
DEUTSCHES ELEKTRONEN-SYNCHROTRON
Ein Forschungszentrum der Helmholtz-Gemeinschaft

DESY 22-016
arXiv:2201.12803
January 2022

Similarity and Generalization:

From Noise to Corruption

N. Fonseca

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK

V. Guidetti

Deutsches Elektronen-Synchrotron DESY, Hamburg

ISSN 0418-9833

NOTKESTRASSE 85 - 22607 HAMBURG

 DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche

Verwertung der in diesem Bericht enthaltenen Informationen vor.

DESY reserves all rights for commercial use of information included in this report, especially in case of
filing application for or grant of patents.

Herausgeber und Vertrieb:

Verlag Deutsches Elektronen-Synchrotron DESY

DESY Bibliothek
 Notkestr. 85

22607 Hamburg
Germany

Similarity and Generalization: From Noise to Corruption

Nayara Fonseca 1 * Veronica Guidetti 2 *

Abstract
Contrastive learning aims to extract distinctive
features from data by finding an embedding rep-
resentation where similar samples are close to
each other, and different ones are far apart. We
study generalization in contrastive learning, fo-
cusing on its simplest representative: Siamese
Neural Networks (SNNs). We show that Dou-
ble Descent also appears in SNNs and is exacer-
bated by noise. We point out that SNNs can be
affected by two distinct sources of noise: Pair La-
bel Noise (PLN) and Single Label Noise (SLN).
The effect of SLN is asymmetric, but it preserves
similarity relations, while PLN is symmetric but
breaks transitivity. We show that the dataset topol-
ogy crucially affects generalization. While sparse
datasets show the same performances under SLN
and PLN for an equal amount of noise, SLN out-
performs PLN in the overparametrized region in
dense datasets. Indeed, in this regime, PLN simi-
larity violation becomes macroscopical, corrupt-
ing the dataset to the point where complete overfit-
ting cannot be achieved. We call this phenomenon
Density-Induced Break of Similarity (DIBS). We
also probe the equivalence between online opti-
mization and offline generalization for similarity
tasks. We observe that an online/offline corre-
spondence in similarity learning can be affected
by both the network architecture and label noise.

1. Introduction
There are key differences between similar-different discrimi-
nation and classification. For similarity learning, the relation
among features is crucial but not necessarily the features
themselves. In this work, we investigate how under- and

*Equal contribution. 1Work performed in part while
at the International Centre for Theoretical Physics (ICTP) in
Trieste and at Queen Mary University of London (QMUL).
2Deutsches Elektronen-Synchrotron, DESY, Notkestraße 85,
22607 Hamburg, Germany. Correspondence to: Nayara Fon-
seca <nayara.focs@gmail.com>, Veronica Guidetti <veron-
ica.guidetti@desy.de>.

Preprint.
DESY-22-016

over-parameterized deep neural networks (DNNs) general-
ize similarity relations via two frameworks: double descent
and online/offline learning correspondence, which we de-
scribe in the following.

The empirical success of overparameterized DNNs chal-
lenges conventional wisdom in classical statistical learning
as it is widely known among practitioners that larger models
(with more parameters) usually obtain better generalization
(Szegedy et al., 2015; Huang et al., 2019; Radford et al.,
2019). The double descent (Belkin et al., 2019) behavior
connects “classical” and “modern” machine learning by
observing that once the model complexity is large enough
to interpolate the dataset (i.e., when training error reaches
zero), the test error decreases again. This same pattern
has been empirically demonstrated for several models and
datasets, ranging from linear models (Loog et al., 2020) to
modern DNNs (Spigler et al., 2019; Nakkiran et al., 2020).

Here we investigate the double descent phenomenon in simi-
larity learning by examining in detail its behavior in Siamese
networks (Bromley et al., 1994; Chopra et al., 2005). A
Siamese architecture is made of two identical networks shar-
ing weights and biases that are simultaneously updated dur-
ing supervised training. The two networks are connected by
a final layer, which computes the distance between branch
outputs. Siamese Neural Networks (SNNs) are trained using
pairs of data that are labeled as similar or different. The
task of a successfully trained network is to decide if the pair
samples belong to the same class. A Siamese-like setup
offers a rich phenomenology to study similarity learning in
the presence of noise expected in real-world data. Several
subtleties should be taken into account in selecting the data
and creating the pairs. In particular, we note that if the pairs
are created from populations with different levels of image
diversity, the resulting learning model is different, even if
the total number of training pairs is fixed. Interestingly,
SNNs allow for two sources of label noise in the training
dataset: Single Label Noise (SLN) and Pair Label Noise
(PLN) that we introduce below (see the top of Fig. 1 for an
illustration).

Single Label Noise (SLN). Let us consider a dataset withN
samples XS = {x1, x2, . . . , xN} belonging to nc classes
and their corresponding labels Y S = {yS1 , yS2 , . . . , ySN}. If
some label noise is present in the original dataset, this will
propagate to the training pairs as these are created. If SLN

ar
X

iv
:2

20
1.

12
80

3v
1

 [c
s.L

G
]

30
 Ja

n
20

22

Similarity and Generalization: From Noise to Corruption

Figure 1. Top: Pictorial view about the two types of random label noise in a Siamese-like setup. Bottom: Train error (left) and test error
(right) as a function of model size. We train a 3-layer MLP architecture with ReLU activation function on FMNIST with 10% label noise.
We considered dense connections in the training pair data (scenario 2 in Sec. 2.1). We train the model using Adam for 2k epochs.

is uniformly introduced across all classes, it will keep the
original class balancing on average (over multiple samples).
On the other hand, in every single run, statistical fluctuations
of uniform distribution introduce some asymmetry in the
original class representative number (see left panel of Fig.
2). Finally, in SLN, similarity relations (reflexive, symmet-
ric, and transitive properties) are preserved as mislabeling
appears in all pairs containing a misclassified image.

Pair Label Noise (PLN). Let us now consider a dataset of
2N pairs XP = {{x1, x2}, . . . , {xi, xj}, . . . , {xN , xk}}
with pair labels Y P = {yP1 , yP2 , . . . , yP2N}, which can be
similar (yP = 1) or different (yP = 0). Suppose we ran-
domly shuffle some fraction of the total labels. In that case,
the noise we introduce is symmetric under similar ↔ dif-
ferent changes, and it acts democratically on every class of
the original dataset. On the other hand, PLN can lead to
inconsistent relations in the pairs dataset. Indeed, as we will
show in the following sections, it breaks transitivity and,
therefore, similarity.

