2]r⊥ (the logic behind this
range is explained in App. G). For each rtrue we scan over
Vtrue ∈ [0.5, 1.5]Vcirc(rtrue). For each Vtrue we test pos-
itive and negative cos θ. Finally, we test the two cases,

∆vy =
√
v2

true −∆v2
r ,∆vz = 0 and ∆vy = 0,∆vz =√

v2
true −∆v2

r .
For each starting point in phase-space, we integrate

the equations of motion, stopping the integration when
(rapoenter + rpericenter)/2 . 0.3rinitial ≡ frrinitial, or af-
ter 10 Gyr (the earlier of the two). We then report the
integration time as τinspiral.

In Fig. 8 we plot the result of this procedure for GC3,
comparing the DDM halo for m = 135 eV (top panel) and
the cuspy CDM halo from Ref. [17] (bottom panel). For
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the representative phase-space point rtrue/r⊥ = 2/
√

3,
Vtrue/Vcirc(rtrue) = 1, highlighted in Fig. 8 by a red dot,
we find that the inspiral time in the DDM halo is in fact
longer (∼ 4 Gyr) than in the cuspy CDM one (∼ 1.5 Gyr).
This result is in reversed order to the naiv̈e estimate in
Table I, demonstrating that the naiv̈e DF time estimate
can indeed be misleading.

We note that the inspiral time in the NFW case is not
very sensitive to the stopping radius fraction fr (set as
0.3), whereas the DDM case is, and so are other cored
halo models. As explained in Sec. III, a cuspy profile
predicts approximately τ(r) ∝ r2, therefore the inspiral
time is mostly sensitive to the initial radius. In a cored
model, τ(r) is a weak function of r, potentially even non-
monotonuous. Therefore, the definition of the inspiral
time in the cored model becomes sensitive to the radius
at which the orbit integration is stopped.

V. SELF-INTERACTING DARK MATTER
(SIDM)

Self-interacting DM (SIDM) is a simple modification of
CDM, that could arise in many models [47, 77–84]. The
self interactions can be expressed in terms of the cross
section per unit mass, σ/m, which could be velocity-
dependent [82]. The scattering mean free path is

l =
m

ρσ
= 48

108 M�/kpc3

ρ

1 cm2/gr

σ/m
kpc, (26)

and the time between scatterings l/v is

tscat = 2.35
20 km/s

v

108 M�/kpc3

ρ

1 cm2/gr

σ/m
Gyr.(27)

When l is larger than the distance across the halo, we
expect that the microphysics of DF in the SIDM model
will be similar to that of CDM. On the other hand, the
morphology of an SIDM halo could be different to that in
CDM as long as tscat is smaller than the age of the system.
Given a large enough cross section, SIDM produces cored
halos which affect the orbital settling time of GCs as
discussed in Sec. III.

We follow Ref. [47] in modeling the SIDM halo profile.
Inside some radius r1, we assume a hydrostatic profile
with central density ρc and pressure P = σ2

0ρ. For a
self-gravitating spherical halo, the density profile obeys

1

r2
∂r(r

2∂r ln ρiso) = − 1

r2
ic

ρiso

ρc
, (28)

where ric ≡ σ0/
√

4πGρc (similar to the King radius [51]).
Beyond r1 we match the density to the NFW profile,
ρNFW = ρs(r/rs)

−1(1 + r/rs)
−2, fixing ρs and rs by im-

posing continuity of ρiso(r1) = ρNFW(r1) and of the en-
closed mass Miso(r1) = MNFW(r1). This procedure is
consistent with an initially NFW-like cusp profile that
was deformed into a cored isothermal profile due to the
SIDM scatterings. Altogether, the halo model has three
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FIG. 8. Contours of the inspiral time of GC3, defined in
App. G, for the DDM (top) and the cuspy CDM models
(bottom). The “näıve” estimates written on top are those
given in Table I based on an evaluation of the instantaneous
DF time at rtrue/r⊥ = 2/

√
3 and Vtrue/Vcirc(rtrue) = 1. The

different line types correspond to different discrete choices in
our scan of the initial conditions in phase-space, explained in
more detail in App. G.

free parameters, ρc, r1 and σ0, that we can constrain with
LOSVD data.

In Fig. 9 we plot a LOSVD fit, following the same χ2

procedure as in Sec. IV. The model is taken to illustrate
a large core solution that would include the orbit of GC3.

In Fig. 10 we show the inspiral time of GC3, using the
same procedure as in Fig. 8. We use Eq. (5) with σ0 from
the LOSVD fit and adopt ln Λ = ln ΛISO as in Eq. (13).
We find that the large core SIDM model significantly
increases the inspiral time of GC3 compared to the CDM
prediction.

Ref. [47] pointed out that in the SIDM core region, DM
particles have undergone about a single collision during
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SIDM, β 0.1, χ2/d.o.f=1.9
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FIG. 9. LOSVD data of Fornax dSph modeled by different
SIDM profiles. The central density is ρc = 2.6×107 M�/kpc3,
the velocity dispersion is σ0 = 17 km/sec and r1/ric = 6.

the age of the system, i.e.

〈σv〉
m

ρctage =
tage

tscat
≈ 1 . (29)

With this assumption,12 we can estimate the cross section
implied by the LOSVD fit

〈σv〉
m
≈ 18

10 Gyr

tage

2.6× 107M�/kpc3

ρc

cm2

g

km

s
. (30)

This result is compatible with the baseline model of
Ref. [47], which predicted 〈σv〉 /m ∼ 25 cm2g−1km s−1.
It would significantly increase the DF settling time of the
innermost Fornax GCs.
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FIG. 10. DF time for the SIDM halo, analogously to Fig. 8.

12 It has been pointed out [80, 85] that this assumption may be
simplistic.

VI. DISCUSSION

In Fig. 11 we summarize the key features of differ-
ent models of DM discussed in this work, including both
cuspy and core halo models. In the spirit of Ref. [2], we
also add the hybrid coreNFW model of [86] with density13

ρcoreNFW = f̃nρNFW +
nf̃n−1(1− f̃2)

4πr2rc
MNFW , (31)

where f̃ = tanh(r/rc) and MNFW =
∫ r

0
d3r′ρNFW. This

model aims to describe a CDM-dominated halo modified
by baryonic feedback.

The LOSVD data (top left panel of Fig. 11) is de-
scribed reasonably well in all models, with the fit of the
ISO model of Ref. [17] being slightly worse.

The instantaneous DF time for a GC with m∗ =
3×105 M� is shown in the bottom right panel of Fig. 11.
It illustrates the fact that the main impact of the mi-
crophysics of DM (as in DDM and SIDM) on DF comes
from their prediction of a cored halo morphology, and
not from the exotic microphysics per-se. The formation
of a core due to baryonic feedback in CDM [28, 63] could
therefore have similar consequences.

The density profiles (top right panel of Fig. 11) demon-
strate the cusp for NFW, large cores and the intermediate
coreNFW. We also plot an estimate of the stellar den-
sity. This may become important for large-core models,
whose density is only larger by a factor of 2 or so than
the stellar density at small r. In these cases, accounting
for the stellar-induced potential could slightly change our
results numerically, but not qualitatively: as far as the
DF microphysics is concerned, background stars would
contribute to the DF of a GC just like CDM particles,
and since the total mass density is constrained by the
LOSVD fit, the separation into DM and stellar compo-
nents is not essential for the DF computation.

