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Abstract: We further exploit the relation between tropical Grassmannians and Gr(4, n)

cluster algebras in order to make and refine predictions for the singularities of scattering

amplitudes in planar N = 4 super Yang-Mills theory at higher multiplicity n ≥ 8. As a

mathematical foundation that provides access to square-root symbol letters in principle for

any n, we analyse infinite mutation sequences in cluster algebras with general coefficients.

First specialising our analysis to the eight-particle amplitude, and comparing it with a

recent, closely related approach based on scattering diagrams, we find that the only addi-

tional letters the latter provides are the two square roots associated to the four-mass box.

In combination with a tropical rule for selecting a finite subset of variables of the infinite

Gr(4, 9) cluster algebra, we then apply our results to obtain a collection of 3, 078 rational

and 2, 349 square-root letters expected to appear in the nine-particle amplitude. In partic-

ular these contain the alphabet found in an explicit 2-loop NMHV symbol calculation at

this multiplicity.

ar
X

iv
:2

10
6.

01
39

2v
2 

 [h
ep

-th
]  

12
 O

ct
 2

02
1

mailto:niklas.henke@desy.de
mailto:georgios.papathanasiou@desy.de


Contents

1 Introduction 1

2 Tropical fans and cluster algebras 5

2.1 Grassmannians and configuration spaces 5

2.2 Partially tropicalised configuration space p̃Tr+(4, n) 6

2.3 Cluster algebras with coefficients 8

2.4 Fans of cluster algebras 11

3 Infinite mutation sequences and square-root letters 13

3.1 Mutation sequence of type A
(1)
1 with general coefficients 13

3.2 Application: p̃Tr+(4, 8) and the eight-particle alphabet 17

3.3 Comparison with the scattering diagram approach 19

4 p̃Tr+(4, 9) and the nine-particle alphabet 24

4.1 Rational letters from the truncated cluster algebra 25

4.2 Square-root letters from infinite mutation sequences 28

5 One generalisation of infinite mutation sequences 31

5.1 Mutation sequences in A
(1)
m with general coefficients 32

5.2 Beyond A
(1)
1 singularities? 36

5.3 The limitations of infinite mutation sequences 37

6 Conclusions & Outlook 38

A Proofs for mutation sequences of type A
(1)
m 41

B Full non-rational alphabet of eight-particle scattering 48

C Web-parameterisation of Gr(4, n) 52

1 Introduction

The study of scattering amplitudes in perturbative quantum field theories has led to a

plethora of new insights, not only with regard to its direct application to phenomenology,

but also in pure mathematics. Much of this progress did come from the analysis of amp-

litudes in N = 4 super Yang-Mills theory and its planar limit (pSYM). Being the simplest

interacting four-dimensional gauge theory, it allows to recognize some of the underlying

intricate mathematical structures more easily, which in some cases were also successfully

transferred to theories more closely aligned to nature, see e.g. [1, 2].
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Explicit results as well as general arguments [3] (see however also [4] for certain sub-

tleties) suggest that the functions which describe the (appropriately normalised [5–8])

N = 4 pSYM amplitudes in the maximally helicity violating (MHV) or next-to-MHV

(NMHV) configurations are restricted to the class of multiple polylogarithms (MPLs), a

class of functions well-established in the mathematics literature [9–11]. They can be rep-

resented as iterated integrals over rational integration kernels, or conversely be defined

recursively with respect to their derivatives: An MPL Fw of weight w obeys

dFw =
∑
φα

F φαw−1d lnφα , (1.1)

with F φαw−1 being an MPL of weight w − 1 and MPLs of weight 1 being usual logarithms.

The letters φα encode the branch-cut and singularity structure of the function Fw. Based

on this definition, one recursively constructs the map S as

S [Fw] =
∑
φα

S
[
F φαw−1

]
⊗ lnφα . (1.2)

It maps an MPL of weight w to its symbol [12], an w-fold tensor product of logarithms of

the letters φα. The union of all the letters is called the symbol alphabet and is the starting

point of the cluster bootstrap, see [13] for a recent review.

Whereas in theory the symbol alphabet and the entire amplitude can be computed via

Feynman diagrams [14, 15], this method becomes unwieldy very quickly with increasing

loop number. Instead of directly computing the amplitudes, the cluster bootstrap attempts

to first obtain the alphabet of the amplitude’s symbol by some alternative way. Utilizing

the observation that an L-loop (N)MHV amplitude is given by a weight 2L MPL, the

space of all weight 2L symbols is then constructed from the alphabet. After fixing the

amplitude’s symbol from this space using consistency and physical constraints, the symbol

can be integrated to obtain the actual function.

A key insight for this boostrap program is the observation that the letters of n-particle

scattering are cluster A-variables of the cluster algebra associated to the Grassmannian

Gr(4, n) [16], following the emergence of these structures at the level of the integrand [3,

17]. Due to the dual conformal symmetry of the theory [18–22], a certain quotient of the

Grassmannian – the configuration space G̃r(4, n) of n points in complex projective space P3

– corresponds to the space of kinematics of n-particle scattering, which can be conveniently

described in terms of momentum twistor variables [23].

In cluster algebras, see section 2 or [24–27] for more details, the A-variables are organ-

ized in overlapping sets, the clusters, which are connected by an operation called mutation.

Starting from an initial cluster, the cluster algebra and thus all of its A-variables are con-

structed by performing all possible mutations. In this way, the cluster algebra allows to

obtain the amplitude’s symbol alphabet and thus ultimately its symbol.

This boostrap program has been successfully applied to the six-particle amplitude with

up to seven loops [8, 28–36] (see also [37] for some more recent higher-loop results in its

codimension-1 double-scaling limit) and for the seven-particle amplitude with up to four

loops [38–41]. For many years however, two major obstructions prevented expanding the
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program to higher multiplicity. First of all, the relevant cluster algebras become infinite

for n ≥ 8, that is they contain infinitely many variables. Whereas it is possible that

with increasing loop numbers ever more relevant discontinuities of the amplitude and thus

new letters appear, it is believed that the amplitude requires only a finite number of

letters, in line with finite number of its Landau singularities [42], as obtained by the

amplituhedron [43, 44]. Furthermore, cluster variables are always rational functions (in

momentum twistor variables), whereas also square-root letters are required to describe all

amplitudes, as is for example the case for the eight-particle two-loop NMHV amplitude [45].

Recently, in [46–49] it has been proposed that both of these obstructions can be over-

come by considering the tropical version of the configuration space G̃r(k, n) [50, 51], or

equivalently its dual geometric object [52]. The relevance of tropical Grassmannians for

scattering processes was first established in the context of tree-level amplitudes of gener-

alized biadjoint scalar theory [53, 54], see also [55–61] and references therein for recent

progress in this direction, as well as [62–68] for work on further connections between (du-

als of) tropical Grassmannians, cluster algebras, and scattering amplitudes. In essence,

the tropical version of the configuration space is obtained by replacing addition with the

minimum and multiplication by addition in the polynomials parameterising (the totally

positive) G̃r(k, n). The resulting structure is a fan, a collection of cones obtained as the

positive span of the rays, half lines emanating from the origin.

We can also associate such a fan with the cluster algebra, with each A-variable cor-

responding to a ray and each cluster to a cone. It turns out that for finite cluster algebras

this cluster fan triangulates the fan of the positive tropical configuration space [51], that

is the former splits up the cones of the latter into simplicial cones. The cluster fan does

so using the rays of the tropical fan as well as redundant rays – additional rays that are

not required to describe the tropical fan. Moving to infinite cluster algebras, it is therefore

natural to expect that the nature of their infinities can be interpreted as an infinite number

of redundant triangulations. With the tropical fan being inherently finite, removing the

redundant rays provides a tropical selection rule that can be used to obtain a finite subset

of A-variables from the infinite cluster algebra, in other words to truncate it. This selection

rule is also consistent with the case of finite cluster algebras, e.g. those describing seven

particle scattering and below (k = 4, n ≤ 7), where it selects all A-variables of the cluster

algebra.

The rays of the cluster algebra truncated in this way are only a subset of the tropical

rays for n ≥ 8. However, one of the main ideas behind the aforementioned works [47–

49], was that one may also access additional rays, and thus also the generalisations of

A-variables or letters associated with them, which turn out to contain square roots, by

also considering limits of infinite mutation sequences starting from within the truncated

cluster algebra. In particular these ideas were applied to the then first nontrivial case at

n = 8, where sequences of a rank-two affine or A
(1)
1 subalgebra prove sufficient for obtaining

all limit rays. While there exists a one-to-one mapping between limit rays and square-root

letters, in [47] it was additionally noticed that by assuming a one-to-many mapping that

also takes the direction of approach to the ray into account in a certain way, then one

astonishingly obtains precisely the 18 square-root letters found in the explicit expression
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for the two-loop NMHV eight-particle amplitude [45].1

In this article, building on our previous work, we make an important step towards

generalising these exciting developments to arbitrary multiplicity n. First, we analyse

infinite mutation sequences of rank-two affine cluster algebras with general coefficients,

which allow us to trivially obtain predictions for square-root letters for any such subalgebra

of Gr(4, n). As a cross-check, we then apply our procedure to the known eight-particle case,

not only finding agreement with the earlier analysis, but also comparing it to more recent

predictions based on the closely related scattering diagram approach [69]. As essentially all

proposals for n-particle alphabets to date correspond to different compactifications of the

region of positive kinematics of G̃r(4, n), concretely this approach amounts to a refinement

of the tropical compactification, which at first sight seems to predict another 34 square-

root letters on top of the two-loop NMHV ones. Very interestingly, we find that almost

all of these naively square-root letters can be combined to yield rational ones that are

already contained in the alphabets of [47–49]: The only exceptions are the two cyclically

inequivalent realisations of the four-mass box square-root,
√

∆i,i+2,i+4,i+6 with i = 1, 2 and

i ∼ i mod 8, formed by eight massless legs, see e.g. [70].

Armed by this almost complete overlap between the two methods, we then move on

to apply our results to the nine-particle amplitude. There are several good reasons to do

so: First, because the associated cluster algebra Gr(4, 9) is significantly “more” infinite

than Gr(4, 8) [71], so it is not a priori certain that methods initially developed on the

ground of the latter will have more general applicability. Second, because for n = 8

there exist many subtleties in properly exploring the very interesting property of cluster

adjacency [72], dictating how different symbol letters are allowed to sit next to each other in

the symbol, see e.g. [73]. Last but not least, because the field of amplitudes, and its impact

to phenomenology, was shaped by carrying out initially very challenging computations,

with the insights gained by the explicit results allowing their subsequent trivialisation.

Combining the tropical selection rule for rational letters with the infinite mutation

sequence technology, we thus find a collection of 3,078 rational and 2,349 square-root

letters expected to appear in the nine-particle amplitude, associated to 3,078 and 324

tropical rays, respectively. As a nontrivial check of our proposal, we confirm that it also

contains the alphabet of the 2-loop NMHV nine-particle amplitude, whose symbol was

recently computed in [74].

As perhaps hinted by the leap in computational complexity between the Gr(4, 8) and

Gr(4, 9) cluster algebras, by comparing with other ways for obtaining the rays (which

however provide no information on the letters associated to them), we notice that there

also exist 27 rays of the minimal G̃r(4, n) tropicalisation respecting the symmetries of

the amplitude, which are not accessible by our procedure. We nevertheless find it very

intriguing that we only fall short by such a small margin. While understanding what

kind of generalisations of cluster variables could be associated to these rays, and whether

they are relevant for amplitude singularities,2 are open questions we leave for future work,

1Note that in the literature the square-root letters are sometimes referred to as non-rational or algebraic,

even though the rational part of the alphabet is of course algebraic as well.
2For example, it is not clear if the missing rays are “just” associated to more intricate algebraic letters
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here we also touch on one possibility towards addressing them. In particular, we consider

more general infinite mutation sequences of higher rank (A
(1)
m ) algebras, and present some

preliminary evidence that these may not be accessed by any type of infinite mutation

sequence starting from within the cluster algebra. As the scattering diagram approach

also relies on these sequences, this therefore seems to suggest that a radically different idea

might be needed to tackle these exciting questions, and calls for the generation of explicit

new amplitude data that will reveal it to us.

The plan of the rest of this article is as follows. In section 2, we first briefly review

some basic notions of the totally positive tropical Grassmannian, as well as the closely

related, partial tropicalisation of the configuration space G̃r(4, n) that will be relevant for

scattering amplitudes. We also review (Grassmannian) cluster algebras, focusing especially

on the formalism of coefficients, which will be advantageous for our purposes. In section 3

we present the mathematical foundation of our analysis, the general solution of infinite

mutation sequences in the affine rank-2 cluster algebra of type A
(1)
1 . We then apply these

results to reobtain the eight-particle alphabet as a check, and also compare with the more

recent scattering diagram approach. Section 4 is devoted to our main application, new

predictions for the letters of the nine-particle amplitude. Section 5 discusses higher-rank

generalisations of infinite mutation sequences as well as their inherent limitations, and

finally section 6 contains our conclusions and outlook.

Results similar to those presented in this article were independently obtained in [75].

2 Tropical fans and cluster algebras

In this section we introduce the mathematical concepts utilized throughout the article.

We begin by reviewing the space of kinematics of N = 4 pSYM, the configuration space

G̃r(4, n) of n points in complex projective space P3, which is constructed as the quotient

of the Grassmannian Gr(4, n) over the complex torus. Following this, we discuss how the

configuration space is tropicalised and review the associated fan structures. Furthermore,

we briefly review cluster algebras with coefficients – a framework required for the analysis

of the infinite mutation sequences – and relate the cluster fan to the tropical fans, allowing

us to review the selection rule that will be used in section 4 to obtain a finite alphabet

from the infinite cluster algebra.

2.1 Grassmannians and configuration spaces

The Grassmannian Gr(k, n) can be defined as the space of k-dimensional planes through

the origin in an n-dimensional vector space. Since each of these planes is spanned by k

n-vectors, Gr(k, n) can be realized as k × n matrices modulo the GL(k) transformations

corresponding to a change of basis. The minors of this matrix are the Plücker variables

〈i1 . . . ik〉 for ij = 1, . . . , n which satisfy the Plücker relations

〈i1 . . . ir[ir+1 . . . ik〉 〈j1 . . . jr+1]jr+2 . . . jk〉 = 0 , (2.1)

beyond square roots, or point towards the need for significantly more complicated, elliptic generalisations

of MPLs starting to contribute at n = 9.
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whereas the square brackets denote antisymmetrisation over the included indices. These

relations may also be used as an alternative starting point to contsruct the Grassmannian.

Starting with the ring of integer coefficient polynomials in the

D =

(
n

k

)
(2.2)

Plücker variables, we can identify Gr(k, n) with the set of solutions to the Plücker relations,

eq. (2.1), quotiened by the global scaling 〈i1 . . . ik〉 → t · 〈i1 . . . ik〉 for t ∈ C \ {0}, which

leaves the Plücker relations invariant.

Further to this scaling, the Plücker relations are also invariant under the local scaling

〈i1 . . . ik〉 → ti1 · · · tik · 〈i1 . . . ik〉 for ti1 , . . . , tik ∈ C \ {0}. If we also quotient by this

transformation, we obtain the configuration space G̃r(k, n), which for k = 4 is the space

of kinematics of n-particle N = 4 pSYM amplitudes considered in this article, expressed

in terms of momentum twistors Zi1 , . . . , Zin [23]. While the Grassmannian has dimension

k(n− k), the configuration space has dimension

d = (k − 1)(n− k − 1) . (2.3)

By further also restricting all ordered Plücker variables to be positive, we obtain

the positive configuration space G̃r+(k, n). This space can be parameterised in terms

of the so-called web-parameterisation, see [51] or the appendix of the authors’ previous

article [49]. In this parameterisation the Plücker variables are polynomials in the d web-

variables x1, . . . , xd, like for example for 〈25〉 of G̃r+(2, 5), whose web-parameterisation is

given in terms of the two independent coordinates x1, x2 by

〈25〉 = 1 + x1 + x1x2 . (2.4)

2.2 Partially tropicalised configuration space p̃Tr+(4, n)

Tropical geometry is essentially algebraic geometry over the tropical semifield – the real

numbers with taking the minimum as tropical addition ⊕, and addition as tropical multi-

plication ⊗, see e.g. the reviews [76–78]. In practice, at least concerning the application of

tropical geometry in this article, this means that we start with a geometric object that is de-

scribed in terms of polynomials and replace addition with the minimum and multiplication

with addition.3

Continuing the example of G̃r+(2, 5), we start with the web-parameterisation of the

Plücker variables and tropicalise the parameterisation polynomials, e.g.

〈25〉 = 1 + x1 + x1x2 → Tr (〈25〉) = min (0, x1, x1 + x2) . (2.5)

Note that by construction the numerical coefficients of the polynomials are mapped to

zero. These so-called tropical polynomials are piecewise linear functions whose domains of

3In the mathematically precise formulation of tropical geometry, see e.g. [50], the starting point is a

variety attached to a polynomial ideal, whose tropical variety is then constructed. Since we only need the

tropical version of the positive configuration space, we will make use of its web-parameterisation and review

only the neccessary mathematics following [51].
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linearity are cut out by the tropical hypersurfaces. They can be computed by setting two

of the terms in the minimum equal and smaller or equal than the remaining terms, e.g. for

eq. (2.5) we have

0 = x1 ≤ x1 + x2 , 0 = x1 + x2 ≤ x1 , x1 = x1 + x2 ≤ 0 . (2.6)

The regions cut out by these tropical hypersurfaces are actually convex cones – subsets

of Rd closed under linear combination with positive coefficients. The regions where d − 1

linearly independent hypersurfaces intersect are called rays – lines emanating from the

origin – which span the convex cones. Together, the rays and cones form a fan, the main

object of interest in this paper. For the example of 〈25〉 of G̃r+(2, 5), we obtain three

tropical hypersurfaces in R2 from eq. (2.6), which, due to the low dimension, are identical

to the rays. These three rays span three different cones. The fan is illustrated in fig. 2.1.

Figure 2.1: Fan associated to the tropical polynomial Tr (〈25〉) = min (0, x1, x1 + x2).

The rays are depicted as dashed lines in blue, red and yellow, respectively. The cones are

depicted in the composite color of the two rays by which they are spanned.

To construct the entire positive tropical configuration space T̃r+(k, n), we tropicalise

all paramterised Plücker variables and obtain their tropical hypersurfaces resulting in a

fan in Rd for each of the Plücker variables. The fan Fk,n of T̃r+(k, n) is then given as

the common refinement – essentially the union – of the individual fans.4 Note that the

resulting fan is not just the union of rays and cones of the individual fans since the tropical

hypersurfaces of one fan might cut a cone of another fan into several cones. For more

details, see also [49]. By using the tropicalised Plücker parameterisation, eq. (2.5), we can

alternatively obtain an embedding of the d-dimensional fan in RD.