We also study similarity learning by testing the equivalence
between online optimization and offline generalization. This

online/offline correspondence was proposed for supervised
image classification in (Nakkiran et al., 2021), see also
(Bousquet & Elisseeff, 2001; Bottou & LeCun, 2004; 2005;
Hardt et al., 2016). The conjecture states that understanding
generalization in an offline setting can be effectively reduced
to an optimization problem in the infinite-data limit. Just as
the double descent pattern described above, this framework
connects under- and overparameterized limits. On the other
hand, here, it is the training dataset size that dictates the
two regimes. In fact, under certain conditions, online and
offline test soft-errors match each other for classification
tasks (Nakkiran et al., 2021). This phenomenon can be in-
terpreted as a correspondence between overparameterized
models (with a finite number of samples) and underparame-
terized models (with a large dataset). Here we test this idea
for similarity problems.

In this work, we use both the double descent behavior and
the online/offline correspondence framework to understand
how networks generalize the concept of similarity. As dis-
cussed later, noisy data can impact how models learn sim-
ilarity relations in distinct ways. Notably, it is empirically
known that the double-descent curve is exacerbated in the

Similarity and Generalization: From Noise to Corruption

presence of random label noise in supervised classification
(Nakkiran et al., 2020). Our experiments in Sec. 2.4 show
that double descent appears in SNNs and is distinctly mani-
fested for SLN and PLN scenarios when similarity relations
in the training set are dense (we discuss sparse and dense
connections in detail in Sec. 2.1). An example of this be-
havior is shown in the bottom right plot of Fig. 1. Here
we trained a Siamese network made of two fully connected
branches on the Fashion-MNIST (FMNIST) dataset (Xiao
et al., 2017). In this case, dense pairs are formed using a
reduced version of the original FMNIST. We clearly see that,
for dense connections, SLN outperforms PLN in the over-
parametrized region. The difference between DD curves
comes from the similarity-breaking nature of PLN that be-
comes manifest when input data are highly connected. We
call this phenomenon Density-Induced Break of Similar-
ity (DIBS). This property of PLN, i.e., similarity breaking,
may appear in self-supervised contrastive learning. Indeed,
as exposed in (Huynh et al., 2022), if negative pairs are
formed by sampling views from different images, regardless
of their semantic information, this may lead to the appear-
ance of false-negative pairs. This can break transitivity and,
therefore, similarity, compromising the training efficiency.
Indeed, as we show in Fig. 5, this is precisely the unbalanc-
ing effect we found in the asymptotic training error in the
presence of PLN.

We test our results on MNIST and FMNIST datasets us-
ing Multi-Layer Perceptron (MLP) and Convolution Neural
Network (CNN) branch architectures. To show that the
DD behavior in the presence of noise only depends on the
dataset quality and pairs topology, we consider two different
training setups. In the first case, we compute the Euclidean
distance in the output layer training the network using Con-
trastive Loss (Hadsell et al., 2006), in the other case, we
compute the cosine similarity training the network using
Cosine Embedding Loss. All the plots related to the dif-
ferent datasets, architectures, sparse and dense similarity
connections, and training setups can be found in App. D.1.

This work investigates how neural networks learn similarity
relations and how the learning model is affected by noise.
Our main contributions are:

• We point out that similarity learning may be affected
by two distinct noise sources and study the double-
descent behavior in Siamese-like architectures. Our
findings indicate that, for the same amount of effective
noise, SLN outperforms PLN on densely connected
datasets in the overparametrized regime.

• We identify a phenomenon we call Density-Induced
Break of Similarity (DIBS). We find that PLN transitiv-
ity breaking introduces significant inconsistencies into
the training labels of dense datasets. We show that the
interpolation threshold (training error = 0) cannot be
achieved in this scenario, and we derive the analytic

formula for the asymptotic training error value in the
deep overparametrized regime.

• We test the correspondence between offline generaliza-
tion and online optimization for similarity learning. We
discuss how the architecture and the presence of noisy
labels can impact differently on these two regimes. In
particular, the effect of label noise is more important
in the offline case.

1.1. Related Work

Among all possible similarity learning methods, contrastive
learning (Chopra et al., 2005; Hadsell et al., 2006; Oord
et al., 2018) has become one of the most prominent su-
pervised (Khosla et al., 2020; Gunel et al., 2020) and self-
supervised (Bachman et al., 2019; Tian et al., 2020a; He
et al., 2020; Chen et al., 2020) ML techniques to learn repre-
sentations of high-dimensional data, producing impressive
results in several fields (Le-Khac et al., 2020; Jaiswal et al.,
2021). Despite its success, contrastive learning usually re-
quires huge datasets often created using data augmentation
techniques. In supervised learning tasks, this compensates
for the lack of infinite amounts of human-labeled data. On
the other hand, real-life data are noisy. Therefore, a major
challenge in further improving the accuracy and efficiency
in similarity learning is to understand how NNs react to
different noise sources and develop robust models, gener-
alizing on real and, therefore, noisy datasets. Although
there are several works investigating classification tasks in
deep neural networks in the presence of noise (e.g., (Li
et al., 2019; Han et al., 2019; Arazo et al., 2019; Harutyun-
yan et al., 2020; Song et al., 2020)), much less attention
was given to contrastive learning with noisy data. In fact,
only very recently, some attention was devoted to find the
impact of noisy data augmentation and to develop robust
contrastive learning setups (Tian et al., 2020b; Miech et al.,
2020; Morgado et al., 2021; Chuang et al., 2022).

2. Similarity Learning
Let us start this section by defining the criteria we used to
construct the pairs dataset. Indeed, this is an arbitrary choice
that may considerably impact the final result. As opposed
to classification problems, where the main concerns during
dataset creation are class balancing and image diversity,
in contrastive learning, we should consider that relations
among pairs (or groups) of images define an unoriented
graph of similarity relations inside the input space.

Calling N the total number of images in the full dataset, the
density of this graph, ρ = |Npairs|/

(
N
2

)
, tells us how much

information we have about the input images. Therefore, to
maximize the information about a certain dataset, we should
construct all possible pairs,

(
N
2

)
∼ N2, but this quickly

becomes unfeasible when considering large datasets. For
this reason, we construct pairs in a way that maximizes the

Similarity and Generalization: From Noise to Corruption

information about similar images (all similar images are
transitivity-related) and scales linearly with N . In practice,
we construct closed chains of positive pairs within the same
class, c, {{xc1, xc2}, . . . , {xck, xck}, . . . , {xcn, xc1}}, where n
is the total number of images in c. Then, to build negative
pairs, each image is connected to a randomly chosen one
belonging to a different class. If the original dataset classes
are balanced, each image appears on average in 4 different
pairs (2 times in the positive and 2 times in the negative
pairs). Therefore, the total number of pairs is given by
Npairs = 2 × N = 2 × n × nc , where nc is the total
number of classes.1

The following sections describe the procedure to form the
pairs, our experimental setup, and how noise is introduced
in the training data.