It is interesting to compare the circular velocity profiles
of different models (bottom left panel of Fig. 11) to the
phase-space parameters of GCs.

In Sec. VI A we briefly consider each of the six GCs,
noting the implications w.r.t. the timing puzzle. Next,
in Sec. VI B we consider the GC system as a whole and
use the tools we have developed throughout this work to
re-evaluate the problem.

A. Comments regarding GC data used in this work
(GC-by-GC discussion)

Let us re-evaluate the role of each GC in the timing
puzzle, in light of the observational data used in this work

13 For the coreNFW model we adopt the best-fit of Ref. [10], with
ρ0 ≈ 107.1 M�, rs ≈ 2.1 kpc, n ≈ 0.8 and rc ≈ 0.52 kpc. We
derive the velocity dispersion of the halo by solving the Jeans
equation, Eq. (D1), assuming isotropy.
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Fornax: data (2018) and models, =const.
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FIG. 11. Comparison of models. Top left: LOSVD data and fits. The M19 NFW and M19 ISO models refer to the halos of
[17], for which we only fit the velocity anisotropy. The DDM and SIDM models are based on Sec. IV and Sec. V. The χ2/d.o.f
is ≈ 1.9 for NFW, DDM and SIDM, and ≈ 2.5 for ISO. The velocity anisotropy is taken to be constant in each fit. We find
βNFW = −0.4, βISO = 0.2, βDDM = −0.1, βSIDM = 0.1 and βcoreNFW = −0.1. Top right: Density profiles. In addition to DM,
we also plot an estimate of the stellar density, assuming a Plummer profile with scale rp = 851 pc [21] and mass 4 × 107 M�
[18]. Bottom left: Circular velocity. (Note how cored models require some tuning to explain the large radial velocity of GC4,
|∆vr| = 8.26± 0.64 km/s, at its small projected radius r⊥ ≈ 0.154 pc). Bottom right: Instantaneous DF time, evaluated for
m? = 3× 105 M�.

(see Tab. I) including projected radii that are different
than those of earlier analyses [2, 19, 33, 35] and LOS
velocities that were often ignored in past analyses, but
are in fact known fairly well from observations.

1. GC1 and GC5 – these GCs do not seem to pose a
timing problem as they are located at fairly large
projected radii, r⊥ ≈ 1.7 kpc, not far below the
(somewhat model-dependent) tidal radius of For-
nax at 1.8 ÷ 2.8 kpc [2, 30, 87]. That said, it is
interesting to note that while the circular velocity
at the GC radii is 20÷ 30 km/s, the measured GC
LOS velocities are smaller than Vcirc by a factor of
5 or so. This could hint that GC1 and GC5 are
close to the apocenter of fairly eccentric orbits. If
this is indeed the case, then the näıve instantaneous
DF time overestimates the true orbital settling time
because the GCs typically experience stronger DF
when they venture into smaller radii, as expected
if the orbit is eccentric.

2. GC2 – does not seem to present a timing problem.

3. GC3 – for a cuspy profile, our “näıve” instanta-
neous DF time of 2.6 Gyr comes in some disagree-

ment with the τ ≈ 0.6 Gyr quoted in Ref. [33]. The
main reasons for the difference are the new estimate
of r⊥ and the updated LOSVD data [10] compared
to the older data [1]. Of more relevance, however,
is the actual physical inspiral time obtained with
the orbit integration of App. G. We find that both
a simple cusp profile and the intermediate coreNFW
profile predict an inspiral time ≈ 1.5 Gyr, whereas
models with a large core predict 4 ÷ 5 Gyr.

4. GC4 – the cuspy CDM orbital decay time is short
≈ 1 Gyr, but not as short as previously estimated
[33]. Beyond the reasons listed for GC3, we find
that the approximation C ≈ 0.5 ln Λ, adopted in
Ref. [33], is not accurate for small radii, c.f. Sec. III.

A large core would stabilize the orbit of this GC
to the 10 Gyr time scale, and even the interme-
diate coreNFW profile predicts an inspiral time of
≈ 5 Gyr.

GC4 is younger and more metal-rich compared to
the other GCs [18, 19], and it has been debated in
the literature whether it is in fact the nuclear star
cluster of Fornax [18, 88–90]. The LOS velocity of
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this GC, & 8 km/s, appears to potentially be at
odds with this interpretation [91].

The large LOS velocity is also somewhat difficult
to accommodate within a large core halo model. In
all of our cored halo models (see bottom left panel
of Fig. 11 and note that r⊥ ≈ 150 pc for this GC),
GC4 needs to be on a circular orbit with rtrue/r⊥ &
2 or close to the pericenter of an eccentric orbit with
rtrue/r⊥ & 1.6. These possibilities are somewhat
tuned, either w.r.t. the projection angle or w.r.t.
the orbital phase. In comparison, an NFW profile
can comfortably accommodate the radial velocity
of GC4. For the coreNFW model, it is marginally
possible to have GC4 on a circular orbit without
tuning in radius.

5. GC6 – the newly rediscovered GC [15] probably
has a smaller mass (≈ 0.29×105 M� [50]) than the
other five GCs. It does not seem to reinforce the
timing puzzle.

Ref. [15] noted that GC6 has an elongated shape
and may be undergoing tidal disruption. This may
comprise some evidence in favor of a cuspy halo.

To summarize, the usual suspects for a GC timing puz-
zle, GC3 and GC4, are found here to have somewhat
longer settling times than previously thought [33], but
nevertheless much shorter than their age.

B. Statistical discussion

Let us finally use the tools we developed to re-evaluate
the timing puzzle. Consider the cuspy NFW and the
cored ISO profiles in Fig. 11. Using the results developed
in App. F, we can map a distribution of GC initial radii
into the cumulative distribution function (CDF) of GC
projected radii today.

An example of such a calculation is shown in Fig. 12,
with the NFW result in the left panel and the ISO in
the right. For concreteness, in making Fig. 12 we used
an initial distribution of GC radii of the form f0(r0) ∝
r2
0 exp (−a0r0), with r0 given in kpc and the parameter a0

in kpc−1. We give this initial distribution ∆t = 10 Gyr
to evolve. For the NFW example we set a−1

0 = 0.3 kpc,
while for the cored ISO case we set a−1

0 = 0.6 kpc. We
stress that this form for f0 is used here mainly for illus-
tration. Physically, the scaling f0 ∝ r2

0 at small r0 � a−1
0

could arise naturally if the initial 3D distribution of GCs
is constant in radius, consistent with the current stellar
distribution in Fornax. The peak of the distribution is at
r0 = 2a−1

0 , comparable to the current half-light radius.
For the NFW halo, the derivation in App. F shows

that before projection effects are taken into account the
time-evolved CDF of GC radii at r � rcr ≈ 1 kpc takes
the form

F∆t(r) ≈ A
τ(r)

∆t
, (32)

independent of initial conditions, where A is an O(1)
coefficient.14 This small-r approximation is shown by
the dashed red line in the left panel of Fig. 12. The
dashed green line shows the full unprojected GC CDF,
consistent with Eq. (32) for r < 500 pc.

