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This paper investigates the importance of radiative corrections for first-order phase transitions,
with particular focus on the bubble-nucleation rate. All calculations are done with a strict power-
counting, and observables are consistently calculated at every order. This ensures that physical
quantities are gauge and renormalization-scale invariant. Furthermore, to avoid large logarithms at
high-temperatures, an effective three-dimensional theory is used. This effective theory automati-
cally incorporates higher-order thermal masses. The results of this paper indicate that sub-leading
corrections to the rate can be large. This is partly because radiative corrections are enhanced for
large bubbles. To illustrate the calculations, three models are considered: a real-scalar model, a
radiative-barrier model, and a model with an effective dimension 6 operator. Relevant observables
are calculated for each model, and the reliability of perturbation theory is discussed.

Introduction.— A cosmological first-order phase
transition is a watershed moment. If such a transition
occurred, not only would it leave a trail of gravita-
tional waves [1–4], but it could also explain the observed
Baryon asymmetry through Electroweak Baryogen-
sis [5]. Therefore, with the advent of gravitational-wave
cosmology, the community—theoretical and experi-
mental—prepare for upcoming experiments [6–10]. The
success of which promises an unique window into the
early universe, and the chance to not only confirm a
first-order transition, but to probe the Higgs potential
itself [11, 12].

Yet for this to pass, theoretical tools must be up to
par. Unfortunately, there are signifiant theoretical un-
certainties for non-equilibrium processes like bubble
nucleation [13–15]. These uncertainties in turn prevent
reliable predictions of the gravitational-wave spectrum.
Thus limiting any attempt to constrain the underlying
physics if a signal is detected.

So it is crucial to improve computational methods;
these are divided into numerical lattice computa-
tions [16, 17] and perturbation theory [13, 18–21].
Although lattice computations are preferable, they are
slow even for equilibrium observables. This leaves per-
turbation theory as the only viable option for studying
models with many free parameters. Accordingly, the
accuracy of perturbative calculations must be known.

To that end, this paper endeavours to give reliable
predictions for bubble-nucleation; to calculate the nu-
cleation rate beyond leading order; to determine when
perturbation theory breaks down; and to pave the way
for precise predictions of the gravitational-wave spec-
trum.

High-temperature calculations.— Physical quantities
are renormalization-scale invariant [13], gauge invari-
ant [18, 22], and free from infrared divergences [23, 24]
in a consistent perturbative expansion.

However, a naive loop-expansion does not work at

high temperatures. This is because loop corrections are
enhanced, which for example leads to thermal mass cor-
rections. In addition, calculations typically contain large
logarithms if the relevant energy-scale is much smaller
than the temperature.

These issues can be solved by integrating out high-
energy fluctuations and working with an effective field
theory (EFT). This theory describes energy-scales
relevant to the phase transition, and all temperature de-
pendence is contained in effective couplings [21, 25, 26].

Due to the universality of effective field theories,
this makes it possible to study an entire class of zero-
temperatures theories with a single EFT.

The nucleation rate.— It is possible to use classical
nucleation theory to calculate the rate of nucleating
bubbles at high temperatures [27, 28]. Physically the
nucleation-rate is controlled by a Boltzmann factor,
which captures the probability for a thermal transition
between two phases. Other dissipative effects, such as
damping [27], are omitted in this paper as they are
suppressed.

Consider first a particle trapped in a potential
well, where the probability to escape is controlled by
the height of the barrier separating the two minima:
Γ ∼ e−V/T . In field-theory the barrier-height is replaced
by an action. This action is evaluated on a classical
solution to the equations of motion, the bounce [28, 29].

To illustrate the form of the rate, take a scalar field:
the nucleation rate is proportional to

Γ ∝ e−SB . (1)

If we assume that the scalar potential V (φ) has one
minima at φ = φFV, and a deeper minima at φ = φTV,
the bounce is given by

∇2φB(|~x|) = V ′[φB(|~x|)], lim
|~x|→∞

φB(|~x|) = φFV,

~∇φB(|~x|)
∣∣∣
|~x|=0

= 0, (2)
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and the bounce action is

SB =
∫
d3x

[
1
2(~∇φB)2 + V [φB ]

]
. (3)

Note that SB is three dimensional. Furthermore,
as mentioned, we here consider an effective high-
temperature theory. This means that all masses and
couplings implicitly depend on the temperature, and
that we work with an effective three-dimensional the-
ory [20].