2.1. Sparse and Dense Connections

The topology of the dataset crucially affects the resulting
learning model. Here, we provide details regarding the two
methods we use to form pairs in our experiments. These
lead to setups with sparse and dense connections in the input
space. In the left panel of Fig. 2, we show a pictorial view
of the data relations in these two scenarios in the absence
of noise, and the SLN and PLN cases. Below, we describe
how PLN and SLN are added to each case.

Scenario 1: Sparse connections. To train the network in
the absence of noise, we first create the pairs using the full
dataset. We follow the procedure described at the beginning
of this section so thatNpairs = 2×N . We then takeNsample

balanced pairs from theNpairs list to train the NN and repeat
this procedure ns times. Below, we describe the strategy
used to introduce PLN and SLN in this scenario.

Sparse Pair Label Noise (PLN)

load(dataset)
CREATEBALANCEDPAIRS(dataset)
for i = 1, 2, . . . , ns do

fraction of Ntotal labels← random(0,1)
select balanced Nsample pairs from Npairs

train
end for

Scenario 2: Dense connections. In this setup, we create a
reduced version of the original dataset. Being interested in
training the network on Npairs pairs, we select Nreduced =
Npairs/2 images from the original training set. The reduced
dataset is balanced so that we have Npairs/(2nc) images
per class. Then, we create our training and test samples
using the same prescription described at the beginning of
this section. We connect adjacent images within the same

1Note that this formula holds for dataset with at least 2 images
per class.

Sparse Single Label Noise

load(dataset)
for i = 1, 2, . . . , ns do

fraction of N labels← random(1,nc)
dataset← labels with noise
CREATEBALANCEDPAIRS(dataset)
select balanced Nsample pairs from Npairs

train
end for

class and each of them with a random image belonging to a
different class so that we get exactlyNpairs pairs that will be
automatically balanced. We repeat this procedure ns times.
The setup used to introduce PLN and SLN in this scenario
is described below.

Dense Pair Label Noise
load(dataset)
for i = 1, 2, . . . , ns do

rdataset← REDUCEDATASET(dataset)
CREATEBALANCEDPAIRS(rdataset)
fraction of Nreduced labels← random(0,1)
train

end for

Dense Single Label Noise

load(dataset)
for i = 1, 2, . . . , ns do

rdataset← REDUCEDATASET(dataset)
fraction of N labels← random(1,nc)
rdataset← labels with noise
CREATEBALANCEDPAIRS(rdataset)
train

end for

The functions CREATEBALANCEDPAIRS and REDUCE-
DATASET describing the exact steps to prepare the dataset
are given in App. A.

2.2. Effective noise

To make a consistent comparison, we need to introduce the
same amount of input label noise in both the SLN and the
PLN cases. Being nc the number of image classes, ySi the
label of the i-th image, and yPi the label of the i-th pair
of images, we can define the SLN transformation that is
applied to the whole dataset as

T (q) : ySi → Rnd(0, nc − 1) with probability q (1)

and the PLN transformation as

TP(q̃) : yPi → Rnd(0, 1) with probability q̃ . (2)

Similarity and Generalization: From Noise to Corruption

SPARSE CONNECTIONS DENSE CONNECTIONS

NO NOISE

PAIR LABEL NOISE

SINGLE LABEL NOISE

Figure 2. Left: Pictorial view of data relation appearing in Scenario 1 (left) and 2 (right) for two classes of data (represented by black and
orange dots). Positive pairs are connected by green edges, negative pairs by red edges. Scenario 1 implies sparse connections among data
(ignored connections and data are in light gray), while Scenario 2 is densely connected. Gray shaded areas are examples of DIBS in
the presence of PLN. Right: Comparison between analytic and numerical estimates of the asymptotic training error behavior at varying
number of classes nc (top) and noise (bottom) in the presence of PLN in scenario 2. We consider the FMNIST dataset and compute the
value of the training error coming from a 3-layers MLP architecture with 500 neurons per layer after 4k epochs. The Siamese output layer
computes the Euclidean distance, and we train the network using contrastive loss. Numerical results (bullet points with standard error
bars) come from 10 runs where we choose different random classes each time. Analytic estimates (dashed lines) come from Eq. (14).

As the introduction of SLN happens before pair creation and
the pairs are constructed so that the dataset is balanced, i.e.,
half pairs are equal, and half are different, the probability
of effective pair mislabeling induced by SLN, PSLN(q), is
given by

PSLN(q) = q − q2

2
. (3)

while the probability of effective pair mislabeling coming
from PLN, PPLN(q̃), is

PPLN(q̃) =
q̃

2
. (4)

The requirement of having the same amount of noise in the
dataset (PSLN(q) = PPLN(q̃)) boils down to the following
relation between q and q̃:

q = 1−
√

1− q̃. (5)

The full derivation of these results is given in Appendix B.

We want to stress that PLN and SLN impose different con-
straints on the training process. PLN is a balanced noise

source as the probability of transforming even pairs into
odd ones, and vice versa is the same. On the other hand,
SLN is an unbalanced source of noise, i.e., the probabil-
ity that Eq. (1) transforms equal pairs into different ones,
(nc − 1)/nc, is in general much higher than the opposite
case, 1/nc. Moreover, as opposed to classification tasks,
in Siamese networks and contrastive learning, noise can
generally lead to inconsistent relations in the training set. A
similarity relation is defined by reflexivity, symmetry, and
transitivity, but the appearance of noise can compromise
this last property. In fact, PLN, randomly shuffling pair
labels, leads to inconsistent relations in the dataset (see Fig.
2). This effect becomes more apparent as we increase the
density (number of links in Fig. 2) in our training set. On
the other hand, similarity breaking does not appear in SLN,
where the similarity relations may go against image features
but are always self-consistent.

2.3. Output layer and Loss function

We perform our experiments using the two different output
layers and loss functions described below.