Projection has a significant effect, meaning that typ-
ically, a considerable number of GCs observed at pro-
jected radius smaller or equal to r⊥ are in fact located at
r > r⊥. The solid blue line shows the projected radius
CDF: for r⊥ . 0.5 kpc, projection roughly doubles the
GC count inside a given r⊥.

The GC timing puzzle is reflected in the left panel of
Fig. 12, by the presence of two GCs (GC4 and GC6)
inside of r⊥ < 250 pc or so, where the CDF shown by the
solid blue line predicts that no more than one GC should
be expected. While Fig. 12 shows the CDF resulting
from just one example of initial conditions, we could not
find initial conditions that would fit the innermost GC4
and GC6, while not at the same time overshooting GC3
and GC2 further out; nor could we find initial conditions
which fit GC3, while not at the same time undershooting
GC4 and GC6. The reason for this (mild) inconsistency
is the growth in r of F∆t in Eq. (32), which is model-
independently (that is, irrespective of initial conditions)
predicted to possess a strong slope F∆t(r) ∝ τ(r)/∆t ∝
r1.85. We stress, however, that the inconsistency is indeed
quite mild: the Poisson probability to see two or more
GCs where only one GC is expected is about 25%. This
does not seem like severe fine-tuning.

As the right panel of Fig. 12 shows, the cored ISO pro-
file can easily provide a time-evolved projected CDF in
excellent agreement with the data. While here we per-
formed the calculation for the cored ISO profile, our anal-
ysis in this paper makes clear that essentially any model
of DM microphysics would lead to similar conclusions as
long as it produces a sizable core in Fornax.

Fig. 12 suggests that even for a cuspy halo (left panel),
the GC timing puzzle does not invoke extreme fine-tuning
in the sense that it is not difficult to find apparently rea-
sonable initial conditions that evolve to the observed con-
figuration of GCs. Another point to consider is related
to GCs that inspiral down and are tidally disrupted, pre-
sumably forming a stellar nucleus [14]. In the NFW case
in Fig. 12, about 50% of GCs present initially in the halo
arrived at the dynamical center within ∆t. This may be
expected to produce a nucleus for Fornax with a stel-
lar mass in the ballpark of 106 M�, which – as far as we
are aware – is not observed. However, Ref. [14] suggested
that because of the small number of GCs involved, three-
body interactions between accreted GCs could preclude
the formation of the nucleus.

More insight could come from numerical simulations,
even though both DF and GC formation involve sub-

14 For an NFW halo, A ≈ 0.4Ncr where Ncr specifies (approx-
imately) the initial number of GCs located inside the critical
radius rcr ≈ 1 kpc.
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FIG. 12. Example of a calculated CDF of projected radii using τ(r) from Fig. 11. Left: NFW halo. Right: Cored ISO halo.
The solid blue line shows the CDF after projection effects are taken into account. The dashed green line shows the result before
projection. For the NFW case, the small-r prediction of Eq. (32) is shown by the red dashed line. Observed Fornax GCs are
also shown. The initial radial GC PDFs used to make the plot are explained in the text.

grid physics in most existing simulations. Recently,
Ref. [50] explored the survival of GCs in cuspy Fornax-
like halos using hydrodynamical cosmological simulations
[92, 93], to which sub-grid formation of GCs was added
and their orbital evolution under DF was tracked in post-
processing. Ref. [50] calculated the projected radius CDF
of GCs at z = 0, finding that their simulated CDF is con-
sistent with the observed positions of the Fornax GCs.
According to Ref. [50], only around 33% of GCs are
tidally disrupted in the simulations; a somewhat smaller
number than the 50% in our example in Fig. 12. Fornax
is found to be special, in that only about 3% of Fornax-
like galaxies in the simulation ended up with five or more
surviving GCs today.15

VII. SUMMARY

We revisited the calculation of globular cluster or-
bits under dynamical friction, considering different mi-
croscopic models of dark matter and different halo mor-
phologies that they predict. We focused on the Fornax
dwarf spheroidal galaxy, which hosts six GCs and which
has been noted in previous literature to pose a GC tim-
ing problem, that is, the future orbits of some of its GCs
are much shorter than their current age.

We presented semi-analytical computations of DF and
of GC orbits under DF. For a cuspy DM halo, we showed
that the current cumulative distribution function of GC
radii takes an approximately power-law form that can be

15 Note that Ref. [50] considered GC6 as a candidate for a tidally
disrupted GC, assuming that its projected distance from the cen-
ter of Fornax is just 30 pc. In comparison, using the Fornax
center of Ref. [21], we find a projected distance of 254 pc for
GC6.

deduced from stellar kinematics and age measurements.
Including projection effects, we demonstrated that the
GC timing problem does not appear very severe: the ex-
istence of the innermost GCs could be accounted for at
the cost of moderate fluctuation with a Poisson probabil-
ity of about 25%. A comparable hint of a core in Fornax
may also be inferred by mass modeling of kinematic data
[10, 94].

A cuspy halo, in conjunction with GC orbits, does
place interesting constraints on the initial distribution
of GCs in dSphs, as it suggests that an O(1) of initially
present GCs should have arrived and either disrupted or
merged at the dynamical center of the galaxy. If GCs
merge to form a dense nuclear cluster, as found by some
simulations [23, 24], where is the nuclear cluster of For-
nax?

Testing these results further would likely require high-
resolution numerical simulations including baryonic ef-
fects, where GC formation can be modeled from first
principles. The recent numerical simulations of Ref. [50]
made an interesting step in this direction. According to
Ref. [50] a reasonable distribution of initial conditions for
the GCs may naturally lead to the observed present con-
figuration. However, both GC formation and DF were
treated in Ref. [50] at the sub-grid and post-processing
level, and it is not clear (to us) if the resolution of the
simulation was high enough to resolve the inner region of
Fornax containing the innermost GCs. Moreover, theo-
retical insight about the role that initial conditions play
in shaping the present distribution of GCs is important.
We thus believe that our analytical approach remains
useful.

The fact remains that the combination of GC age and
orbit measurements could probe the Fornax DM halo and
microphysics. At the level of the microphysics, in Sec. II
we calculated DF for three models of DM: fermionic de-
generate DM (DDM), where Pauli blocking affects the
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DF derivation; bosonic ultralight DM (ULDM), where an
astronomical de-Broglie scale comes into play; and self-
interacting DM (SIDM), where – in the limit we were
mostly interested in – the microphysics of DF should
mostly follow that of CDM, but the halo morphology
is different.

For ULDM, DF and specifically the Fornax GC prob-
lem were studied in a number of works. Constraints from
galaxy dynamics and cosmological Ly-α analyses exclude
a soliton core reaching out to the orbits of Fornax GCs,
and lead to a similar behavior as in CDM.

For DDM, we gave a new derivation of DF. We then
formulated a robust (in terms of DM model building)
version of the Ly-α bound, showing that it excludes an
appreciable core, leading again to CDM-like behaviour
at the scale of GC orbits. At the same time, stellar kine-
matics in Fornax could still allow a considerable DDM
core. If the Ly-α bound is discounted, for some reason,
then DDM could lead to significant suppression of DF
and prolongation of the settling time of GC3 and GC4.

