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Abstract. Stochastic gravitational wave (GW) backgrounds from first-order phase transi-
tions are an exciting target for future GW observatories and may enable us to study dark
sectors with very weak couplings to the Standard Model. In this work we show that such
signals may be significantly enhanced for hot dark sectors with a temperature larger than
the one of the SM thermal bath. The need to transfer the entropy from the dark sector
to the SM after the phase transition can however lead to a substantial dilution of the GW
signal. We study this dilution in detail, including the effect of number-changing processes in
the dark sector (so-called cannibalism), and show that in large regions of parameter space
a net enhancement remains. We apply our findings to a specific example of a dark sector
containing a dark Higgs boson and a dark photon and find excellent detection prospects for
LISA and the Einstein telescope.
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1 Introduction

The observation of gravitational wave (GW) signals from binary mergers has opened up a
new window to the universe [1–3]. Not only can we expect major breakthroughs in our
understanding of compact astrophysical objects, but future GW observatories will enable
us to explore the early universe beyond the Cosmic Microwave Background. One of the
most exciting prospects is the detection of a stochastic GW background of cosmological
origin, which may arise for example from inflation, cosmic strings or a first-order phase
transition [4, 5].

A particularly attractive possibility is that future GW observatories may search for GWs
produced by phase transitions within a dark sector [6–9]. The presence of such dark sectors
is well-motivated by the need to explain the role of dark matter in the early universe and
during structure formation. Since any attempts to discover dark matter in the laboratory
have so far been unsuccessful, it is a plausible possibility that the dark sector only interacts
very feebly with Standard Model particles. In such a case, gravitational wave signals may
offer unique opportunities to study the structure and dynamics of dark sectors.

If the dark sector is not in thermal contact with the Standard Model, its temperature
TDS may be different from the temperature of the thermal bath of SM particles TSM. Indeed,
the larger the ratio ξ = TDS/TSM the more energy is stored in the dark sector and can
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be released during a phase transition in the form of gravitational wave signals [10]. In the
present work we therefore focus on GW signals from hot dark sectors with ξ > 1. Such a
temperature difference could be a direct result of the details of reheating [11], but it could
also be generated much later, for example if heavy particles in the dark sector annihilate and
transfer their entropy to the lighter degrees of freedom.

However, an often overlooked problem is what happens to the energy density of a de-
coupled dark sector after the end of the phase transition. If the dark sector contains any
light or massless states, measurements of the number of relativistic degrees of freedom during
Big Bang Nucleosynthesis (BBN) and recombination place strong bounds on the temperature
ratio ξ (see e.g. [12]). In the presence of massive stable states, on the other hand, the universe
would typically enter matter domination much earlier than observed. Based on this line of
reasoning, it was argued in Ref. [10] that the dark sector should be much colder than the
SM, which in turn places a strong bound on the magnitude of any gravitational wave signal
(see also Ref. [13]).

Here we consider an alternative possibility, namely that the energy of the dark sector is
transferred to the SM via out-of-equilibrium decays of the lightest dark sector particle. Such
decays inject entropy into the SM thermal bath and thereby alter the expansion history of
the universe. Indeed, such decays have been studied as a possibility of decreasing the dark
matter relic abundance after these particles have decoupled from the thermal bath [14–21]. In
a similar fashion, entropy injection leads to additional red-shifting, i. e. an effective dilution,
of stochastic GW backgrounds [22].

To investigate these effects in detail, we perform a model-independent calculation of
the effect of out-of-equilibrium decays on GW signals in terms of the properties and the
abundance of the decaying particles. We improve upon previous studies by including the
effect of number-changing processes (so-called cannibalism [23–28]) when the lightest dark
sector particle becomes non-relativistic. We then apply our results to a specific dark sector
model of a dark photon coupled to a dark Higgs field, which develops a non-zero vacuum
expectation value (vev) through a first-order phase transition. In the parameter region where
the phase transition is strongest, the lightest dark sector particle is the dark Higgs boson,
which can then decay for example via a tiny mixing with the SM Higgs boson.

We estimate the resulting GW signals and the corresponding signal-to-noise ratios and
find that it is possible in this set-up to produce observable signals in planned GW obser-
vatories such as LISA [29, 30] and the Einstein Telescope (ET) [31]. These signals can be
enhanced for temperature ratios ξ > 1 and an excessive dilution of the signal can be avoided
if the dark Higgs boson decays sufficiently quickly after the phase transition. This is illus-
trated in figure 1, which shows an example of a GW signal produced by a dark sector phase
transition, as well as its dependence on the temperature ratio ξ and the lifetime τ of the dark
Higgs boson. In this example, if ξ is sufficiently large and τ is sufficiently small, the GW
signal can be substantially enhanced and can lie within the projected sensitivity of LISA.
These conclusions are very general and apply to other types of dark sectors as well as more
refined calculations of GW signals from first-order phase transitions.

The remainder of this work is structured as follows. In section 2 we introduce the general
formalism for describing a hot dark sector that is not in thermal equilibrium with the SM ther-
mal bath. We also review the calculation of the effective potential and of the stochastic GW
background arising from strong first-order phase transitions. In section 3 we then consider the
subsequent evolution of the dark sector and how the transfer of entropy to the SM bath leads
to a dilution of GW signals. Finally, we apply this general discussion to a specific dark sector
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Figure 1. Example for the effects of the dark sector temperature ratio ξ and the dark Higgs lifetime
τ on the stochastic GW background spectrum. An increase in ξ increases the transition strength
and thereby amplifies the signal. A long-lived dark Higgs however injects a considerable amount of
entropy into the SM bath, which dilutes the signal. The specific scenario considered here can be
tested by LISA for sufficiently large temperature ratios and small lifetimes as indicated by the gray
shaded power-law integrated sensitivity curve.

model in section 4 and obtain the predicted signal-to-noise ratios in future GW observatories.
The code used to obtain our results, described in detail in appendix B, is publicly available
as TransitionListener at https://github.com/tasicarl/TransitionListener.

2 General formalism

We begin this section by reviewing some relevant concepts from cosmology and introducing
our notation for describing dark sectors. We then briefly present the calculation of the
effective potential for a dark Higgs field at finite temperatures and how this can give rise to
a first-order phase transition. Finally, we discuss the resulting stochastic GW background
and summarize the approximations made in the present work.

2.1 Dark sector cosmology

In a flat Friedmann-Lemâıtre-Robertson-Walker universe, the Friedmann equations read

H(t) ≡ ȧ(t)

a(t)
=

√
ρtot(t)

3m2
Pl

, ρ̇tot(t) + 3H(t) [ρtot(t) + Ptot(t)] = 0 . (2.1)

Here and in the following, mPl = (8πG)−1/2 ' 2 ·1018 GeV denotes the reduced Planck mass.
The Hubble rate H(t) works as a measure for the expansion rate of the universe and can be
calculated using the total energy density ρtot(t) of the primordial plasma. The time evolution
of ρtot(t) in an expanding universe is described by the second Friedmann equation, where

– 3 –

https://github.com/tasicarl/TransitionListener


Ptot(t) denotes the pressure of the primordial plasma. The total energy density and pressure
can be obtained by summing over the contributions from all individual particle species x,
that is ρtot(t) =

∑
x ρx(t) and Ptot(t) =

∑
x Px(t). We further introduce the volume heating

rate [32]

q̇x(t) = ρ̇x(t) + 3H(t) [ρx(t) + Px(t)] , (2.2)

for a given particle species x. The second Friedmann equation therefore states that the total
heat is conserved: Q̇tot =

∑
x Q̇x = 0, where Q̇x = q̇x a

3(t).

To make use of the Friedmann equations, the time dependences of ρtot(t) and Ptot(t),
and therefore of all individual ρx(t) and Px(t), have to be known. The full evolution of
these thermodynamical quantities for a given particle species x is encoded in its distribution
function fx(t, p). If particles of the species x scatter frequently enough, they will thermalize
and fx(t, p) will follow a Bose-Einstein or Fermi-Dirac distribution. The thermal bath is
then completely determined by its temperature Tx(t) and the chemical potential µx(t). In
the case of this so-called “local thermal equilibrium”, the time-temperature relation Tx(t)
can be inverted and used to replace the time dependence in the previous functions by a
temperature dependence.

The distribution function fx(t, p) can further be used to obtain the comoving entropy
density Sx(t) of a generic particle species x. If x follows a local thermal equilibrium, one
finds that the second law of thermodynamics holds individually for x, that is [33]

Tx(t) Ṡx(t) = Q̇x(t)− µx(t) Ṅx(t) , (2.3)

where Nx(t) = nx(t) a3(t) is the comoving particle number density of x. Hence, the comoving
entropy density Sx is conserved, if Q̇x = 0 and µx(t) Ṅx(t) = 0. This is the case, when
no heat is transferred between x and other particle species and when either µx(t) = 0 or
Ṅx(t) = ṅx + 3H(t)nx(t) = 0. Moreover, eq. (2.3) can be used to define the entropy density
sx(t) = Sx(t)/a3(t), which implies [33]

Tx(t) sx(t) = ρx(t) + Px(t)− µx(t)nx(t) , (2.4)

in local thermal equilibrium.

If µx � Tx, the thermal distribution functions fx(t, p) can therefore be integrated to
obtain

ρx(Tx) =
gx T

4
x

2π2

∫ ∞

zx

dux
u2
x

√
u2
x − z2

x

eux ± 1
, (2.5a)

Px(Tx) =
gx T

4
x

6π2

∫ ∞

zx

dux

(
u2
x − z2

x

)3/2

eux ± 1
, (2.5b)

sx(Tx) =
gx T

3
x

2π2

∫ ∞

zx

dux

[
u2
x

√
u2
x − z2

x

eux ± 1
+

1

3

(
u2
x − z2

x

)3/2

eux ± 1

]
. (2.5c)

Here the substitutions ux =
√
m2
x + p2/Tx and zx = mx/Tx have been employed and a +

(−) sign refers to a fermionic (bosonic) species x.