Whereas this construction is the canonical way to tropicalise the positive configuration

space, we may choose to only tropicalise a subset of all Plücker variables. The resulting

fan is the common refinement of the corresponding subset of fans associated to the Plücker

variables and thus a coarser version of the fully tropicalised fan. This means that the

4Note that while the tropical version of a variety is actually obtained as the intersection of all tropical

hypersurfaces, we have to take the common refinement here due to working with a parameterisation of the

variety in question, see [51].
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partial fan consists of less rays and cones with some of the cones of the full refining those

of the partial fan. In this paper we will be almost exclusively be focusing on the following

partial tropicalisation of the configuration space G̃r+(4, n),

p̃Tr+(4, n) :
〈ii+ 1jj + 1〉 → Tr (〈ii+ 1jj + 1〉) ,
〈ij − 1jj + 1〉 → Tr (〈ij − 1jj + 1〉) ,

i = 1, . . . , n , (2.7)

namely we only tropicalise the Plücker variables with indices either pairwise adjacent, or

forming an adjacent triplet. The associated fan will be denoted by pF4,n. This choice is

believed to be the most relevant for n-particle amplitudes in N = 4 pSYM, as it leads

to predictions for their singularities that agree with the known n = 6, 7 cases, and more

generally respects the parity symmetry of MHV amplitudes in a minimal way [47, 48, 63].

In contrast, T̃r+(4, n) is not parity invariant.

2.3 Cluster algebras with coefficients

Another remarkable property of the Grassmannian Gr(k, n) is that its coordinate ring car-

ries the structure of a cluster algebra. A rank r cluster algebra consists of the so-called

A-variables – rational functions in r arguments – organized in overlapping sets of r vari-

ables, the clusters, which are connected to each other by a birational transformation, the

mutation. Finally, for each cluster we have the adjacency matrix B, a r × r antisym-

metrisable matrix encoding the connection among the variables within the cluster. If the

adjacency matrix is antisymmetric, we can equivalently represent the cluster by a quiver,

where nodes correspond to cluster variables, and the absolute value and sign of the entries

of B corresponds to the number of arrows between nodes and their direction, respectively.

If we can generate only a finite number of distinct clusters and cluster variables with

mutation, the cluster algebra is called finite (and otherwise infinite). Finite cluster algebras

are completely classified in terms of the Cartan-Killing classification of semisimple Lie

algebras. In practice, this means that if a cluster algebra has a cluster whose quiver is

equivalent to a Dynkin diagram, the cluster algebra is of the corresponding type. For more

details, see e.g. [24–27].

In the physics literature [16], it is common to also consider additional frozen variables,

associated to frozen nodes in the quiver. The frozen variables behave like the A-variables

except that they are never mutated and that there are no arrows between them. The

A-variables and frozen variables together are referred to as A-coordinates. If we consider

M frozen nodes, the adjacency matrix is extended to a (r +M)× r matrix with the r × r
part encoding the connections between the r A-variables being the principal part. As an

example, the quiver of the initial cluster of Gr(2, 5) is depicted in figure 2.2. Note that the

A-variables are sometimes referred to as unfrozen variables.

In the mathematics literature, there is another equivalent description using the so-

called coefficients [27]. As we will detail momentarily, in this formalism all frozen variables

connected to a given A-variable are grouped into a single coefficient, which also changes

under mutation and is associated to the A-variable. The main advantage of cluster algebras

with general coefficients is that they can be constructed once, and then specialized to any

particular choice of frozen variables at the very end. This allows for a unified treatment of
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〈13〉 〈23〉

〈14〉 〈34〉

〈15〉 〈45〉

〈12〉

Figure 2.2: Initial seed of the rank-2 cluster algebra of Gr(2, 5). Each node corresponds

to an A-coordinate. The nodes surrounded by a box are associated to frozen variables,

whereas the unboxed nodes are associated to A-variables.

what would be several distinct computations in the language of frozen variables, and it will

be crucial in obtaining the singularities of eight- and nine-particle amplitudes, as described

in sections 3 and 4, in essentially one go.

We now consider a rank-r cluster algebra with r A-variables a1, . . . , ar and M frozen

variables ar+1, . . . , ar+M in the initial cluster. Denoting the components of the adjacency

matrix of the initial cluster – a (r+M)× r integer matrix – by b0ij , we attach a coefficient

yi to each A-variable ai in the initial cluster via5

yi =

r+M∏
j=r+1

a
b0ji
j . (2.8)

The special case that a cluster algebra of rank r has r frozen variables such that yi = ar+i
is referred to as principal coefficients. As can already be seen from eq. (2.8), the coefficients

are closely related to the X -variables of Fock and Goncharov [79], xi with i = 1, . . . , r. The

latter are defined, in any cluster of the cluster algebra, by

xi =
r∏
j=1

a
bji
j · yi . (2.9)

When mutating the cluster at one node, we obtain another cluster with mutated vari-

ables and coefficients. Hence, as is usually done in the formalism of cluster algebras with

coefficients, we label clusters by an index t and denote the variables of such cluster by ai;t,

whereas the index i labels the position of the variable within the cluster. It is common

to label the initial cluster by t = 0 or to just drop the index, if it is clear from context.

Consider now the mutation of cluster t at node j resulting in the cluster t′. The mutation

rule for the A-variables is given by

aj;t′ =
yj;t
∏r
i=1 a

[btij]+
i;t +

∏r
i=1 a

[−btij]+
i;t(

1 ⊕̂ yj;t
)
aj;t

, (2.10)

5Since by construction there are no edges between frozen variables, the (r +M)× r extended adjacency

matrix is sufficient to describe all adjacencies in the quiver. In the framework of cluster algebras with

coefficients, we instead only consider the r × r principal part of that matrix and may use eq. (2.8) as the

definition of the extended adjacency matrix in any cluster.
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where btij are the components of the adjacency matrix of cluster t, [x]+ = max (0, x),

and with all other A-variables remaining unchanged. In this formula, we have used the

cluster-tropical addition6 ⊕̂ , which is defined on the frozen variables as

r+M∏
i=r+1

acii ⊕̂
r+M∏
i=r+1

adii =

r+M∏
i=r+1

a
min(ci,di)
i . (2.11)

Similar to the A-variables, we also have a mutation rule for the coefficients, which is given

by

yl;t′ =

y
−1
j;t if l = j ,

yl;ty
[btjl]+
j;t

(
1 ⊕̂ yj;t

)−btjl if l 6= j .
(2.12)

Since this mutation relation implies that the coefficients are always monomials in the frozen

variables, which are the same in all clusters, cluster-tropical addition on the coefficients as

given by eq. (2.11) is well defined for all clusters. Note that the mutation rule for the X -

variables is the same as that of the coefficients except with normal addition instead of the

cluster-tropical addition. The mutation rule for the adjacency matrix remains unchanged

in comparison to the more familiar framework of frozen and unfrozen variables, and is given

by

bt
′
il =

{
−btil if i = j or l = j ,

btil + sign(btij)[b
t
ijb

t
jl]+ otherwise.

(2.13)

All mutation rules presented here are equivalent to those more commonly used in the

physics literature, as can be easily seen by inserting the definition of the coefficients in

terms of the frozen variables.

Another advantage of considering cluster algebras with coefficients instead of frozen

variables is that it makes the separation principle manifest. Using eq. (2.9) to express yj;t
in terms of the A- and X -variables of the cluster t, we can rewrite the mutation rule (2.10)

as

aj;t′ = (aj;t)
−1

r∏
i=1

a
[−btij]+
i;t · 1 + xj;t

1 ⊕̂ yj;t
. (2.14)

The consequence of this factored form of the mutation relation is that, in the cases relevant

to this article, any A-variable can be written in such a way: a monomial in the initial

A-variables times some rational function in the initial X -variables divided by its cluster-

tropical version, that is we have

a =
r∏
i=1

agii;0 ·
F (x1;0, . . . , xr;0)

FT (y1;0, . . . , yr;0)
, (2.15)

for some A-variable a and whereas FT denotes the function obtained by replacing addition

with cluster-tropical addition in the rational function F . In this way, we can associate a

6Note that although closely related, cluster-tropical and tropical addition are not quite the same and

hence denoted by ⊕̂ and ⊕, respectively. Essentially, cluster-tropical addition on the monomials of frozen

variables is given by tropical addition on the exponents of these variables.
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unique g-vector, an integer vector in Zr whose components are the gi, to each A-variable,

for which we also can obtain a mutation rule from eq. (2.10), see e.g. [27].

However, for our purposes it is better to work with a modified version thereof. In

order to more closely align the rays associated to the A-variables to the rays of the totally

positive tropical configuration space, we use a modified mutation rule to compute these

cluster rays, see also [46, 49]. To construct this relation, we first attach a coefficient matrix

C to each cluster. In the initial cluster, it is given by C0 = 1r, whereas 1r is the r × r
identity matrix. The mutation rule is given by

ct
′
il =

{
−ctil if i = j or l = j ,

ctil − [ctij ]+b
t
jl + ctij [b

t
jl]+ otherwise.

(2.16)

Finally, we introduce the ray matrix G for each cluster, whose columns are the cluster rays.

By construction, in the initial cluster it is given by G0 = 1r. The mutation rule is given

by

gt
′
il =

gtil if i = j or l = j ,

−gtil +
∑r

m=1

(
gtim[−btmj ]+ + b0im[cmj ]+

)
otherwise.

(2.17)

The cluster fan, consisting of the cones spanned by the cluster rays in each cluster, is

combinatorially equivalent the one obtained from the actual g-vectors.

2.4 Fans of cluster algebras

Besides the tropical fans reviewed above, we may also associate a fan to any cluster algebra.

First, we construct the cluster polytope, which is closely related to the exchange graph of

the algebra,7 by associating each cluster of a rank-r cluster algebra to a vertex. If two

clusters are related by mutating one of their variables, they are connected by a line. This

1-dimensional face of the polytope may be alternatively described by fixing the r − 1 A-

variables that are unchanged in the mutation and that are thus shared between the two

clusters. Similarly, we obtain a l-dimensional face of the polytope by fixing r − l variables

that appear in a cluster together. The face is then bordered by all vertices that contain all

these r − l variables.

The fan of the cluster algebra is taken to be the normal fan of this polytope, that is its

rays are the inward-pointing normals to the codimension-1 faces of the polytope. In this

way, a l-dimensional face of the polytope becomes a (r − l) dimensional or codimension-l

face of the fan. For example, the 0-dimensional vertices of the polytope correspond to the r-

dimensional cones and the r−1 dimensional faces associated to each A-variable correspond

to the rays of the fan. We thus have a one-to-one association of A-variables and rays of the

cluster fan, see also table 2.1. These rays are closely related to the g-vectors associated to

the variable and are obtained by a mutation rule, as sketched in the previous section.

Remarkably, as first observed in [51], for finite cluster algebras of Gr(k, n) the cluster

fan is a refinement of the fan of the totally positive tropical configuration space T̃r+(k, n).

7The exchange graph of the cluster algebra is the 1-skeleton of the cluster polytope.
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Algebra
Polytope Fan

Dim. Type Dim. Type

Cluster 0 Vertex d Cone

Mutation 1 Line d− 1 Facet
...

...
...

A-variable d− 1 Facet 1 Ray

Table 2.1: Comparison of the faces of a cluster algebra of rank d, its polytope and the

cluster fan.

That is, the cones of the cluster fan are all contained within cones of the tropical fan. Since

the cones of the cluster fan are all simplicial, it triangulates T̃r+(k, n).

In this triangulation, however, the cluster algebra sometimes introduces redundant rays

– rays of the cluster fan that are not tropical rays. Geometrically, redundant rays are not

on a 1-dimensional but a higher dimensional intersection of tropical hypersurfaces. Instead

they are the positive linear combination of two tropical rays spanning some cone. This is

illustrated on the left hand side of figure 2.3

(a) Finite case (b) Infinite case

Figure 2.3: Illustrative examples of the (redundant) triangulation of a tropical fan by

a (a) finite and (b) infinite cluster algebra. Each of the figures depicts two cones of a 3-

dimensional fan intersected with the unit sphere S2 in black. The cones and the redundant

rays from the redundant triangulation are drawn in red, those from the non-redundant

triangulation in blue.

If the cluster algebra is infinite, e.g. in our case of Gr(4, n) for n ≥ 8, it consists of

infinitely many A-variables and thus also rays. In the regions of the ambient space Rd that

are covered by the cluster fan, it again refines the fan Fk,n of the tropical configuration

space. Since the latter is by construction always finite, almost all of the cluster rays are

redundant. It is therefore natural to expect that the nature of the infinities of the cluster

algebra can be interpreted as a redundant triangulation of Fk,n with infinitely many cones

of the cluster fan containing redundant rays, as is illustrated on the right hand side of

figure 2.3. Note that this (redundant) triangulation property also applies to the fan of any

partial tropicalisation of G̃r+(k, n), such as pF4,n, which is a coarser version of the fully

tropicalised fan and hence also triangulated by the cluster fan.
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To tame the infinity of the cluster algebra, we utilize this relation between the cluster

fan and the fan pF4,n of the partially tropicalised positive configuration space and introduce

the following selection rule: whenever we encounter a cluster containing a redundant ray

we stop mutation in this direction and discard all such redundant clusters. Starting from

the initial cluster, which by construction does not contain redundant rays, and mutating

in this way, we obtain a finite subset of the infinite cluster algebra – the truncated cluster

algebra. Each of the rational A-variables in this subset is then by construction in one-to-one

correspondence to a tropical ray of pF4,n.

3 Infinite mutation sequences and square-root letters

In the previous section, we reviewed how the relation between (partially) tropicalised

Grassmannians and Gr(4, n) cluster algebras always allows one to select a finite subset

of A-variables of the latter, even in the n ≥ 8 case where they are infinite. This selection

rule is then expected to yield the rational letters of the n-particle amplitude in N = 4

pSYM.

In the n ≥ 8 case, non-rational letters are also expected to appear, and a conceptual

advance for obtaining them was achieved in [47–49], building on earlier mathematical devel-

opments [80, 81]: The main idea, applied more concretely to Gr(4, 8), was to also consider

infinite mutation sequences of a rank-2 affine subalgebra, conventionally denoted as A
(1)
1

in the corresponding Dynkin diagram classification, starting from the clusters singled out

by the aforementioned selection rule. For certain of these mutation sequences, the limiting

cluster ray does yield a ray of p̃Tr+(4, 8) that was not previously accessible by the selection

rule, as well as associated square-root letters.

When analysing these infinite mutation sequences, all but two nodes of the cluster

we start from may be considered as frozen. In order for this analysis to be able to cover

p̃Tr+(4, n) for any n, where the frozen nodes will have different structure, it is therefore

necessary to work out A
(1)
1 sequences with general coefficients. We carry out this task,

which also has its intrinsic mathematical merit, in subsection 3.1.

As a check of our formalism, in subsection 3.2 we reapply it to the p̃Tr+(4, 8) case,

and confirm that it provides two rays associated to 18 square-root letters, as was previ-

ously found in [47]. Then, in subsection 3.3 we compare these results with a more recent

refinement of the works [47–49], based on the framework of wall-crossing and scattering dia-

grams [69]. While this approach naively predicts a large number of additional non-rational

letters, very interestingly we find that these are in fact only two: The inequivalent real-

isations of the four-mass box Gram determinant by eight cyclically ordered massless legs,

∆1,3,5,7 and ∆2,4,6,8. In the next section, we will further apply the methods of sec. 3.1 to

p̃Tr+(4, 9), and thus obtain new predictions for the singularities of nine-particle amplitudes.

3.1 Mutation sequence of type A
(1)
1 with general coefficients

In this subsection, we study the infinite mutation sequence of type A
(1)
1 with general coef-

ficients, depicted in figure 3.1. The coefficient-free and principal coefficients case was first
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studied in [80] and [81], and they were later rediscovered in the context of amplitude al-

phabets, either as above or with a special case of frozen variables in [47–49]. For the

convenience of the reader, here we sketch the essential steps for the solution of the corres-

ponding recurrence relation, and defer the remaining proofs and detailed calculations to

appendix A.

y1;0

a1;0

y2;0

a2;0

y2;1

a2;1

y1;1

a1;1

· · ·
y1;j

a1;j

y2;j

a2;j

y2;j+1

a2;j+1

y1;j+1

a1;j+1

· · ·
µ1 µ1 µ1 µ1 µ1

Figure 3.1: Infinite mutation sequence in the affine rank-2 cluster algebra of A
(1)
1 Dynkin

type.

Consider the rank-2 affine cluster algebra of A
(1)
1 Dynkin type with 2 A-variables and

M frozen variables. The coefficients y1;0 and y2;0 are given in terms of the frozen variables

a3, . . . , aM and the adjacency matrix b0ij of the initial cluster as

yj;0 =

M+2∏
i=3

a
b0ij
i , j = 1, 2 . (3.1)

As depicted in figure 3.1, repeated mutation at node 1 gives rise to sequences of A-

variables ai;j and coefficients yi;j with initial values a1;0, a2;0 and y1;0, y2;0, respectively.8

Furthermore, we may also consider the sequence of associated X -variables, which are

given by x1;j = a−22;jy1;j and x2;j = a21;jy2;j . Using the general mutation rules, eqs. (2.10)

and (2.12), we obtain the following recursion relations for these sequences for j ∈ Z

a2;j+1 =
a22;j
a1;j

1 + x1;j

1 ⊕̂ y1;j
, a1;j+1 = a2;j , (3.2)

y1;j+1 =
y2;j y

2
1;j(

1 ⊕̂ y1;j
)2 , y2;j+1 = (y1;j)

−1 , (3.3)

x1;j+1 =
x2;j x

2
1;j

(1 + x1;j)
2 , x2;j+1 = (x1;j)

−1 . (3.4)

Note that the mutation rule for the A-variables presented here is of the form of eq. (2.14)

and again the mutation rule of the X -variables is the same as that of the coefficients

with cluster-tropical addition replaced by normal addition. Further to these sequences, we

introduce the sequence βj of ratios of consecutive A-variables

βj =
a2;j
a1;j

, (3.5)

which, by eq. (3.2), can equivalently be expressed as a1;j+1/a1;j or a2;j/a2;j−1.