For SIDM, stellar kinematics allows a considerable
core. If the SIDM cross section is as large as that consid-
ered in Ref. [47], then the DF settling time for GC3 and
GC4 can be significantly longer than in the cuspy halo
CDM model.

We also considered the possibility that baryonic feed-
back deforms a CDM cusp into a core. In that case, the
deformation of the halo is expected primarily within the
half-light radius [10, 17, 48, 49]. This makes the core
spatially smaller than the typical cores that were previ-
ously suggested as an explanation of the GC timing puz-
zle [17, 28]. For our analysis, we adopted the density pro-
file fit in Ref. [10]. This intermediate-size baryonic-driven
core can also prolong GC orbital decay times within the
inner few hundred parsecs compared to the cusp case.

Altogether, we considered DM microphysics (and in-
directly, also baryonic feedback) as a possible source for
the formation of a core in Fornax, and computed the
detailed effects on dynamical friction. In general, both
the detailed microphysics and the mere presence of a core
(regardless of how it formed) affect the settling of GC or-
bits. Our analysis suggests that the most relevant factor
is the presence of the core itself, rather than the specific
microphysics scenario. Further analysis, including other
galaxies, and in particular the search for nuclear star clus-
ters in Fornax-like systems, may be able to differentiate
between these possibilities.
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Appendix A: Dynamical friction in exotic media:
derivation from the Boltzmann equation

In this appendix we provide an economical derivation
of gravitational DF acting on a nonrelativistic probe ob-
ject moving in a medium, with different medium micro-
physics including a classical gas as well as quantum Fermi
and Bose gases. We neglect interactions apart from mini-
mal gravity. We start with a quick recap of the derivation
of the Fokker-Planck equation, governing the phase-space
distribution functions of the probe and medium particles.

We consider the following elastic scattering process of
two particle species,

1(p) + 2(k)→ 1(p′) + 2(k′).

The phase-space distribution function for the particle
species 1 evolves according to the Boltzmann equation,

df1

dt
= C[f1]. (A1)

The collision integral C[f1] contains information about
the elastic scattering process, and is written as

C[f1] =
(2π)4

2Ep

∫
dΠkdΠp′dΠk′ δ

(4)(p+ k − p′ − k′)|M|2

×
[
f1(p′)f2(k′)(1± f1(p))(1± f2(k))

−f1(p)f2(k)(1± f1(p′))(1± f2(k′))
]
, (A2)

where |M|2 is a squared matrix element averaged over

initial and final spins, and dΠk = g
2Ek

d3k
(2π)3 is the Lorentz-

invariant phase element with the number of internal de-
grees of freedom g. The sign in 1±fi refers to bosons (+)
or fermions (−), respectively. It is convenient to write the
above Boltzmann equation in the following form,

df1

dt
=

∫
d3p′

(2π)3

[
S(p′,p)f1(p′)(1± f1(p))

− S(p,p′)f1(p)(1± f1(p′))
]
, (A3)

where the function S encodes the response of the
medium, and is defined as

S(p,p′) ≡ (2π)4

2Ep2Ep′

∫
dΠkdΠk′δ

(4)(p+ k − p′ − k′)×

|M|2f2(k)(1± f2(k′)). (A4)

The function S(p,p′) can be interpreted as a differential
rate at which a particle of momentum p is converted into
a particle with momentum p′.
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The Boltzmann equation can be greatly simplified if
the momentum exchange

q = p′ − p (A5)

is smaller than the typical momentum given by the distri-
bution function f1. In such cases, the Boltzmann equa-
tion is reduced to the nonlinear Fokker-Planck equation,

df1

dt
= − ∂

∂pi
[f1(1± f1)Di] (A6)

+
1

2

∂

∂pi

[
∂

∂pj
(Dijf1)± f2

1

∂

∂pj
Dij

]
,

where the diffusion coefficients are defined as

Di(p) =

∫
d3q

(2π)3
qiS(p,p + q), (A7)

Dij(p) =

∫
d3q

(2π)3
qiqjS(p,p + q). (A8)

The gravitational scattering of a probe particle of mass
M and a particle in the medium with mass m is described
by the spin-averaged matrix element

|M|2 =
1

2s+ 1

(16πG)2m4M4

[(q0)2 − q2]
2 , (A9)

entering Eq. (A4). In the nonrelativistic limit, we can
neglect q0 and maintain only q in Eq. (A9).

The problem of calculating the diffusion coefficients for
different types of media amounts to evaluating Eqs. (A7)
and (A8), where in the response function Eq. (A4) we can
select the appropriate sign in 1±f2 corresponding to the
medium particle’s spin-statistics (or setting 1± f2 → 1 if
we wish to compute the classical gas limit).

For the calculation of DF we are particularly interested
in D||, the first diffusion coefficient corresponding to mo-
tion parallel to the probe object’s instantaneous velocity.
D|| is simply given by Eq. (A7) when we select qi to align
with the direction of p.

1. A classical gas medium

We first re-derive the relaxation of massive classical
objects, such as supermassive black holes or GCs, in a
background medium consisting of other classical objects
such as stars or CDM particles. In the nonrelativistic
limit, the function S(p,p′) is simplified as

S(p,p′) ' gχ
(4πGmM)2

q4

∫
d3k

(2π)3

d3k′

(2π)3

×(2π)4δ(4)(p+ k − p′ − k′)f2(k) (A10)

where gχ is the number of internal degrees of freedom of
dark matter. Here, M and m are the masses of the parti-
cle species 1 and 2, respectively. In the small momentum

exchange limit, the δ-function for the energy conservation
can be expanded as

δ(Ep + Ek − Ep′ − Ek′)

' 1

q

(
1 +

M

2µr
q · ∂

∂p

)
δ
[
q̂ ·
(
k

m
− p

M

)]
, (A11)

where µr = mM/(m + M) is the reduced mass. Us-
ing these approximate expressions in nonrelativistic and
small momentum exchange limit, we obtain the diffusion
coefficients as

Di(p) =

∫
d3q

(2π)3
qiS(p,p + q) (A12)

= 4πG2m2M2

(
1 +

M

m

)
ln Λ

∂

∂pi
h(p; f2)

and

Dij(p) =

∫
d3q

(2π)3
qiqjS(p,p + q)

= 4πG2m2M4 ln Λ
∂2

∂pi∂pj
g(p; f2) (A13)

where ln Λ =
∫ qmax

qmin
dq/q is the Coulomb logarithm, and

we have used the identities (26)–(27) of Ref. [38] to per-
form the angular integration at the second step in each
equation. The Rosenbluth potentials h(p) and g(p) are
defined as [95]

h(p; f) = gχ

∫
d3k

(2π)3

f(k)∣∣ k
m −

p
M

∣∣ , (A14)

g(p; f) = gχ

∫
d3k

(2π)3

∣∣∣ k
m
− p

M

∣∣∣f(k) (A15)

This reproduces the well-known diffusion coefficients
in a classical system, see Eq. (7.83) in Binney &
Tremaine [96]. For the Maxwell-Boltzmann distribution

f2(k) = (2π)3/2n2/[gχ(mσ)3]e−v
2
k/2σ

2

, it is straightfor-
ward to find

∂h

∂pi
= −v

i

v

n2

Mσ2

1

2X2

[
erf(X)− 2X√

π
e−X

2

]
≡ −v

i

v

n2

Mσ2
G(X), (A16)