Similarity and Generalization: From Noise to Corruption

Euclidean distance and Contrastive Loss. In this first
case, the Siamese NN output layer computes the Euclidean
distance between the output vectors of the Siamese branches,
~z(x). Therefore, the model prediction that quantifies the
similarity between the two images in a pair is given by:

di = ||~z(xi1)− ~z(xi2)||2 . (6)

We then train the network considering the contrastive loss
function (Hadsell et al., 2006):

L(yP , d) = 1

Npairs

∑
i

[
yPi d

2
i

+(1− yPi) [max(0,m− di)]2
]
,

(7)

where yPi is the true label and m sets the threshold at which
the network classifies a given pair as similar or different.
During training, the network tries to minimize L by collaps-
ing similar samples and pulling apart different samples by a
distance equal to the margin, m. The accuracy is given by:

acc = 1− err = 1− 1

2N

∑
i

|yPi − ŷ(di)| , (8)

where ŷ(di) = [1d<m/2](di). (9)

In all experiments, we choose the margin to be m = 1.

Cosine similarity and Cosine Embedding Loss. In this
setup, the output layer computes the cosine similarity be-
tween the output vectors of the Siamese branches. The
model prediction is thus given by:

si = cos

(
~z(xi1) · ~z(xi2)

||~z(xi1)||2||~z(xi2)||2

)
. (10)

We train the network using the Cosine Embedding Loss
function,

L(yP , s) = 1

Npairs

∑
i

[
yPi (1− si)

+(1− yPi)max(0, si − cos(α))
]
,

(11)

according to which similar images should give rise to vectors
pointing in roughly the same direction. In contrast, the angle
between vectors coming from different images should be
larger than or equal to α. In this model, we compute the
accuracy as:

acc = 1− 1

2N

∑
i

|yPi − ŷ(si)| , (12)

where ŷ(si) = [1s>cos(α/2)](si). (13)

In all experiments, we choose α = π/3.

2.4. Architecture and Optimizer
In this work, we consider two simple Siamese branch ar-
chitectures. The first one is an MLP with 3 hidden layers
having the same width and ReLU activation functions with
Xavier uniform initialization (Glorot & Bengio, 2010). The
second architecture is a 4-layer CNN based on the model
described in (Page, 2018). It contains three Convolution-
BatchNormalization-ReLU-MaxPooling layers and a fully-
connected output layer. The number of filters in each convo-
lution layer scales as [k, 2k, 2k] while the MaxPooling is
[1, 2, 8]. We fix the kernel size = 3, stride = 1 and padding =
1. When we train the network using contrastive loss (cosine
embedding loss), we set the fully-connected output layer
width to k (2k). To understand the impact of overparam-
eterization, we study how training and test errors vary at
increasing network width. Namely, we increase the number
of neurons per layer in the fully connected architecture and
the parameter k in the CNN.

In every DD experiment, we let the network evolve for 2000
epochs using Adam optimizer with minibatches of size 128
and learning rate λ = 10−4. All our experiments make use
of the TensorFlow/Keras framework (Abadi et al., 2015).

3. Results
3.1. Double Descent in Similarity Learning

We study double descent on MNIST and FMNIST datasets
in scenarios 1 (Sparse) and 2 (Dense). For all datasets, we
consider 6000 training pairs and 9000 test pairs. We run 15
(10) evolutions of the MLP (CNN) network using different
training and test samples at each time. Our results, showing
the average training and test errors together with error bars,
can be found in Fig. 1 and App. D.1. In all examples, we
can see the double descent phenomenon, regardless of the
architecture, the loss function, the scenario, and the noise.
Nevertheless, as expected, DD becomes more prominent in
the presence of noise. In all the experiments discussed, we
considered q̃ = 0.2, i.e., an effective noise of 10%. In Fig.
8, we show how the network reacts to different amounts of
noisy labels.

In Scenario 1, the input dataset connections are sparse, and
PLN and SLN have the same impact on training. This makes
sense as there should not be any difference between PLN
and SLN in the extreme case where every image appears
only once in the training set. A closer look at the plots
related to scenario 1 shows that SLN test error tends to
be slightly higher than PLN one. This happens because
SLN is a slightly unbalanced noise source. Indeed, we
experimentally saw that unbalanced noise generically leads
to higher test errors.

In Scenario 2, input connections are dense, and the system
behaves differently under SLN and PLN. SLN test error

Similarity and Generalization: From Noise to Corruption

tends to be higher from small to medium network sizes. A
hint about how this happens is given in Fig. (2). Indeed,
on top of being asymmetric, SLN introduces a systematic
error: a mislabeled image appears to be mislabeled in ev-
ery pair. Therefore, given that the image features are not
going to agree with pair labels, the only way the network
has to classify correctly is by extracting the image from
its natural distribution. Being NNs continuous functions,
this implies that a neighborhood of said image must be ex-
tracted as well, increasing the test error. At higher network
widths, the volume of the mislabeled image neighborhood
can become arbitrarily small, and the test error is free to go
down again. On the other hand, PLN stays higher in the
deep overparametrized regime. Indeed, randomly changing
similarity relations in the input dataset, PLN ends up break-
ing transitivity, thus making the training labels inconsistent.
Beyond keeping test error high, this inconsistency also im-
plies that the network is not able to overfit the training data
completely: the training error will no longer vanish just by
increasing the number of network parameters and reaches
an asymptotic value given by:

lim
nθ→∞

TrainErrorPLN
Dense(P, nc) =

P (1− P)
2(nc − 1)

(14)

where nθ is the number of network parameters and P =
PPLN(q̃) is the effective amount of noise. In Fig 2 we vali-
date our formula by comparing it with experimental results
showing how, in the overparametrized regime, the training
error changes with the effective noise and with the different
number of classes.

3.2. Similarity Generalization: online vs. offline

In this section, we probe the Deep Bootstrap framework
(Nakkiran et al., 2021) in the context of similarity learning.
This framework introduces a correspondence between on-
line and offline settings for classification problems. The
proposal establishes a relation between the Real World (of-
fline), which has a fixed number of samples in the training
set, with the Ideal World (online), where the optimizer’s
updates always use fresh samples. The relation between
Real and Ideal scenarios is manifested by the following al-
ternative decomposition of the test error (Nakkiran et al.,
2021):

TestError(ft) = TestError(f iid
t)

+ [TestError(ft)− TestError(f iid
t)], (15)

where, ft refers to a neural network after t optimizer steps
in the Real World with a fixed number of samples, and f iid

t

is a network in the Ideal World that is trained as ft but
without re-using samples. This means that the optimization
over minibatches gets new samples at each gradient itera-
tion in the online setting. Note that the decomposition in
Eq. (15) makes the bootstrap error (the subtraction in brack-

ets) explicit.2 This measures how well models trained offline
represent the online regime. The first term in the right-hand
side of Eq. (15) is the test error in the Ideal World, which
quantifies how fast the network optimizes on the population
loss. Nakkiran et al. (2021) give empirical evidence that an
online/offline correspondence holds for classification prob-
lems by showing that the bootstrap error is small in several
network models for supervised image classification. The
conjecture suggests that understanding generalization in the
Real World can be effectively reduced to an optimization
problem in online learning. Here, we test if this correspon-
dence is also valid for similarity tasks.