Higher-order corrections to the rate come from in-
cluding fluctuations around the bounce solution. For ex-
ample, the next-to-leading order (NLO) result is [27, 28]

Γ ∝
∏
i

det
[
−∇2 +M2

i [φB ]
]−1/2

e−SB . (4)

This functional determinant depends on the leading-
order bounce through field-dependent masses 1.

Though the determinant is formally sub-leading, it
can be comparable to the exponent. To see when this
happens, it is useful to rewrite the rate as

Γ ∝ e−Seff[φB ], Seff = SB + SNLO, (5)

where we have defined the one-loop effective action [30]

SNLO[φB ] = 1
2
∑
i

Tr log
[
−∇2 +M2

i [φB ]
]
. (6)

If we consider large bubbles with radius R, the
leading-order bounce action scales as SB ∼ R2 [29],
while the NLO action scales as

SNLO ∼ −R3
∑
i

[
(M2

i [φTV])3/2 − (M2
i [φFV])3/2

]
. (7)

We see that for large enough R, SNLO overpowers SB ,
and perturbation theory breaks down. In addition,
equation 7 indicates that higher-order corrections are
enhanced even for medium-sized bubbles.

To systematically study higher-order corrections, it is
necessary to introduce a powercounting. As an example,
consider the potential

V (φ) = 1
2m

2
3dφ

2 − 1
16πg

3
3dφ

3 + 1
4λ3dφ

4. (8)

This potential appears in the Standard model when the
physical Higgs mass is small mH ∼ 40 GeV. In that case
φ = 〈Φ〉 where Φ is an SU(2) doublet, and the cubic
term in equation 8 arises from vector-boson loops [31].
As such, the potential 8 is said to describe a radiative
barrier. It should be noted that the same potential also

1 The rate should be normalized by a corresponding determinant
evaluated at φ = φFV.

describes a real-scalar theory, which can be seen by re-
defining the gauge coupling: g3

3d → η3d [32, 33]. Where
η3d is a cubic coupling-constant.

At leading order, the effective couplings in equation
8 depend on the original zero-temperature couplings
schematically as [25]

λ3d = Tλ, g2
3d = Tg2, m2

3d = m2 + aT 2, (9)
where a is a function of zero-temperature couplings.

We first consider the radiative-barrier case in an
SU(2) model. The cubic term in equation 8 comes from
integrating out vector bosons. For this to be consis-
tent, the vector-boson mass must be parametrically
larger than the Higgs mass: m

2
H

m2
A

∼ λ3d
g2
3d
∼ λ

g2 � 1. This
encourages us to define the dimensionless couplings

x ≡ λ3d

g2
3d
, y ≡ m2

3d
g4

3d
. (10)

Where in addition to x, we also use the dimension-
less variable y [34]. With these variables, and a
field/coordinate rescaling, the potential is

V (φ) = 1
2yφ

2 − 1
16πφ

3 + 1
4xφ

4. (11)

Different minima of V (φ) correspond to different
phases. In equation 11 one minimum is at φ = 0, and
another at φ = φmin 6= 0. We say that a phase transi-
tion can first occur when ∆V ≡ V (φmin)− V (0) = 0.
And because the problem only depends on two
variables, it is useful to define the critical mass as
∆V (yc, x) = 0 [21, 35]. For a specific zero-temperature
model it is then possible to find the critical temperature
given yc. But we refrain from doing so to keep the setup
general.

Analogously, one can define the nucleation mass yN
as the solution of Seff(yN , x) = 126. This is the condi-
tion for roughly two-thirds of the Universe to be in the
broken phase [14, 15].