∂g

∂pi∂pj
=

√
2σ2

M2

[3

2

XiXj

X3

(
G(X)− 1

3
erf(X)

)
+
δij

2

erf(X)−G(X)

X

]
, (A17)

where v = p/M , v = |v| and

X =
v√
2σ
. (A18)

2. Degenerate fermionic dark matter

We now consider the diffusion of astrophysical objects
such as GCs in a halo of fermionic dark matter. In this
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case, the response function S becomes

S(p,p′) ' gχ
(4πGmM)2

q4

∫
d3k

(2π)3

d3k′

(2π)3
×

(2π)4δ(4)(p+ k − p′ − k′)f2(k)(1− f2(k′))

(A19)

Expanding f2(k′) around k, we find an additional contri-
bution to the function S due to quantum statistics as

∆S(p,p′) ' −2πgχ
(4πGmM)2

q5
× (A20)∫

d3k

(2π)3

(
1 +

q

2
· ∂
∂p

)
δ
[
q̂ ·
(
k

m
− p

M

)]
f2

2 (k),

which is the same as Eq. (A10) upon substituting M/µ→
1 and f2 → f2

2 . We find

Di(p) =
4πG2m2M3 ln Λ

µr

∂

∂pi

[
h(p; f2)− µr

M
h(p; f2

2 )
]

(A21)

Dij(p) = 4πG2m2M4 ln Λ
∂2

∂pi∂pj

[
g(p; f2)− g(p; f2

2 )
]

(A22)

For the degenerate case, one can perform the k and k′

integrations without expanding f2(k′). This computation
was already done in the context of neutrino transport in
a hot and dense medium [97] and dark matter thermal-
ization in neutron stars [98]. We find:

S(p,p′) = gχ
(4πGmM)2

q4

m2T

2πq

z

1− e−z

(
1 +

ξ−
z

)
(A23)

where z = −q0/T , E2
− = m2 + k2

−, k2
− = (m2/q2)(q0 +

q2/2m)2, and

ξ− = ln

[
1 + e(E−−µ)/T

1 + e(E−−µ)/T ez

]
. (A24)

Integrating this response function with respect to q,
one obtains the diffusion coefficients for a degenerate
medium.

3. Ultralight dark matter

It was discussed in [99] that the dynamical relaxation
of stars in a ULDM halo proceeds as stars scatter off
ULDM quasi-particles whose size is of the order of the
de Broglie wavelength, λdB ∼ 2π/mv. This observation
was confirmed by Bar-Or et al. [38], where the dynamical
relaxation time scale as well as diffusion coefficients were
computed in a more rigorous way by using Fokker-Planck
equation and stochastic gravitational potential.

The Boltzmann equation approach can also reproduce
the dynamical relaxation time scale and diffusion coef-
ficients. The gravitational scattering between ultralight

dark matter and a star can be described by the same
matrix element, Eq. (A9), where M and m are the mass
of the star and ultralight dark matter, respectively. We
treat the star as a pointlike particle, and this can be jus-
tified since the maximum momentum exchange q ∼ mv is
much smaller than 1/r with a typical star radius r. The
function S(p,p′) is

S(p,p′) ' gχ
(4πGmM)2

q4

∫
d3k

(2π)3

d3k′

(2π)3
×

(2π)4δ(4)(p+ k − p′ − k′)f2(k)(1 + f2(k′)).

(A25)

The quantum correction is the same as Eq. (A21) with
an opposite sign. Therefore, the diffusion coefficients are

Di(p) =
4πG2m2M3 ln Λ

µr

∂

∂pi

[
h(p; f2) +

µr
M
h(p; f2

2 )
]

(A26)

Dij(p) = 4πG2m2M4 ln Λ
∂2

∂pi∂pj

[
g(p; f2) + g(p; f2

2 )
]

(A27)

This reproduces the results of Ref. [38].

Appendix B: Maximum entropy DDM halos

In the derivation of the quasi-degenerate density pro-
file, we adopt the assumption that a galactic structure
may be described as a statistical ensemble close to equi-
librium, in the sense of a maximal Boltzmann-Gibbs en-
tropy. A similar approach to ours can be found in a
number of earlier works [44, 64, 65, 100–103].

The phase-space distribution function f(r,p) and dif-
ferential particle number density dN are related via

(2π)3 dN

d3xd3p
= gf(r,p) . (B1)

The entropy of the gas is then given by the functional

S = −g
∫
d3pd3r

(2π)3
[f ln f + (1− f) ln(1− f)] . (B2)

Supplemented with Lagrange multipliers for the total en-
ergy and the total number of particles, the variation prob-
lem can be carried out along the lines of Ref. [64]. The
maximum entropy result is

f(r,p) =
1

1 + exp[z(r,p)]
, (B3)

where

z(r,p) =
βp2

2m
+ βmΦ(r) + α , (B4)

with β and α being the energy and particle number La-
grange multipliers. The gravitational potential is given
by

Φ(r) = −Gmg
∫
d3p′d3r′

(2π)3

f(r′,p′)

|r− r′|
. (B5)
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By construction, the gravitational potential solves the
Poisson equation, ∇2Φ = 4πGρ, where the density is

ρ(r) = mg

∫
d3p

(2π)3
f(r,p) . (B6)

We can make progress by evaluating the density,

ρ(r) = −mg
(
m

2πβ

)3/2

PolyLog

[
3

2
,−eϕ

]
, (B7)

where ϕ ≡ −βmΦ(r)− α ≡ βµ = µ/T , defining also the
“chemical potential” µ(r) = −mΦ(r)− α̃, with α̃ ≡ α/β.

Using the Poisson equation and the definition of ϕ, we
have

∇2Φ = − 1

βm
∇2ϕ = 4πGρ . (B8)

In the degenerate limit, µ/T = ϕ � 1, the PolyLog
function asymptotes to

−PolyLog

[
3

2
,−eϕ

]
→ 4ϕ3/2

3
√
π

=
4(µ/T )3/2

3
√
π

. (B9)

It is therefore useful to rewrite Eq. (B8) as

∇2µ(r) (B10)

=
4
√

2

3π
gGm7/2µ

1/2
0

PolyLog
[

3
2 ,−e

βµ0f
]

4
3
√
π

(βµ0)3/2
,

where we defined µ(0) ≡ µ0 and µ(r) = µ0h(r). Let us
also define a dimensionless radius x via r = r0x, with r0

given by

r0 =

√
3π

4
√

2gGm7/2µ
1/2
0

. (B11)

Then, one finds the equation

∂x(x2∂xh) = x2 PolyLog
[

3
2 ,−e

(µ0/T )h
]

4
3
√
π

(µ0/T )3/2
. (B12)

Given the solution for h, the density is simply

ρ =

√
2

3π2
gm

5
2µ

3
2
0

−PolyLog
[

3
2 ,−e

µ0
T h
]

4
3
√
π

(µ0/T )3/2
. (B13)

In the limit µ0/T � 1, the right-hand side of
Eq. (B12) becomes −x2h3/2, which is a Lane-Emden
equation with a scale r0. The central density be-

comes ρ(0) ≡ ρ0 ≈ (
√

2/3π2)gm5/2µ
3/2
0 , i.e. µ0 =

(3π2/
√

2)2/3(ρ0/g)2/3/m5/3, which implies16

r0 ≈
1

2

(
9π

2G3 ρ0 g2m8

) 1
6

. (B14)

16 Our natural unit notation, which includes ~→ 1, may mask the
fact that the characteristic radius Eq. (B14) is determined by
quantum degeneracy pressure. This is easy to unmask by restor-
ing (2π)3 → (2π~)3 on the left-hand side of Eq. (B1). Tracking
~ through the computation gives a factor of ~ on the right-hand
side of Eq. (B14).