A handy feature of these equations is that one can introduce effective relativistic degrees
of freedom, which can be used to elegantly express energy and entropy densities of thermal
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baths consisting of multiple particle species. Dividing ρx(Tx) by ρrel
bos(Tx)

∣∣
g=1

= π2

30 T
4
x and

Px(Tx) by P rel
bos(Tx)

∣∣
g=1

= π2

90 T
4
x , one can define [34]

gxeff,ρ(Tx) ≡ ρx(Tx)

ρrel
bos(Tx)

∣∣
g=1

=
15 gx
π4

∫ ∞

zx

dux
u2
x

√
u2
x − z2

x

eux ± 1
, (2.6a)

gxeff,P (Tx) ≡ Px(Tx)

P rel
bos(Tx)

∣∣
g=1

=
15 gx
π4

∫ ∞

zx

dux

(
u2
x − z2

x

)3/2

eux ± 1
, (2.6b)

gxeff,s(Tx) =
3 gxeff,ρ(Tx) + gxeff,P (Tx)

4
. (2.6c)

In the present work, we will consider a bath of SM particles and a separate thermal
bath that we call the dark sector. As the interactions between the SM particles and the dark
sector are assumed to be too feeble for the two sectors to thermalize, the two baths will in
general have distinct temperatures TSM and TDS [10]. Introducing the ratio ξ = TDS/TSM

of these temperatures, we find that the total energy and entropy densities of the primordial
plasma is given by

ρtot(TSM) = ρSM(TSM) + ρDS(TSM) =
[
gSM

eff,ρ(TSM) + gDS
eff,ρ(TSM) ξ4(TSM)

]
︸ ︷︷ ︸

≡gtot
eff,ρ(TSM)

π2

30
T 4

SM , (2.7a)

stot(TSM) = sSM(TSM) + sDS(TSM) =
[
gSM

eff,s(TSM) + gDS
eff,s(TSM) ξ3(TSM)

]
︸ ︷︷ ︸

gtot
eff,s(TSM)

2π2

45
T 3

SM , (2.7b)

where gSM
eff,ρ (gSM

eff,s) denotes the effective energy (entropy) degrees of freedom for the photon
bath. The corresponding functions for the dark sector are denoted by the index “DS”. Due
to the high powers of ξ that enter into eqs. (2.7a) and (2.7b), the contributions from dark
sectors that are only slightly hotter than the SM bath (i. e. ξ > 1) can have a large influence
on ρtot and stot. Hot dark sectors can therefore significantly modify the thermal history of
the early universe. This effect is shown in figure 2 for two hot dark sector species (a dark
Higgs boson and a dark photon, see section 4) in addition to the particles of the SM bath for
ξ = 3. In this plot and the following work, we used the data for the SM effective degrees of
freedom given in the ancillary material of Ref. [35].

To describe the overall evolution of the combined system comprising the dark sector and
the SM bath, we have to calculate the time (i. e. temperature) dependence of ξ(TSM). For
this purpose, we can use the fact that entropy is conserved individually in the two decoupled
baths. Thus, SSM = 2π2

45 gSM
eff,s T

3
SM a3 and SDS = 2π2

45 gDS
eff,s T

3
DS a

3 are both constant and hence

ξ(TSM) = ξ(T̃SM)

(
gSM

eff,s(TSM)

gSM
eff,s(T̃SM)

)1/3(
gDS

eff,s(T̃SM)

gDS
eff,s(TSM)

)1/3

. (2.8)

Here, the quantity T̃SM specifies the temperature of the SM bath at a point in time where
the two sectors have already been decoupled. Note that gDS

eff,s(TSM) depends implicitly on
ξ(TSM) and therefore eq. (2.8) must in general be solved numerically. The general result is
that the temperature ratio ξ increases when the dark sector degrees of freedom gDS

eff,s decrease

and that it decreases when the SM degrees of freedom gSM
eff,s decrease.
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Figure 2. The temperature evolution of the effective degrees of freedom of the SM (left) and the
total system, including also a dark sector (right), assuming that the dark sector particle species follow
their equilibrium distributions for all times. This dark sector consists of a dark photon with mass
mA′ = 106 GeV (and three internal degrees of freedom) and a dark Higgs with mass mφ = 104 GeV
(and one internal degree of freedom). The temperature ratio between the two thermal baths was fixed
to ξ = 3 to show that a dark sector slightly hotter than the SM bath can already yield interesting
new dynamics. A possible temperature dependence of ξ(TSM) as it would arise from the reheating of
either sector was ignored here.

To conclude this discussion we emphasize that while the description we have presented
above is valid for large parts of the thermal history, we will also encounter out-of-equilibrium
processes as soon as only the lightest species remains in the dark sector. In section 3 we
will discuss in detail the evolution of this stage as well as its consequences for the observable
signals of a dark phase transition.

2.2 Dark scalar effective potential

In this work we are interested in thermal phase transitions within the dark sector. These
transitions can occur when a scalar field has a temperature-dependent vev [36, 37]. The vev
of a given field is dictated by the principle of stationary action, where the action is calculated
using only the static components of the field. Setting all kinetic terms in the corresponding
Lagrangian to zero, the principle of stationary action reduces to the minimization of the
field’s potential energy density. Since the scalar field of interest is a quantum field in a finite-
temperature environment, several corrections have to be added to its tree-level potential.
Including finite-temperature effects up to 1-loop order and daisy diagram contributions to
the vacuum energy, the effective potential reads [38]

V 1-loop
eff (φ, T ) = Vtree(φ) + VCW(φ) + Vct(φ) + VT(φ, T ) + Vdaisy(φ, T ) . (2.9)

The first term on the right-hand side is the tree-level potential of the scalar field φ, VCW(φ)+
Vct(φ) is the Coleman-Weinberg contribution and the corresponding counterterm, VT is the
finite-temperature contribution to the vacuum energy density, and Vdaisy encodes the contri-
butions from the resummation of the Matsubara-zero modes of bosonic ring diagrams.
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Treating the ultraviolet divergences in VCW with dimensional regularization in the MS
renormalization scheme and the infrared divergences of the boson modes with vanishing Mat-
subara frequency in the thermal corrections to Vtree with the Arnold-Espinoza method [39],
the contributions read

VCW(φ) =
∑

x

ηx nx
m4
x(φ)

64π2

[
ln
m2
x(φ)

Λ2
− Cx

]
, (2.10a)

VT (φ, T ) =
T 4

2π2

∑

x

ηx nx Jηx

(
m2
x(φ)

T 2

)
, (2.10b)

Jηx
(
z2
)
≡
∫ ∞

0
dy y2 ln

[
1− ηx exp

(
−
√
y2 + z2

)]
, (2.10c)

Vdaisy(φ, T ) = − T

12π

∑

b

nL
b

[(
m2(φ) + Π(T )

)3/2
b
−
(
m2(φ)

)3/2
b

]
. (2.10d)

Here, nx are the degrees of freedom of the fields coupled to φ, nL
b are their longitudinal boson

components, ηx is +1 (−1) for bosons (fermions), Λ is the renormalization scale, which will
be set to the tree-level vev v of φ, and Cx = 3/2 are the renormalization constants for scalars
and fermions, while Cx = 5/6 holds for gauge bosons. Goldstone modes have to be counted in
addition to the longitudinal gauge boson degrees of freedom (see Ref. [38]) and the expression(
m2(φ) + Π(T )

)3/2
b

has to be understood as the b-th eigenvalue of the temperature-dependent
mass matrix. The functions Π(T ) denote the hard Debye masses of the longitudinal gauge
boson components.

For a quartic tree-level potential Vtree(φ) = −µ2

2 φ
2+ λ

4φ
4, as we will consider in section 4,

the counterterm potential is given by

Vct(φ) = −δµ
2

2
φ2 +

δλ

4
φ4 , (2.11)

where the counter-mass δµ2 and the counter-coupling δλ can be calculated using [40]

δµ2 =

[
3

2φ

dVCW(φ)

dφ
− 1

2

d2VCW(φ)

dφ2

]∣∣∣∣
φ=Λ

, (2.12a)

δλ =

[
1

2φ3

dVCW(φ)

dφ
− 1

2φ2

d2VCW(φ)

dφ2

]∣∣∣∣
φ=Λ

. (2.12b)

2.3 First-order phase transitions in the dark sector

The transition of the real part of the dark Higgs field to different vevs can occur in two
different fashions: continuously or discontinuously. In the first case, the global minimum of
the effective potential shifts continuously with decreasing temperature, while in the opposite
case competing minima in field space occur, to which φ has to tunnel to minimize its action.
As was shown in Ref. [41], the euclidean tunneling action is given by

S [φ, T ] =
S3 [φ, T ]

T
=

1

T

∫
d3x

[
(∇φ)2

2
+ Veff(φ, T )

]
, (2.13)

if the field is embedded in a sufficiently hot thermal bath. Imposing stationarity of the action
and considering O(3)-symmetric solutions, this yields the so-called bounce equation

d2φ

dr2
+

2

r

dφ

dr
= V ′eff(φ, T ) , (2.14)
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with the boundary conditions φ(r → ∞) → 0 and φ′(r = 0) = 0. The euclidean distance
measure r = |x| =

√
R2 + c2 t2 can be understood as the radius of a single expanding bubble

that reaches luminal bubble wall velocities after having nucleated with an initial radius R.

By solving the bounce equation for a given temperature, one obtains a bubble profile
φT (r). Plugging this solution into eq. (2.13), one obtains the bounce action S(T ) ≡ S[φT , T ].
The bubble nucleation rate per unit volume can now be obtained by computing Γ ' T 4 e−S(T ).
Comparing this rate with the Hubble rate H(T ) at a given temperature yields the nucleation

condition Γ(T )H−4(T )
!

= 1. Using eqs. (2.1) and (2.7a) to compute the Hubble parameter,
the nucleation criterion thus reads [10]

S(T n
DS) ' 146− 2 ln

(
gtot,n

eff,ρ

100

)
− 4 ln

(
T n

DS

100 GeV

)
. (2.15)

For simplicity, numerical factors of O(1) for the conversion of the dark sector temperature
to a SM temperature are ignored in the second logarithm, here. This equation can be solved
iteratively for the dark sector nucleation temperature T n

DS. We emphasize that this procedure
is an numerically expensive task, as it requires the computation of the bounce action S(TDS)
at each iteration step.