We use the digit section of EMNIST (Cohen et al., 2017)
that is an extended version of the standard MNIST dataset,
with 240,000 training (and 40,000 test) 28 × 28 greyscale
pixel images. The networks are trained with the contrastive
loss function in Eq. (7). We train Real World over 40 epochs
using 12k pairs that are created considering Sparse and
Dense scenarios, as described in Sec. 2.1. The Ideal World
is trained once on 480k pairs created using the full training
set of 240k samples. We test the models with 9k pairs
constructed from the test set and consider Siamese networks
with MLP and CNN blocks. The architecture details are
given in Sec. 2.4.

Real- and Ideal-world scenarios in the absence of label noise
are shown in Fig. 3, where offline and online settings are
compared after the same number of training iterations. We
consider the Siamese architectures described in Sec. 2.4, us-
ing 200 nodes per layer for the MLP cases (total of 237,400
parameters) and width k = 47 (total of 235,611 parameters)
for the CNN cases. In Fig. 3, we plot the median over 5 tri-
als (random network initialization) for the Real-world cases
with MLP blocks, and the median over 7 trials for all CNN
cases. The final training errors for the MLP (CNN) Real
world scenarios are below 1% (3%), see Fig. 17 in App. D.2.

Figure 3 (left) shows that the MLP Real test error for dense
connections is slightly higher than the sparse one, and there
is a constant gap between the two scenarios, which con-
verges after about 2k iterations. Both curves present a small
deviation from the Ideal World, which marginally increases
as the online test error improves with more fresh samples.
Interestingly, the Siamese network with CNN blocks in the
Ideal World is close to the MLP Real case for dense con-
nections. On the other hand, there is a larger bootstrap gap
between the CNN Real scenarios and the corresponding
Ideal case. In addition, CNN offline test error curves start
to perform worse (at about 900 iterations), while test error
improves in the ideal regime. This signalizes that the Real
test errors for the SNN with CNN blocks overfits earlier

2See Appendix C in (Nakkiran et al., 2021) for connections
to the nonparametric bootstrap in statistics (Efron, 1979; Efron &
Tibshirani, 1986).

Similarity and Generalization: From Noise to Corruption

Figure 3. Ideal vs. Dense/Sparse Real worlds in the absence of label noise. Plots show Test Errors (left) and Test Losses (right) as a
function of minibatch Adam iterations for the MLP (nodes per layer = 200) and CNN (k = 47) Siamese architectures described in Sec. 2.4.

Figure 4. Ideal vs. Dense Real worlds with 10% of label noise for
the MLP architecture with 200 nodes per layer. The plots shows
the Test Errors as a function of minibatch Adam iterations. The
star (dot) corresponds to the SLN (PLN) Real World Train Error at
the end of training.

than the one with MLP blocks. This can be avoided by stop-
ping training earlier in the CNN case. However, since we
want to compare the architectures, we train both MLP and
CNN scenarios for the same number of optimizer iterations.
We stress though, that (Nakkiran et al., 2021) compare soft-
errors, instead of the hard-errors that we use here.3 In the
classification examples discussed in (Nakkiran et al., 2021),
they found that the bootstrap gap is often smaller for soft-
errors. Besides the test errors, it is interesting to compare
other metrics between online/offline settings. In particular,
note that the Real/Ideal Test Losses (right-panel of Fig. 3)
follow the same behavior as their corresponding Test Errors.

We also study the impact of noisy labels on Real and Ideal
scenarios. In Fig. 4, we consider 10% of label noise for the
MLP architecture and plot the median over 5 trials (random
network initialization and random noise sampling selection).

3The soft-error is given by soft-error = 1 - soft-accuracy, where
soft-accuracy is the softmax probability on the right label.

We note that both Ideal and Real test errors are affected
by noise, but this effect is exacerbated in the Real World.
This can be understood because “fresh” samples add more
diversity into the model, which improves generalization
even if these new samples present noisy labels. In Fig. 4,
the Dense-Real cases start to overfit at about 1k minibatch
updates, while the Ideal World continues to improve gen-
eralization. We observe a similar behavior for the sparse
case and the losses in Fig. 16 (App. D.2). Notice that the
test errors in Fig. 4 should not be directly compared to the
double-descent curves in Sec. 3.1, where there is a clear dif-
ference between PLN and SLN for the scenario with dense
connections. While in Sec. 3.1 the network is trained over 2k
epochs, such that training continues after the training error
has reached its asymptotic value; here we want to probe the
Real World when its optimizer is still updating significantly.
As pointed out in previous works (see, e.g., (Nakkiran et al.,
2020)), setups with early stopping training usually do not
exhibit double descent. For the Real-world models in this
section, the training always stops at 40 epochs.

4. Conclusions
This work studies generalization in similarity learning with
noisy labeled data focusing, in particular, on SNNs. We
find that DD clearly appears in SNNs and becomes more
evident in the presence of noisy labels. We check DD us-
ing different architectures, datasets, and loss functions. We
present two kinds of noise, SLN, and PLN, that may affect
the input data. While SLN preserves similarity relations,
PLN breaks transitivity. We analytically prove and experi-
mentally show that similarity-breaking noise sources deeply
affect generalization performances. The same noise sources
presented in this work can be easily generalized to models
where the network input is given by multiple images. We
also investigate the equivalence between online optimiza-
tion (infinite-data regime) and offline generalization (finite
number of samples) for similarity problems. Our results

Similarity and Generalization: From Noise to Corruption

indicate that both the network architecture and the existence
of noisy labels can disturb an online/offline correspondence
for similarity tasks.

5. Acknowledgement
This work was partially supported by the CoSubmitting Sum-
mer (CSS) program at ICLR 2022. This research was sup-
ported in part through the Maxwell computational resources
operated at Deutsches Elektronen-Synchrotron DESY, Ham-
burg, Germany. We thank Preetum Nakkiran for useful
discussions and for proposing the idea of probing the on-
line/offline correspondence in Siamese networks. We also
thank Alexander Westphal, Gonçalo Valadão and Arun Raja
for useful discussions.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Arazo, E., Ortego, D., Albert, P., O’Connor, N. E., and
McGuinness, K. Unsupervised label noise modeling and
loss correction. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceed-
ings of Machine Learning Research, pp. 312–321. PMLR,
2019. URL http://proceedings.mlr.press/
v97/arazo19a.html.