The solution for ρ is constant near the origin and falls as
ρ ∝ 1/r2 at r � r0, with a “wriggle” feature near r ∼ r0.
An example with µ0/T = 10 is shown in Fig. 13.
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FIG. 13. The density profile found by solving Eq. (B12) and
inserting into Eq. (B13) (blue line), compared with an ana-
lytical ansatz (orange) that demonstrates the asymptotic be-
havior of the solution. Evidently, for x . 1 the density profile
is constant, whereas the density asymptotes to 1/x2 for large
x.

It is interesting to compare this class of solutions to
the solutions obtained from the prescription of Ref. [45].
Rescaling the equations of Ref. [45] by r0 from Eq. (B14),
we plot the solution we find (at constant ρ0) in Fig. 14
(named RSU), along with different solutions correspond-
ing to different µ0/T . Evidently, the profile used in
Ref. [45] bears a strong resemblance to the µ0/T ∼ 1
case. Also, Fig. 14 shows that in the limit µ0/T → ∞,
the solution is a core with finite radius. We show it both
by solving the density profile for µ0/T � 1 and by solv-
ing the Lame-Emden (LE) approximation that appears
above.

In Fig. 15 we plot the circular velocities induced by the
density profiles in Fig. 14.

Appendix C: Jeans modeling

Following Ref. [51], the equation for the second velocity
moments of a static spherical system of particles under
the influence of a gravitational potential with enclosed
mass M(r) is

1

ν

d

dr
(νv̄2

r) + 2
βv̄2

r

r
= −GM

r2
, (C1)

where ν(r) is the particles’ density, v̄2
r(r) is the radial

second velocity moment, v̄2
θ is the angular second velocity

moment and β ≡ 1− v̄2
θ/v̄

2
r is the velocity anisotropy. For

constant β, Eq. (C1) is solved by

νv̄2
r(r) =

G

r2β

∞∫
r

r′2β−2ν(r′)M(r′)dr′ . (C2)
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FIG. 14. The density profile found by solving Eq. (B12) and
inserting into Eq. (B13) for different values of µ0/T , keeping
ρ0 constant. The dashed blue line (RSU) is based on the
treatment of Ref. [45]. The dotted red line (LE) is based on
solving the Lane-Emden equation, which is the µ0/T → ∞
limit of the equations, as described in the text.
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FIG. 15. The circular velocities
√
GM(r)/r for the density

profiles that appear in Fig. 14.

This can be related to the line-of-sight (LOS) velocity,

σ2
LOS(r) =

2

I(r)

∞∫
r

(
1− β r

2

r′2

)
νv̄2
r(r′)r′√
r′2 − r2

dr′ . (C3)

In modeling stellar kinematics in Fornax, we assume a
Plummer profile with density and surface density given
by, respectively,

ν(r) =
1

(1 + r2/r2
p)

5/2

3L

4πr3
p

(C4)

I(r) =
1

(1 + r2/r2
p)

2

L

πr2
p

. (C5)

We use the radius parameter rp = 710 pc [10], consis-
tent with the stellar sample on which the kinematics data
is based. (This radius parameter is about 20% smaller
than the rp ≈ 851 pc reported in a new morphological
study [21]. The difference is not crucial for our analy-
sis. Moreover, we prefer to consider the photometry and
spectroscopy of the same data set.)

Appendix D: CDM velocity dispersion in a cored
profile

In this appendix we discuss some features of cored
CDM halos, notably DF, partially following Ref. [46].

The velocity dispersion of dark matter is important to
the discussion, therefore let us write the Jeans equation
for the second radial velocity moment with a constant
velocity anisotropy β, which has the solution [51]

v̄2
r(r) =

G

r2βρ(r)

∞∫
r

r′2β
ρ(r′)M(r′)

r′2
dr′ , (D1)

which is the same as Eq. (C2) but in slightly different
notation.

Consider a finite-core toy model, where the density is
ρ(0) for r < rc and 0 for r > rc. Then, the solution of
Eq. (D1) is [46]

v̄2
r(r) =

2πGρ(0)

3(β + 1)

1

r2β

(
r2β+2
c − r2β+2

)
. (D2)

For isotropic velocity dispersion β = 0, this reduces to

v̄2
r(r;β = 0) =

2πGρ(0)

3

(
r2
c − r2

)
. (D3)

Thus, for r � rc,

σr ≡
√
v̄2
r(r � rc;β = 0) ≈

√
2πGρ(0)

3
rc (D4)

≈ 30

(
ρ(0)

108 M�
kpc3

) 1
2

rc

1 kpc

km

s
.

We can also note the ratio,

X ≡ Vcirc√
2σr
≈
√
GM(r)

2r

/√2πGρ(0)r2
c

3
=

r

rc
, (D5)

indicating that the low-velocity approximation of the
Chandrasekhar deceleration may apply inside a core, see
Eq. (5). This implies a “phase-space suppression” to DF,
as discussed in the main text (Sec. III).

Appendix E: Orbits under dynamical friction

In this appendix we review the solution of an orbit
under the influence of DF. We write the equations of
motion (EoM) in circular coordinates,

r̈ = (r̈ − rϕ̇2)r̂ + (2ṙϕ̇+ rϕ̈)ϕ̂ (E1)

= −GM(r)

r2
r̂ −

∣∣∣dṙ
dt

∣∣∣
DF

ṙ

|ṙ|
. (E2)

We express the deceleration |dṙ/dt|DF as |ṙ|/τ , where τ
appears in Eq. (10).
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Defining r = R0x, t = T0t̄, T
2
0 = R3

0/GM(R0), we find

x′′ − xϕ′2 = − 1

x2

M(R0x)

M(R0)
− x′

τ/T0
(E3)

2x′ϕ′ + xϕ′′ = − xϕ′

τ/T0
(E4)

where ′ is differentiation with respect to t̄. Note, τ can
depend on r and |ṙ|. For a circular orbit, for example,
the initial conditions can be set as x(0) = 1, x′(0) = 0,
ϕ(0) = 0 and ϕ′(0) = 1/x(0) = 1, which has a revolution

time of ∆t̃ = 2π.
Solving the orbit of a decelerating test object generally

requires numerical integration. We can understand some
features of the solution analytically, however. Defining
vϕ ≡ rϕ̇, the ϕ̂ part of the EoM has the solution

rvϕ = (rvϕ)0 exp

− t∫
0

dt′

τ

 . (E5)

This solution expresses the decay of angular momentum
of the test object. Using the circular velocity v2

circ =
GM(r)/r, we can express the r̂ part of the EoM as

v2
ϕ − v2

circ = r

(
r̈ +

ṙ

τ

)
. (E6)

We can gain more analytical intuition by considering
nearly circular orbits, assuming that the inspiral rate is
much smaller than the circular velocity, r/τ � vcirc. As-
suming that ṙ ∼ r/τ , r̈ ∼ r/τ2 and r/τ � vcirc, Eq. (E6)
implies vϕ ≈ vcirc. We can use this to write

−rvϕ
τ

= ṙvϕ + rv̇ϕ ≈ ṙvcirc + rv̇circ (E7)

=
1

2
vcircṙ

(
1 +

d lnM

d ln r

)
. (E8)

Rearranging, we find

ṙ

r
≈ − 2(

1 + d lnM
d ln r

)
τ
. (E9)

Using this, we can estimate the time it takes a test object
to fall from r0 down to r < r0:

t(r; r0) =

r0∫
r

dr

2r

(
1 +

d lnM

d ln r

)
τ(r, vcirc(r)) . (E10)

Given the mass profile of the halo, M(r), and a DF model
encapsulated by τ , Eq. (E10) is a simple and quick esti-
mate of the inspiral time of a test object.