8Recall that according to the notation introduced in section 2.3, we have found convenient to label all

variables with a pair of indices indicating their position i in a given cluster j, such that the mutation along

the sequence is always on position i = 1.
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Having obtained the recursion relations for the sequence, we will now turn to its

solution by linearizing eq. (3.2). Similar to [48, 82], we define the two quantities K1,j and

K2,j for each cluster. They are given by

K1,j =
(
γ0γ
−1
j β−10 βj

) [
1 + x1;j + x1;j (x1;j−1)

−1
]
, (3.6)

K2,j =
(
γ0γ
−1
j β−10 βj

)2 [
x1;j (x1;j−1)

−1
]
, (3.7)

where we have included a factor γ0β
−1
0 so as to normalize these quantities at j = 0 for later

convenience, and the auxiliary sequence γj is – up to the prefactors – the cluster-tropical

version of K1,j , defined as

γj = 1 ⊕̂ y1;j ⊕̂ y1;j (y1;j−1)
−1 . (3.8)

Note that K1,j , K2,j and γj depend only on the data of the cluster j, as can be seen

by noting that due to eqs. (3.3)–(3.4), (x1;j−1)
−1 = x2;j and (y1;j−1)

−1 = y2;j . As follows

from the mutation relations, K1,j and K2,j are actually invariant along the sequence, see

appendix A. From now on they will be denoted by K1 and K2, respectively, and in terms

of the initial X -variables they are explicitly given by

K1 ≡ K1,0 = 1 + x1;0 + x1;0x2;0 , K2 ≡ K2,0 = x1;0x2;0 . (3.9)

Using the invariants, we can linearize the recursion relation of the A-variables, eq. (3.2),

to obtain

γ−1j γ−1j+1a1;j+2 − γ−10 β0K1 · γ−1j a1;j+1 + γ−20 β20K2 · a1;j = 0 . (3.10)

By using a1;j+1 = a2;j , this recursion can be recast to give an equation for the variables of

cluster j + 1 in terms of variables of cluster j only. While this is a linear recurrence rela-

tion, the fact that it does not have constant coefficients makes its solution more intricate.

However, by considering the new sequence αj , defined by

αj = γ−10 γ−11 . . . γ−1j−1 · a1;j (3.11)

for j ≥ 0 we obtain another recurrence relation given by

αj+2 − γ−10 β0K1 · αj+1 + γ−20 β20K2 · αj = 0 . (3.12)

Being a linear recurrence with constant coefficients, it may now be solved by standard

methods based on its characteristic polynomial,

P1 (t) = t2 − γ−10 β0K1 · t+ γ−20 β20K2 . (3.13)

The latter has two roots β± that are given by

β± =
a2;0
a1;0

K1 ±
√
K2

1 − 4K2

2γ0
, (3.14)

and which correspond to the j → ∞ limit of both the ratio αj+1/αj and βj , as can be

seen by first observing that αj+1/αj = γ−1j βj . Using that γj → 1 for j →∞, as proven in
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appendix A, it follows that, assuming convergence, the ratio αj+1/αj has the same limit

as βj . Furthermore, dividing the recurrence (3.12) by αj and taking the limit j → ∞, we

see that the limit of the α-ratio, and thus that of βj , is given by the roots of P1.

Using the roots of the characteristic polynomial, we obtain the most general solution

for the sequence a1;j as9

a1;j = (γ0γ1 · · · γj−1)
[
C+ (β+)j + C− (β−)j

]
, (3.15)

whereas we have used eq. (3.11) to express a1;j in terms of αj . Note that since γj becomes 1

for j ≥ J for some integer J , the prefactor becomes constant at some point. The coefficients

C± can be fixed via the initial conditions a1;0 and a1;1 = γ−10 a2;0 to be

C± = a1;0
±2∓K1 +

√
K2

1 − 4K2

2
√
K2

1 − 4K2

. (3.16)

In addition to the infinite mutation sequence of repeatedly mutating a1;j , we can also

consider the opposite direction, which amounts to repeatedly mutating a2;j . As is explained

in more detail in appendix A, the solution to this recurrence can be obtained in a similar

way and is given by

a2;−j = (γ0γ−1 · · · γ−j+1)
−1
[
C̃+ (β−)−j + C̃− (β+)−j

]
, (3.17)

for j ≥ 0. As is demonstrated in appendix A, γ−j also becomes 1 for j ≥ J for some integer

J . The coefficients C̃± can again be obtained from the initial conditions and are given by

C̃± = a2;0
±2K2 ∓K1 +

√
K2

1 − 4K2

2
√
K2

1 − 4K2

. (3.18)

Finally, let us briefly comment on the associated limit ray. In the j → ∞ limit, the

ratio of consecutive cluster variables, eq. (3.14), obeys a generalized form of the separation

principle of eq. (2.15). That is, it factorizes into a monomial in the initial A-variables times

a ratio of algebraic function with a cluster-tropical sum, which can be interpreted as the

(generalized) cluster-tropical version of the algebraic function. In particular, as we have

explained above eq. (3.14), γ0 is the tropical version of K1, and it is natural to consider

it also as the (generalized) cluster-tropical version of
√
K2

1 − 4K2. Analogously to the

definition of g-vectors from the exponents of the A-coordinate representation of eq. (2.15),

from eq. (3.14) we may thus associate gβ = (−1, 1) to the limit. Indeed, considering

the sequence of g-vectors associated to the sequence of A-variables, we find that it does

converge to gβ . Note, however, that this is the limit ray with reference to the A
(1)
1 cluster

algebra only. In practice, to obtain the limit ray of some embedding of such a cluster

algebra, we use the mutation relation for the cluster rays given by eq. (2.17).

9Note that this is in fact the general solution of the quantity αj of eq. (3.11): We have not attempted

to also find the general solution of the γj prefactor, since for our purposes only ratios where this prefactor

cancels will be needed.
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3.2 Application: p̃Tr+(4, 8) and the eight-particle alphabet

The remarkable feature of the infinite mutation sequences considered in the previous

subsection is that they yield quantities containing square roots, see eqs. (3.15), (3.16),

and (3.17), (3.18). The main idea of the works [47–49] was that these quantities thus

provide natural candidates for the non-rational letters of amplitudes, focusing on the then-

unknown frontier of multiplicity eight, related to the Gr(4, 8) cluster algebra. Note that

while the values of the above-mentioned quantities differ depending on the choice of coef-

ficients, square roots are always present.

In more detail, all three aforementioned papers identified A
(1)
1 as an affine rank-2 sub-

algebra of the cluster algebra in question, and [49] analysed this subalgebra with principal

coefficients as a proof of concept. References [47] and [48] additionally found the generat-

ing functional of the mutation sequences, roughly equivalent to the general solutions (3.15)

and (3.17), for the particular case of frozen variables required to analyse the Gr(4, 8) cluster

algebra, from the tropical geometry and stringy canonical form approach, respectively.

If one assumes a one-to-one correspondence between tropical rays and letters of the

symbol alphabet, then the natural choice also respecting the natural symmetry of the latter

is the ratio β+/β−. This possibility cannot be currently excluded if one restricts to MHV

amplitudes, which are technically speaking the only ones having G̃r(4, n) as their space

of kinematics (beyond MHV, the analysis of the kinematic space is complicated by the

existence of rational functions on top of the transcendental ones studied here). Indeed,

through the currently known loop order L = 2, the eight-particle MHV amplitude only

contains rational letters [83, 84], so it could be that the only additional square-root letters

starting to appear at L ≥ 3 are those uniquely associated to tropical rays.

Nevertheless, in [47] it was further noticed that if the direction of approach to the

limit ray is also taken into account, such that many square-root letters are associated to

each limit ray in a particular fashion, then one in fact obtains the complete alphabet of

the 2-loop NMHV amplitude [45], which the unique association of letters to rays cannot

account for. Along with a complementary analysis based on plabic graphs [85–87], see

also [88] appearing simultaneously with this paper, this seems to suggest that despite the

apparent complications mentioned above for non-MHV amplitudes in N = 4 pSYM, the

symbol alphabet may be independent of the helicity configuration, at least at multiplicity

n = 8.

In this paper, we will adopt the prescription of [47] for associating many square-root

letters to a given limiting ray associated to a given A
(1)
1 subalgebra of the truncated Gr(4, n)

cluster algebra, which in the conventions of the previous subsection is given by10

φ0 ≡
C+

C−
=

2−K1 +
√
K2

1 − 4K2

−2 +K1 +
√
K2

1 − 4K2

, φ̃0 ≡
C̃+

C̃−
=

2K2 −K1 +
√
K2

1 − 4K2

−2K2 +K1 +
√
K2

1 − 4K2

, (3.19)

where the quantities appearing here have been defined in eqs. (3.9), (3.16) and (3.18).

The great merit of the analysis we carried out in the previous section, and of the above

formula, is that it can be directly applied to any such subalgebra for any n, not necessarily

10More precisely, when specialized to n = 8 the formulas below reduce to the negative inverse of those

provided in the latter reference, with this difference being immaterial at the level of symbol letters.
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equal to eight. All we need as input is the data of a given origin cluster, namely the cluster

containing a A
(1)
1 cluster subalgebra from which the infinite mutation sequence starts, such

as for example the one depicted in figure 3.2 for n = 8.11

So our results can in principle be specialized to yield predictions for the symbol alpha-

bet of scattering amplitudes at any multiplicity n, and in the next section we will indeed

apply them to the n = 9 case. As a first cross check however, in the remainder of this

subsection we will use our method to confirm the results reported in [47] for the eight-

particle alphabet. Let us also comment that while the prescription (3.19) may currently

seem ad-hoc and only justified by the agreement of its symbol alphabet predictions with

explicit computations, in the next subsection we will provide further evidence about its

correctness by comparing it with a more recent approach based on scattering diagrams and

wall-crossing [69].

Focusing now on the case of eight-particle scattering, we find a total of 3,600 origin

clusters with a A
(1)
1 cluster subalgebra in the 121,460 clusters of the cluster algebra of

Gr(4, 8) truncated by p̃Tr+(4, 8). The rays of the variables mutated in the infinite mutation

sequences starting at these origin clusters converge to four different limit rays. Interestingly,

only two of these limit rays are contained in p̃Tr+(4, 8), whereas the other two are contained

only in T̃r+(4, 8) and not its partially tropicalised version. Similar to the truncation rule

used to obtain a finite subset of rational cluster variables, we discard the limits of the origin

quivers whose limit rays are not contained in p̃Tr+(4, 8). This leaves us with a truncated

set of 2,800 origin clusters of which 56 for each of the two limit rays are unique,12 since

many of these clusters only differ in parts of the quiver that do not affect the A
(1)
1 cluster

subalgebra and thus also not the limit of its infinite mutation sequence.

In this way, we find a total of 112 different origin clusters giving rise to 224 square-

root letters via eqs. (3.19). However, these 224 letters are not multiplicatively independent.

From the perspective of the alphabet – essentially the set of logarithms of these letters –

this means that not all of the letters are linearly independent and hence are redundant.

While the presence of square roots complicates the elimination of these redundancies, this

can be done using an approach similar to that of [89], which we will describe in more detail

in section 4.2, where it is used again. For the case at hand, we find that the aforementioned

224 letters reduce to 18 multiplicatively independent letters, which are equivalent to the

square-root letters reported in [47] and previously known to appear in the two-loop NMHV

eight-particle amplitude, as computed in [45].13

To summarise, in total we obtain all 274 tropical rays of p̃Tr+(4, 8) – 272 rays associated

to one rational letter of the truncated cluster algebra each and 2 rays associated to 9

multiplicatively independent square-root letters obtained as the limits of infinite mutation

11More concretely, to apply the above formulas in this example, we only need to evaluate eq. (3.9) with

x1;0 → x1 and x2;0 → x9.
12The 800 origin clusters whose limit rays are only contained in T̃r+(4, 8) reduce to 32 different origin

clusters for each of the rays.
13Note that the 18 square-root letters can alternatively be obtained by solving polynomial equations

associated to certain plabic graphs [85, 86]. As soon as one attempts to also incorporate rational letters in

this approach, however, non-plabic graphs are required as well [87]. In this case the solution space includes

all cluster variables of Gr(4, 8), that is the alphabet becomes infinite again.
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sequences each. This 290-letter alphabet contains all letters previously known to appear

in the eight-particle MHV and NMHV amplitudes.

3.3 Comparison with the scattering diagram approach

A common element of the majority of different efforts to predict the symbol alphabet of n-

particle amplitudes in N = 4 pSYM, initially based on Grassmannian cluster algebras [16],

and more recently on tropical Grassmannians [47, 49] or stringy canonical forms [48], is

that they correspond to different compactifications of the positive part of the space of

kinematics G̃r(4, n). More recently, another such compactification refining the aforemen-

tioned works, and relying on the concepts of wall-crossing and scattering diagrams, has

been proposed [69].

Having discussed the predictions of the tropical geometry approach for the eight-

particle alphabet in the previous subsection, here we will compare them with those of

the scattering diagram approach. In a nutshell, while the latter yields 72 letters (36 per

limit ray of p̃Tr+(4, 8)), out of which 56 are naively non-rational, we will show that in

fact all of these letters are contained in the 290-letter octagon alphabet of the previous

subsection, except for the square roots of the two Gram determinants associated to the

four-mass box,

∆1,3,5,7 =

(
1− 〈1234〉 〈5678〉
〈1256〉 〈3478〉

− 〈1278〉 〈3456〉
〈1256〉 〈3478〉

)2

− 4
〈1278〉 〈1234〉 〈3456〉 〈5678〉

(〈1256〉 〈3478〉)2
, (3.20)

∆2,4,6,8 =

(
1− 〈2345〉 〈1678〉
〈2367〉 〈1458〉

− 〈1238〉 〈4567〉
〈2367〉 〈1458〉

)2

− 4
〈1238〉 〈2345〉 〈4567〉 〈1678〉

(〈2367〉 〈1458〉)2
, (3.21)

whereas ∆2,4,6,8 is related to ∆1,3,5,7 by the cyclic shift 〈ijkl〉 → 〈i+ 1 j + 1 k + 1 l + 1〉.
We view the almost complete overlap of the two approaches at multiplicity n = 8 as a

strong indication of their correctness, and will further comment on the presence or absence

of the extra letters, eqs. (3.20) and (3.21), from amplitudes and Feynman integrals. To

provide more general backing to this conclusion, later in this section we will also show that

the square-root letters obtained from the tropical geometry approach are always contained

in those of the scattering diagram approach for any n. But before this, let us briefly provide

some background information on scattering diagrams.

Basics of scattering diagrams. A scattering diagram can be thought of as a generalisa-

tion of the g-vector fan of the cluster algebra, as defined by eq. (2.15), that also contains

the limits of infinite mutation sequences. In the g-vector fan of a cluster algebra, each A-

variable is associated to one of the rays in the fan. The rays of all variables in a cluster then

form a cone, which intersects other cones that share some of the variables. A codimension-

1 intersection, or wall, between cones that share all but one variable corresponds to the

mutation of the variable that is not shared.

In the scattering diagram, we associate a variable xγi to each of the rays in a cone.

These cone variables are related to the X -variables of the cone in the following way. Con-

sider a wall of the cone and the X -variable xj that is mutated when passing through the

wall. Denote the (appropriately normalized) vector perpendicular to the wall and pointing
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into the cone by γ⊥j = cjiγi, whereas the γi denote the canonical basis vectors. We then

have the relation

xj =
∏
i

(xγi)
cji . (3.22)

Alternatively, we can use the inverse of eq. (3.22) to express the variables xγi in terms of

the X -variables xi of the cone. Note that the labelling is such that the wall denoted by j

is that which is spanned by the rays associated to all A-variables ai except that of aj . As

we will see shortly, the advantage of using the cone variables is that they remain finite and

have a well-defined limit in the relevant infinite mutation sequences.

The mutation, or wall crossing, of the cone variables is implemented by multiplying

them with powers of a function f(xγ⊥j
) which is attached to each of the walls, whereas

the argument xγ⊥j
is equal to xj or its inverse, depending on the side from which the

wall is approached. For walls that are part of the g-vector fan, this function is given by

f(xγ⊥j
) = 1 + xγ⊥j

. Together with eq. (3.22), this reproduces the mutation rule for the xi.

Extending the cluster algebra framework, the wall crossing function for walls that are not

part of the cluster algebra can be obtained by self-consistency conditions.

Eight-particle alphabet predictions and comparison with tropical geometry. Let

us now review and further analyse the predictions of the scattering diagrams framework for

the alphabet of the eight-particle amplitude [69], as well as compare them to the 290-letter

p̃Tr+(4, 8) alphabet discussed in the previous section. We will only discuss the boundary

structure around one of the two limit rays of Gr(4, 8), since the letters associated to the

other can be obtained by the cyclic shift 〈ijkl〉 → 〈i+ 1 j + 1 k + 1 l + 1〉.
In a first step, one mutates from the initial cluster to an origin cluster containing a

A
(1)
1 subalgebra. Concretely, performing the mutations {1, 2, 4, 1, 6, 8} leads to the cluster

depicted in figure 3.2. The parameterisation of the X -variables xi in this cluster in terms of

Plücker variables as well as all other data required to reconstruct the non-rational alphabet

can be found in appendix B.

x3 x2 x8

x1

x6 x4 x7

x9 x5

Figure 3.2: Principal part of the origin cluster in Gr(4, 8) utilized to find the square-root

letters. From this quiver, it is also evident that Gr(4, 8) ' E
(1,1)
7 in the extended affine

Dynkin diagram classification [71].

Next, one expresses the cone variables along the A
(1)
1 sequence originating from this

cluster in terms of its X -variables xi by using the inverse of eq. (3.22). Compared to the

xi, the cone variables do converge to a finite function when taking the limit of the infinite

sequence. These limits correspond to the cone variables x0γi of a cone asymptotically close

to the limit ray, also known as an asymptotic chamber, and are given by

x0γi = xi for i ∈ {2, 3, 4, 7} ,
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x0γi =
xi
2

(
1 + x1 (1 + x9) +

√
∆′
)

for i ∈ {5, 6, 8} , (3.23)

x0γ1 =
4x1∆

′(
1 + x1 − x1x9 +

√
∆′
)2 , x0γ9 =

x9
4

(
1 +

1− x1(1 + x9)√
∆′

)2

,

where ∆′ = (1 + x1(1 + x9))
2 − 4x1x9 . In contrast to just considering the cluster algebra

itself, one can now utilise wall crossing to find other asymptotic chambers and their vari-

ables. This was carried out in [69] by means of an extensive computer search, yielding

a basis of 36 multiplicatively independent polynomials of the x0γi , proposed to contain all

non-rational letters (in the original X - or Plücker variables) of the eight-particle amplitude.

It was also noticed that 10 of these polynomials depend only on the rational X -variables

xi for i ∈ {2, 3, 4, 7}, such that the set of non-rational letters is immediately reduced to (a

maximum of) 26 letters.