Close to the nucleation mass, the perturbative expan-
sion is organized as

Seff = SLO + xSNLO + x3/2SNNLO + . . . (12)
where powers of x only denote how the terms scale.
In this expansion, integer powers of x come from vec-
tor loops, and rational powers of x come from scalar
loops. It should be noted that the expansion in equation
12 changes for small x; as we shall see, for x . 10−2

the SNLO contribution is suppressed by a factor ∼ 6.6
relative to SLO irrespective of x.

In equation 12, the leading-order action SLO is de-
fined by equations 2, 3, and 11; while SNLO comes from
integrating out vector bosons [18, 19, 36]:

SNLO =
∫
d3x

{
− 11

32π
(∂µφB)2

φB
(13)

+ φ2
B

(4π)2

(
−51

32 log φB
µ3
− 63

32 log 3
2 + 33

64

)}
,
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where φB is the leading-order bounce solution, and we
take µ3 = 1. One finds that SNLO scales as y1/2, so it is
suppressed by a power of y relative to SLO.

Finally, SNNLO is given by

1
2
{

Tr log
[
−∇2 +M2

H

]
+ 3Tr log

[
−∇2 +M2

G

]}
. (14)

The first term comes from Higgs bosons, and the second
from Goldstone bosons. Their field-dependent masses
are given by [35, 37]

M2
H = V ′′[φB ], M2

G = φ−1
B V ′[φB ]. (15)

In the real-scalar model we have neither Goldstone
nor vector bosons. Thus we should set SNLO = 0 and
omit the Goldstone contribution in equation 14.

The leading-order action has to be found numerically,
yet it can be approximated by the expression [36, 38]

SLO = κ

[
7.24 + 5.68γ + 10.4

1− γ + 1.25
(1− γ)2

]
, (16)

where κ = 64π2y3/2 and γ = 128π2xy.
For the radiative barrier, direct calculations show

that both SNLO and SNNLO scale as (1− γ)−3 when
γ → 1 2. This corresponds to the thin-wall limit:
y → yc = 1

128π2x . In addition, for smaller γ both SNLO
and SNNLO are of similar size as SLO, without the factor
of κ [36].

There are then two cases when the expansion breaks
down: κ→ 1 and γ → 1.

To estimate when κ = 1, note that the nucleation
mass is always lower than the critical mass, and be-
cause κ ∝ y3/2, we want y to be as large as possible.
Putting these observations together, we expect that the
expansion breaks down (for sure) when

64π2y3/2
c = 1 =⇒ x = 1

8π2/3 ≈ 0.058 (17)

This is an upper bound on x that applies to both the
radiative-barrier and the real-scalar model; similar
bounds appear in other models.

For the real-scalar model one finds that SNNLO grows
as (1− γ)−2, so there are no γ → 1 problems. In con-
trast, for the radiative barrier both SNLO and SNNLO
grow as (1− γ)−3, which means that radiative correc-
tions are larger.

Observables.— The nucleation mass is defined by3

[SLO + xSNLO + . . .]y=yN
= 126. (18)

2 The bubble radius is R ∝ (1− γ)−1.
3 There are different definitions of the nucleation temperature in

the literature [14, 21]. However, using a different definition of
the nucleation mass does not qualitatively change the results.

This equation can be solved by expanding yN in powers
of x:

yN = yLO + xyNLO + x3/2yNNLO . . . (19)

The solution to NLO is

SLO|y=yLO = 126, yNLO = − SNLO

∂ySLO

∣∣∣∣
y=yLO

. (20)

In general yLO needs to be found numerically, but we
can still study some limits analytically. Indeed, from
equation 16 we see that yLO grows as x−1 for large x,
and yLO ≈ 0.048 for small x. One then finds that κ can
not be larger than κ ≈ 6.6, which means that it is not
possible to make higher-order corrections arbitrarily
suppressed.