For the effective potential introduced above, one can show that the hard thermal loops
of the scalar field cancel the thermally induced potential barrier [10]. The same holds for
the longitudinally polarized modes of gauge bosons coupled to φ. The transversal modes of
coupled gauge bosons however do not obtain thermal masses and can therefore still contribute
to the thermally induced barrier. As we are interested in thermally induced first-oder phase
transitions, we will in the following consider the case that the scalar is complex and charged
under a gauge group. In this way, once the scalar field undergoes spontaneous symmetry
breaking, it will give rise to a mass of the gauge boson it is coupled to, with the longitudinal
polarization corresponding to the degree of freedom encoded in the angular mode of φ. As
one can always project the vev of the complex scalar field to lie on its real axis, the above
discussion of the effective potential including only a single scalar component φ still applies.
Since the coupled gauge boson will become massive in the phase transition, we will refer to
the complex scalar as a dark Higgs field in the following, in analogy to the SM Higgs field.
Accordingly, the massive φ bosons will be referred to as dark Higgs bosons.

2.4 Gravitational waves from a dark first-order phase transition

The emission of GWs in a first-order phase transition is a result of the collision of bubbles
in which φ already obtained its new vev. Additional contributions to the GW spectrum
come from the excitation of the primordial plasma during the collision of bubbles in the form
of sound waves and magnetohydrodynamic turbulence. The GW spectrum at its emission
Ωem

GW(f) can be calculated as described in eq. (19) in Ref. [10].

The quantity α is a measure of the strength of a first-order phase transition. It is
proportional to the amount of energy and pressure liberated in the phase transition, which
can be characterized by the difference ∆θ of the trace of the energy momentum tensor between
the broken and unbroken phase [8], that is

∆θ =

(
−∆Veff(TDS) +

1

4
TDS

∂∆Veff(TDS)

∂TDS

)∣∣∣∣
TDS=Tn

DS

> 0 . (2.16)
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Here, ∆Veff(TDS) < 0 denotes the difference in potential energy density of the two minima of
Veff, between which φ tunnels in the phase transition. To receive the dimensionless parameter
that quantifies the strength of the phase transition, ∆θ is normalized to the total energy
density of the surrounding plasma of relativistic species ρn

tot = π2

30 g
tot,n
eff,ρ (T n

SM)4, such that

α ≡ ∆θ

ρn
tot

. (2.17)

As ρn
tot scales approximately with ξ−4

n for a fixed dark sector nucleation temperature T n
DS

and assuming gSM,n
eff,ρ � gDS,n

eff,ρ , the transition strength scales as α ∝ ξ4
n as was first shown

in Ref. [10]. This is the reason why first-order phase transitions from dark sectors already
slightly hotter than the SM bath can potentially emit strong GW signals.

Another important quantity in our analysis arises when one instead normalizes ∆θ to
the energy density of only the dark sector species, that is

αDS ≡
∆θ

ρn
DS

. (2.18)

This strength parameter will be used to calculate the energy budget of the contributions
from the individual GW sources, which should only depend on the hydrodynamics of the
dark sector after the phase transition but not on the decoupled SM bath. The parameter
αDS is therefore independent of the temperature ratio ξn for a fixed dark sector nucleation
temperature T n

DS as opposed to the transition strength α.

The inverse time-scale β/H of the phase transition can be computed using the derivative
of the bounce action S(TDS) at the nucleation:

β

H
≡ T n

DS

dS(TDS)

dTDS

∣∣∣∣
TDS=Tn

DS

. (2.19)

A fast transition happens on a short time scale and thus leads to a large β/H, which damps
the resulting spectrum. This damping is due to the almost simultaneous production of many
bubbles in a fast transition, which will collide while still being relatively small. In the opposite
case of a slow transition, the bubble nucleation rate is low, leading to the eventual collision
of larger, more energetic bubbles. Since the small bubbles after a fast transition collide more
frequently than in the opposite case, the corresponding spectrum will have its peak at a
higher frequency. The ratio β/H is almost independent of ξn, as was shown in Ref. [10].

The bubble wall velocity vw is the most intricate parameter, since its calculation requires
knowledge of the diverse, highly model-dependent particle processes that can happen at
the accelerating bubble wall, see e. g. Refs. [42–46]. In general, the collision of particles in
the plasma with an expanding bubble exerts a non-negligible pressure on its moving wall.
Additionally, next to the mere change of momentum of particles being reflected, there is also
an additional friction term due to transition radiation by gauge bosons, which is likely to
dominate over the friction from particles colliding with the wall [47]. A detailed analysis of the
processes happening at the bubble wall requires the solution of Boltzmann-like equations and
is a subject of current research. However, for sufficiently strong first-order phase transitions,
the bubble walls will quickly reach luminal velocities. Since strong phase transitions are
favorable for detectable stochastic GW backgrounds, we will focus on very strong transitions
for which vw ∼ 1, and neglect the details of the bubble wall dynamics.
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If αDS exceeds a certain threshold strength α∞, the bubble walls can accelerate contin-
uously (the “runaway regime”), while in the opposite case there will be a terminal velocity
(the “non-runaway regime”). One can show that the friction exerted by particles getting
(more) massive in a first-order phase transition is approximately given by [48]

Pfric ≈ ∆VT ≈ (T n
DS)2


∑

b

nb
24

∆m2
b(φ) +

∑

f

nf
48

∆m2
f (φ)


 . (2.20)

The condition ε > Pfric for runaway bubbles is thus equivalent to αDS > α∞ ≡ Pfric/ρDS(T n
DS),

which will be used as a definition for the threshold transition strength. Note that the expres-
sion in eq. (2.20) is meant to sum over all particles gaining masses in the phase transition
and thus excludes Goldstone bosons [7].

The efficiency factors κ of the three contributions entering Ωem
GW(f) depend on both αDS

as well as the coupling between the plasma and the bubble wall. If the bubble walls have a
terminal velocity, the latent heat of the transition is rather converted into kinetic energy of
the plasma than used to accelerate the bubble walls. Consequently, the contribution from
bubble collisions to the GW signal are negligible in the non-runaway bubble scenario, that is
κφ = 0. The efficiency factor κsw of sound wave contributions then follows a function κ(αDS)
that can be approximated for luminal bubble wall velocities vw ∼ 1 as [7]

κ(αDS) ≈ αDS

0.73 + 0.083
√
αDS + αDS

. (2.21)

Conversely, when the bubble walls can accelerate continuously, bubble collisions are non-
negligible sources of GWs and contribute with κφ = 1 − α∞/αDS. The efficiency of sound
wave contributions to the GW signal in the runaway regime then reads κsw = κ(α∞)α∞/αDS.
In either case, a fraction εturb of the bulk motion energy is converted into turbulence, such
that κturb = εturb κsw. Following Ref. [10] we employ the optimistic estimate εturb ' 10 %.

An accurate prediction of the spectrum of GWs generated in a first-order phase tran-
sition in the early universe for a given model can be very challenging, requiring advanced
methods for the calculation of the effective potential [49, 50], for the onset and duration of
the phase transition, as well as for a description of bubble walls [51]. The focus of the present
work is however not on the detailed dynamics of the phase transition itself, but on the cos-
mological evolution of the dark sector that gives rise to such a phase transition subsequent to
the generation of a GW signal. We will therefore limit ourselves to the simplified calculation
of the stochastic GW background shown above with the understanding that all the effects
discussed in the remainder of this work would equally apply to a more refined approach. We
note however that the most important uncertainties of our calculations are either negligible
or lead to a conservative estimate of the resulting signals of the analyzed first-order phase
transitions as we explain in the following.

As was described in Ref. [8], it is not clear whether the equations used to compute the
contributions to Ωem

GW(f) from sound waves and magnetohydrodynamic turbulence in the
primordial plasma can be applied to the case of two decoupled sectors. In our analysis, we
will focus on transitions deep in the runaway bubble regime for which αDS � α∞, such that
κφ � κsw and κφ � κturb. Thus, virtually no latent heat gets transferred to bulk plasma
motion such that bubble collisions provide the dominant source of the emitted stochastic
GW background. Therefore, the uncertainties connected with the sound wave and turbulence
production of a stochastic GW background are negligible for the presented analysis.
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The description of contributions from bubble collisions to Ωem
GW(f) however relies heavily

on previous semi-analytical work that utilized the envelope approximation. In this approach,
it is assumed that the scalar field’s stress-energy is located in an infinitesimally thin shell
around the bubble wall, which vanishes when two bubbles collide. Lately, this approximation
was shown to only yield slightly larger signal strengths than predicted by fully numerical
simulations of bubble collisions for vacuum transitions in the runaway bubble regime and
to outperform the alternative bulk flow model [52]. However, Refs. [53–55] find substantial
deviations from the envelope approximation for strongly supercooled phase transitions. Nev-
ertheless, these uncertainties do not affect the main findings of our work and are therefore
neglected in the following.

A general review of more refined computational approaches than the one used in this
work can be found in Ref. [51]. Most importantly, we used the nucleation temperature as a
reference scale to define thermodynamic quantities. New findings suggest to rather employ
the “percolation temperature” instead, corresponding to the point in time when a significant
fraction of the Universe is already filled with bubbles of the broken phase. This especially
makes a difference for very strong transitions with α & 1, as in these cases the percolation
temperature is significantly lower than the nucleation temperature [56]. Then, also the energy
density ρtot that is used as a normalization in the definition of α in eq. (2.17) is lower, such
that α increases effectively. Our approach hence yields a good approximation for transition
strengths up to about 1 and underestimates the expected signal strength for even stronger
transitions.

Redshift of the GW background after its emission. After its generation, the stochas-
tic GW background propagates freely and undisturbed until today, effectively being a form
of dark radiation.1 The expansion of the Universe, however, redshifts both its amplitude and
its frequency such that today’s power spectrum, ΩGW(f), can be expressed as

ΩGW(f) = RΩem
GW

(
a0

an
f

)
, (2.22)

where f denotes the spectrum’s frequency in today’s units, which is shifted from its value at
nucleation by multiplication with the scale factor ratio a0/an, where an (a0) is the scale factor
at nucleation (today) [10]. The amplitude of the spectrum redshifts like a−4H−2, since the
energy density of radiation scales with a−4, while the critical energy density ρc = 3m2

PlH
2

with which ρGW has been normalized to obtain ΩGW scales with H2. The prefactor R is
thus defined as

R ≡
(
an

a0

)4(Hn

H0

)2

. (2.23)

In the following chapter 3, we will see how the dilution effect by the out-of-equilibrium decay
of a dark sector into SM particles can contribute to the ratio a0/an and the quantity R.