Very interestingly, we notice that for another 6 of these letters the square roots con-

tained in them cancel out, such that they are also secretly rational. What is more, there

are 10 multiplicative combinations of the remaining 20 letters that turn out to be rational

as well,14 see appendix B for details. All in all, this implies that the scattering diagram

approach in fact predicts 26 rational and 10 square-root letters for one of the two Gr(4, 8)

limit rays, and more concretely the latter ones may be chosen to be

f1 =
(
x0γ1
)−1 (

1− x0γ1x
0
γ9

)2
, f2 = x0γ9

(
1− x0γ1x

0
γ9

)2
,

f3 =
1 + x0γ5x

0
γ1x

0
γ9

1 + x0γ5
, f4 =

1 + x0γ8x
0
γ1x

0
γ9

1 + x0γ8
, f5 =

1 + x0γ2
(
1 + x0γ8x

0
γ1x

0
γ9

)
1 + x0γ2

(
1 + x0γ8

) ,

f6 =
1 + xγ3

(
1 + x0γ2

(
1 + x0γ8x

0
γ1x

0
γ9

))
1 + xγ3

(
1 + x0γ2

(
1 + x0γ8

)) ,

f10 = x0γ5
(
1− x0γ1x

0
γ9

)
, (3.24)

together with f7, f8, f9 obtained from replacing x0γ3 → x0γ7 , x0γ2 → x0γ4 , and x0γ8 → x0γ6 . As

already mentioned, another 10 letters associated to the other limit ray may be obtained by

a cyclic shift of the momentum twistors.

How about the relation of the scattering diagram letters to the tropical 290-letter

eight-particle alphabet, discussed in the previous section? Starting with the 26 rational

scattering diagram letters, we find that they are all contained in the p̃Tr+(4, 8) alphabet.

As far as the square-root letters are concerned, as already pointed out in [69], 9 of them

(plus cyclic) are also contained in the p̃Tr+(4, 8) alphabet, and we also confirm this to be

the case. In the square-root letter basis (3.24), these in particular correspond to f1, . . . , f9.

So the final conclusion is that the only scattering diagram letter not contained in the

p̃Tr+(4, 8) alphabet is f10, which remarkably can be written as (see again appendix B)

f10 =
〈1256〉 〈3478〉
〈1278〉 〈3456〉

√
∆1,3,5,7 , (3.25)

14We thank Dima Chicherin for pointing out the existence of these additional relations to us.
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together with its cyclic image, where the square-roots associated to the four-mass box have

been defined in eqs. (3.20) and (3.21). Given that the factor in front of the square root is a

monomial in the rational letters, one could equally well redefine the letter so as to remove

it. For the interested reader, we provide the complete candidate eight-particle alphabet

consisting of the 292 letters coming from the union of the tropical geometry and scattering

diagram approaches in the ancillary file Gr48Alphabet.m, which is attached to the arXiv

submission of this article.

The fact that the two approaches overlap almost completely greatly reinforces the

expectation that all singularities of eight-particle amplitudes are contained in the afore-

mentioned candidate alphabet. In a sense, scattering diagrams provide a more systematic

framework for taking infinite mutation sequences into account, and especially for taking the

direction of approach to a given limit ray into account, thus justifying the particular choice

of eqs. (3.19) for assigning many symbol letters (or equivalently generalisations of rational

cluster variables) to it. On the other hand, while degenerate scattering diagrams have been

proposed as an analog of our method for selecting a finite subset of cluster variables with

the help of tropical Grassmannians, a stumbling block is currently the significant ambiguity

in their construction.15 It would be very interesting to further clarify the relation between

the two approaches. While our discussion so far has been restricted to the n = 8 case, we

will shortly show that their similarity extends to any n: In particular, that the tropical

square-root letters are always a subset of the scattering diagram square-root letters.

Let us also comment on the plausibility of the additional scattering diagram letters,

the square roots of the Gram determinants, eqs. (3.20) and (3.21), appearing as letters

of the eight-particle amplitude. On the one hand, ∆1,3,5,7 and ∆2,4,6,8 are always positive

inside the positive region [48], and so any arguments based on the expectation that amp-

litudes never have singularities in this region cannot exclude it. On the other hand, we

observe that these letters are not present in explicit two-loop results for the (appropriately

normalised) eight-particle amplitude in N = 4 pSYM. As an additional source of inform-

ation on this question, one could also consider the relation between the alphabet of the

latter, and that of five-particle amplitudes in Lorentz-invariant theories, recently estab-

lished in [90]. There, it was pointed out that while analogous square-root letters appear in

individual integrals contributing to the two-loop five-point amplitudes, these cancel out in

appropriately defined finite remainders, see also [91]. This analogy seems to suggest that

at a minimum, ∆1,3,5,7 and ∆2,4,6,8 may contribute to eight-point integrals contributing to

the N = 4 pSYM amplitude. Settling whether they survive in the final expression for the

latter calls for explicit higher-loop computations, however already this discussion points to

scattering diagrams as an attractive tool for studying singularities of Feynman integrals.

Their potential in this respect will be studied elsewhere [92].

Finally, it is interesting to note that the discrete symmetry of the eight-particle alpha-

bet respects some of the structure of the infinite cluster algebra of Gr(4, 8). In particular,

the group of automorphisms of the origin quiver, which can be traced back to the group of

15Note that the set of 26+26 rational letters that come as a byproduct of the scattering diagram analysis

is too small to contain the 2-loop (N)MHV eight-particle amplitude.
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automorphisms of the initial quiver, is given by the transformation

x2 ↔ x4 , x3 ↔ x7 , x6 ↔ x8 . (3.26)

By the general theory [93], this quiver automorphism extends to an automorphism of the

entire (infinite) cluster algebra. When replacing

xi → x0γi , (3.27)

in the above equation, this is also a symmetry of the square-root letters. Furthermore, it

can be easily verified that the rational part of the alphabet is also symmetric under the

same transformation, implying that the truncation procedure as well as the procedure by

which we obtained the square-root letters from the scattering diagram are compatible with

this symmetry of the infinite cluster algebra. Note that this symmetry is specific to the

eight-particle alphabet since this automorphism only exists for Gr(4, 8).

Comparison of algebraic letters at any multiplicity. We now proceed to show that

the tropical square-root letters of eq. (3.19) are contained in the alphabet obtained from the

scattering diagram approach at any multiplicity n. In particular this adds further support

to our analysis of the n = 9 case in the next section, which has been carried out relying on

the aforementioned equation.

For simplicity, let us start by considering an A
(1)
1 cluster algebra with principal coeffi-

cients. The cone variables along the infinite mutation sequence are given by

xγ1;j = (x1;j)
1−j (x2;j)

−j , xγ2;j = (x1;j)
j (x2;j)

1+j . (3.28)

We can now use that x1;j = a−22;jy1;j and x2;j = a21;jy2;j to express the cone variables in

terms of the A-variables and coefficients along the sequence. Due to working with principial

coefficients, it can be shown that (y1;j)
1−j(y2;j)

−j = y1;0 and (y1;j)
j(y2;j)

1+j = y2;0 such

that we can use eq. (3.15) to perform the limit j →∞, which is given by

x+γ1 ≡ xγ1;∞ = y1;0

(
C̃−

)−2
, x+γ2 ≡ xγ2;∞ = y2;0 (C+)2 , (3.29)

where C± and C̃± have been defined in eqs. (3.16) and (3.18), respectively. These are

the variables attached to the asymptotic chamber, which is the cone asymptotically close

to the limit ray that we land in when following the infinite mutation sequence in this

direction. Note that from the aforementioned equations it follows that these variables are

actually algebraic functions in the X -variables x1;0, x2;0 of the initial cluster only, since

x1;0 = a−22;0 · y1;0 and x2;0 = a21;0 · y2;0.
We can now use wall-crossing to obtain the variables of the asymptotic chamber ac-

cessed by following the other direction of the mutation sequence, that is by repeatedly

mutating a2;j . The function associated to the limiting wall of the scattering diagram that

separates the two asymptotic chambers accessed by following the two directions of the

mutation sequence is given by

f(xγ⊥) = y2;0
(C−)2 C̃−

C̃+

≡ 1

y1;0

(
C̃−

)2
C−

C+
, (3.30)
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such that the variables of the other asymptotic chamber can be obtained from

x+γ1 −→ x−γ1 = x+γ1 · f(xγ⊥)2 , x+γ2 −→ x−γ2 = x+γ2 · f(xγ⊥)−2 . (3.31)

From eqs. (3.29)–(3.31), we see that the four variables x±γi associated to the two asymp-

totic chambers are made up of the four coefficients C±, C̃± as well as the initial coefficients

y1;0, y2;0, which are monomials in the rational cluster variables. It then follows immedi-

ately that the algebraic letters of eqs. (3.19) are given as monomials in the multiplicative

basis formed by these four variables. To be precise, we have (φ0)
2 = (x+γ1x

−
γ1)−1 and

(φ̃0)
2 = x+γ2x

−
γ2(x+γ1x

−
γ1)2. An equivalent statement also holds true when considering gen-

eral coefficients, since the generalized versions of eqs. (3.29)–(3.31) only differ by a further

monomial in the rational variables.

4 p̃Tr+(4, 9) and the nine-particle alphabet

In this section, we apply the techniques first introduced in [46, 47, 49], and further developed

in the previous sections, in order to obtain predictions for the symbol alphabet of the

nine-particle amplitude in N = 4 pSYM. In subsection 4.1, we first truncate the infinite

Gr(4, 9) cluster algebra with the help of the inherently finite partially tropicalised positive

configuration space p̃Tr+(4, 9) as reviewed in section 2.1, in order to obtain the rational

part of the alphabet, which we find consists of 3,078 letters in one-to-one correspondence to

tropical rays of p̃Tr+(4, 9). Then, in subsection 4.2 we study infinite mutation sequences

of A
(1)
1 subalgebras of the truncated cluster algebra, and in this fashion determine an

additional 324 limit rays of p̃Tr+(4, 9). It is especially here, that our new results for

such subalgebras with general coefficients, presented in subsections 3.1 and 3.2, allow us to

associate to these rays square-root letters expected to appear in the amplitude, in particular

a total of 2,349 multiplicatively independent such letters. A new feature of the nine-particle

case is that the procedure we have described falls short of yielding 27 rays of p̃Tr+(4, 9).

The discussion of alternative ways for accessing these rays, and of their possible significance

for amplitudes, are presented in the next section.

Before moving on, let us briefly recall the discrete symmetries of N = 4 pSYM amp-

litudes, which will be useful in what follows. Using the supersymmetry of the theory and

combining the amplitudes with different external states into a superamplitude, the latter

can be shown to be invariant under the transformations of the dihedral group [94]. This

symmetry group consists of the n cyclic permutations i → i + 1 of the integer indices of

the Plücker variables, which is equivalent to the cyclic permutation of the columns of the

4 × n matrix describing Gr(4, n), as well as the dihedral flip i → n + 1 − i. For MHV

amplitudes, the aforementioned symmetries straightforwardly carry over to the transcend-

ental functions appearing in them, and hence also to their alphabet. Note that in the case

discussed here n = 9 and throughout the text the identification i+ n ∼ i for the indices of

the Plücker variables is implied.
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4.1 Rational letters from the truncated cluster algebra

Similarly to the eight-particle case, we start mutating from the initial cluster of Gr(4, 9),

which is depicted in figure 4.1. To tame the infinity of the cluster algebra we stop mutat-

〈1235〉 〈1245〉 〈1345〉 〈2345〉

〈1236〉 〈1256〉 〈1456〉 〈3456〉

〈1237〉 〈1267〉 〈1567〉 〈4567〉

〈1238〉 〈1278〉 〈1678〉 〈5678〉

〈1239〉 〈1289〉 〈1789〉 〈6789〉

〈1234〉

Figure 4.1: Initial seed of the cluster algebra of Gr(4, 9). The boxed variables are frozen

and hence not mutated.

ing in a given direction whenever the result of this mutation is a cluster variable whose

associated ray is redundant with respect to the totally positive (partially) tropicalised

configuration space – that is, the ray does not lie on a maximal intersection of tropical hy-

persurfaces. By this truncation procedure, we obtain a finite subset of the infinite cluster

algebra and thus a finite collection of A-variables.

For computational purposes, we computed the truncated cluster algebra in two steps.

First, we performed the aforementioned finite number of mutations only on the adjacency

matrix, eq. (2.13), and cluster rays, eqs. (2.16)–(2.17). Being only matrix operations, this

can be done much more efficiently than factoring the rational expressions of the variables.

Having computed the truncated cluster fan, we scanned it for paths of mutations connect-

ing the initial cluster seed with a cluster containing a given ray. Due to the one-to-one

correspondence of A-variables and rays, we finally mutated the variables along these paths

to obtain all cluster variables.

We find that the truncated cluster algebra obtained from the partially tropicalised

totally positive configuration space p̃Tr+(4, 9) contains 3,078 rationalA-variables in 24,102,954

clusters. These variables are all homogeneous polynomials in the Plücker variables of degree

up to 6, see table 4.1. For comparison, we have also carried out the same truncation pro-

cedure for the full positive tropical configuration space T̃r+(4, 9), this time finding 12,645

A-variables distributed in 55,363,988 clusters, whose multiplicity per degree are also listed

in the same table.

As already mentioned in section 2.2, existing data and symmetry reasons point to

p̃Tr+(4, 9) as the minimal choice relevant for scattering amplitudes, so unless otherwise
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Degree 1 2 3 4 5 6 7 8 9 10 Total

p̃Tr+(4, 9) 117 576 1287 963 126 9 - - - - 3078

T̃r+(4, 9) 117 576 1854 3159 2943 1926 1296 531 180 63 12645

Table 4.1: Number of A-variables of the truncated cluster algebra of Gr(4, 9) grouped by

their (homogeneous) polynomial degree in the Plücker variables. At degree 1, all Plücker

variables appear when also including the frozen 〈i i+ 1 i+ 2 i+ 3〉 variables.

stated we will be focusing on the latter. Explicitly, the A-coordinates of degree up to three

that make up the rational part of our candidate nine-particle alphabet are schematically

given by16

• all single Plücker variables 〈ijkl〉,

• 64 cyclic (37 dihedral) classes of degree two consisting of 〈1i(jkl) ∩ (mno)〉 with

i ∈ {1, 2, 3, 5, 6, 7},

• 143 cyclic (74 dihedral) classes of degree three consisting of

◦ 8 classes of type 〈(̄i) ∩ (jkl) ∩ (mno) ∩ (pqr)〉 with i ∈ {2, 3, 4, 5, 7},
35 of type 〈(̄i) ∩ (jkl) ∩ (m̄) ∩ (nop)〉 with 2 ≤ i ≤ 7 and 4 ≤ m ≤ 9,

20 of type 〈(̄i) ∩ (jkl) ∩ (m̄) ∩ (n̄)〉 with i ∈ {1, 2, 4, 5}, 4 ≤ m ≤ 7, 6 ≤ n ≤ 9,

1 of type 〈(2̄) ∩ (7̄) ∩ (5̄) ∩ (9̄)〉,

◦ 40 classes of type 〈i(12) ∩ (jkl)(mno) ∩ (pqr)〉 with 3 ≤ i ≤ 9,

2 of 〈4(13) ∩ (896)(895) ∩ (6̄)〉 and 〈8(13) ∩ (5̄)(549) ∩ (679)〉,
2 of 〈3(18) ∩ (8̄)(245) ∩ (267)〉 and 〈7(18) ∩ (235)(236) ∩ (5̄)〉,

◦ 30 classes of type 〈i(12) ∩ (klm)(no) ∩ (pqr)s〉 with o = n+ 1,

2 of 〈4(12) ∩ (8̄)(68) ∩ (2̄)5〉 and 〈5(79) ∩ (2̄)(12) ∩ (4̄)6〉,
2 of 〈4(13) ∩ (8̄)(67) ∩ (2̄)5〉 and 〈6(89) ∩ (2̄)(13) ∩ (5̄)7〉,
1 of 〈8(14) ∩ (6̄)(56) ∩ (3̄)9〉.

We have included these, as well as the remaining higher-degree letters, in the ancillary

file Gr49RationalAlphabet.m attached to the arXiv submission of this article, where the

precise ranges of the indices not stated in the text may be found as well. Note that the

representation is not unique due to the many ways to equivalently express these polynomials

via the Plücker identities.

16In this list, all types of letters are to be read as disjoint sets, such that e.g. the 8 classes of type

〈(̄i) ∩ (jkl) ∩ (mno) ∩ (pqr)〉 are meant to not include those of type 〈(̄i) ∩ (jkl) ∩ (m̄) ∩ (nop)〉, etc. We use

notations where (ā) corresponds to the plane (a − 1 a a + 1) in momentum twistor space, the intersection

of a line and a plane is given by 〈I(ab) ∩ (cde)J〉 = 〈IaJ〉 〈bcde〉 + 〈IbJ〉 〈cdea〉 , and the intersection of

two planes by 〈I(abc) ∩ (def)J〉 = 〈IabJ〉 〈cdef〉+ 〈IbcJ〉 〈adef〉+ 〈IcaJ〉 〈bdef〉 for appropriate index sets

I, J ⊂ {1, . . . , 9}. See e.g. [95] for more details.
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In total, the rational part of our candidate nine-particle alphabet consists of 3,087 A-

coordinates forming 3,078 dual conformally invariant letters, arranged in 342 cyclic classes

which always have multiplicity 9. If one also considers the dihedral flip transformation,

the alphabet consists of 9, 37, 74, 57, 7, and 1 dihedral classes of rational letters of degree

1 to 6, respectively (the multiplicity of dihedral classes may be either 9 or 18, depending

on whether a flip relates two cyclic classes or maps one back to itself). Consequently, the

proposed rational alphabet is dihedrally invariant.

Let us conclude this section with some further comparisons and remarks on the struc-

ture of the rational part of our candidate alphabet. First of all, we can compare it with the

explicit results for the symbol of the two-loop NMHV nine-particle amplitude, computed

recently in [74]. The latter contains 99 square-root letters, which we will discuss in the

next section, as well as 522 dual conformally invariant rational letters that are polynomials

in the Plücker variables of degree up to three. We find that all of these rational letters are

indeed contained in our alphabet, which serves as a first consistency check. Note that the

216 nine-particle MHV letters [83] are all rational and contained in the NMHV ones, and

hence our proposal trivially covers this helicity configuration as well.

To make the comparison more precise, the alphabet of [74] contains all degree one

letters of the alphabet proposed here except 〈1357〉 plus cyclic permutations. Further-

more, several cyclic classes of higher degree letters are missing compared to our alpha-

bet. Among those are 27 cyclic classes of degree two letters, 27 cyclic classes of the

type 〈(̄i) ∩ (jkl) ∩ (m̄) ∩ (nop)〉 as well as all but one of the 30 cyclic classes of the type

〈i(12) ∩ (klm)(no) ∩ (pqr)s〉 our proposal includes. Letters of the type 〈i(jk)∩(lmn)(opq)∩
(rst)〉 are not at all contained in the alphabet of the two-loop NMHV nine-particle amp-

litude. Additional evidence in support of our proposal for the rational part of the alphabet

is that it agrees with the one obtained by other means in [75], appearing simultaneously

with this article.