Bachman, P., Hjelm, R. D., and Buchwalter, W. Learning
representations by maximizing mutual information across
views. arXiv preprint arXiv:1906.00910, 2019.

Belkin, M., Hsu, D., Ma, S., , and Mandal, S. Reconcil-
ing modern machine-learning practice and the classical
bias-variance trade-off. In Proceedings of the National
Academy of Sciences of the United States of America
vol. 116,32 (2019): 15849-15854, 2019. URL https:
//doi.org/10.1073/pnas.1903070116.

Bottou, L. and LeCun, Y. Large scale online learn-
ing. In Thrun, S., Saul, L., and Schölkopf, B.
(eds.), Advances in Neural Information Processing Sys-
tems 16 (NIPS 2003). MIT Press, Cambridge, MA,

2004. URL http://leon.bottou.org/papers/
bottou-lecun-2004.

Bottou, L. and LeCun, Y. On-line learning for very large
datasets. Applied Stochastic Models in Business and
Industry, 21(2):137–151, 2005. URL http://leon.
bottou.org/papers/bottou-lecun-2004a.

Bousquet, O. and Elisseeff, A. Algorithmic stability and
generalization performance. Advances in Neural Infor-
mation Processing Systems, pp. 196–202, 2001.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and
Shah, R. Signature verification using a ”siamese”
time delay neural network. In Cowan, J., Tesauro,
G., and Alspector, J. (eds.), Advances in Neural
Information Processing Systems, volume 6. Morgan-
Kaufmann, 1994. URL https://proceedings.
neurips.cc/paper/1993/file/
288cc0ff022877bd3df94bc9360b9c5d-Paper.
pdf.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Chopra, S., Hadsell, R., and LeCun, Y. Learning a simi-
larity metric discriminatively, with application to face
verification. In 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pp. 539–546 vol. 1, 2005. doi:
10.1109/CVPR.2005.202.

Chuang, C.-Y., Hjelm, R. D., Wang, X., Vineet, V., Joshi,
N., Torralba, A., Jegelka, S., and Song, Y. Robust con-
trastive learning against noisy views. arXiv preprint
arXiv:2201.04309, 2022.

Cohen, G., Afshar, S., Tapson, J., and van Schaikf, A. EM-
NIST: an extension of MNIST to handwritten letters.
2017. URL https://github.com/hosford42/
EMNIST.

Efron, B. Bootstrap methods: Another look at the
jackknife. The Annals of Statistics, 7(1):1–26, 1979.
ISSN 00905364. URL http://www.jstor.org/
stable/2958830.

Efron, B. and Tibshirani, R. Bootstrap methods for stan-
dard errors, confidence intervals, and other measures of
statistical accuracy. Statistical science, pp. 54–75, 1986.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

https://www.tensorflow.org/
http://proceedings.mlr.press/v97/arazo19a.html
http://proceedings.mlr.press/v97/arazo19a.html
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1073/pnas.1903070116
http://leon.bottou.org/papers/bottou-lecun-2004
http://leon.bottou.org/papers/bottou-lecun-2004
http://leon.bottou.org/papers/bottou-lecun-2004a
http://leon.bottou.org/papers/bottou-lecun-2004a
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/288cc0ff022877bd3df94bc9360b9c5d-Paper.pdf
https://github.com/hosford42/EMNIST
https://github.com/hosford42/EMNIST
http://www.jstor.org/stable/2958830
http://www.jstor.org/stable/2958830

Similarity and Generalization: From Noise to Corruption

Gunel, B., Du, J., Conneau, A., and Stoyanov, V. Supervised
contrastive learning for pre-trained language model fine-
tuning. arXiv preprint arXiv:2011.01403, 2020.

Hadsell, R., Chopra, S., and LeCun, Y. Dimensionality
reduction by learning an invariant mapping. In 2006
IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 2, pp. 1735–
1742, 2006. doi: 10.1109/CVPR.2006.100.

Han, J., Luo, P., and Wang, X. Deep self-learning from noisy
labels. In 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), Oc-
tober 27 - November 2, 2019, pp. 5137–5146. IEEE,
2019. doi: 10.1109/ICCV.2019.00524. URL https:
//doi.org/10.1109/ICCV.2019.00524.

Hardt, M., Recht, B., and Singer, Y. Train faster, generalize
better: Stability of stochastic gradient descent. In Interna-
tional Conference on Machine Learning, pp. 1225–1234.
PMLR, 2016.

Harutyunyan, H., Reing, K., Steeg, G. V., and Galstyan,
A. Improving generalization by controlling label-noise
information in neural network weights. In Proceedings of
the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 4071–
4081. PMLR, 2020. URL http://proceedings.
mlr.press/v119/harutyunyan20a.html.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 9729–
9738, 2020.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32:103–112, 2019.

Huynh, T., Kornblith, S., Walter, M. R., Maire, M., and
Khademi, M. Boosting contrastive self-supervised learn-
ing with false negative cancellation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pp. 2785–2795, 2022.

Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and
Makedon, F. A survey on contrastive self-supervised
learning. Technologies, 9(1):2, 2021.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola,
P., Maschinot, A., Liu, C., and Krishnan, D. Supervised
contrastive learning. arXiv preprint arXiv:2004.11362,
2020.

Le-Khac, P. H., Healy, G., and Smeaton, A. F. Contrastive
representation learning: A framework and review. IEEE
Access, 2020.

Li, J., Wong, Y., Zhao, Q., and Kankanhalli, M. S.
Learning to learn from noisy labeled data. In IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2019, Long Beach, CA, USA, June 16-20,
2019, pp. 5051–5059. Computer Vision Foundation /
IEEE, 2019. doi: 10.1109/CVPR.2019.00519. URL
http://openaccess.thecvf.com/content_
CVPR_2019/html/Li_Learning_to_Learn_
From_Noisy_Labeled_Data_CVPR_2019_
paper.html.

Loog, M., Viering, T., Mey, A., Krijthe, J. H., and Tax, D. M.
A brief prehistory of double descent. Proceedings of the
National Academy of Sciences, 117(20):10625–10626,
2020.

Miech, A., Alayrac, J.-B., Smaira, L., Laptev, I., Sivic, J.,
and Zisserman, A. End-to-end learning of visual represen-
tations from uncurated instructional videos. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 9879–9889, 2020.

Morgado, P., Misra, I., and Vasconcelos, N. Robust audio-
visual instance discrimination. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12934–12945, 2021.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B.,
and Sutskever, I. Deep double descent: Where bigger
models and more data hurt. In International Conference
on Learning Representations, 2020. URL https://
openreview.net/forum?id=B1g5sA4twr.