3 Evolution and decay of a hot dark sector

In this section we consider the evolution of the dark sector after the phase transition has
ended and a stochastic GW background has been produced. Since we are interested in

1We note that there are a number of exceptions to this statement. For example, there is an enhancement
of modes that enter the horizon during matter domination [22, 57]. For a discussion of deviations from our
approximation we refer to Ref. [58].
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temperature ratios ξ > 1, large amounts of energy are stored in the dark sector and need to
be transferred to the visible sector in order to satisfy observational constraints. This transfer
of energy implies that the entropy in each sector is no longer conserved, i. e. it is no longer
possible to directly calculate the scale factor an of bubble nucleation in terms of the SM
temperature T n

SM. As a result, the present-day GW signal depends not only on the details of
the phase transition itself, but also on the subsequent energy transfer from the dark to the
visible sector.

In principle, there are a number of different ways for depleting the energy density of
the dark sector. Here, we will focus on the case that the lightest particle in the dark sector
(henceforth referred to as the mediator) is unstable and eventually decays into SM particles. If
the mediator has a very long lifetime, it will come to completely dominate the energy density
of the universe leading to an early period of matter domination (or, if number-changing
processes are efficient, of cannibal domination). When these particles eventually decay, the
resulting entropy injection into the SM sector may then lead to a significant dilution of any
previously produced GW signal. We define the dilution factor as the ratio of the entropy in
the SM sector before and after the mediator decays:

DSM ≡
Safter

SM

Sbefore
SM

. (3.1)

Most of the discussion in this section is very general in the sense that the dilution factors
that we calculate apply to a wide range of dark sectors and any type of GW signal (or, in
fact, any form of fully decoupled matter or radiation). Nevertheless, we will assume for
concreteness that the mediator is a scalar boson, for example a dark Higgs boson originating
from spontaneous symmetry breaking in the dark sector. In this case, 3 → 2 processes play
an important role in the evolution of the dark sector energy density once the temperature of
the dark sector drops below the mass of the lightest state.

For simplicity, we assume that decays of the mediator happen after this particle has
become non-relativistic. This assumption implies in particular that all heavier dark sector
particles have annihilated away and transferred their energy to the lightest states. We denote
the temperature at which the heavier states decouple by T cd

DS. Moreover, if the mediator
particles are non-relativistic when they decay, we can neglect effects related to inverse decays
from SM states. On the other hand, the requirement that BBN proceeds as in standard
cosmology places an upper bound on the lifetime of the lightest dark sector state, which is
approximately given by τ < 1 s [32].

We will begin our discussion by considering the evolution of a dark sector away from
thermal equilibrium in section 3.1. The equations describing the mediator decays will be
derived and solved numerically in section 3.2. The overall effect of these decays on GW
signals will be investigated in section 3.3.

3.1 Evolution of the mediator energy density

Once the mediator is the only particle species remaining in the dark sector, the only mecha-
nisms that can change its energy density are the expansion of the universe, possible number-
changing processes and the eventual decays of the mediator into SM particles. We will
first consider the case that number-changing processes are negligible and then extend our
discussion to include mediator cannibalism.

In principle, the Boltzmann equation for the phase space density of a decaying mediator
with no other interactions can be directly integrated given the time dependence of the scale
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factor a(t). The energy density ρmed(t) is then obtained by integrating the distribution
function over momentum space [32]. Since this procedure is numerically rather expensive,
we present below a simple approximation that can be used to describe the thermal history
of the mediator species from its chemical decoupling until its decay.

Following the approach presented in Ref. [19] and extending it to allow for relativistic
mediators, we can approximately write

dρmed

dt
= −3 ζ(t)H(t) ρmed(t)− ρmed(t)

τ
, (3.2)

where τ is the lifetime of the mediator species and ζ(t) is an appropriate function (to be
discussed in more detail below) such that ζ(t) = 4/3 for relativistic mediators and ζ(t) = 1
for non-relativistic mediators. We point out that eq. (3.2) implicitly assumes that the decays
of the mediator only become relevant after the mediator has become non-relativistic, because
we have not included a temperature-dependent Lorentz factor to account for time dilation in
the final term [32].

As initial condition we assume that ρmed is given by an equilibrium distribution with
vanishing chemical potential at sufficiently early times. In practice, we start our calculation
at the time when all heavier states in the dark sector have decoupled, which we denote by
tcd (for chemical decoupling), assuming tcd � τ . To simplify notation, we introduce the
dimensionless quantities

θ ≡ t/τ , (3.3)

ā ≡ a/acd , (3.4)

and denote derivatives with respect to θ by a prime. Eq. (3.2) then becomes

ρ′med(θ) = −3 ζ(θ)
ā′

ā
ρmed(θ)− ρmed(θ) . (3.5)

In figure 3, we compare the solution of this equation to the result obtained by integrating
the full Boltzmann equation, assuming radiation domination for simplicity. We find that a
good overall agreement between the two curves is achieved when performing the transition
from ζ = 4/3 to ζ = 1 when TDS ≈ 0.38mmed, which can be written as2

θ ≈ θnr ≡ 7.0 θcd

(
T cd

DS/mmed

)2
. In this approximation, the mediator behaves as a

relativistic particle species with ρmed ∝ a−4 for θ < θnr, while for θ > θnr it behaves as non-
relativistic matter and its energy density scales as ρmed ∝ a−3. For θ & 1, mediator decays
become relevant such that the energy density decreases exponentially as ρmed a

3 ∝ exp(−θ).
The assumption that the mediator is non-relativistic when it decays therefore translates to
the requirement θnr � 1. In this case, a precise description of the mediator energy density
around θnr is irrelevant for its subsequent evolution and hence the approximation introduced
above is sufficient for our purposes.

So far, we have assumed that the only processes changing the comoving number density
are decays of the mediator into SM particles. As was first argued in Ref. [23], however, this
description is incomplete, because a secluded particle species can perform number-changing
processes like 3→ 2 or 4→ 2, thereby reducing its comoving number density while conserving

2We point out that θnr does not depend on T cd
DS. This can be seen explicitly in the cancellation of

(
T cd

DS

)2

in θnr ∝ θcd

(
T cd

DS

)2 ∝ H−1
cd

(
T cd

DS

)2
, where Hcd ∝

(
T cd

DS

)2
is the Hubble parameter at the chemical decoupling.
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Figure 3. Time evolution of the comoving energy density ρmed ā
3 of a mediator decaying to SM

particles for the case that number-changing processes are negligible. The solid line indicates the
evolution obtained by integrating the full Boltzmann equation, whereas the dashed line shows the
result from integrating the approximation in eq. (3.5). For concreteness, we have taken the mediator
mass to be mmed = 100 GeV and assumed that the decoupling of other dark sector species from
the mediator occurs at T cd

DS = 1 TeV. Setting ξcd = 1 and τ = 0.1 s results in the dimensionless
time parameters θcd = 2.3 · 10−12 for the chemical decoupling and θnr = 1.7 · 10−9 for the mediator
becoming non-relativistic.

its entropy. This leads to an unusual relationship between the energy density and the scale
factor until the number-changing processes become inefficient. Since in this process the
species consumes itself to keep warm (i. e. to prevent becoming non-relativistic), it is casually
referred to as “cannibalism” [25].3

If number-changing processes are efficient, i. e. their rate exceeds the Hubble rate, the
chemical potential of the particle species vanishes. This is typically the case at sufficiently
early times and high temperatures when the number densities are large. In this case the
equilibrium energy density ρmed and the equilibrium entropy density smed only depend on
zmed ≡ mmed/TDS. By eliminating zmed we can therefore obtain a function s̄med(ρ̄med), where
s̄med ≡ 2π2 smed/(gmed T

3
DS) and ρ̄med ≡ 2π2 ρmed/(gmed T

4
DS).

Since we know that, as long as the decay rate of the mediator is negligible, the dark
sector entropy is conserved (smed a

3 = const), we can use this function to calculate the
evolution of the energy density of the mediator species:

ρ̇med = −3
d ln ρmed

d ln smed
H(t) ρmed(t) = −3

d ln ρ̄

d ln s̄
H(t) ρmed(t) . (3.6)

We note that the function d ln ρ̄
d ln s̄ (ρmed) is close to 4/3 for large energy densities, corresponding

to high temperatures and relativistic species, and approaches 1 for low energy densities ρmed,

3We point out that, although the temperature decreases more slowly in a cannibalistic dark sector with
vanishing chemical potential than in a non-interacting dark sector with non-zero chemical potential, the energy
density decreases more rapidly. As we will see in section 3.2.1, cannibalism therefore reduces the dilution factor
due to entropy injection.
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corresponding to non-relativistic species. Hence, for the case that number-changing processes
are efficient, d ln ρ̄

d ln s̄ replaces the function ζ(θ) introduced above to describe the transition from
the relativistic to the non-relativistic scaling.

As the number density of the mediator species decreases, number-changing processes
eventually become inefficient and the chemical potential µmed can no longer be neglected.
This transition is typically quite sudden, meaning that number-changing processes are either
sufficient to keep the mediators in chemical equilibrium, or completely negligible [28]. Hence,
as soon as the rate of number-changing processes Γnc drops below the Hubble rate, we can
revert to the description for non-interacting mediators from above. To combine both of these
phases, we can therefore define

ζ(θ) =





d ln ρ̄
d ln s̄ (ρmed) for Γnc(θ) ≥ H(θ)
4
3 for Γnc(θ) < H(θ), θ < θnr

1 for Γnc(θ) < H(θ), θ ≥ θnr

, (3.7)

which can be used in eq. (3.5) to include the effect of cannibalism.

The only remaining task is then to calculate Γnc for a given particle physics model. In
the absence of a stabilising symmetry, the dominant contribution typically arises from the
3 → 2 rate Γ32 ≈ 〈σ32 v

2〉n2
med ≈ 〈σ32 v

2〉 ρ2
med/m

2
med [25], where the thermally averaged

cross section of the 3→ 2 process can be written as

〈σ32 v
2〉 =

25
√

5π2

5184

α3
32

m5
med

+O
(
TDS

mmed

)
, (3.8)

for a scalar mediator. If the scalar potential is written as V (φ) =
m2

med
2 φ2 + κ3

3! φ
3 + κ4

4! φ
4,

the effective 3→ 2 coupling is given by [25, 27]

(4π α32)3 ≡
(

κ3

mmed

)2
[(

κ3

mmed

)2

+ 3κ4

]2

. (3.9)

If the mediator acquires its mass through the spontaneous breaking of a symmetric potential
with quartic interactions, κ3 =

√
3κ4mmed holds after the phase transition.