Given yN , we can calculate observables such as the
(inverse) phase-transition duration, which is given
by [14, 21]

βN/HN = d

d log T Seff

∣∣∣∣
y=yN

. (21)

Because our couplings implicitly depend on the temper-
ature, we can use the chain rule to express βN in terms
of x and y derivatives of Seff [39]. In addition, since

d

d log T y �
d

d log T x, (22)

we can approximate [39]

βN/HN ≈
dy

d log T ∇ySeff

∣∣∣∣
y=yN

. (23)

Furthermore, expanding everything in powers of x we
find to NLO

∇ySeff|y=yN
= ∇ySLO + x

[
yNLO∇2

ySLO +∇ySNLO
]

where all terms are evaluated at y = yLO. Note that
∇ySeff is calculable purely within the effective the-
ory, while dy

d logT ∼ 4 depends on the original zero-
temperature model.

The strict perturbative expansion is not only simple,
but also renormalization-scale and gauge invariant at
every order [18, 35].

A dimension 6 operator.— Consider now a model
with a leading-order potential

V (φ) = 1
2m

2
3dφ

2 − 1
4λ3dφ

4 + 1
32c6φ

6. (24)

The normalization is chosen so that the broken and
unbroken minima coincide when c6 = λ2

3d
m2

3d
.

This model appears, for example, when effective oper-
ators are added to the Standard Model [21]: we consider
this to be the case here. That is, neglecting the hyper-
charge coupling, we consider an SU(2) gauge theory
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with a doublet scalar 〈Φ〉 = φ. The three dimensional
c6 coupling is related to the zero-temperature one (at
leading-order) via c6 = T 2c6,4d.

To study this model it is useful to introduce the di-
mensionless coupling

y = m2
3d

λ2
3d
. (25)

At leading-order everything depends on y and c6; both
scalars and vector-bosons contribute at NLO according
to equation 6. These contributions must be calculated
numerically [36], but we note that the vector-boson
contribution grows as x−3/2 for small x, where x was
defined in equation 10.

The tree-level action can be approximated by [36]

SLO = √y
[
1.76− 0.142γ + 12.6

(1− γ) + 4.19
(1− γ)2

]
, (26)

where γ = c6y.
As before, we can determine yN and βN in powers of

c6 and x.
Following the same arguments as for the radiatively-

induced potential, we expect that perturbation theory
becomes unreliable when c6 � 1. However, because the
NLO action grows as x−3/2 for small x, this bound is
modified to c6 � x3. Furthermore, since NLO contribu-
tions are enhanced by large-bubble effects, the actual
bound is slightly lower as shown in figure 3 .

There is also an absolute lower-bound on x regardless
of the value of c6. This is because yN can not be arbi-
trarily large. Indeed, using equation 26 we see that yN
is largest when γ = 0, which corresponds to yLO ≈ 46.
And because the leading-order action scales as √y, it
is not possible to consider arbitrarily small values of x.
Numerically one finds that perturbation theory does not
work for x smaller than x ∼ 10−1.

Results.— The radiatively-induced potential is
defined in equation 8, and the results are shown
in figure 1. We see that as the nucleation mass de-
creases—meaning a weaker transition—perturbation
theory breaks down. This is expected because weak
transitions are generally non-perturbative [16, 34, 40],
yet this breakdown occurs already at x ≈ 0.02, instead
of the bound derived in equation 17. This is because
SNLO is numerically large, and since both SNLO and
SNNLO are enhanced for large bubbles. Note that radia-
tive corrections are large even for smaller x where the
expansion is expected to perform well. Indeed, the NLO
result for ∇ySeff, and thus βN , is roughly a factor of two
smaller than the leading-order result. Still, there is not
another large jump once SNNLO is included. This indi-
cates that higher-order corrections can be large without
invalidating the perturbative expansion.

Radiative corrections are smaller for the real-scalar
case as shown in figure 2. In this model the expansion
gets worse around x ≈ 0.05 as expected from equation

1000

5000

104

∇
y
S e
ff

LO

NLO

NNLO

yc

0.001 0.002 0.005 0.010 0.020

0.05

0.10

0.50

1

x

y N

FIG. 1: The lower plot shows the nucleation mass yN as
a function of x. The critical mass (to NNLO) is shown
for comparison. The upper plot shows ∇ySeff ∝ βN at

the nucleation mass.