Next, in search of interesting patterns, we may look at what part of the infinite Gr(4, 9)

cluster algebra is chosen by our tropical selection rule according to the degree of the A-

variable with respect to the Plücker variables. As shown in [96], Gr(4, 9) contains 576

cluster variables of degree two, 2,421 of degree three, 8,622 of degree four, and 27,054

variables of degree five. A comparison with table 4.1 demonstrates that our alphabet

contains all possible quadratic cluster A-variables but only a subset of those of degree

three or higher.17 For example, the polynomials

〈4(56) ∩ (8̄)(78) ∩ (2̄)1〉 , 〈(127) ∩ (5̄) ∩ (13i) ∩ (8̄)〉 , (4.1)

with i = 5 or i = 6, are cluster A-variables of degree three but are not associated to tropical

rays of p̃Tr+(4, 9), and hence are not selected by our procedure.

Also, the new data point we have achieved affords us the possibility to also study the

maximal Plücker degree of the letters as a function of the multiplicity n: Considering the

cluster algebra truncated by p̃Tr+(4, n), we observe that the maximum degree of letters

17The same statement for degrees two and three in fact holds also for the eight-particle rational alphabet

we proposed in [49], which contains all 120 quadratic but not all 174 cubic cluster variables of Gr(4, 8) [87, 96]

– 27 –



for n = 6, 7, 8, and 9 is given by 1, 2, 3, and 6 for the same values of n, which interestingly

matches the first few values of the sequence

dmax (n) =

(
n− 5

bn−52 c

)
, (4.2)

where the brackets denote the binomial coefficient and bxc is the floor function. For

T̃r+(4, n), the same count is 1, 2, 5, and 10, which agrees with (n − 6)2 + 1. Given that

the subset of A-variables of fixed degree in the infinite cluster algebras of Gr(4, n) with

n ≥ 8 can be computed by other means [96], knowing the maximal degree of those that

are chosen by our tropical selection rule could thus provide a more direct means for their

determination also at higher n.

As the approach we develop in this paper in principle applies to any n, let us con-

clude this section with some further general predictions. More precisely, the truncation

procedure for selecting a finite subset of Gr(4, n) cluster variables, as predictions for the

rational part of the symbol alphabet, is algorithmic (and similarly for our infinite mutation

sequence analysis yielding predictions for the square-root letters). While the constructive

determination of this finite subset has to be done separately for each value of n, and its

computational complexity increases with n, the initial cluster of Gr(4, n) will always be

selected. Hence the cluster variables it contains, namely the Plücker variables

〈1234〉 , 〈123i〉 , 〈12i− 1 i〉 , 〈1i− 2 i− 1 i〉 , 〈i− 3 i− 2 i− 1 i〉 with 5 ≤ i ≤ n , (4.3)

as well as their dihedral images (since our truncation procedure respects dihedral sym-

metry) will always be included in our prediction for the rational part of the symbol of the

n-particle amplitude.

4.2 Square-root letters from infinite mutation sequences

Having obtained a candidate for the rational part of the alphabet of nine-particle amp-

litudes in the previous subsection, here we will enlarge it so as to also include square-root

letters. The general procedure for doing so has been presented in section 3, and relies on

considering infinite mutation sequences starting from any origin cluster of the truncated

cluster algebra, that contains an A
(1)
1 subalgebra. As with the eight-particle case, dis-

cussed in section 3.2, in the first instance we examine the limit of cluster rays along the

sequence, and only select it, along with its associated square-root letters (or generalised

cluster variables) if this limit coincides with a tropical ray of p̃Tr+(4, 9).

This step therefore requires knowledge of all tropical rays. While these may be obtained

with the help of dedicated software such as polymake [97], fortunately most of the work

has already been done in [62]. There, the dual fan of the tropical configuration space

T̃r+(4, 9) [51, 98], namely the Minkowski sum of the Newton polytopes P (4, 9) obtained

from the web-parameterisation of the Plücker variables, has been computed. Since all

p̃Tr+(4, 9) rays are contained in T̃r+(4, 9), we may thus extract them from the provided

P (4, 9) data. As a technical remark, in this data the rays (or facets, in the language of the

dual polytope) are provided in the space of D = 126 Plücker coordinates 〈ijkl〉, however
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it is easy to obtain its rays in the space of the d = 12 variables of the (tropicalised)

web-parameterisation we review in appendix C: One needs to simply express the Plücker

coordinates in terms of the d web-parameters, and solve for the latter after equating the

former to the value of the D-dimensional rays.

In this fashion, we find that out of the 19,395 T̃r+(4, 9) rays, a total of 3,429 is con-

tained in the partially tropicalised, totally positive configuration space p̃Tr+(4, 9). We

have already seen that 3,078 of these rays are associated to A-variables in the truncated

cluster algebra thus corresponding to rational letters. Next, we scan the cluster algebra of

Gr(4, 9) truncated by p̃Tr+(4, 9) and identify a total of 549,180 origin clusters, from which

we obtain the limit rays by numerically evaluating eq. (2.17) for a sufficient number of

mutations along the infinite sequence. This yields another 324 rays of p̃Tr+(4, 9) that are

not in the truncated cluster algebra.

After having obtained the limit rays, the next step is to associate two square-root

letters to each origin cluster they can arise from, according to eq. (3.19). As already

pointed out, the merit of the analysis of A
(1)
1 sequences with general coefficients, that we

carried out in subsection 3.1, is that we can immediately obtain the square-root letters in

question by simply plugging in the X -coordinates of the A
(1)
1 subalgebra of a given origin

cluster in eq. (3.9). It is important to bear in mind, however, that many of these letters are

identical, since mutating an origin cluster at a node not connected to the subalgebra will

not change the data relevant for the limit. Furthermore, the resulting distinct square-root

letters are not all multiplicatively independent, such that not all of them are required to

describe the symbol of the amplitude.

To obtain a basis of these letters, we adopt the following approach, which is similar to

that of ref. [89]. Given any set of letters, we first express them in terms of 12 independent

variables, for example with the help of the web-parameterisation. We then evaluate these

variables at some prime values, and find multiplicative relations of numerically evaluated

letters by sampling all possible such relations with a fixed total integer power.18 Having

reduced the letters to some smaller set, say of size m, we can verify whether no more

relations exist by evaluating the logarithm of the letters at m different evaluation points.

In this logarithmic form, multiplicative relations among the letters correspond to integer-

coefficient linear relations. Hence, if the rank of the m×m matrix formed by the evaluations

of the letters is maximal, no further relations can exist.

For the case of the square-root letters obtained from A
(1)
1 sequences, we find that there

is a one-to-one correspondence between the radicand of the square-root and the limit ray.

This implies that there can only be multiplicative relations among letters obtained from

sequences with the same limit ray. In total, we find 2, 349 multiplicatively independent

square-root letters in 36 cyclic (21 dihedral) classes associated to the 324 limit rays. Ar-

ranged according to the number of multiplicatively independent sets of letters per ray, or

equivalently per radicand, they consist of

• 6 cyclic (3 dihedral) classes of sets of 5 multiplicatively independent letters,

18Note that once we find a relation in this numeric evaluation, we can also verify it symbolically.
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• 8 cyclic (4 dihedral) classes of sets of 6 independent letters,

• 8 cyclic (4 dihedral) classes of sets of 7 independent letters,

• 6 cyclic (4 dihedral) classes of sets of 8 independent letters,

• 2 cyclic (1 dihedral) classes of sets of 9 independent letters,

• 5 cyclic (4 dihedral) classes of sets of 10 independent letters, and

• 1 cyclic (1 dihedral) class of a set of 11 independent letters,

Since the explicit expressions for these letters are quite complicated, we will refrain from

quoting them here, and instead provide them in the ancillary file Gr49AlgebraicAlphabet.m

attached to the arXiv submission of this article. We now briefly comment on some prop-

erties of this alphabet.

First of all, comparing the square-root letters presented in this article to those of the

two-loop nine-particle NMHV amplitude reported in [74], we find that the 9 × 11 letters

put forward in the aforementioned reference precisely correspond to the last cyclic class

of 11 multiplicatively independent letters of our proposed non-rational alphabet. Together

with a similar analysis we carried out in the previous section for the rational letters, this

implies that we obtain the entire two-loop nine-particle (N)MHV alphabet as part of our

approach, which thus passes a quite nontrivial consistency check.

Furthermore, as can be seen from the above presentation of the square-root letters, the

alphabet is invariant under the dihedral transformations. The dihedral flip transformation

maps a cyclic class with a given number of multiplicatively independent letters to another

class of the same size, whereas the letters obtained from φ0, eq. (3.19), get mapped to those

obtained from φ̃0 and vice versa.

Let us also comment on the structure of square roots appearing in our algebraic letters.

We can rewrite φ0 and φ̃0 into the form of (ai±
√
a2i − 4bi)/2. As we saw in subsection 3.2,

in the case of eight-particle amplitudes the radicand ∆ = a2i − 4bi ≡ K2
1 − 4K2 is always

proportional to one of the square-roots of the eight-point four-mass boxes ∆1,3,5,7 and

∆2,4,6,8, see in particular eqs. (3.20) and (3.21), and e.g. [70] for more details on the four-

mass boxes. However, in the non-rational alphabet for nine-particle amplitudes suggested

here, we find that only the radicands of the last cyclic class of 11 independent letters each

are proportional to the square-roots of the nine-point four-mass boxes, ∆1,3,5,7 and its

cyclic permutations (a total of nine), which are the square-root singularities obtained from

the Landau analysis at two loops [99]. For example, we also find square-root letters whose

radicand is given by

∆ ∝ A2 − 4B , with (4.4)

A = 1− 〈6789〉 〈13 (278) ∩ (246)〉2

〈1235〉 〈1289〉 〈3567〉 〈1679〉2
+
〈1267〉 〈23 (146) ∩ (178)〉 〈46 (278) ∩ (129)〉

〈1235〉 〈1289〉 〈3567〉 〈1679〉2
,

(4.5)
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B =
〈1267〉 〈23 (146) ∩ (178)〉 〈46 (278) ∩ (129)〉

〈1235〉 〈1289〉 〈3567〉 〈1679〉2
, (4.6)

which is not proportional to one of the four-mass boxes. Attributing the additional square

roots we find to particular integrals is a very interesting question we leave for future work.

As a further check of the nine-particle singularities we have obtained, the Landau

equations also predict that the branch points bi = 0 correspond to the zero loci of some

rational letters. And indeed, we confirm that this holds for all the square-root letters of

our candidate non-rational alphabet for nine-particle scattering. In fact, this is a general

property for all square-root letters obtained by the prescription of eq. (3.19), independent

of the particle number n, as we now show. Rewriting these in the form discussed in the

previous paragraph, we obtain b1 = −x1;0 for φ0 and b2 = −x21;0x2;0 for φ̃0, whereas

x1;0, x2;0 are the X -variables corresponding to the A
(1)
1 cluster subalgebra in the origin

clusters. Since the X -variables are monomials in the cluster A-variables, the branch points

bi = 0 of all square-root letters are the zero loci of some letters from the rational alphabet.

To summarise, we have obtained 3,078 rational and 2,349 square-root letters. Whereas

the rational letters are in one-to-one correspondence to tropical rays of p̃Tr+(4, 9), the

square-root letters are associated to a total of 324 tropical rays, in sets containing between

5 and 11 letters per ray. This is very similar to the eight-particle case, where 9 square-root

letters are associated to each of the two limit rays.

A great qualitative difference between the eight- and the nine-particle case is that we

no longer obtain all tropical rays of p̃Tr+(4, 9) from the Grassmannian cluster algebra by

selection or an A
(1)
1 mutation sequence: In particular we can access 3,402 out of the 3,429

such rays in this manner, so we fall short of 27 p̃Tr+(4, 9) rays. Given the great jump in

complexity between the Gr(4, 8) and Gr(4, 9) cluster algebras,19 perhaps the real surprise

is not that we cannot access all rays by our method, but that the number of rays we cannot

access is so small.

Nevertheless, in the next section we will explore more general infinite mutation se-

quences of A
(1)
m Dynkin type as a possible means for obtaining the missing rays, as well as

touch on their implications for amplitude singularities. Before concluding, it’s also worth

mentioning that in its current state of development, neither the scattering diagram ap-

proach [69] that we discussed in detail in subsection 3.3 can solve the mystery of the 27

missing rays, as it too relies on infinite mutation sequences starting from within the cluster

algebra.

5 One generalisation of infinite mutation sequences

For the case of eight-particle scattering we have seen that all rays of p̃Tr+(4, 8) can be

obtained from the Gr(4, 8) cluster algebra with the help of infinite mutation sequences of

type A
(1)
1 , however an analogous statement is not true for nine-particle scattering. While

the square-root letters associated to the accessible rays agree with explicit two-loop results

19In particular, while the cluster algebras of both Gr(4, 8) and Gr(4, 9) are infinite, the former one is of

finite mutation type, implying that it consists of only a finite number of different quivers, see e.g. [27, 71].
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for both multiplicities, it remains unclear whether the missing rays contribute additional

amplitude singularities in the latter case.

For this reason, in this section we will study a generalisation of the considered mutation

sequences aiming to access the missing rays. The starting point is the observation that

the property allowing us to associate a sequence to a cluster algebra is the periodicity of

its quivers [82]. A quiver is said to be cluster-mutation periodic of period p, if there is a

sequence of p mutations resulting in a quiver isomorphic to the initial one. Consider for

example the quiver of the A
(1)
1 cluster algebra, fig. 3.1, which has period one since mutating

any of its two nodes flips the double-arrow resulting in the same quiver up to relabelling

the nodes.

If a quiver is periodic in this sense, we can repeat the same mutation infinitely many

times thus giving rise to an infinite mutation sequence. Since the rational functions,

eqs. (2.10) and (2.12), that realise the mutation are determined by the quiver, the period-

icity allows us to write down a recurrence relation for all clusters along the sequence,

ai;j+1 = Mi (a1;j , . . . , ar;j ; y1;j , . . . , yr;j) . (5.1)

Unlike for generic cluster algebras, due to the periodicity of the quiver, the rational function

Mi does not depend on j but is the same for all clusters along the sequence.

Note that in general, while we may repeat the mutation infinitely many times, the

resulting sequence may be periodic, that is consisting of only a finite set of different A-

variables. This is the case whenever the considered cluster algebra is finite, like for example

for the cluster algebra of A2 Dynkin type, whose quiver is given by two nodes connected by

one arrow. The corresponding cluster algebra is finite with five clusters and five variables.

Periodic clusters have been studied and classified in [82] for period one and two. Us-

ing this perspective, in this section we consider cluster algebras of A
(1)
m Dynkin type for

m ∈ N, which are the largest class of period one primitives, the building blocks of all

period one cluster algebras. To the best of our knowledge the analysis of their infinite

mutation sequences is new, and thus may be of intrinsic mathematical interest irrespective

of the question of the missing rays. Subsection 5.1 works them out in analogy to subsec-

tion 3.1, subsection 5.2 explores the possibility of using these sequences to obtain algebraic

letters beyond the A
(1)
1 singularities, and subsection 5.3 discusses the inherent limitations

of accessing the limit rays from the Gr(4, n) cluster algebra for n ≥ 9. We again refer to

appendix A for details of the proofs which are omitted in the main text.

5.1 Mutation sequences in A
(1)
m with general coefficients

The cluster algebras of A
(1)
m Dynkin type are rank-(m+1) cluster algebras whose eponymous

quivers are depicted in figure 5.1. As can be easily seen, mutating at either the source or

sink (ie. the node of a1;j or am+1;j) leads to the same quiver with the labels of the nodes

rotated clockwise by one position. In this section, we will discuss the repeated mutation

at the source, that is we always mutate a1;j . For the other direction, see appendix A.

The A
(1)
m cluster algebras can also be considered as arising from the surface A(m, 1),

which is the annulus with m marked points on the outer and one marked point on the inner
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· · ·

a1;j

a2;j · · · am;j

am+1;j am+1;j+1

a1;j+1 · · · am−1;j+1

am;j+1

· · ·
µ1 µ1 µ1

Figure 5.1: Clusters j and j + 1 along the considered mutation sequence of the cluster

algebra of A
(1)
m Dynkin type. The coefficients are omitted in the figure.

boundary. In this formalism, a cluster of the cluster algebra corresponds to a triangulation

of this surface, in which each arc connecting two marked points (or one with itself) cor-

responds to a variable of the cluster, see fig. 5.2 for an example or [71] for details on this

relation.

Figure 5.2: Annulus with two marked points on the outer and one marked point on the

inner boundary. Corresponds to the initial cluster of the A
(1)
2 cluster algebra.

The cluster algebras of A
(1)
m Dynkin type are cluster-mutation periodic with period one.

From the geometric perspective of the annulus we described, this periodicity corresponds

to winding the arcs around the inner boundary, which can be considered as a redundancy

in the cluster algebra [100, 101]. We may remove this redundancy by replacing it with

quantities that are invariant under mutation or, geometrically speaking, a winding by 2π

along the sequence. For m = 1 these invariants are the building blocks of the square-root

letters for eight- and nine-particle scattering.