The resulting time evolution of ρmed ā
3 and smed ā

3 is shown in figure 4. In the violet
shaded area (phase I) and the red shaded area (phase II), Γnc ≥ H holds, such that number-
changing processes are efficient, the chemical potential is negligible and ζ(θ) follows the
gradual decrease from 4/3 to 1 as described above. The transition between phase I and II
corresponds to θ = θnr. For larger θ, the mediator energy density scales as ρmed ā

3 ∝ 1/ ln ā
[23]. The end of the cannibalism period, i. e. the transition from phase II to III is given by the
condition Γnc = H. From this point onward, the expected behavior for a non-relativistically
decaying species, ρmed ∝ a−3 exp(−θ), is recovered. As one can see on the right-hand side
of figure 4, entropy is conserved throughout the first two phases and only decreases when the
mediators start decaying.

Comparing the left panel of figure 4 to figure 3, for which the same benchmark point
(but without including number-changing processes) was considered, shows that a cannibalism
phase can substantially reduce the energy density stored in the dark sector. Eventually, this
reduces the amount of energy injected into the SM bath and hence results in less reheating
of the SM bath, as will be shown in the next section.
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Figure 4. Left : Plot of the time evolution of a dark Higgs mediator species with the same specifi-
cations as in figure 3, but with an intermediate phase of cannibalism, characterized by an effective
3 → 2 coupling α32 = 0.1. In the area shaded in violet (I), the mediator species is still relativistic,
such that ρmed ∝ ā−4, while in the red area (II), number-changing processes lead to a decrease of
ρmed ā

3 ∝ 1/ ln ā with the normalized scale factor ā. In the area shaded yellow (III), the mediator
starts to decay non-relativistically, i. e. ρmed ā

3 ∝ e−θ, and in the blue shaded area (IV), we have θ > 1,
indicating the decay of the mediator becoming the dominant effect. Right : The entropy smed ā

3 is
conserved until the mediator species decays.

3.2 Entropy injection into the Standard Model

For the discussion above we have assumed that the scale factor is proportional to
√
t, cor-

responding to a radiation dominated era. However, this is not necessarily the case in our
set-up, because the non-relativistic mediators can come to dominate the energy density of
the universe, leading to an early era of matter domination. The period only ends when the
mediators decay, leading to the injection of a considerable amount of entropy into the SM
bath [14, 33]. It is well known that such an entropy injection can have a profound impact on
the abundance of a frozen-out dark matter component [19]. As we will see below, the same is
true for a stochastic GW background produced before the era of matter domination. Hence,
it is essential for our purposes to obtain an accurate description of the relevant effects.

3.2.1 Differential equations governing entropy injection

As we are interested in the process of entropy transfer from one sector to another through
an exchange of energy, we need to simultaneously consider the evolution of the SM and dark
sector energy densities, the SM degrees of freedom and the scale factor. If the energy density
of the mediators ρmed(θ) is non-negligible compared to the energy density of SM radiation
ρrad, the first Friedmann equation becomes

ā′ =
ā

θH

√
r +

rcd
rad

ā4

S
G1/3

, (3.10)
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where we have introduced the dimensionless variable r(θ) ≡ ρmed(θ)/ρcd
med and the constants

θH ≡
√

3m2
Pl/(τ

2 ρcd
med) and rcd

rad ≡ ρcd
rad/ρ

cd
med. Furthermore, we have introduced the functions

G(θ) ≡
gSM

eff,s(θ)

gSM,cd
eff,s

, S(θ) ≡
(
SSM(θ)

Scd
SM

)4/3

,

which encode the change in the SM entropy degrees of freedom and the total entropy of the
SM sector, respectively. Note that we have implicitly assumed that any other form of non-
relativistic matter gives a negligible contribution to the energy density and that gSM

eff,ρ(θ) ≈
gSM

eff,s(θ), which are both excellent approximation for the temperature range that we will be
interested in.

As discussed above, the evolution of the mediator energy density is given by eq. (3.5),
which can be written as

r′ = −r − 3
ā′

ā
ζ r . (3.11)

The change of SM entropy due to mediator decays is directly proportional to the mediator
energy density and is given by

S ′ = r ā4

rcd
rad

G1/3 . (3.12)

Using the relation

TSM(θ) =
a

acd

(
SSM

Scd
SM

)1/3
(
gSM,cd

eff,s

gSM
eff,s

)1/3

T cd
SM =

āS1/4

G1/3
T cd

SM , (3.13)

we can write the change of the SM degrees of freedom as

G′ = −3

4

T cd
SM G Ĝ
S3/4 ā

4S ā′ − S ′ ā
T cd

SM Ĝ S1/4 + 3G4/3ā
, (3.14)

where we have introduced

Ĝ(θ) =
d

dTSM

[
gSM

eff,s(TSM)

gSM,cd
eff,s

]∣∣∣∣∣
TSM(θ)

, (3.15)

see appendix A for details. Note that, equivalently, the latter equation could be replaced by
a differential equation for TSM

′.
The differential eqs. (3.10)–(3.14) can be easily solved with initial conditions given by

ācd = Scd = rcd = Gcd = 1. The actual particle physics properties of the dark sector are
hidden in the various quantities defined above, specifically rcd

rad, T cd
SM and θH, as well as θnr

and α32, which enter in the definition of ζ(θ) in eq. (3.7). The evolution of the mediator
species as well as the scale factor and the SM entropy ratio generated during the decay are
therefore fully described by these five parameters.

For a more intuitive interpretation of our results, we would like to express the parameters
rcd

rad, θH and θnr in terms of the mediator lifetime τ , the mediator mass mmed, the temperature
ratio ξcd as well as the temperature T cd

SM. To do so, we calculate the initial mediator energy
density ρcd

med by setting T cd
DS = ξcd T

cd
SM and assuming that the mediator has an equilibrium

distribution with vanishing chemical potential at chemical decoupling. As mentioned above,
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Figure 5. Time evolution of the comoving energy densities ρ ā3 of the mediator species and the
SM radiation (top-left), the normalized scale factor ā (top-right), the temperature TSM of the SM
bath (bottom-left), as well as its entropy SSM/S

cd
SM (bottom-right). The evolution can be divided into

the following phases: Relativistic mediator (I), cannibalism (II), non-relativistic mediator (III), early
matter domination (IV), entropy injection (V), and decay (VI). See text for details.

we limit ourselves to the case that the degrees of freedom of the mediator are given by gmed =
1. The initial ratio of energy densities rcd

rad can then be calculated directly from T cd
SM, using the

appropriate number of relativistic degrees of freedom. The age of the Universe at chemical

decoupling tcd in units of τ is given by θcd = (2Hcd τ)−1, where H2
cd = π2

90 g
tot,cd
eff,ρ

(
T cd

SM

)4
/m2

Pl

denotes the Hubble parameter at chemical decoupling. Knowing θcd, we are then able to

determine both time parameters θnr ≡ 7.0 θcd

(
T cd

DS/mmed

)2
and θH ≡

√
3m2

Pl /(τ
2 ρcd

med).

3.2.2 Numerical solution

Let us consider an example to highlight the various evolutionary stages encoded in eqs. (3.10)–
(3.14). Figure 5 shows an overview of the evolution of the energy densities ρmed and ρrad, the
normalized scale factor ā, the temperature of the SM bath TSM, and the amount of injected
entropy SSM/S

cd
SM into the SM bath as functions of the dimensionless time parameter θ = t/τ .

The five physical input parameters are T cd
SM = 1 TeV, mmed = 100 GeV, τ = 0.1 s, ξcd = 1,

and α32 = 0.01.

We can identify six distinct stages in the evolution.
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Phase I: Relativistic mediator. At the initial temperature T cd
SM = 1 TeV the medi-

ators are still relativistic and the universe is dominated by SM radiation such that the scale
factor and temperature obey the well-known relations of a ∝

√
t and TSM ∝ 1/a. Since the

assumed mediator mass is only slightly smaller than the initial dark sector temperature, this
phase only lasts for a short period of time.

Phase II: Cannibalism. Once the mediators become non-relativistic, cannibalism
processes become relevant and lead to a ρmed ā

3 ∝ 1/ ln ā behaviour. As discussed in sec-
tion 3.1, this scaling implies a more efficient depletion of the energy density compared to the
case without any cannibalistic effects.

Phase III: Non-relativistic mediator. At some point 3 → 2 processes cease to be
efficient while decays are not yet relevant, such that the comoving mediator energy density
stays constant. Since the energy density of the SM radiation still scales with ρrad ∝ a−4, the
contribution of the mediators becomes increasingly important for the expansion history of
the universe.

Phase IV: Early matter domination. Once the mediator density dominates the
universe’s energy content, we find ourselves in a phase of early matter domination. This
means that the scale factor no longer scales as a ∝ t1/2, but rather with a ∝ t2/3. Therefore,
we can see that ā starts to deviate from its initial time evolution (marked in light violet in
the upper-right panel). As a result, the temperature of the SM bath falls off slightly more
quickly (TSM ∝ t−2/3) than predicted in ΛCDM (TSM ∝ t−1/2).

Phase V: Entropy injection. As soon as the decay term becomes non-negligible,
the injection of entropy into the SM bath becomes relevant, influencing the entropy ratio
SSM/S

cd
SM from θ ' 2 · 10−2 onwards. The energy density of the mediator slowly starts to

decrease as a result of its decay, reheating the SM bath due to TSM ∝ S1/4, see eq. (3.13).
Note, however, that there is no literal “reheating” but rather a decrease of the SM tempera-
ture that is less steep than TSM ∝ a−1. As shown in reference [19], the scaling in this period
is TSM ∝ a−3/8. With the decrease of mediator energy density, the radiation energy density
increases, such that the universe converges towards a radiation dominated era again.

Phase VI: Decay. The decays of the mediator continue after the end of the early
matter domination. At θ ∼ 1, the two energy densities considered here are again equal and
the temperature has almost reached its ΛCDM evolution, as described by the curve in light
red in the bottom-left panel. This curve was calculated using eq. (3.13), but therein setting
a ∝
√
t (as in radiation domination) and S = 1 (for no entropy injection). Once the decaying

mediators have injected most of their entropy into the SM bath, the curve for SSM/S
cd
SM

saturates and the subsequent evolution of the universe follows the usual picture for radiation
domination.