5000

1× 104
5× 104
1× 105

∇
y
S e
ff

LO

NNLO

yc

0.001 0.005 0.010 0.050 0.100

0.01

0.05

0.10

0.50
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y N

FIG. 2: The lower plot shows the nucleation mass yN as
a function of x for the real-scalar model. The critical
mass (to NNLO) is shown for comparison. The upper

plot shows ∇ySeff ∝ βN at the nucleation mass. There is
no NLO contribution for this model.

17. The modest size of the NNLO correction stems from
that the Higgs mass is equal in the broken and true
minimum; which coupled with equation 7, shows that
there is no (large-bubble) R3 enhancement.
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FIG. 3: The lower plot shows the nucleation mass yN as
a function of c6 for the potential 24 with x = 4−1. The
critical mass (to NLO) is shown for comparison. The

upper plot shows ∇ySeff ∝ βN at the nucleation mass.

The results for a Standard-Model like potential with
an effective φ6 operator are shown in figure 3. The re-
sults indicate that the expansion breaks down for small
x. This is because SNLO grows as x−3/2 ∼ λ−3/2

3d , which
pushes the range of validity to small c6 values: c6 � x3.

Interestingly, even when the expansion appears reli-
able, radiative corrections can be quite large if x� 1.
Although, it should be stressed that we have only calcu-
lated the rate to NLO for this model, and it is necessary
to include two-loop contributions to ensure that the
expansion converges.

Moreover, perturbation theory might still work for
smaller x if vector-bosons are integrated out. This
would give a cubic term in the leading-order potential,
akin to equation 8. Higher-order corrections should then
be more well-behaved even if x is small. They can still
be large, though, as indicated by the radiative-barrier
case in figure 1.

Conclusion.— We find that radiative corrections to
the nucleation rate can be large. By using a strict per-
turbative expansion, this paper calculates the size of
these corrections for a variety of models. The calcula-
tions indicate that higher-order corrections are impor-
tant, and should be included when studying extensions

of the Standard Model. Even when perturbation theory
is reliable, observables can change by a factor of 2 once
NLO corrections are included.

Our results also indicate that the perturbative ex-
pansion changes for strong transitions. This is because
couplings and masses scale differently at the nucleation-
scale for such transitions. Interestingly, it is not possible
to make higher-order corrections arbitrarily suppressed
for the models considered. This does not necessarily
mean that perturbation theory is inadequate, but it
does encourage caution when estimating the size of
higher-order corrections to the rate.

In addition, this work illustrates the synergy be-
tween classical nucleation theory and effective high-
temperature field theories [20]. Indeed, all non-
equilibrium effects can be calculated within the effective
theory, while temperature dependence is captured by
effective couplings.

For the radiative-barrier model, it is found that per-
turbation theory breaks down when x ≈ λ

g2 ∼ 0.02.
This should be contrasted with x ≈ 0.1, which is the
endpoint of the first-order transition [40, 41]. Mean-
ing that perturbation theory only works in a narrow
parameter-range for the radiative-barrier model.

Moreover, the results (see equation 7) indicate that
perturbation theory breaks down in the large-bubble
limit. A possible solution is to resum these large R cor-
rections into an effective theory as suggested by [20].
However, it should be stressed that these cases often
correspond to weak transitions, which might not be
interesting gravitational-wave wise.

For future work it would be interesting to confirm
that the calculations converge for radiative-barriers.
This would require three-loop calculations, and would
be the final calculable contribution due to the Linde
problem [42].

Furthermore, the methods of this paper can be ap-
plied to models with two-step transitions, like for
example singlet/triplet extensions of the Standard
Model [11, 43, 44]. Similar to the models studied in this
paper, radiative corrections are expected to be sizeable
for such extensions.

The author would like to thank Philipp Schicho,
Oliver Gould, and Tuomas V. I. Tenkanen for insight-
ful discussions and for a critical read-through of the
manuscript. During the completion of this paper the
author was made aware of similar methods used in
the forthcoming paper [17]. This work has been sup-
ported by the Deutsche Forschungsgemeinschaft under
Germany’s Excellence Strategy - EXC 2121 Quantum
Universe - 390833306; and by the Swedish Research
Council, project number VR:2021-00363.
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