Consider now the infinite mutation sequence depicted in fig. 5.1, which starts at the

initial cluster j = 0. We can immediately write down the mutation relations for the

variables and coefficients along this sequence by applying eqs. (2.10) and (2.12) to the

depicted clusters. They are given for any j ∈ Z by

am+1;j+1 =
a2;jam+1;j

a1;j

1 + x1;j

1 ⊕̂ y1;j
, (5.2)

y1;j+1 =
y2;j y1;j(
1 ⊕̂ y1;j

) , ym;j+1 =
ym+1;j y1;j(

1 ⊕̂ y1;j
) , ym+1;j+1 = (y1;j)

−1 , (5.3)

x1;j+1 =
x2;j x1;j

(1 + x1;j)
, xm;j+1 =

xm+1;j x1;j
(1 + x1;j)

, xm+1;j+1 = (x1;j)
−1 . (5.4)
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Note that as in the case of A
(1)
1 sequences (and, in fact, for any cluster algebra) the mutation

rule of the X -variables is that of the coefficients with tropical addition changed to normal

addition. Also similar to the case of A
(1)
1 , we used that the X -variable associated to a1;j is

given by x1;j = (a2;jam+1;j)
−1 y1;j to arrive at eq. (5.2). The other variables and coefficients

are not mutated but only shifted in their first index by

ai;j+1 = ai+1;j for i 6= m+ 1 , (5.5)

yi;j+1 = yi+1;j for i /∈ {1,m,m+ 1} , (5.6)

xi;j+1 = xi+1;j for i /∈ {1,m,m+ 1} . (5.7)

In [82], infinite mutation sequences of type A
(1)
m without coefficients20 were analysed

by linearising the recursion relations. Following this approach, which we have also used in

section 3, we first introduce the sequence βj of ratios, which is defined as

βj =
am+1;j

a1;j
. (5.8)

Again this is the ratio of the sink-variable over the source-variable. Furthermore, we can

again express βj also as a1;j+m/a1;j and other equivalent ways by using eq. (5.5). We also

define the auxiliary sequence γj as

γj = 1 ⊕̂ y1;j ⊕̂ y1;j (y1;j−m)−1 . (5.9)

Having defined the generalisations of βj and γj for any m, we continue by also defining the

two quantities

K1,j =
(
γ0γ
−1
j β−10 βj

) [
1 + x1;j + x1;j (x1;j−m)−1

]
, (5.10)

K2,j =
(
γ0γ
−1
j β−10 βj

)(
γ0γ
−1
j−m+1β

−1
0 βj−m+1

) [
x1;j (x1;j−m)−1

]
, (5.11)

whereas we inserted the factor γ0β
−1
0 to normalise these quantities at j = 0 for later

convenience. We also may express K1,j , K2,j and γj in terms of the variables of cluster

j only. Using the mutation rules in the opposite direction, ie. mutating at am+1;j , see

appendix A, we can express x1;j−m in terms of cluster j as

(x1;j−m)−1 = x2;j (1 + x3;j (1 + · · ·xm;j (1 + xm+1;j))) . (5.12)

Equivalently, we obtain the same relation for y1;j−m by replacing xi;j by yi;j and addition

by cluster-tropical addition. Using the original definition, eq. (5.10), and the mutation

rules, eqs. (5.2)–(5.4), it can be shown that K1;j and K2;j are in fact invariant along the

sequence and are thus given in terms of the initial cluster variables as

K1 ≡ K1,0 = 1 + x1;0 (1 + x2;0 (1 + x3;0 (1 + · · ·xm;0 (1 + xm+1;0)))) , (5.13)

20The cluster algebra without coefficients can be obtained from that with general coefficients by setting

the initial coefficients to one. Due to the mutation relations, the coefficients and (1 ⊕̂ y1;j) will then be

equal to one in every cluster and will not influence the other mutation relations.
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K2 ≡ K2,0 = x1;0x2;0 (1 + x3;0 (1 + · · ·xm;0 (1 + xm+1;0))) . (5.14)

Using these invariants we can linearise the recursion relation (5.2). As before, the

homogeneous, linear recurrence obtained when considering the sequence a1;j , given by

γ−1j γ−1j+ma1;j+2m − γ−10 β0K1 · γ−1j a1;j+m + γ−20 β20K2 · a1;j = 0 , (5.15)

does not have constant coefficients. Hence, we define the new variable αj for j ≥ 0 by

αj = γ−1jmodmγ
−1
(jmodm)+m · · · γ

−1
j−2mγ

−1
j−m · a1;j . (5.16)

Note that this is to be read that for 0 ≤ i < m we have αm+i = γ−1i · a1;m+i, and

α2m+i = γ−1i γ−1m+i ·a1;2m+i, and so on. In terms of this sequence, the recurrence is given by

αj+2m − γ−10 β0K1 · αj+m + γ−20 β20K2 · αj = 0 , (5.17)

with initial values α0, . . . , α2m−1, which in turn can be expressed in terms of the variables

and coefficients of the initial cluster via the mutation relations, eqs. (5.2)–(5.4). Observing

that αj+m/αj = γ−1j βj and that γj → 1 for j →∞, as proven in appendix A, we see from

this recurrence that, assuming convergence, the respective limit of βj is obtained as the

solution of the equation

β2 − γ−10 β0K1 · β + γ−20 β20K2 = 0 , (5.18)

which has the two solutions β± given by

β± = β0
K1 ±

√
K2

1 − 4K2

2γ0
. (5.19)

Similar to before, we now turn to discussing the solution of the recurrence (5.17), using

standard methods based on its characteristic polynomial,

Pm(t) = t2m − γ−10 β0K1 · tm + γ−20 β20K2 . (5.20)

Its 2m roots are given by β
1/m
± ηim for i = 0, . . . ,m − 1 and whereas ηm is the m-th root

of unity. To see this, note that we may first solve for the roots in terms of tm resulting in

tm = β±. Accordingly, the most general solution to the recurrence is given by

αj =
[
c+0 + c+1 η

j
m + · · ·+ c+m−1η

(m−1)j
m

]
(β+)

j
m +

[
c−0 + c−1 η

j
m + · · ·+ c−m−1η

(m−1)j
m

]
(β−)

j
m .

(5.21)

The 2m coefficients c±i for i = 0, . . . ,m − 1 can be obtained from the initial values

α0, . . . , α2m−1 and can thus ultimately be expressed in terms of the quantities of the ini-

tial cluster. Note that since ηm is m-periodic, the overall coefficients multiplying (β±)j/m,

denoted by C±(j), only depend on (jmodm), implying that they assume a total of m

different values.
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5.2 Beyond A
(1)
1 singularities?

Having obtained the general solution of the infinite mutation sequences of type A
(1)
m , let

us now discuss how we could attribute algebraic letters, or generalised cluster variables, to

their rays.

Similar to the discussion of the m = 1 case, if we were to take the direction of approach

to the ray into account, then the m ≥ 1 analog of eq. (3.19) would mean to assign 2m letters

defined as C+(i)/C−(i) and C̃+(i)/C̃−(i) for i = 0, . . . ,m − 1 to each ray. As is discussed

in appendix A, these are given by

φi ≡
C+(i)

C−(i)
=

(
K1 −

√
K2

1 − 4K2

K1 +
√
K2

1 − 4K2

)i/m
2Fi −K1 +

√
K2

1 − 4K2

−2Fi +K1 +
√
K2

1 − 4K2

, (5.22)

φ̃i ≡
C̃+(i)

C̃−(i)
=

(
K1 −

√
K2

1 − 4K2

K1 +
√
K2

1 − 4K2

)i/m
2F̃iK2 −K1 +

√
K2

1 − 4K2

−2F̃iK2 +K1 +
√
K2

1 − 4K2

, (5.23)

for i = 0, . . . ,m− 1 and whereas Fi and F̃i are rational functions of the X -variables of the

initial cluster j = 0, which are given by

F̃i =
Km+1−i
Km+1

, Fi =

{
1 if i = 0 ,

K1 −Ki+1 otherwise.
(5.24)

In the definition of these rational functions, we used Ki, which is a generalisation of the

invariants, eqs. (5.13) and (5.14), and defined for 1 < i ≤ m+ 1 as

Ki = x1;0 · · ·xi;0 (1 + xi+1;0 (1 + · · ·xm;0 (1 + xm+1;0))) . (5.25)

Note that since F0 = F̃0 = 1, the expressions (5.22) and (5.23) simplify for i = 0 to those

of eq. (3.19), evaluated with the generalised invariants of eqs. (5.13) and (5.14).

However, the non-rational letters obtained from the above formulas for m > 1 qual-

itatively differ from those with m = 1. For m = 1 we observe a one-to-one association of

the radicand, K2
1 − 4K2, to the limit ray of the sequence. Since such non-rational letters

with the same radicand can have multiplicative relations among each other, this allows the

reduction of the letters associated to any such ray to a smaller, multiplicatively independ-

ent set. For m > 1, however, this is no longer true, as we observe that these radicands are

different for every origin cluster irrespective of the limit ray, implying the multiplicative

independence of all such letters. Considering for example just the letters obtained from

eqs. (5.22) and (5.23) with m = 2 and i = 0, one would obtain 2912 additional, multiplic-

atively independent square-root letters for eight-particle scattering, where all p̃Tr+(4, 8)

rays have already been determined.21

The fact this large number of additional letters is not encountered in the existing

amplitude computations, seems to suggest their irrelevance. We stress again that they

arise as a generalisation of the prescription of eq. (5.22), which may not be applicable

to higher m. Nevertheless, we find it interesting that it is possible to obtain additional

algebraic letters in this fashion.

21We find sequences with up to m = 4 in the cluster algebra of Gr(4, 8) truncated by p̃Tr+(4, 8).
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5.3 The limitations of infinite mutation sequences

Finally, let us turn to the question of whether infinite mutation sequences more general

than A
(1)
1 can account for the missing p̃Tr+(4, 9) rays. Scanning the approximately 24

million clusters of the cluster algebra of Gr(4, 9) truncated by p̃Tr+(4, 9), we find that

they contain cluster subalgebras of type A
(1)
m with up to m = 5. Unfortunately, however,

the limit rays of these sequences are only a subset of the 324 limit rays of A
(1)
1 ones. In

addition, we have checked all primitives of period one with rank up to 622 and found that

they also do not account for these missing rays.

These results are in fact in line with an inherent limitation on accessing all tropical

rays from within the cluster algebra, as we will now discuss. For infinite cluster algebras,

e.g. for those of the Grassmannians with k = 4, n ≥ 8, the cluster fan is not complete

(see eg. [102, Remark 3.2]). This means that the fan does not cover the entire ambient

space Rd, with d the rank of the cluster algebra, and thus also cannot triangulate the entire

p̃Tr+(k, n). An example for such an infinite cluster algebra of rank two, also considered

in [81, 103, 104], is depicted in figure 5.3.

a1 a2

Figure 5.3: Example for an infinite cluster algebra.

The fan of this cluster algebra is two-dimensional with the rays of the initial clusters

being the canonical unit vectors. In it, there are two infinite mutation sequences – re-

peatedly mutating at either the sink or the source of the quiver – which converge to two

different rays, as depicted in fig. 5.4. The two-dimensional gap of the fan is also clearly

visible in this figure. If a cluster algebra contains such an algebra as a subalgebra, its fan

is expected to also be incomplete.

Figure 5.4: Sketch of the fan of the cluster algebra with two nodes connected by three

arrows. The cluster algebra is infinite with two infinite sequences approaching the two rays

highlighted in red.

In the case of eight particles, the truncated cluster algebra only contains clusters with

infinite mutation sequences whose fans leave one-dimensional gaps, which could be taken

22In the notations of [82], these correspond to the quivers labelled by P
(2)
i for i = 4, 5, 6 and P

(3)
6 .
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care of by including the limit ray of the sequence. This is no longer the case for nine

particles, since the truncated cluster algebra also contains clusters with nodes connected

by three arrows, such as the one depicted in fig. 5.5.

a7a2 a8

a5a9 a1

a10 a12

a3a4 a6

a11

Figure 5.5: Example of a cluster in the truncated cluster algebra of Gr(4, 9) containing

nodes connected by three arrows. The A-variables ai correspond to certain rational nine-

particle letters. The frozen variables are omitted in order to avoid clutter.

Due to the existence of such clusters, it is expected that the cluster fan for nine particles

contains higher-dimensional gaps. This might suggest that (some of) the 27 missing rays

are located in the interior of such gaps, explaining why they could not be reached by

any limiting procedure from within the cluster algebra. Note that the truncation of these

infinite cluster algebras by the selection rule provided by the partially tropicalised positive

configuration space creates further gaps in the cluster fans.

Having motivated an explanation for the inaccessibility of certain tropical rays starting

from the Gr(4, n) cluster algebra, some the most important open questions that remain

include whether there exist alternative ways for obtaining these rays, that also associate

some form of generalised cluster variables to them, and whether the latter provide any

further information on the singularities of amplitudes. Perhaps the inaccessibility of the

missing rays of the cluster algebra is related to the appearance of functions beyond multiple

polylogarithms in N = 4 pSYM n-particle amplitudes: Indeed, while it is known that such

functions certainly appear at n = 10 [105], the possibility that these in fact also appear

at lower n is currently not excluded. If this turns out to be true, then the appropriate

generalisation of cluster algebras may go hand in hand with a corresponding generalisation

of the notion of symbol letters along the lines of [106]. We leave these exciting questions

for future work.

6 Conclusions & Outlook

In this article, we have developed a general procedure for obtaining a finite collection

of rational and square-root letters expected to appear in the symbol of N = 4 pSYM

amplitudes for arbitrary multiplicity n, and we have concretely applied it for the first time

to the case n = 9. Our work builds on the earlier observation that the amplitude symbol

letters coincide with the variables of the Gr(4, n) cluster algebra for n = 6, 7 [16], and on
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the proposal for curing the infinity of the cluster algebra in question for n ≥ 8 with the help

of geometric objects known as (duals of) tropical Grassmannians [46–49]. In particular,

focusing on the then first nontrivial case n = 8, the latter papers showed that tropical

Grassmannians select a finite subset of rational variables of the Gr(4, n) cluster algebra,

as well as motivate the inclusion of certain generalisations of cluster variables that contain

square roots, and are related to infinite mutation sequences of a rank-two (A
(1)
1 ) subalgebra

of the cluster algebra.

The precise form of these generalisations of cluster variables, or equivalently square-

root letters, also depends on certain Gr(4, n) cluster variables that appear as so-called

coefficients of the rank-two subalgebra. Therefore in order for the aforementioned analysis

to be applicable to arbitrary multiplicity n, it is necessary to work out A
(1)
1 sequences with

general coefficients. In this work we fill this gap, and in fact we study infinite mutation

sequences of larger class of rank-(m + 1) cluster algebras, denoted as A
(1)
m in the affine

Dynkin diagram classification, with general coefficients. As a cross-check of our results,

after specialising to m = 1 we first apply them to the known Gr(4, 8) case, not only finding

perfect agreement with the earlier proposal for the symbol alphabet of the eight-particle

amplitude, but also comparing them with a more recent, alternative proposal based on the

closely related approach of [69]. Very interestingly, we find that the two approaches have a

highly non-obvious, almost complete overlap in their predictions, the only additional letters

provided by scattering diagrams being the two square roots associated to the four-mass

box, eqs. (3.20) and (3.21).

With the confidence gained by this comparison, we then move on to the main ap-

plication of our results, the generation of new predictions for the symbol alphabet of the

nine-particle amplitude with the help of cluster algebras and tropical geometry. First, our

tropical selection rule picks a finite subset of 3, 078 Gr(4, 9) cluster variables as a can-

didate for the rational part of the alphabet, arranged in over 24 million clusters. Then,

the analysis of infinite rank-two mutation sequences with general coefficients contained in

the aforementioned clusters yields another 2, 349 square-root letters expected to appear in

the symbol. We have confirmed that our thus obtained collection of nine-particle letters

passes all available consistency checks; namely it respects the discrete symmetries of the

amplitude, it agrees with requirements on the position of branch points coming from the

Landau equations, and it contains all letters found in an explicit 2-loop calculation of the

NMHV nine-particle amplitude [74].

At the same time, our analysis reveals new qualitative features starting at n ≥ 9, which

call for further inquiry. Both the selected Gr(4, n) cluster variables and their square-root

generalisations are associated to building blocks of the tropical Grassmannian, known as

tropical rays. While all of these could be accessed from the cluster algebra when also

including A
(1)
1 infinite mutation sequences for n = 8, this is no longer the case at n = 9,

where 27 out of 3,429 tropical rays are left unaccounted for. In subsection 5.3 we presented

evidence suggesting the existence of an obstruction independent of the type of infinite

mutation sequence chosen, and commented on the potential physical significance of the

missing rays for amplitude singularities.

As a complementary direction for addressing some of these open questions, it is in-
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teresting to note that all eight-particle square-root letters can be obtained by considering

the Schubert problem [95] of the corresponding four-mass box kinematics in momentum

twistor space [107]. Namely, one first considers the four non-intersecting lines formed by

the pairs of momentum twistors parameterising these kinematics, and finds the two lines

that intersect them. Then, the square-root letters turn out to correspond to cross ratios

formed by the four points on any of these six lines. A generalisation of this analysis to nine

points could provide yet another means of comparison with our results and provide hints

for the (ir)relevance of the missing rays.

Independent of the latter question, our results also raise a practical issue: Predictions

for the alphabet of an amplitude have been essential input for actually computing it via the

cluster bootstrap programme, which has been very successful at multiplicity six and seven.

This is achieved by first constructing the finite-dimensional function spaces expected to

contain each loop correction to the amplitude, which arise as solutions to linear systems

whose size and sparsity depends on the number of letters and their form as functions of the

independent variables parameterising the kinematics, respectively. Based on an alphabet of

(at least) 5,427 letters, some of which are for example polynomials with over 50,000 terms

in the web-parameterisation, the nine-particle amplitude bootstrap would pose a serious

challenge to current linear algebra technology. Aside from evolutionary progress on the

latter, could the size of linear systems be reduced by restrictions on the specific subsets of

letters appearing at each slot in the symbol, stemming from adjacency/extended Steinmann

relations [36, 72] or the Q̄-equation [108]? The integration of the latter has been the main

source of explicit two-loop amplitude computations at multiplicity n ≥ 8, is it feasible to

push it to higher loops? Alternatively, the Wilson loop OPE predicts amplitudes at any

multiplicity as an expansion around the collinear limit [109–121], and has been successfully

evaluated [112, 114] and resummed [122–125] in the six-particle case. Could we hope for

similar progress also for more legs, once the final ingredient of this approach, known as the

matrix part, is better understood? It would be very interesting to address these questions

in the future.
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A Proofs for mutation sequences of type A(1)
m

In this appendix we present the calculations and proofs required for the solution to the

infinite mutation sequences of type A
(1)
m that have been omitted in the main text. We first

discuss the source direction, that is the sequence obtained by repeatedly mutating a1;j . To

avoid repetition, we often point to the relevant formulas in the main text. Finally, we turn

to the sink direction, the repeated mutation of am+1;j .

A.1 The source direction

The key observation in the discussion of the infinite mutation sequences of type A
(1)
m is

the existence of the invariants, eqs. (5.10) and (5.11). Before proving their invariance, we

first establish that they and γj can be written in terms of the quantities of cluster j only,

hence also proving eqs. (5.13) and (5.14). For this, it suffices to prove eq. (5.12), that is to

express x1;j−m in terms of the variables of cluster j. To do so, we consider the mutation

sequence depicted in figure 5.1 in reverse. Since mutation is an involution, we can go from

cluster j + 1 to cluster j by mutating the former at node m + 1. The relevant mutation

relations are given by

xm+1;j = xm;j+1 (1 + xm+1;j+1) , x1;j = (xm+1;j+1)
−1 , (A.1)

xi;j = xi−1;j+1 for i /∈ {1, 2,m+ 1} . (A.2)

As can be seen from these relations, mutating from the cluster j to the cluster j−m along

the sequence automatically results in a parmeterisation of x1;j−m in terms of the variables

of cluster j. From these, we can immediately conclude that

xm;j−m+i = xm−1;j−m+i+1 = · · · = xi;j , (A.3)

for 2 ≤ i ≤ m. With these relations in place, we can express the X -variable x1;j−m in

terms of the variables of cluster j as

x−11;j−m = xm+1;j−m+1 = xm;j−m+2 (1 + xm+1;j−m+2)

= x2;j (1 + xm;j−m+3 (1 + xm+1;j−m+3)) = · · · (A.4)

= x2;j (1 + x3;j (1 + · · ·xm;j (1 + xm+1;j))) ,

with the equivalent relation for y1;j−m again obtained by replacing the X -variables by

coefficients and addition by cluster-tropical addition. Having established this relation, we

now turn to the prove of invariance. For this, consider the following lemma.