To conclude this discussion, we note that not all phases described above are present for
all parameter points. For example, if α32 is very small, there may never be a cannibalism
phase. Conversely, if α32 is very large, the universe enters a period of cannibal domination
rather than matter domination, which only ends when the mediator decays.

3.3 Dilution of gravitational waves

The out-of-equilibrium decay of the mediator can result in a considerable injection of entropy
and energy into the SM bath, as shown in figure 5, where the comoving entropy of the SM
bath after the dark sector decay is more than two orders of magnitude larger than before.
While the standard cosmological evolution will be recovered after the mediators have decayed,
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there is nevertheless one main consequence of the entropy injection: the dilution of frozen-out
abundances.

Here we focus on the dilution effect on the generated stochastic GW background, which
can be interpreted as a form of dark radiation [22]. The relevant quantity to quantify the
dilution is the scale factor ratio between bubble nucleation and today, see eq. (2.22). Using
the usual entropy-scale factor relation, we obtain

an

a0
=

1

D
1/3
SM

(
gSM,0

eff,s

gSM,n
eff,s

)1/3
T 0

SM

T n
SM

, (3.16)

where we have used that the comoving SM entropy is separately conserved before and after
the mediator decay. We therefore observe once again that an increase of the SM entropy
(DSM > 1) corresponds to a larger scale factor today. The effects on the frequency spectrum
of the GW are then determined by the relation

f → an

a0
f = D

−1/3
SM

(
gSM,0

eff,s

gSM,n
eff,s

)1/3
T 0

SM

T n
SM

f , (3.17)

corresponding to a frequency shift towards smaller values when dilution effects are present.4

Importantly, another redshift contribution affects the amplitude of the GW signal di-
rectly, which can be included in the R factor from eq. (2.23):

R =
1

D
4/3
SM

(
gSM,0

eff,s

gSM,n
eff,s

)4/3
π2 gtot,n

eff,ρ

90

(
T 0

SM

)4

m2
PlH

2
0

. (3.18)

We conclude that dilution effects decrease the amplitude of the GW frequency, as visualized
in figure 1 together with the frequency shift. For the following discussion it will be convenient
to introduce

D ≡
gSM,n

eff,s

gtot,n
eff,s

DSM , (3.19)

which takes into account the contribution of the dark sector to the total energy density (see
figure 2). Using this definition, eq. (3.18) becomes

Rh2 ' 2.473 · 10−5

D4/3

(
gSM,0

eff,s

gtot,n
eff,s

)4/3
gtot,n

eff,ρ

2
. (3.20)

The advantage of this expression is that for temperature ratios ξ � 1 we expect gtot,n
eff,ρ ∝ ξ4

and gtot,n
eff,s ∝ ξ3, see eqs. (2.7a) and (2.7b). Hence, the ξ dependence in the degrees of freedom

cancels and all effects are encoded entirely in D. Moreover, as shown in Ref. [19], the dilution

4We note that an intermediate period of matter domination also leaves a more direct imprint on the GW
spectrum by enhancing modes that enter the horizon during that time [58]. In the case that the period of
matter domination happens well after the phase transition, the spectrum close to the peak, and hence the
signal-to-noise ratio calculated below, remains however unaffected. We expect a similar conclusion to hold
also in the case of an intermediate period of cannibal domination, which has so far not been considered in the
literature.
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factor D also saturates for large ξcd, such that in this limit Rh2 becomes independent of the
temperature ratio between the two sectors.

We are now in the position to describe the effect of the mediator decay on the stochastic
GW background by investigating the dependence of the dilution factor DSM on the input
parameters defined at the end of section 3.2.1. For a first impression of the impact of the
different quantities that specify the dark sector and its decay, we show in figure 6 the results
from scans over different planes in the resulting parameter space. More specifically, we show
the dependence of DSM on the temperature of the SM bath at decoupling T cd

SM, the mediator
mass mmed, the temperature ratio at chemical decoupling ξcd, the effective 3 → 2 coupling
α32 and the mediator lifetime τ .5 The parameters not varied explicitly in each panel are
fixed to mmed = 110 GeV, T cd

SM = 175 GeV, α32 = 3.6 · 10−3 and ξcd = 2. Note that we
exclude parameter regions where the mediator decays are already efficient during chemical
decoupling (θcd ≥ 1) and where the approximation of non-relativistic mediator decays breaks
down (θnr ≥ 1).

In the top-left panel we consider the dependence of the dilution factor DSM on the
chemical decoupling temperature T cd

SM and the mediator lifetime τ . We find that the en-
tropy injection (and hence the dilution) only becomes sizeable for a sufficiently long-lived
mediator, such that θnr � 1 and there is a substantial period of early matter domination.
For T cd

DS > mmed = 110 GeV, corresponding to T cd
SM > mmed/ξcd = 55 GeV, the dependence

of DSM on the chemical decoupling temperature is very mild and results only from changes
in the number of relativistic degrees of freedom. For smaller values of T cd

SM, on the other
hand, DSM decreases rapidly. This decrease is a direct consequence of our assumption that
the mediator abundance is given by an equilibrium distribution at chemical decoupling and
therefore becomes Boltzmann suppressed at small decoupling temperatures. We note, how-
ever, that such a Boltzmann suppression is difficult to achieve in realistic models, and that
the examples that we will consider in section 4 always correspond to T cd

DS > mmed.

In the top-right panel we focus on the dependence of DSM on the mediator mass. We
find that smaller mediator masses lead to a decrease of the dilution factor. The reason is
that lighter mediators experience a longer period of relativistic and cannibalistic evolution,
such that the duration of the early matter domination and thus the amount of entropy
injection decreases. As before, when mmed > T cd

DS, the mediator is Boltzmann suppressed at
decoupling, thus reducing the dilution.

The bottom-left panel shows the effect of varying the temperature ratio ξ at chemical
decoupling. Since an increase in ξcd corresponds to an increase in the energy and entropy
stored in the dark sector, it is clear that DSM grows with increasing ξcd. We note that the
dilution factor changes more rapidly with τ for large lifetimes, corresponding to mediator de-
cays during matter domination, than for smaller lifetimes, corresponding to mediator decays
during cannibal domination.

The general effect of the cannibalistic era can be observed in the bottom-right panel,
which describes the dependence of DSM on α32. A large effective 3 → 2 coupling means
that the number-changing processes stay efficient for a longer period of time. During such
a cannibalistic era the comoving mediator energy density ρmed a

3 decreases, such that the
universe enters into the phase of early matter domination at a later point for larger α32. We
emphasize that this is potentially a large effect: Compared to the case where cannibalism
is negligible (α32 = 10−4) the dilution factor can be suppressed by a factor of a few if α32

5Note that, in contrast to D as introduced in eq. (3.19), DSM can be calculated without specifying the de-
grees of freedom of the entire dark sector, such that results presented in this way are more model-independent.
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Figure 6. Scan over the five dark sector parameters that determine the dilution factor DSM. In each
panel two parameters are varied explicitly with the other parameters fixed to the benchmark point
mmed = 110 GeV, T cd

SM = 175 GeV, α32 = 3.6 · 10−3 and ξcd = 2 (indicated by horizontal dashed lines
in each panel). Cyan areas of the plots are excluded because mediator decays occur already during
chemical decoupling (θcd > 1), while blue areas correspond to relativistic mediator decays (θnr > 1).
Note the change of the colour scale between the different panels.

is large. For large α32, the dilution factor becomes essentially independent of α32, as the
mediator decays before cannibalism ends.

To conclude this section, we remind the reader that large dilution factors correspond to
small GW signals in the present universe. We have therefore identified two competing effects:
Increasing the temperature ratio ξ increases the stochastic GW background produced during a
first-order phase transition (see section 2.4) but also leads to larger dilution factors. However,
it should be clear from figure 6 that ξ is not the only relevant parameter. In particular, we
expect the mediator lifetime to play a decisive role in determining whether increasing ξ leads
to an overall enhancement or suppression of GW signals. We will study this question in a
more concrete setting in the following section.

4 Example: Hot dark Higgs bosons

We are now equipped with all the necessary tools to investigate a particular dark sector model,
determine its phase transitions and the resulting stochastic GW background, calculate the
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decay of a mediator species and the consequent entropy injection, and finally obtain the
present-day GW signal. In section 4.1, we will provide a description of the model that
we study in the rest of this section and identify the five parameters relevant to the entire
phenomenological discussion. A study of the effects occurring in the different regions of the
available parameter space will be presented in section 4.2. Finally, we analyze the expected
signal-to-noise ratio in our model for LISA and ET for two benchmark points in section 4.3.

4.1 Model definition

We consider a simple dark sector model given by a dark photon that arises from a new U(1)D

gauge group under which a complex Higgs field Φ = (φ+ i ϕ) /
√

2 is charged, while the entire
SM field content is neutral. The radial mode φ is the dark Higgs boson and ϕ is the Goldstone
boson contributing to the longitudinal mode of the dark photon after symmetry breaking.
The underlying Lagrangian can be written as [10]

L ⊃ |Dµ Φ|2 + |DµH|2 −
1

4
A′µν A

′µν − ε

2
A′µν B

µν − V (Φ, H) , (4.1)

with the covariant derivative

Dµ Φ =
(
∂µ + i g A′µ

)
Φ (4.2)

and the field-strength tensor Xµν = ∂µXν − ∂νXµ, where X stands for A′ (dark photon) or
B (SM hypercharge gauge boson).