For eccentric orbits, the approximation above is
less justified. Defining eccentricity as e ≡ (rapo −
rperi)/(rapo + rperi) with apocenter radius rapo and peri-
center radius rperi, we numerically tested Eq. (E10) for
e > 0. In these calculations we defined r0 and r via
(rapo + rperi)/2, where rapo and rperi are obtained per
cycle of the orbital phase. With these definitions, in
numerical experiments representative of Fornax GCs we
find that Eq. (E10) holds to better than 30% accuracy
for e . 0.5.

Appendix F: The radial and projected CDF of GCs

Consider a population of identical GCs (all with the
same mass), that start off their life at some initial time
t = 0 on approximately circular orbits with a radial prob-
ability distribution function (PDF) f0(r0) w.r.t. an ini-
tial radial coordinate r0. The CDF of initial GC positions
is F0(r0) =

∫ r0
0
dyf0(y). We are interested in comput-

ing the PDF and CDF of GC radial positions today, at
t = ∆t; call these f∆t(r) and F∆t(r).

DF causes GC orbits to inspiral inwards, and by in-
tegrating along the orbit we can compute the function
r = r(r0; ∆t) and invert it to obtain r0 = r0(r; ∆t).17

Neglecting tidal disruption, we have

F∆t(r) = F0(r0(r; ∆t)) . (F1)

Now we can use explicit results for r0(r; ∆t) to connect
F∆t(r) with F0(r0) in different halo models. To this end
we can use Eq. (E10),

∆t =

r0∫
r

dr′

2r′
(1 + α(r′)) τ(r′) , (F2)

where α(r) ≡ d lnM/d ln r. Let us consider the general
features of F∆t for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo
(i.e. the inner region of an NFW halo, where α ≈ 2)
exhibits an approximately power-law form for the DF
time τ . For an approximately constant α and power law
τ = τ̄(r/r̄)β , it is useful to define the critical radius rcr

via

τ(rcr) =
2β

1 + α
∆t. (F3)

The physical meaning of rcr is that GCs that start their
life at r0 ≤ rcr arrive at the origin within t ≤ ∆t. Using
our power-law form for τ , we have

rcr = r̄

(
2β

1 + α

∆t

τ̄

)1/β

. (F4)

In terms of rcr, the solution of Eq. (F2) evaluates to

r0(r; ∆t) = rcr

(
1 +

(
r

rcr

)β)1/β

. (F5)

17 The monotonous decrease of r with time, that allowed this in-
version, is lost for non-circular orbits. We could accommodate
elliptical orbits approximately, by letting r represent the average
between the peri- and apo-center per cycle.
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For GCs that satisfy r � rcr today, we can expand
their starting point:

r0(r; ∆t) = rcr +
rcr

β

(
r

rcr

)β
+ ... (F6)

= rcr

(
1 +

1 + α

2β2

τ(r)

∆t
+ ...

)
.

In other words, for cuspy CDM halos, GCs that are cur-
rently seen at r � rcr must have originated near r0 ≈ rcr.
This means that for GCs with r � rcr today, the ra-
dial distribution today is not very sensitive to the (dif-
ficult to predict) initial distribution. We can make this
point manifest by expanding Eq. (F1), using Eqs. (F4)
and (F6):

F∆t(r) ≈ F0(rcr) +
(1 + α)

2β2
f0(rcr)rcr

τ(r)

∆t
+ ... ,(F7)

where the ... refer to higher powers of the small ra-
tio τ(r)/∆t. Above, the r-independent constant F0(rcr)
counts GCs that have already settled to the center of
the halo. These GCs at r ≈ 0 were likely tidally dis-
rupted, suggesting that in actually counting GCs in the
system, we should eliminate the term F0(rcr) on the
RHS of Eq. (F7). We thus have F∆t(r) ≈ A (τ(r)/∆t),

where A = (1+α)
2β2 f0(rcr)rcr is an order-unity constant (r-

independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are
born at r < rcr have arrived at r ≈ 0 by today and
are plausibly tidally disrupted. This means that obser-
vations today are not sensitive to initial conditions, char-
acterized by different f0(r0), that differ from each other
only at r < rcr; unless stellar age and metallicity mea-
surements can identify the remnants and approximately
count tidally disrupted GCs, on time scales of Gyrs after
the disruption. Second, the radial CDF of GCs at small
radii r � rcr should follow F∆t(r) ≈ A (τ(r)/∆t), with
order-unity A, irrespective of initial conditions.

Fig. 16 illustrates both of these two points, by showing
two examples of f0 and the resulting F∆t. The DF time
τ(r) and the critical radius rcr are measurable given a
model of the DM halo, fitted to stellar kinematics, and
given GC age measurements that define ∆t. This makes
the predicted shape of F∆t measurable, in principle. In
practice, however, projection effects (explained below)
complicate the interpretation. In addition, the collection
of GCs in Fornax seems too sparse to draw robust con-
clusions.

18 For the inner region of an NFW profile, we have seen that α ≈ 2
and β ≈ 2, so A ≈ 0.4Ncr, where Ncr = f0(rcr)rcr counts the
number of GCs that were located in a region of order rcr around
rcr. Predicting the actual value of Ncr would require understand-
ing of the initial cosmological formation of GCs, which is still not
under full theoretical control.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ . Eq. (F2) is evaluated to

∆t =
1 + α

2
τ ln

r0

r
(F8)

and the radial CDF today is

F∆t(r) ≈ F0(re
2∆t

(1+α)τ ) ≈ F0(re
∆t
2τ ) . (F9)

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitiv-
ity to initial conditions, the degree of possible fine-tuning
in the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order
of magnitude around 105 M�, and the instantaneous DF
time satisfies τ ∝ 1/m∗ up to logarithmic corrections
that we neglect here. It is therefore necessary to revise
the prediction of the radial CDF of GCs to account for
different GC masses.

In the case of a cuspy profile, where τ ∝ rβ , the critical

radius scales as rcr ∝ m1/β
∗ . For example, using the NFW

fit of Fornax (which gives β ≈ 1.85), relevant GC masses,
and ∆t = 12 Gyr we have:

rcr ≈ 0.7

(
m?

MGC4

)0.54

kpc (F10)

≈ 1.6

(
m?