Lemma A.1. The two quantities K1,j and K2,j, defined as

K1,j =
(
γ0β

−1
0 γ−1j βj

) [
1 + x1;j + x1;j (x1;j−m)−1

]
, (A.5)

K2,j =
(
γ0β

−1
0 γ−1j βj

)(
γ0β

−1
0 γ−1j−m+1βj−m+1

) [
x1;j (x1;j−m)−1

]
, (A.6)

are invariant along the infinite mutation sequence, whose mutation relations are given by

eqs. (5.2)–(5.4).
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Proof. First of all, from eqs. (5.2) it follows that the ratio βj changes as follows

βj+1 =
am+1;j+1

a1;j+1
=
am+1;j

a1;j

1 + x1;j

1 ⊕̂ y1;j
=

1 + x1;j

1 ⊕̂ y1;j
βj , (A.7)

whereas we used that a1;j+1 = a2;j . On the other hand, it follows from eqs. (5.4) that

x1;j+1 (x1;j−m+1)
−1 =

x1;jx2;j
x1;j−m+1 (1 + x1;j)

=
x1;jxm;j−m+2

x1;j−m+1 (1 + x1;j)
(A.8)

= (1 + x1;j)
−1 (1 + x1;j−m+1)

−1
[
x1;j (x1;j−m)−1

]
, (A.9)

whereas we have used eqs. (5.7) to write

x2;j = x3;j−1 = · · · = xm;j−m+2 . (A.10)

This also implies that

1 + x1;j+1 + x1;j+1 (x1;j−m+1)
−1 = (1 + x1;j)

−1
[
1 + x1;j + x1;j (x1;j−m)−1

]
As is a general property of cluster algebras, the corresponding relations for the coefficients

can be obtained from those of the X -variables by replacing them with the coefficients and

addition by cluster-tropical addition. We thus also have that

γj+1 =
(
1 ⊕̂ y1;j

)−1
γj . (A.11)

This implies that γ−1j+1βj+1 = (1 + x1;j)γ
−1
j βj such that the lemma follows. Note that this

holds for all j ∈ N.

Having established the invariance of K1 and K2, we now turn to the limit of γj and

prove that it converges to 1. In order to deal with the cluster-tropical addition, let us

remind ourselves how the coefficients are related to the frozen variables. We consider

the rank-(m + 1) cluster algebra of type A
(1)
m with M frozen variables denoted by zi for

i = 1, . . . ,M . In any cluster, the coefficients are given as a monomial in the frozen variables,

see eq. (2.8) and the mutation rule eq. (2.12), which demonstrates that this property holds

in all clusters. We thus rewrite the coefficients as

yj =
M∏
i=1

z
cij
i . (A.12)

Using that cluster-tropical addition, eq. (2.11), is defined on such monomials in the frozen

variables, we rewrite the recursion relation of y1;j , eqs. (5.3), in terms of the new sequences

cij . For this, consider first that

y1;j+1 =
y1;jy2;j(
1 ⊕̂ y1;j

) =
y1;jy1;j−m+1

y1;j−m
(
1 ⊕̂ y1;j

) (
1 ⊕̂ y1;j−m+1

) , (A.13)

whereas we have used the equivalent of eq. (A.10) for the coefficients. This implies that

the corresponding relation for the cij is given by

cij+1 = cij + cij−m+1 − cij−m −min
(
0, cij

)
−min

(
0, cij−m+1

)
(A.14)
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Using the notation [x]+ = max(0, x) = −min(0,−x) and x = [x]+ − [−x]+, this results in

the recursion relation

cij+1 + cij−m =
[
cij
]

+
[
cij−m+1

]
+
. (A.15)

While the appearance of [x]+ on the right hand side of this recurrence makes solving it

analytically complicated, we can prove the following property of this sequence.

Lemma A.2. Fix m ∈ N>0 and consider the sequence cn for n ≥ 1 with initial values

c1, . . . , cm+1 ∈ Z and recurrence relation

cn+1 + cn−m = [cn] + [cn−m+1]+ . (A.16)

There exists a N ∈ N such that for all n ≥ N

cn ≥ cn−m ≥ 0 . (A.17)

Proof. To prove the lemma, we introduce an auxiliary sequence ∆n defined by

∆n = cn − cn−m . (A.18)

By continuing the recurrence for cn to n ≤ 0, we can use this definition for all n ≥ 1. We

now establish some key properties of these sequences.

Positivity/Negativity. Assume there exists a N ∈ N such that ∆n ≥ 1 for all

n ≥ N . By construction, we can write cn = ∆n + cn−m for any n and thus get for any

j ≥ 0 and i = 0, . . . ,m− 1 that

cN+j·m+i =

j∑
l=1

∆N+l·m+i + cN+i ≥ j + cN+i . (A.19)

Note that we have included the shift by i because N + j ·m + i = n for any n ≥ N and

appropriate choice of i and j. Hence, for j ≥ max(0,−cN+i) we conclude that cN+j·m+i ≥ 0.

To summarize, this implies that if there is a N ∈ N such that ∆n ≥ 1 for all n ≥ N , then

cn ≥ 0 , ∀n ≥ max
i=0,...,m−1

{N + max (0,−cN+i) ·m+ i} . (A.20)

If we instead assume that there exists a N ∈ N such that ∆n ≤ −1 for all n ≤ N , we get

by the same reasoning as before that

cn < 0 , ∀n ≥ max
i=0,...,m−1

{N + max (0, 1 + cN+i) ·m+ i} . (A.21)

Monotonicity. From the recursion relation of cn, eq. (A.16), we obtain a corres-

ponding relation for the sequence ∆n, which is given by

∆n+1 = ∆n + [−cn]+ + [−cn−m+1] , (A.22)

whereas we used x = [x]+ − [−x]+ to arrive at this result. Since [x]+ ≥ 0, this relation

implies that

∆n+1 ≥ ∆n , (A.23)
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that is, ∆n is a monotonically increasing sequence. Further to that, the relation for ∆n+1

also gives us the following extended monotonicity property

∆n+1 = ∆n ⇐⇒ cn ≥ 0 ∧ cn−m+1 ≥ 0 , (A.24)

which follows because [−x]+ is positive and zero if and only if x is positive.

Boundedness. We now prove that ∆n is bounded. For this, assume ∆n to not be

bounded. Since ∆n is a monotonically increasing sequence, this implies that there exists

some N ∈ N such that ∆n ≥ 1 for all n ≥ N . Hence, due to the positivity property proven

above, this implies that there also exists some N ′ ∈ N such that cn ≥ 0 for all n ≥ N ′.

Thus, by the extended monoticity property, eq. (A.24), this also implies that ∆n+1 = ∆n

for all n ≥ N ′, which is a contradiction to the assumption of ∆n to not be bounded.

Convergence. Since ∆n is monotonically increasing and bounded, it converges to

some constant K. Because c1, . . . , cm+1 ∈ Z we also have cn ∈ Z and thus ∆n ∈ Z for all

n, such that K ∈ Z and, together with monotonicity, ∆n = ∆N ≡ K for all n ≥ N and

some N ∈ N. This implies that ∆N ≥ 0. To see why, assume the opposite. Since ∆n ∈ Z,

this means we assume ∆n ≤ −1. By the negativity property, this would imply that cn < 0

for all n ≥ N ′ and some N ′ ∈ N. However, by the extended monotonicity property, we also

have cn ≥ 0 for all n ≥ N , which is a contradiction.

Summary. Taking all this together, we see from the convergence property that there

exists a N ∈ N such that ∆n = ∆N ≥ 0 and thus cn ≥ 0 for all n ≥ N by the extended

monotonicity property. Furthermore, since cn = ∆n+cn−m, we also see that cn ≥ cn−m ≥ 0

for all n ≥ N +m.

Consider now the consequence of this lemma on the sequence γj . Rewriting it in terms

of the cij , we get

γj = 1 ⊕̂ y1;j ⊕̂ y1;j (y1;j−m)−1 =

M∏
i=1

z
min(0,cij+min(0,−cij−m))
i . (A.25)

From the previous lemma, we know that for some N ∈ N we have cn ≥ cn−m ≥ 0 for all

n ≥ N and thus for j ≥ N

min
(
0, cij + min

(
0,−cij−m

))
= min

(
0, cij − cij−m

)
= 0 , (A.26)

proving that γj = 1 for j ≥ N .

With this property proven, we have established all parts and, together with the argu-

ments in the main text, obtain the most general solution to the recurrence (5.17) as

αj =
[
c+0 + c+1 η

j
m + · · ·+ c+m−1η

(m−1)j
m

]
(β+)j/m+

[
c−0 + c−1 η

j
m + · · ·+ c−m−1η

(m−1)j
m

]
(β−)j/m ,

(A.27)

which we have repeated here for the further discussion of the associated non-rational letters.

We denote the overall coefficients of β± in this equation as

C±(j) = c±0 + c±1 η
j
m + · · ·+ c±m−1η

(m−1)j
m . (A.28)
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As discussed before, due to the peridocity of the m-th root of unity, these satisfy C±(j +

m) = C±(j). Since in the limit j →∞, the term of β+ dominates that of β−, we associate

the m quantities

φi =
C+(i)

C−(i)
(A.29)

for 0 ≤ i ≤ m − 1 to this sequence. These coefficients can be obtained in terms of the

variables of the initial cluster by the initial conditions of the sequence αj . They are, again

for 0 ≤ i ≤ m− 1, given by

αi = ai+1;0 , αm+i = ai+1;0 · γ−10 β0Fi , (A.30)

whereas the Fi are rational functions in the initial X -variables. In order to express them

in a convenient way, we define analogs for K1 and K2 by

Ki = x1;0 · · ·xi;0 (1 + xi+1;0 (1 + · · ·xm;0 (1 + xm+1;0))) . (A.31)

In terms of these expressions, the functions Fi are given by

F0 = 1 , Fi = K1 −Ki+1 . (A.32)

These initial conditions together with the general solution, eq. (A.27), form a system of

two linear equations for the coefficients C±(i) for any 0 ≤ i ≤ m− 1. It is solved by

C±(i) = ai+1;0 (β±)−i/m
±2Fi ∓K1 +

√
K2

1 − 4K2

2
√
K2

1 − 4K2

. (A.33)

Using the definition (A.29) this proves eq. (5.22) for the non-rational expressions associated

to this sequence.

It remains to prove the initial conditions, eqs. (A.30). While the first of these can be

seen by noting that αi = a1;i and using eq. (5.5), to prove the second condition – and to

determine the Fi – we first observe that αm+i = γ−1i a1;m+i and hence again by eq. (5.5)

that αm+i = γ−1i am+1;i. For i = 0, this immediately implies that αm = γ−10 am+1;0 and

hence F0 = 1. For i ≥ 1, we can use the mutation rule (5.2) and eq. (A.11) to get

αm+i = a2;i−1γ
−1
i−1βi−1 (1 + x1;i−1) = ai+1;0γ

−1
0 β0 ·

i∏
j=1

(1 + x1;i−j) , (A.34)

whereas we have repeatedly applied the relation γ−1j+1βj+1 = (1+x1;j)γ
−1
j βj in the last step,

proving the second initial condition with Fi being the product over the X -variables. To

express Fi in terms of the variables of the initial cluster, we observe that by the mutation

rules, eqs. (5.4) and (5.7), we have

1 + x1;i−1 = (1 + x1;i−2)
−1 (1 + x1;i−2 (1 + x2;i−2)) (A.35)

= (1 + x1;i−2)
−1 (1 + x1;i−2 (1 + xi;0)) (A.36)

= (1 + x1;i−2)
−1 (1 + x1;i−3)

−1 (1 + x1;i−3 (1 + xi−1;0 (1 + xi;0))) (A.37)
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= . . . (A.38)

=

i∏
j=2

(1 + x1;i−j)
−1 · (1 + x1;0 (1 + x2;0 (1 + · · ·xi−1;0 (1 + xi;0)))) . (A.39)

Using this relation in eq. (A.34) and noting that (1 + x1;0 (1 + · · ·xi−1;0 (1 + xi;0))) = K1−
Ki+1 completes the proof.

A.2 The sink direction

In the previous section and the main text, we have analysed the infinite mutation sequence

obtained by repeatedly mutating a1;j in the A
(1)
m cluster algebra. However, this corresponds

to only one of the two possible directions. As discussed before, the mutation of the sink-

variable am+1;j+1 is the inverse to the mutation of a1;j and thus takes us from cluster j+ 1

to j along the sequence, ie. the opposite direction. We now discuss its solution.

First of all, note that using the mutation relations (5.5) we can rephrase the linearised

recursion relation (5.15) in terms of the sink variable as

γ−1j+mγ
−1
j+2mam+1;j+2m − γ−10 β0K1 · γ−1j+mam+1;j+m + γ−20 β20K2 · am+1;j = 0 . (A.40)

Since all relations required to arrive at this equation are valid for all j ∈ N, so is this

recurrence. In theory, we could now go on and apply the same techniques as for the source

direction to solve this. However, we now have to consider the limit j → −∞, since the sink

direction takes cluster j + 1 to j. Accordingly, we define the new variable α̃j via

α̃j = γ−(jmodm)γ−(jmodm)−m · · · γ−j+2mγ−j+m · am+1;−j , (A.41)

such that for this variable, the limit j →∞ is the correct one to consider. In terms of this

sequence, the recurrence (5.17) can be expressed as

γ−20 β20K2 · α̃j+2m − γ−10 β0K1 · α̃j+m + α̃j = 0 , (A.42)

with the initial values α̃0, . . . , α̃2m−1.

Before we obtain the solution of this recurrence via its characteristic polynomial, let

us first discuss γ−j and its limit as j goes to infinity. This sequence is again governed by

eq. (A.15), and is given in terms of the variable dn = c−n, which describes γ−j , by

dn−1 + dn+m = [dn]+ + [dn+m−1]+ . (A.43)

Since this holds for all n, we may shift the index by n′ = n + m − 1, which, due to the

symmetry, reduces this equation to the original form of eq. (A.15). Hence, we may apply

lemma A.2 to this case as well, proving that γ−j = 1 for j ≥ J for some J ∈ N.

The characteristic polynomial of the recurrence (A.42) is given by

P̃m(t) = t2m − γ0β−10

K1

K2
· tm + γ20β

−2
0 K−12 . (A.44)
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Its roots are given by β̃
1/m
± ηim for i = 0, . . . ,m − 1, with ηm again being the m-th root of

unity and whereas

β̃± = γ0
K1 ±

√
K2

1 − 4K2

2β0K2
. (A.45)

Note that we have β̃± = β−1∓ . Similar to before, we may use the roots to write down the

most general solution for α̃j and thus get

α̃j =
[
c̃+0 + c̃+1 η

j
m + · · ·+ c̃+m−1η

(m−1)j
m

]
(β−)−

j
m+
[
c̃−0 + c̃−1 η

j
m + · · ·+ c̃−m−1η

(m−1)j
m

]
(β+)−

j
m ,

(A.46)

whereas we have expressed this in terms of β± but have labelled the coefficients c̃±i in terms

of β̃±. The same analysis as before applies to the overall coefficients C̃±(j), which again

can be obtained from the initial conditions. For this direction they are given by

α̃i = am+1−i;0 , α̃m+i = am+1−i;0 · γ0β−10 F̃i , (A.47)

whereas the F̃i are now given by

F̃i = Km+1−i/Km+1 . (A.48)

With these initial conditions, we again obtain a system of two linear equations from the

general solution, eq. (A.46), which we can solve in terms of the C̃±(i), resulting in

C̃±(i) = am+1−i (β∓)i/m
±2K2Fi ∓K1 +

√
K2

1 − 4K2

2
√
K2

1 − 4K2

. (A.49)

Using the definition φ̃ = C̃+/C̃− this proves eq. (5.23) for the non-rational expressions

associated to this sequence.

Having obtained the general solution for the infinite mutation sequence of type A
(1)
m

in the sink direction, it remains to prove the initial conditions, eqs. (A.47). The first

follows directly from α̃i = am+1;−i = am+1−i;0, as can be seen from eq. (5.5). For the

other condition, we first observe that α̃m+i = γ−iam+1;−i−m and hence by eq. (5.5) that

α̃m+i = γ−iβ
−1
−i · am+1;−i = γ−iβ

−1
−i · am+1−i;0. For i = 0 we can immediately conclude that

F̃i = 1. For i ≥ 1, by again using the relation γ−1j+1βj+1 = (1 + x1;j)γ
−1
j βj , we arrive at

α̃m+i = am+1−i;0γ0β
−1
0 (1 + x1;−i) · · · (1 + x1;−1) (A.50)

= am+1−i;0γ0β
−1
0

(1 + xm+1;1−i) · · · (1 + xm+1;0)

xm+1;1−i · · ·xm+1;0
, (A.51)

whereas we have used eq. (A.1) for the last step. This already proves eq. (A.47), with F̃i
being the fraction of the X -variables. To obtain an expression in terms of the variables of

the initial cluster, we note that xm+1;j−i = xm+j−i;0 (1 + xm+1;j−i+1) such that we get

F̃i =

i−1∏
j=0

(xm+1−j;0)
−1 · (1 + xm+1;1−i) . (A.52)
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Similar to eq. (A.4), we obtain from the mutation relations, eq. (A.1), that

1 + xm+1;1−i =

m∏
j=i

(xm+1−j;0)
−1 ·Km+1−i , (A.53)

such that we can conclude that

F̃i =
Km+1−i
Km+1

, (A.54)

completing our analysis of the infinite mutation sequences in cluster algebras of type A
(1)
m .

B Full non-rational alphabet of eight-particle scattering

In this section, for completeness, we present the entire non-rational alphabet of eight-

particle scattering obtained from the perspective of scattering diagrams, see [69] or sec-

tion 3.3. We begin with the initial cluster of the cluster algebra of Gr(4, 8), which is

depicted in figure B.1. In there, we included our convention for the unfrozen variables aIi
of this cluster.

aI1 : 〈1235〉 aI4 : 〈1245〉 aI7 : 〈1345〉 〈2345〉

aI2 : 〈1236〉 aI5 : 〈1256〉 aI8 : 〈1456〉 〈3456〉

aI3 : 〈1237〉 aI6 : 〈1267〉 aI9 : 〈1567〉 〈4567〉

〈1238〉 〈1278〉 〈1678〉 〈5678〉

〈1234〉

Figure B.1: Initial seed of the cluster algebra of Gr(4, 8).
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We can use eqs. (2.8) and (2.9) to immediately read off the X -variables associated to

each A-variable. They are given by

xI1 =
〈1234〉 〈1256〉
〈1245〉 〈1236〉

, xI4 =
〈1235〉 〈1456〉
〈1345〉 〈1256〉

, xI7 =
〈1245〉 〈3456〉
〈2345〉 〈1456〉

, (B.1)

xI2 =
〈1235〉 〈1267〉
〈1256〉 〈1237〉

, xI5 =
〈1236〉 〈1245〉 〈1567〉
〈1235〉 〈1456〉 〈1267〉

, xI8 =
〈1256〉 〈1345〉 〈4567〉
〈1245〉 〈3456〉 〈1567〉

, (B.2)

xI3 =
〈1236〉 〈1278〉
〈1267〉 〈1238〉

, xI6 =
〈1237〉 〈1256〉 〈1678〉
〈1236〉 〈1567〉 〈1278〉

, xI9 =
〈1267〉 〈1456〉 〈5678〉
〈1256〉 〈4567〉 〈1678〉

. (B.3)

Mutating along the mutation sequence {1, 2, 4, 1, 6, 8}, that is sequentially mutating

the nodes with the corresponding index, we arrive at the A
(1)
1 origin quiver depicted in

figure B.2. Note that since we only require the X -coordinates for the computation of the

non-rational alphabet, in the quiver we only show those, labelled by xi in the origin quiver,

and omit the (frozen and unfrozen) A-variables.

x3 x2 x8

x1

x6 x4 x7

x9 x5

Figure B.2: Principal part of the origin cluster in Gr(4, 8) utilized to find the square-root

letters.