The scalar potential involving the dark Higgs field Φ and the SM Higgs field H is given
by [59]

Vtree(Φ, H) = −µ2 Φ∗Φ + λ (Φ∗Φ)2 − µ2
H H

†H + λH (H†H)2 + λp (Φ∗Φ) (H†H) , (4.3)

where µ2
i and λi are the different quadratic and quartic couplings. We assume that both ε

and λp are sufficiently small that they do not lead to the thermalisation of the dark sector
with the SM thermal bath, which also implies that they play a negligible role for the phase
transition. We can therefore treat the dark and visible sectors independently at early times
and study the dark Higgs potential in terms of the couplings λ, g and µ. The various mass
parameters read [10]

m2
A′(φ) = g2 φ2 , (4.4)

m2
φ = −µ2 + 3λφ2 , (4.5)

m2
ϕ(h, φ) = −µ2 + λφ2 . (4.6)

At high temperatures, the effective potential given in eq. (2.9) has a minimum at φ = 0, such
that the dark photon is massless. At zero temperature, on the other hand, the minimum of
the potential for φ lies at v = µ/

√
λ, leading to mA′ = g v and mφ =

√
2λ v. Furthermore,

the coupling relevant for number-changing processes is given by α32 = 9/(21/3 π)λ ≈ 2.3λ.
We observe that, for g >

√
2λ, the dark Higgs boson is lighter than the dark photon

and therefore the lightest particle in the dark sector after the phase transition. As we are
going to see, this will be the case for all of the interesting regions of parameter space. The
dark Higgs boson therefore takes on the role of the decaying mediator particle discussed in
chapter 3, which is responsible for the energy transfer from the dark sector to the SM. In the
following, we will treat the dark Higgs lifetime τ as an independent parameter that may be
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determined by λp or some other unspecified mechanism and assume that the kinetic mixing
parameter ε is sufficiently small to neglect dark photon decays into the SM. In this set-up
the chemical decoupling temperature is approximately given by the temperature when the
dark photons become Boltzmann-suppressed: T cd

DS = mA′ > mφ.6

Another important quantity is the temperature ratio ξn, which is fixed at the time of
nucleation and evolve to later times by tracking the relevant degrees of freedom, see eq. (2.8).
While we remain agnostic about the precise process that leads to different temperatures of
the dark and visible sector, simple possibilities would be a difference of the number of degrees
of freedom much earlier in the universe and/or the decay of a heavy particle species that heats
the dark sector. In total, our set-up is therefore characterised by five parameters: the dark
Higgs quartic coupling λ, the U(1)D gauge coupling g, the vev v, the dark Higgs lifetime τ
and the temperature ratio ξn at the nucleation time of the first-order phase transition.

In practice, we first compute the details of the first-order phase transition, i. e. we
determine the nucleation temperature T n

DS, the inverse time scale β/H and the transition
strength α. In a second step, the dilution factor DSM is computed as described in the previous
chapter with the initial temperature for the evolution given by the time of decoupling of dark
photons. As a final step, we then calculate D according to eq. (3.19). Having determined
all these quantities, we can then compute the relevant redshift factors given in eqs. (3.17)
and (3.20) which enter the final GW spectrum in eq. (2.22), linking the entire GW evolution
from the time of bubble collisions up until the present day. These calculations are performed
with a modified version of CosmoTransitions [60] described in more detail in appendix B.
This code is publicly available as TransitionListener at https://github.com/tasicarl/
TransitionListener.

We emphasize that a subtletly arises in this computation. For some parameter points
the nucleation temperature is found to be smaller than the dark photon mass in the broken
phase. In such a case the number of relativistic degrees of freedom in the dark sector changes
discontinuously from four before the phase transition to one after the phase transition.7

Whenever this happens, we set the temperature of chemical decoupling T cd
DS equal to the

nucleation temperature T n
DS (rather than to mA′) and assume four degrees of freedom for

the evaluation of the nucleation criterion in eq. (2.15). This approximation accounts for
our ignorance of out-of-equilibrium effects at the bubble wall. Indeed, the naively expected
particle abundances may be modified by two additional processes known as “bubble filtering”
[42, 43] and “bubble expansion production” of heavy particles [45, 46].

4.2 Exploration of model parameter space

In order to understand the parameter dependences of our set-up, it is important to realize
that three out of the five aforementioned parameters determine the requirement for bubble
nucleation: g, λ and v, with the first two having the strongest influence. In the effective
potential the barrier height separating the true and false vacua is set by the gauge coupling
g, the quartic coupling λ determines the depth of the tree-level minimum and, finally, the
vev v sets the overall temperature scale for the phase transition. Moreover, the value of v

6We have checked explicitly that this assumption presents a conservative estimate on the expected signal-
to-noise ratio. For T cd

DS = CmA′ with 0.1 < C < 1, the chemical decoupling occurs later, such that the
dilution factors D will become smaller and the stochastic GW background will be less diluted and thus more
easily observable.

7We have checked explicity that the dark Higgs boson is always to good approximation relativistic imme-
diately after the phase transition.
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Figure 7. Transition strength α and inverse time scale β/H in dependence of the U(1)D gauge cou-
pling g and the dark Higgs quartic coupling λ. The upper boundary of the coloured band corresponds
to strong and slow phase transitions. In the white area above, the potential barrier is too high to be
overcome, such that bubbles cannot nucleate. In the white area below, a smooth crossover occurs in
which no bubbles are emitted either. The tree-level vev was fixed to v = 2 TeV and the temperature
ratio was set to ξn = 1 to generate this figure.

enters the calculations through the number of effective degrees of freedom at nucleation (see
below for a more detailed discussion).

The dependence of the transition parameters α and β/H is visualized in figure 7 (see also
Ref. [10]). As expected, we find that increasing g corresponds to stronger phase transitions,
until eventually g is so large that the tunneling rate to the new vacuum receives a great
suppression and the universe remains trapped inside of the false vacuum [61]. For very
small values of g, conversely, the barrier becomes so small that the phase transition happens
smoothly. In figure 7 the tree-level vev was fixed to v = 2 TeV, but very similar results would
be obtained for somewhat different values. The temperature ratio was set to ξn = 1.

For the purpose of the following discussion, we are mainly interested in strong phase
transitions with large α, which also corresponds to an overall slow process with small β/H.
Based on the insight from figure 7, the benchmark point λ = 1.5 ·10−3 and g = 0.5 fulfills this
criterion and will be the focus of the subsequent discussion. We point out, however, that any
other point along the upper border of the coloured band would give rise to a qualitatively
similar phenomenological discussion presented in the following.

In order to consider the influence of the temperature ratio on the phase transition
parameters, we show the dependence of α and β/H on ξn in figure 8 (left) for v = 2 TeV.
While β/H is insensitive to ξn [10], we observe that even a mild increase from ξn = 1 to
ξn = 2 boosts α and therefore the GW spectrum by more than an order of magnitude –
see the discussion below eq. (2.17). A further increase in the temperature ratio (for fixed
T n

DS) does not have a large influence on the GW spectrum, because the dark sector begins to
dominate the total energy density. Consequently ρn

tot and therefore α become independent
of ξn. This feature is further illustrated in the right panel of figure 8, which shows that the
energetic effective degrees of freedom gtot,n

eff,ρ grow with ξ4
n for sufficiently large temperature
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ratios such that the total energy density becomes independent of the SM temperature, see

eq. (2.7a). In a similar manner,
(
gtot,n

eff,s

)4/3
grows with ξ4

n for large enough ξn as can be

deduced from eq. (2.7b), in line with our reasoning below eq. (3.20).

In figure 9 we explore the effects of varying the vev v, the lifetime τ and the temperature
ratio ξn on the GW spectra. For comparison we show the expected power-law integrated
sensitivity curves for LISA, ET and BBO [10]. As expected, the main effect of varying the
vev (indicated by the different colours) is to change the nucleation temperature and hence
the peak frequency. A change in the temperature ratio ξn for fixed v amounts to altering the
GW spectra as visualized by the dotted, dashed, and (dark) solid lines. As already observed
in figure 8, increasing the temperature ratio by a factor of two from ξn = 1 to ξn = 2 is
already sufficient to boost the GW spectrum significantly by one to two orders of magnitude,
much to the benefit of experimental prospects.

The influence of the lifetime τ and hence the dilution effects can be observed in figure 9
by comparing the solid lines of different shading, with dilution effects increasing from darker
to lighter shading for fixed v and ξn = 10. As discussed above, increasing the lifetime of the
dark Higgs boson corresponds to a larger entropy injection, diluting the signal towards both
smaller signal strengths and frequencies, which eventually leads to a reduced experimental
sensitivity in these scenarios. Note that we consider different lifetimes of the dark Higgs
boson for the different vevs. The reason is that the quantity that sets the relevant scale
for τ in the calculation of D is the Hubble parameter, which scales with T 2

DS. Hence, to
obtain a comparable value for the signal strength and the dilution factor, smaller values of τ
are needed for larger values of v, corresponding to larger nucleation temperatures. For the
darkest (uppermost) curves, we have chosen τ such that the dilution factor is of order unity
for all three cases.

Let us finally have a closer look at the dependence of the GW spectra on the vev. We
observe that for v = 1 GeV (ξn = 1) a peak signal strength of h2 ΩGW ≈ 10−13 is obtained,
whereas the corresponding signals for v = 1 TeV and v = 1 PeV lie at significantly smaller
values. The underlying reason for this is that larger values of v correspond to more relativistic
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Figure 9. An overview plot for the different possible GW spectra that can be provided by our model
for a strong first-order phase transition (λ = 1.5 ·10−3, g = 0.5), compared to the expected power-law
integrated sensitivity curves for LISA, ET and BBO [10] (see also Ref. [62, 63]). The plot shows the
resulting spectra of the phase transition of a dark Higgs acquiring its tree-level vev v = 1 GeV (blue),
v = 1 TeV (purple), or v = 1 TeV (red). Dotted lines refer to the case when ξn = 1, whereas dashed
and solid lines indicate ξn = 2 and ξn = 10, respectively. The dependence of the spectrum on the
dark Higgs lifetime τ is indicated by lighter colors. The main result is that increasing the temperature
ratio ξn leads to a strong enhancement of the signal strength when the dark Higgs decays sufficiently
fast. The tree-level vev shifts the signal to different frequencies and has a mild impact on the signal
strength for v ≤ 100 GeV.

degrees of freedom and hence a larger energy density in the SM at nucleation, leading to
smaller α. However, eventually the degrees of freedom reach their maximal value in the SM
at about v ' 100 GeV, beyond which α does not change considerably with the vev anymore.
For our example, we have α = 0.51 for v = 1 GeV and α = 0.11 for v = 1 TeV, 1 PeV when
considering an equally hot dark and visible sector (ξn = 1).

Given the scaling h2 ΩGW ∝ α2/(1 + α)2 [10, 64] we are also able to deduce that the
enhancement of the GW signal with increasing temperature ratio is stronger the weaker the
initial spectrum, i. e. if the initial value of α is rather small. Therefore, the effect of increasing
ξn is larger for v = 1 TeV, 1 PeV than for v = 1 GeV. This consideration also explains the
fact that all spectra converge towards a comparable peak signal strength with large α for
ξn = 10 despite different underlying values for the vev.