MGC3

)0.54

kpc . (F11)

Suppose we have a set of GC masses m∗i with initial
radial distribution functions f0,i(r0). Summing over all
GC masses we find that as long as r � rcr,i, Eq. (F7)
predicts that the total radial CDF today is (again omit-
ting GCs that have already settled to the center of the
halo)

∑
i

F∆t,i(r) ≈ F∆t,1(r)
∑
i

f0,i(rcr,i)

f0,1(rcr,1)

(
m∗i
m∗1

) 1
β−1

,

(F12)

where F∆t,1(r) is the radial CDF of GCs of mass m∗1.
We see that Eq. (F12) simply reproduces Eq. (F7) up to
a modified overall multiplicative constant.

4. Projected radius distribution

In reality we only know the projected distance of GCs
from the center of Fornax, r⊥, and not the true radial
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FIG. 16. Initial radial PDF f0 (left) and resulting current radial CDF F∆t (right) for a cuspy halo with τ(r) ∝ r1.85 and
rcr = 1.12 (units on the x-axis are arbitrary). Two different examples for f0 are shown, leading to nearly identical F∆t. The
two versions of f0 are normalized to yield F∆t(∞) = 6. In both panels, rcr is marked with a vertical black line. On the left,
the r � rcr approximation F∆t ≈ A (τ(r)/∆t) is shown by the red dotted curve.

distance r. To obtain the CDF of projected radii, we can
start with the surface density of GCs,

Σ∆t(r⊥) =

∞∫
−∞

dzn(r) = 2

∞∫
r⊥

dr
rn(r)√
r2 − r2

⊥
, (F13)

where the 3D number density n(r) is related to the radial
PDF via n = f∆t(r)/4πr

2. Using this relation we have

Σ∆t(r⊥) =
1

2π

∞∫
r⊥

dr
f∆t(r)

r
√
r2 − r2

⊥
. (F14)

The CDF in r⊥, that we define by F⊥∆t(r⊥), is given by:

F⊥∆t(r⊥) = 2π

r⊥∫
0

dRRΣ∆t(R) (F15)

= F∆t(r⊥) +

∞∫
r⊥

drf∆t(r)

(
1−

√
1−

r2
⊥
r2

)
.

The CDF of projected radii contains the CDF of true
radii, evaluated at r = r⊥, plus another term that counts
GCs at r > r⊥ which projection casts into LOS inside
of r⊥. The added projection term can exceed the unpro-
jected term, meaning that most GCs seen inside r < r⊥
could be physically located at r > r⊥. The effect is illus-
trated in Fig. 17.

Appendix G: Exploration of initial conditions

The goal of this section is to explore the implications
of uncertainties due to the line-of-sight projection in the
true positions and velocities of GCs. Different projection
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FIG. 17. The effect of projection. Solid blue: unprojected ra-
dial CDF computed at the projected radius, F∆t(r⊥). Dashed
black: CDF of projected radii F⊥∆t(r⊥).

angles lead to different true positions and velocities of a
GC, affecting the orbital settling time under DF.

Consider the orbits of test bodies in a spherically-
symmetric gravitational potential Φ(r). A given orbit
lies on an orbital plane. In the coordinate system in
Fig. 18, one can parametrize the orbital plane with the
unit vector n̂ = (cosα sinβ, sinα sinβ, cosβ). On the or-
bital plane, the radius r(ϕ) and phase ϕ(t) completely de-
fine the orbit. As in App. E, defining r = rtruex, t = T0t̄,
T 2

0 = r3
true/GM(rtrue), one finds

x′′ − xϕ′2 ≈ − 1

x2

M(rtruex)

M(rtrue)
(G1)(

x2ϕ′
)′ ≈ 0 (G2)

where ′ is differentiation with respect to t̄. (Here
we tentatively neglect DF.) The initial conditions are
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x(0) = 1, ϕ(0) = 0, x′(0) = (−∆vr cos θ +
∆vy sin θ)/(rtrue/T0), θ(0) = 0 and |ϕ′(0)| =√

∆v2
z + (∆vr sin θ + ∆vy cos θ)

2
/(x(0)rtrue/T0). Ev-

idently, x′(0)2 + (x(0)ϕ′(0))2 = (∆v2
r + ∆v2

y +

∆v2
z)/(rtrue/T0)2.

Given measured r⊥, ∆vr and a model Φ(r), we ex-
plore the remaining orbital parameters which affect the
inspiral time. We start with the true radius rtrue. Given
rtrue and, for simplicity, assuming a circular orbit, the
probability of observing r⊥ < xrtrue is P (r⊥/rtrue <
x) = (2/π) arcsinx, because sin θ = r⊥/rtrue and θ is
distributed uniformly for a circular orbit. Numerically,
P (r⊥/rtrue < 1/2) = 1/3. We therefore explore orbits
with true radius in the range rtrue = r⊥ × [1, 2].

Next, consider the velocity. We ex-
plore a total velocity in the range vtrue ∈
[max(∆vr, 0.5Vcirc(r)),max(∆vr, 1.5Vcirc(r))]. Defining
the eccentricity e ≡ (rapo− rperi)/(rapo + rperi), we find a
maximal e ∼ 0.2−0.5 for this range of vtrue in the central
. 1 kpc of Fornax. We note that if we decrease the lower
bound of vtrue we expect smaller inspiral times. Increas-
ing the upper bound, however, results in larger inspiral
times – but also in more tuning. A test object spends
relatively little time near the pericenter. Specifically,
Tperi/Tapo ≡ (rperi/vperi)/(rapo/vapo) ≈ (1−e)2/(1+e)2,
yielding about 1/9 for e = 0.5.

Considering the velocity components, we can take
∆vz > 0 without loss of generality. The sign of ∆vy is,
however, important: under the transformation ∆vy →
−∆vy, cos θ → − cos θ, so |ϕ′(0)| remains constant, but
x′(0)→ −x′(0). Since the specific energy is

ε ≈ v2

2
+ Φ(r) =

ṙ2

2
+

l2

2r2
+ Φ(r) , (G3)

where l is the specific angular momentum, this trans-
formation returns the same orbit. The inspiral time is
therefore invariant under this transformation. We shall
explore then ∆vy > 0 and cos θ positive or negative.

To sum up, for each GC (and a given model of the
halo), we scan the range rtrue ∈ [1, 2]rproj. For each
rtrue we scan over Vtrue ∈ [0.5, 1.5]Vcirc(rtrue). For each
true velocity we scan positive and negative cos θ. Finally,

we test the two cases, ∆vy =
√
v2

true −∆v2
r ,∆vz = 0

and ∆vy = 0,∆vz =
√
v2

true −∆v2
r . For each point in

phase-space, we integrate the full equations of motion as
in App. E. For each integration, we stop when (rapo +
rperi)/2 . 0.3rinitial or after 10 Gyr (the first of the two).
We then denote the integration time as τinspiral.

FIG. 18. The coordinate system that we adopt to analyze
a given GC. The galactic dynamical center is in the origin.
The observer is located at a very large X. The GC is located
somewhere on the line Z = 0, Y = r⊥. The true radius is
therefore rtrue = r⊥/ sinα. We assume ∆vr, the component
of velocity in the X direction, can be measured. We assume
that the rest of the components cannot be measured for now.
The dotted line is the quasi-stable orbit of the GC.
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