Nakkiran, P., Neyshabur, B., and Sedghi, H. The deep boot-
strap framework: Good online learners are good offline
generalizers. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=guetrIHLFGI.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Page, D. How to train your resnet.
2018. URL https://myrtle.ai/
how-to-train-your-resnet-4-architecture/.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

https://doi.org/10.1109/ICCV.2019.00524
https://doi.org/10.1109/ICCV.2019.00524
http://proceedings.mlr.press/v119/harutyunyan20a.html
http://proceedings.mlr.press/v119/harutyunyan20a.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Li_Learning_to_Learn_From_Noisy_Labeled_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Li_Learning_to_Learn_From_Noisy_Labeled_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Li_Learning_to_Learn_From_Noisy_Labeled_Data_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Li_Learning_to_Learn_From_Noisy_Labeled_Data_CVPR_2019_paper.html
https://openreview.net/forum?id=B1g5sA4twr
https://openreview.net/forum?id=B1g5sA4twr
https://openreview.net/forum?id=guetrIHLFGI
https://openreview.net/forum?id=guetrIHLFGI
https://myrtle.ai/how-to-train-your-resnet-4-architecture/
https://myrtle.ai/how-to-train-your-resnet-4-architecture/

Similarity and Generalization: From Noise to Corruption

Song, H., Kim, M., Park, D., and Lee, J. Learning from
noisy labels with deep neural networks: A survey. CoRR,
abs/2007.08199, 2020. URL https://arxiv.org/
abs/2007.08199.

Spigler, S., Geiger, M., d’Ascoli, S., Sagun, L., Biroli, G.,
and Wyart, M. A jamming transition from under-to over-
parametrization affects generalization in deep learning.
Journal of Physics A: Mathematical and Theoretical, 52
(47):474001, 2019.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

Tian, Y., Krishnan, D., and Isola, P. Contrastive multiview
coding. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XI 16, pp. 776–794. Springer, 2020a.

Tian, Y., Sun, C., Poole, B., Krishnan, D., Schmid, C., and
Isola, P. What makes for good views for contrastive
learning? arXiv preprint arXiv:2005.10243, 2020b.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learn-
ing Algorithms. 2017. URL https://github.com/
zalandoresearch/fashion-mnist.

https://arxiv.org/abs/2007.08199
https://arxiv.org/abs/2007.08199
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist

Similarity and Generalization: From Noise to Corruption

A. Pseudocode to create the balanced pairs and reduced dataset

Creating Balanced Pairs
1: function CREATEPAIRS(images, labels, numClasses)
2: n← number of samples for each class
3: for d = 1, 2, . . . , numClasses do
4: for i = 1, 2, . . . , n do
5: pairs pos = {images(i), images(i+1)}
6: y = (d + random-integer(1,9)) % 10
7: pair neg = {images(i), images(y)}
8: pairs = pairs + {pair pos, pair neg}
9: p labels = p labels + {1, 0}

10: end for
11: end for
12: return pairs, p labels
13: end function

Create Reduced dataset
1: function REDUCEDATASET(images, labels, numClasses, NewSize)
2: n← NewSize/numClasses
3: indices=[]
4: for d = 1, 2, . . . , numClasses do
5: class indices = where(labels==d)
6: n class indices=random.choice(class indices, n)
7: indices.append(n class indices)
8: end for
9: return images[indices], labels[indices]

10: end function

B. Effective noise derivation
We start by considering the amount of effective noise (real mislabeling) introduced by the pair label transformation

TP (q̃) : yPi → Rnd(0, 1) with probability q̃ . (16)

Each time we apply this transformation, the probability of a change in the pair label is 1/2, so the effective error probability
is:

PPLN =
q̃

2
. (17)

This computation is slightly more complicated in the SLN case. Indeed, if we apply the following transformation

T (q) : yiS → Rnd(0, nc − 1) with probability q , (18)

on the initial dataset labels ySi , and we then create the pairs, the probability that one (and only one) element in a pair has
been operated by T is

P1L = 2q(1− q) , (19)

while the probability that both elements have been operated by T is

P2L = q2 . (20)

Now the question is: what is the probability that this single label operation (we recall that the term single label regards the
application of T on the label of one or both pair elements and not on the pair label) leads to effective pair label corruption?
Let us assume that we have a pair of images belonging to different classes yP = 0. The probability that the transformation

Similarity and Generalization: From Noise to Corruption

of a single image label changes the pair label is equal to the likelihood that the same operation over both images effectively
changes the pair label. The value of that probability is the following:

Q1→0
1L = Q1→0

2L =
1

nc
. (21)

The same reasoning can be applied to pairs of objects belonging to the same class, yP = 1, and leads to

Q0→1
1L = Q0→1

2L =
(nc − 1)

nc
. (22)

Creating a balanced dataset where half of the pairs are equal and half are different is common practice. Therefore, we create
a dataset where

PyP=1 = PyP=0 =
1

2
. (23)

Finally, we are now ready to estimate the amount of real noise that is introduced in our dataset corrupting single images
labels. This is given by:

PSLN = PyP=1 (P1LQ
0→1

1L + P2LQ
0→1

2L)

+ PyP=0(P1L Q
1→0

1L + P2LQ
1→0

2L)

= 1
2 (P1L + P2L)(Q

0→1
1L +Q1→0

1L)

= q − 1
2q

2 .

(24)

Requiring that the effective dataset noise is the same in SLN and PLN setups, leads us to Eq. (5).

C. Unbalanced train error with PLN DIBS

Figure 5. Results about normalized confusion matrix computed on the asymptotic training error (left) and its related test error (right) at
varying number of classes and PLN. These results are referred to FMNIST using the dense pair regime (scenario 2). The experimental
setup is the same described in Fig. 2.