Performing the sequence of mutations given above, we land in the origin quiver whose

X -variables xi are rational functions in the original variables xIi of the initial cluster. These

functions are given by

x1 =

(
1 + xI6 + xI1

(
1 + xI4

) (
1 + xI6

(
1 + xI2

))) (
1 + xI8 + xI1

(
1 + xI2

) (
1 + xI8

(
1 + xI4

)))
xI1x

I
2x
I
4

,

(B.4)

x9 =

(
1 + xI1

(
1 + xI2

) (
1 + xI4

))
xI6x

I
8x
I
9(

1 + xI6 + xI1
(
1 + xI4

) (
1 + xI6

(
1 + xI2

))) (
1 + xI8 + xI1

(
1 + xI2

) (
1 + xI8

(
1 + xI4

))) ,
(B.5)

x5 =
xI1x

I
2x
I
4x
I
5

1 + xI1
(
1 + xI2

) (
1 + xI4

) , (B.6)

x8 =
1 + xI1

(
1 + xI2

)
xI8
(
1 + xI1

(
1 + xI2

) (
1 + xI4

)) , (B.7)

x6 =
1 + xI1

(
1 + xI4

)
xI6
(
1 + xI1

(
1 + xI2

) (
1 + xI4

)) , (B.8)

x2 =
xI4x

I
8

1 + xI8 + xI1
(
1 + xI2

) (
1 + xI8

(
1 + xI4

)) , (B.9)

x4 =
xI2x

I
6

1 + xI6 + xI1
(
1 + xI4

) (
1 + xI6

(
1 + xI2

)) , (B.10)
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x3 =
xI1x

I
2x
I
3

1 + xI1
(
1 + xI2

) , (B.11)

x7 =
xI1x

I
4x
I
7

1 + xI1
(
1 + xI4

) . (B.12)

As is discussed in section 3.3 and [69], from this origin quiver we perform the limit of

the infinite A
(1)
1 mutation sequence. Working within the framework of scattering diagrams,

we first construct the cone variables and take their limit, which is well-defined and finite,

so that we land in an asymptotic chamber around the limit ray23

r∞ = (1,−1, 0,−1, 0, 1, 0, 1,−1) . (B.13)

The limits of the cone variables along the sequence, ie. the cone variables of the asymptotic

chamber, can be

x0γi = xi for i ∈ {2, 3, 4, 7} , (B.14)

x0γi =
xi
2

(
1 + x1 (1 + x9) +

√
∆′
)

for i ∈ {5, 6, 8} , (B.15)

x0γ1 =
4x1∆

′(
1 + x1 − x1x9 +

√
∆′
)2 , x0γ9 =

x9
4

(
1 +

1− x1(1 + x9)√
∆′

)2

, (B.16)

∆′ = (1 + x1(1 + x9))
2 − 4x1x9 . (B.17)

The entire non-rational alphabet is obtained from the variables of all asymptotic cham-

bers around the limit ray. As is outlined in [69], a computer search yields a basis of 36

multiplicatively independent polynomials. It consists of the 20 polynomials given by

f̃1 = x0γ1 , f̃2 = x0γ9 , f̃3 = 1− x0γ1x
0
γ9 , (B.18)

f̃4 = x0γ5 , f̃5 = 1 + x0γ5 , f̃6 = 1 + x0γ5x
0
γ1x

0
γ9 , (B.19)

f̃7 = x0γ8 , (B.20)

f̃8 = 1 + x0γ8 , f̃9 = 1 + x0γ2 f̃8 , f̃10 = 1 + x0γ3 f̃9 , (B.21)

f̃11 = 1 + x0γ8x
0
γ1x

0
γ9 , f̃12 = 1 + x0γ2 f̃11 , f̃13 = 1 + x0γ3 f̃12 , (B.22)

f̃14 = x0γ6 , (B.23)

f̃15 = 1 + x0γ6 , f̃16 = 1 + x0γ4 f̃15 , f̃17 = 1 + x0γ7 f̃16 , (B.24)

f̃18 = 1 + x0γ6x
0
γ1x

0
γ9 , f̃19 = 1 + x0γ4 f̃18 , f̃20 = 1 + x0γ7 f̃19 . (B.25)

as well as 16 more polynomials given by

f̃21 = x0γ2 , f̃22 = x0γ3 , (B.26)

23This is one of the two tropical rays of p̃Tr+(4, 8) that is not contained in the fan of the truncated cluster

algebra, the other being (0, 1, 0, 1, 0,−1, 0,−1, 0). Since the variables obtained from this limit ray can be

obtained by a cyclic shift 〈ijkl〉 → 〈i+ 1 j + 1 k + 1 l + 1〉 we limit our analysis to the quantities around

the first limit ray only.
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f̃23 = 1 + x0γ2 , f̃24 = 1 + x0γ3 , (B.27)

f̃25 = 1 + x0γ3 f̃23 , f̃26 = 1 + x0γ2 f̃8f̃11 , f̃27 = 1 + x0γ3 f̃26 , (B.28)

f̃28 = 1 + x0γ2 f̃27 + x0γ3

(
1 + x0γ2

(
f̃7 + f̃11

))
, (B.29)

f̃29 = x0γ4 , f̃30 = x0γ7 , (B.30)

f̃31 = 1 + x0γ4 , f̃32 = 1 + x0γ7 , (B.31)

f̃33 = 1 + x0γ7 f̃31 , f̃34 = 1 + x0γ4 f̃15f̃18 , f̃35 = 1 + x0γ7 f̃34 , (B.32)

f̃36 = 1 + x0γ4 f̃35 + x0γ7

(
1 + x0γ4

(
f̃14 + f̃18

))
. (B.33)

As can be seen from eq. (B.14) and eqs. (B.4)–(B.12), the variables x0γi are rational

for i ∈ {2, 3, 4, 7} and hence so are 10 of the polynomials of the above basis. In fact, by

parameterising the Plücker variables in terms of the web-parameterisation and evaluating

the web-variables with prime values, it is easy to see that the polynomials f̃21 to f̃36 are

rational, that is the square-roots cancel. Even more than that, these 16 polynomials are

actually contained in the 272-letter rational alphabet of [47–49] and can be expressed as

f̃21 =
R157

R163
, f̃22 =

R9

R2
, f̃23 =

R2R143

R163
, f̃24 =

R3

R2
, (B.34)

f̃25 =
R164

R163
, f̃26 =

R2R194

R9R157
, f̃27 =

R192

R157
, f̃28 =

R2R146

R163
, (B.35)

f̃29 =
R36

R42
, f̃30 =

R97

R10
, f̃31 =

R10R34

R42
, f̃32 =

R43

R10
, (B.36)

f̃33 =
R44

R42
, f̃34 =

R10R93

R36R97
, f̃35 =

R91

R36
, f̃36 =

R10R89

R42
, (B.37)

whereas Ri refers to the i-th rational letter in the alphabet provided in the attached

file Gr48Alphabet.m.

Since 16 of these polynomials are contained in the 272-letter rational alphabet, we are

left with the 20 letters given by f̃1 to f̃20. While these 20 letters can be numerically checked

to actually contain square-roots, we find 10 multiplicative combinations that are contained

in the rational alphabet. They are given by

f̃1f̃2f̃
2
4 =

R222

R9R97
,

f̃7

f̃4
=
R2R97

R157
,

f̃14

f̃4
=
R9R10

R36
, (B.38)

f̃5f̃6 =
R4R131

R9R97
, f̃8f̃11 =

R163R197

R9(R157)2
, f̃15f̃18 =

R42R94

(R36)2R97
, (B.39)

f̃9f̃12 =
(R2)

2R147

R9R163
, f̃16f̃19 =

(R10)
2R90

R42R97
, (B.40)

f̃10f̃13 =
R196

R163
, f̃17f̃20 =

R96

R42
, (B.41)

whereas again Ri corresponds to the i-th rational letter in the rational alphabet. Using

these 10 relations, we can further reduce the square-root letters to the basis of 10 multi-

plicatively independent letters given by

f1 =
(
x0γ1
)−1 (

1− x0γ1x
0
γ9

)2
, f2 = x0γ9

(
1− x0γ1x

0
γ9

)2
, f3 =

1 + x0γ5x
0
γ1x

0
γ9

1 + x0γ5
,
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f4 =
1 + x0γ8x

0
γ1x

0
γ9

1 + x0γ8
, f5 =

1 + x0γ2
(
1 + x0γ8x

0
γ1x

0
γ9

)
1 + x0γ2

(
1 + x0γ8

) ,

f6 =
1 + xγ3

(
1 + x0γ2

(
1 + x0γ8x

0
γ1x

0
γ9

))
1 + xγ3

(
1 + x0γ2

(
1 + x0γ8

)) , (B.42)

f7 =
1 + x0γ6x

0
γ1x

0
γ9

1 + x0γ6
, f8 =

1 + x0γ4
(
1 + x0γ6x

0
γ1x

0
γ9

)
1 + x0γ4

(
1 + x0γ6

) ,

f9 =
1 + xγ7

(
1 + x0γ4

(
1 + x0γ6x

0
γ1x

0
γ9

))
1 + xγ7

(
1 + x0γ4

(
1 + x0γ6

)) ,

f10 = x0γ5
(
1− x0γ1x

0
γ9

)
.

It can be easily demonstrated that the set of 112 A
(1)
1 -letters obtained in section 3.2 for

the limit ray r∞, eq. (B.13), is equivalently described by the basis of the 9 multiplicatively

independent square-root letters given by f1 to f9 of eqs. (B.42).

In summary, we see that the non-rational alphabet obtained from the scattering dia-

gram adds one further letter f10 = x0γ5
(
1− x0γ1x

0
γ9

)
per limit ray compared to the previously

known 9 letters, see sec. 3.2 or [45, 47]. Using eqs. (B.14) and (B.16), we can simplify this

letter and find that

f10 = x5
√

∆′ . (B.43)

With x5 being one of the X -variables of the origin quiver, this already demonstrates that

f1 corresponds to the square-root up to a monomial in the rational alphabet. In fact,

this square-root is proportional to the square-root ∆1,3,5,7 of one of the two eight-particle

four-mass boxes. In terms of the four-mass box, we can write the additional letter as

f10 =
〈1256〉 〈3478〉
〈1278〉 〈3456〉

√
∆1,3,5,7 , (B.44)

whereas we have

∆1,3,5,7 =

(
1− 〈1234〉 〈5678〉
〈1256〉 〈3478〉

− 〈1278〉 〈3456〉
〈1256〉 〈3478〉

)2

− 4
〈1278〉 〈1234〉 〈3456〉 〈5678〉

(〈1256〉 〈3478〉)2
. (B.45)

The square-root ∆2,4,6,8 of the other eight-particle four-mass box appears in a similar way

in the non-rational alphabet of the other limit ray, which is obtained by the cyclic shift

i→ i+ 1 on the indices of the Plücker variables.

C Web-parameterisation of Gr(4, n)

As we have reviewed in section 2.1, the totally positive configuration space G̃r+(k, n) can

be constructed as the space of all Plücker variables, restricted to non-negative values, up

to some scalings. The space has dimension d = (k−1)(n−k−1) and can be parameterised

in terms of d independent parameters by the web-parameterisation [51]. In this appendix

we briefly discuss how this parameterisation is constructed and present it explicitly for

G̃r+(4, 8) and G̃r+(4, 9).
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Instead of parameterising the individual Plücker variables, it is more convenient to

instead obtain a parameterisation of the momentum twistors instead, see e.g. [47]. The

Plücker variables can in turn be obtained as the minors of the k × n matrix Z whose

columns are the momentum twistors. When parameterised, this matrix is of the form

Z = (1k|M) (C.1)

with the k × k identity matrix 1k. The entries mij of the k × (n− k) matrix M are given

by

mij = (−1)i
∑
λ∈Yij

k−i∏
m=1

λm∏
l=1

xml , (C.2)

whereas Yij denotes the multi-dimensional range 0 ≤ λk−i ≤ · · · ≤ λ1 ≤ j − 1 and the xml
are an alternative labeling of the web-parameters.

The explicit web-parameterisation of G̃r+(4, 8) and G̃r+(4, 9) can be found in the

ancillary file WebParameterisation.m attached to the arXiv submission of this article.

For n = 8, the columns m1,m2,m3 of the 4× 4 matrix M are given by

m1 =


1

−1

1

−1

 , m2 =


−1− x1 (1 + x2 (1 + x3))

1 + x1 (1 + x2)

−1− x1
1

 , (C.3)

m3 =


−1− x1 (1 + x4 + x2 (1 + x4 (1 + x5)) + x3 (1 + x4 (1 + x5 (1 + x6))))

1 + x1 (1 + x4 + x2 (1 + x4 (1 + x5)))

−1− x1 (1 + x4)

1

 , (C.4)

and the components of the fourth column m4 are given by

m41 =− 1− x1 − x1x2 − x1x2x3 − x1x4 − x1x2x4 − x1x2x3x4 − x1x2x4x5 − x1x2x3x4x5
− x1x2x3x4x5x6 − x1x4x7 − x1x2x4x7 − x1x2x3x4x7 − x1x2x4x5x7
− x1x2x3x4x5x7 − x1x2x3x4x5x6x7 − x1x2x4x5x7x8 − x1x2x3x4x5x7x8
− x1x2x3x4x5x6x7x8 − x1x2x3x4x5x6x7x8x9 , (C.5)

m42 = 1 + x1 + x1x2 + x1x4 + x1x2x4 + x1x2x4x5 + x1x4x7 + x1x2x4x7 + x1x2x4x5x7

+ x1x2x4x5x7x8 , (C.6)

m43 =− 1− x1 − x1x4 − x1x4x7 , (C.7)

m44 = 1 . (C.8)

The first four columns of the parameterised 4× 5 matrix M for n = 9 are the same as that

for n = 8. The components of the last column m5 are given by

m51 =m41 − x1x4x7x10 − x1x2x4x7x10 − x1x2x3x4x7x10 − x1x2x4x5x7x10
− x1x2x3x4x5x7x10 − x1x2x3x4x5x6x7x10 − x1x2x4x5x7x8x10
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− x1x2x3x4x5x7x8x10 − x1x2x3x4x5x6x7x8x10 − x1x2x3x4x5x6x7x8x9x10
− x1x2x4x5x7x8x10x11 − x1x2x3x4x5x7x8x10x11 − x1x2x3x4x5x6x7x8x10x11
− x1x2x3x4x5x6x7x8x9x10x11 − x1x2x3x4x5x6x7x8x9x10x11x12 , (C.9)

m52 =m42 + x1x4x7x10 + x1x2x4x7x10 + x1x2x4x5x7x10 + x1x2x4x5x7x8x10

+ x1x2x4x5x7x8x10x11 , (C.10)

m53 =m43 − x1x4x7x10 , (C.11)

m54 = 1 . (C.12)
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[47] J.M. Drummond, J. Foster, Ö. Gürdoğan, C. Kalousios, Algebraic singularities of scattering

amplitudes from tropical geometry, 1912.08217.

[48] N. Arkani-Hamed, T. Lam and M. Spradlin, Non-perturbative geometries for planar N = 4

SYM amplitudes, 1912.08222.

[49] N. Henke and G. Papathanasiou, How tropical are seven- and eight-particle amplitudes?,

JHEP 08 (2020) 005, [1912.08254].

[50] D. Speyer and B. Sturmfels, The Tropical Grassmannian, Advances in Geometry 4 (May,

2003) 389–411, [math/0304218].

– 56 –

https://doi.org/10.1007/JHEP01(2016)053
https://arxiv.org/abs/1509.08127
https://doi.org/10.1103/PhysRevLett.117.241601
https://arxiv.org/abs/1609.00669
https://doi.org/10.1007/JHEP08(2019)016
https://arxiv.org/abs/1903.10890
https://doi.org/10.1007/JHEP09(2019)061
https://arxiv.org/abs/1906.07116
https://arxiv.org/abs/2012.15855
https://doi.org/10.1007/JHEP03(2015)072
https://doi.org/10.1007/JHEP03(2015)072
https://arxiv.org/abs/1412.3763
https://doi.org/10.1007/JHEP02(2017)137
https://doi.org/10.1007/JHEP02(2017)137
https://arxiv.org/abs/1612.08976
https://doi.org/10.1007/JHEP03(2019)087
https://arxiv.org/abs/1812.04640
https://doi.org/10.1007/JHEP10(2020)031
https://arxiv.org/abs/2007.12966
https://doi.org/10.1103/PhysRevLett.121.081601
https://arxiv.org/abs/1805.11617
https://doi.org/10.1007/JHEP10(2014)030
https://doi.org/10.1007/JHEP10(2014)030
https://arxiv.org/abs/1312.2007
https://doi.org/10.1007/JHEP01(2018)016
https://arxiv.org/abs/1704.05069
https://arxiv.org/abs/1911.01290
https://arxiv.org/abs/1907.01053
https://arxiv.org/abs/1912.08217
https://arxiv.org/abs/1912.08222
https://doi.org/10.1007/JHEP08(2020)005
https://arxiv.org/abs/1912.08254
https://doi.org/10.1515/advg.2004.023
https://doi.org/10.1515/advg.2004.023
https://arxiv.org/abs/math/0304218


[51] D. Speyer and L. Williams, The Tropical Totally Positive Grassmannian, Journal of

Algebraic Combinatorics 22 (Sept., 2005) 189–210, [math/0312297].

[52] N. Arkani-Hamed, S. He and T. Lam, Stringy canonical forms, JHEP 02 (2021) 069,

[1912.08707].

[53] F. Cachazo, N. Early, A. Guevara and S. Mizera, Scattering equations: from projective

spaces to tropical grassmannians, Journal of High Energy Physics 2019 (June, 2019) 39,

[1903.08904].

[54] F. Cachazo and J. M. Rojas, Notes on Biadjoint Amplitudes, TropG(3, 7) and X(3, 7)

Scattering Equations, 1906.05979.
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