Here, we provide some additional information about the properties of the asymptotic training error arising with PLN on a
dense pairs dataset. As mentioned in the main text, PLN breaks transitivity, leading to inconsistent relations that the NN
cannot satisfy. In fact, the margin-based loss function tends to collapse images belonging to the same class to a single point
and separate different images by a distance equal to or greater than the margin. Some inconsistencies appearing in this
setup are shown in Fig. 2. Nevertheless, it is not clear how the network deals with such contradictions at this point. The
final training error could arise from three distinct behaviors: collapsing different pairs, separating equal pairs, or a mixture
of the two. Contrary to the third option, the first two cases would lead to an unbalanced asymptotic train error (similar
pairs systematically mislabeling or vice-versa). In order to answer this question, we compute the confusion matrix on the

Similarity and Generalization: From Noise to Corruption

asymptotic training set, varying the number of classes and PLN. This corresponds to studying the source of the results
shown in the top-right corner of Fig. 2. Our findings are shown in Fig. 5. We see that the network is biased towards “False
different” classification. That is, the NN tends to classify equal pairs (yS = 1) as different ones (yS = 0). We can provide
some intuition about why this happens. As shown in Fig. 6 we can have transitivity breaking inside similar pairs chains and
among vertices belonging to different classes. We need to notice that more than one mislabeling inside equal images chains
does not lead to inconsistent classification. This implies that the impact of this mislabeling on the training error is almost
negligible. On the other hand, inconsistencies on paths involving different classes always lead to inconsistencies. In this
specific case, the configuration that minimizes the amount of training error is the one where the noise-induced similar pair is
misclassified, leading to a “False different” kind of error. We also studied the impact of the training error unbalancing on
the test error (RHS of Fig. 5). Surprisingly, while in the low noise regime (10%), the test error is also biased towards the
“False different” pair classification, increasing the amount of noise to 30%, the total test error increases and becomes more
balanced.

CONFIGURATION COLLAPSED CONFIGURATION TRANSITIVITY BREAKING

YES

NO

NO

YES

YES

Figure 6. Left: Examples of input configurations among similar (first 3 lines) and different pairs (last two lines) in the presence of PLN.
Center: configuration after similar pair collapse. If this can not be consistently reached, the minimal extended configuration (triangle with
1 red and 2 green edges) is displayed. Right: Presence of transitivity breaking coming from PLN.

Similarity and Generalization: From Noise to Corruption

D. Additional Figures
D.1. Double descent plots

Figure 7. Number of trainable network parameters at increasing network size. The input shape is assumed to be (28,28,1). The structure
of the MLP and the CNN is described in section 2.4.

Similarity and Generalization: From Noise to Corruption

MNIST - MLP - EUCLIDEAN DISTANCE

SPARSE

DENSE

Figure 8. MNIST training (left) and test error (right) for a MLP with 3 layers of equal size after 2k epochs. We vary the number of neurons
per layer and the effective PLN and SLN noise in the sparse and the dense configuration. We consider contrastive loss using the Euclidean
distance between branch outputs, and we use 6k (9k) train (test) pairs.

Similarity and Generalization: From Noise to Corruption

FMNIST - MLP - EUCLIDEAN DISTANCE

SPARSE

DENSE

Figure 9. FMNIST training (left) and test error (right) for a for a MLP with 3 layers of equal size after 2k epochs. We vary the number of
neurons per layer in the sparse and the dense configuration. We consider contrastive loss using the Euclidean distance between branch
outputs, and we use 6k (9k) train (test) pairs.

Similarity and Generalization: From Noise to Corruption

MNIST - CNN - EUCLIDEAN DISTANCE

SPARSE

DENSE

Figure 10. MNIST training (left) and test error (right) for a CNN with 4 layers of different size (see Section 2.4). We vary the CNN with
parameter k in the sparse and the dense configuration of input pairs. We consider contrastive loss using Euclidean distance between
branch outputs, and we use 6k (9k) train (test) pairs.

Similarity and Generalization: From Noise to Corruption

FMNIST - CNN - EUCLIDEAN DISTANCE

SPARSE

DENSE

Figure 11. FMNIST training (left) and test error (right) for a CNN with 4 layers of different size (see Section 2.4). We vary the CNN
with parameter k in the sparse and the dense configuration of input pairs. We consider contrastive loss using Euclidean distance between
branch outputs, and we use 6k (9k) train (test) pairs.

Similarity and Generalization: From Noise to Corruption

MNIST - CNN - COSINE SIMILARITY

SPARSE

DENSE

Figure 12. MMNIST train (left) and test error (right) for a CNN with 4 layers of different size (see Section 2.4). We vary the CNN width
parameter k in input pairs’ sparse and dense configuration. We consider cosine embedding loss using cosine similarity between branch
outputs, and we use 6k (9k) train (test) pairs.

Similarity and Generalization: From Noise to Corruption

FMNIST - CNN - COSINE SIMILARITY

SPARSE

DENSE

Figure 13. FMNIST train (left) and test error (right) for a CNN with 4 layers of different size (see Section 2.4). We vary the CNN width
parameter k in input pairs’ sparse and dense configuration. We consider cosine embedding loss using cosine similarity between branch
outputs, and we use 6k (9k) train (test) pairs.

Similarity and Generalization: From Noise to Corruption

D.2. Comparison between online and offline settings

Here we present several comparisons between online and offline settings for different metrics.

In Fig. 14, we compare the Ideal World without noise and in the presence of different percentages of single label noise
(SLN) and pair label noise (PLN). As expected, test error gets worse as label noise increases, but the model still improves
generalization with noisy data. In Fig. 15, we present the losses corresponding to the cases in Fig. 4. Figure 16 shows the
Real and Ideal Losses for the sparse scenario (analogous to Figs. 4 and 15 for the dense case). Note that the Real Test Losses
follow the same behavior as their corresponding Test Errors. We show in Fig. 17 the Real/Ideal comparison in the absence of
label noise (the same as left-panel of Fig. 3), where the final training errors are indicated by the stars (dots) for the dense
(sparse) scenario.

Figure 14. Comparison between Ideal Worlds for different levels of noise. Plots show the Test Errors as a function of the minibatch Adam
iterations. We plot the median over 5 trials for the scenarios with SLN and PLN label noise (10% (left) and 20% (right)) for the MLP
architecture with 200 nodes per layer. The experimental setup is described in Sec. 2.4.

Figure 15. Ideal vs. Dense Real worlds with 10% of label noise for the MLP architecture with 200 nodes per layer. The plot shows Test
Losses as a function of minibatch Adam iterations. The corresponding test errors are given in Fig. 4.

Similarity and Generalization: From Noise to Corruption

Figure 16. Ideal vs. Sparse Real worlds with 10% of label noise for the MLP architecture with 200 nodes per layer. Plots show the Test
Errors (left) and Test Losses (right) as a function of minibatch Adam iterations. The star (dot) on the left corresponds to the SLN (PLN)
Real World Train Error at the end of training.

Figure 17. Ideal vs. Dense/Sparse Real worlds in the absence of label noise. Plots show Test Errors as a function of minibatch Adam
iterations for the MLP (left) and CNN cases (right), as in the left-panel of Fig. 3. The stars (dots) correspond to the Dense (Sparse) Real
World train error at the end of training.

	desy016
	Innenseite-DESY-Berichte-Vers.2
	desy22-016