An important conclusion that can be drawn from figure 9 is that TeV- and PeV-scale
vevs are most favorable for LISA and ET, respectively. We emphasize, however, that far-
future GW interferometers such as BBO [65], which would operate in an intermediate fre-
quency range with very high sensitivity, would also be sensitive to these benchmark scenarios.
For the following section, we will take a closer look at the two benchmark values v1 = 2 TeV
and v2 = 10 PeV for λ = 1.5·10−3 and g = 0.5. In these cases, the nucleation temperatures lie
at T n

DS,1 = 175 GeV and T n
DS,2 = 851 TeV, respectively, while the dark photon mass is given

by mA′,1 = 1 TeV and mA′,2 = 5 PeV. Consequently, we encounter the scenario mentioned
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before: the dark photon decouples on a very short timescale once the universe enters the new
phase. As discussed above, we therefore set T cd

DS = T n
DS and identify the temperature ratio

at nucleation ξn with the one at chemical decoupling ξcd.

4.3 Sensitivity for gravitational waves

In this section, we discuss the prospects for LISA and ET for the two benchmark points
described above. While figure 9 allows to assess the observability of a GW signal in a
qualitative manner, an analysis based on signal-to-noise ratios is in fact better suited to
quantify the experimental sensitivities [10]. In this discussion, we aim to study the two main
competing effects in particular: the enhancement of GWs at production through a large
temperature ratio ξn and the subsequent dilution of the spectrum determined primarily by
the dark Higgs lifetime τ . In the following, we therefore analyse the signal-to-noise ratios in
terms of these two quantities for fixed values of the other three parameters.

For the calculation of signal-to-noise ratios, we employ the auto-correlated optimal-filter
measure

SNR =

√
tobs

∫ fmax

fmin

df

[
h2 ΩGW(f)

h2 Ωeff(f)

]2

, (4.7)

as derived in Ref. [10]. The observed signal strength ΩGW (see eq. (2.22)) is normalized to the
effective noise energy density spectrum Ωeff, integrated within the frequency band [fmin, fmax]
in which the detector is sensitive, and weighted with the duration of observation tobs. The
noise spectrum not only encompasses instrumental noises but also noise from unresolved
galactic binaries. We will refer to the signals as being detectable by LISA and the Einstein
Telescope for signal-to-noise ratios exceeding the respective threshold SNR values of 10 and
5. A detailed overview of the calculation of signal-to-noise ratios as well as the used noise
curves can be obtained from Ref. [10].

In figure 10 we visualize our main results for the LISA and ET benchmark points. In
the left column, the dependence of the dilution factor D on ξn and τ is shown, while the
right-hand side focuses on the signal-to-noise ratios in the same parameter plane. For both
LISA and ET we obtain qualitatively similar situations. For equally hot dark and visible
sectors (ξn = 1), the GWs from the first-order phase transition are not observable irrespective
of what the dark Higgs lifetime is. Only when increasing the temperature ratio to ξn & 2,
amounting to more energy stored in the GWs, we reach parameter regions for which both
experiments become sensitive, thus validating our initial motivation that hot dark sectors
greatly increase the observability of GWs. However, we also observe that for larger lifetimes,
eventually, the signals get weaker again in spite of large ξn. This is the case because dilution
effects become increasingly important the larger the dark Higgs lifetime is, redshifting the
GW spectrum and decreasing the experimental reach for such scenarios. The sensitivity loss
for larger τ is also independent of ξn for large enough temperature ratios since both α and D
saturate eventually, leading to a nearly horizontal turnover of the LISA and ET sensitivity.
This interplay between enhancing and diluting the GWs ultimately results in a rectangular
shape of the relevant signal-to-noise ratio region in the right column.

We emphasize that in the most interesting parameter regions the lifetime of the dark
Higgs boson is sufficiently small to not interfere with BBN. However, given our assumption
that the dark Higgs boson decays non-relativistically, the lifetime cannot be arbitrarily small.
This is indicated by the blue shaded region in the right column, which corresponds to θnr ≥ 1
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Figure 10. Dependence of the dilution factor (left) and the expected signal-to-noise ratios in future
GW observatories (right) as a function of the temperature ratio at bubble nucleation and the dark
Higgs lifetime. In the top row we consider a Higgs vev v = 2 TeV, corresponding to potentially
observable signals in LISA, while in the bottom row we choose v = 10 PeV and consider ET. In both
cases we find that large temperature ratios significantly enhance the predicted strength of the GW
signal, provided the dark Higgs lifetime is short enough to avoid significant dilution.

(see section 3). Based on the left column of figure 10, however, we do not expect dilution
effects to become relevant in this parameter region, which would correspond to the case that
the universe never enters a period of early matter domination.

Taking all relevant effects and conditions into account, we are therefore able to find
sizeable parameter regions in ξn and τ that predict sufficiently high signal-to-noise ratios to
offer attractive prospects for future GW observatories. For LISA the signal-to-noise ratio can
be as large as O(100), while the corresponding values for ET are somewhat smaller due to
its steeper sensitivity loss for small frequencies. This finding demonstrates clearly that GW
signatures, which may seem out of reach, can in fact be enhanced as soon as the dark sector
is hot, enabling one to distinguish GWs emerging in the early universe from noise affecting
the experimental measurement. Further progress in testing the GW scenarios discussed here
can be expected from BBO, which will also be able to cover vevs within the TeV-PeV range
and also be sensitive to scenarios with stronger dilution effects (see figure 9).

To conclude this discussion, we emphasize once more that the enhancement and dilution
effects considered in this work apply to a wide range of GW signals from dark sector phase
transitions. In particular, our findings can be directly applied to different values of λ and
g, which would lead to smaller α and larger β/H, corresponding to overall weaker GW
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signals. In this case a larger vev would be required to achieve a similar peak frequency and
to counterbalance the change in the nucleation temperature. At the same time, the effect
from increasing ξn would be even larger, given that the saturation of h2 ΩGW ∝ α2/(1 + α)2

would be delayed. Hence, for sufficiently large temperature ratios ξn even such comparably
weak GW signals may be rendered observable.

5 Conclusions

In this work we have considered the exciting prospect that future gravitational wave (GW)
observatories will be able to measure the stochastic GW background from first-order phase
transitions. Such first-order phase transitions arise frequently in extensions of the Standard
Model (SM) that feature a dark sector, i. e. a collection of new states that interact with each
other but only very weakly with the SM. A crucial property of such a dark sector is that
it may have a temperature different from the temperature of the SM thermal bath. The
hotter the dark sector, the larger its contribution to the total energy density and therefore
the stronger the GW signals that can be produced. In this work we have focused on the case
that the dark sector has a larger temperature than the visible sector, which can significantly
boost GW signals that would otherwise be unobservable.

Such a set-up however faces a great challenge: In order to recover the standard cos-
mological evolution at low temperatures, the entropy stored in the dark sector needs to be
transferred to the visible sector. To achieve this goal we have considered the case that the
lightest dark sector particle (called the mediator) is unstable against decays into SM par-
ticles. These decays must be sufficiently slow that they do not bring the two sectors into
thermal equilibrium at early times. On the other hand, if these decays happen too late, the
universe enters a phase of early matter domination and the eventual transfer of entropy to
the visible sector leads to a strong dilution of the GW signal.

We have explored the dependence of this dilution effect on the properties of the mediator
(specifically its mass, lifetime, decoupling temperature and self-interactions) and the dark
sector temperature. We have extended previous works on the topic by considering a period of
cannibalism, during which the energy in the dark sector decreases through number-changing
processes. Such cannibalism can significantly reduce the resulting dilution factors and thereby
extend the range of mediator lifetimes, for which GW signals may be observable.

To apply our findings to a realistic scenario, we have considered a dark sector describing
the spontaneous breaking of a new U(1)D gauge symmetry with a dark Higgs field and a
dark photon as field content. In the parameter regions where a strong first-order phase
transition is predicted, the lightest dark sector particle is the dark Higgs boson, while the
dark photon obtains a mass larger than the dark sector temperature at bubble nucleation.
If the dark sector temperature is equal to the SM temperature, the predicted GW signals
are below the sensitivity of next-generation GW observatories such as LISA or the Einstein
Telescope. However, temperature ratios of order 2 are sufficient to boost the GW signal
above the expected level of noise. The subsequent dilution of the signal due to entropy
injection remains small provided the dark Higgs bosons decay sufficiently quickly after the
phase transition. We find that the interesting regions of parameter space span several orders
of magnitude in the dark Higgs lifetime. Further regions of parameter space are expected to
open up when extending our analysis to the case that the dark Higgs bosons decay before
they become non-relativistic. The code used to obtain our results is publicly available as
TransitionListener at https://github.com/tasicarl/TransitionListener.
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We emphasize that our calculation of the actual GW signals and the resulting signal-
to-noise ratios is rather simplified and could be improved in a number of ways, for example
by considering the percolation temperature instead of the nucleation temperature or by in-
cluding effects such as bubble filtering or the production of heavy particles during bubble
expansion. Nevertheless, our central findings are independent of these approximations: The
enhancements that we find for large dark sector temperatures and the dilution factors that we
calculate are independent of the details of the phase transition and can equally be applied to
more refined calculations. Our largely model-independent treatment facilitates the transfer
of our results to different settings.

For the specific dark sector model that we consider it will be interesting to further
explore the connection to dark matter. To do so, it will be essential to specify in detail
the couplings of the dark sector to the SM. For example, if kinetic mixing between the
dark photon and hypercharge gauge bosons is absent, the dark photon itself could be stable
and a viable dark matter candidate. Alternatively, the dark sector could contain additional
fermions that freeze out before the phase transition. Such a set-up might furthermore provide
an explanation for the difference in temperature between the dark and the visible sector that
we have assumed from the beginning. Observatories such as LISA and the Einstein Telescope
may therefore have a unique possibility to combine both dark sector and GW physics, with
the experimental sensitivity enhanced greatly when hot dark sectors are involved.
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A Derivation of the equations governing entropy injection

We start the derivation by noting that the entropy of the SM in a comoving volume a3 is
given by SSM(t) = 2π2

45 gSM
eff,s(t)T

3
SM(t) a3(t), which gives

TSM(t) =

(
45

2π2

)1/3
(
SSM(t)

gSM
eff,s(t)

)1/3
1

a(t)
. (A.1)

The energy density of the SM radiation can therefore be expressed as

ρrad(t) =
π2

30
gSM

eff,ρ(t)T
4
SM(t) =

3

4

(
45

2π2

)1/3
(
SSM(t)

gSM
eff,s(t)

)4/3
gSM

eff,ρ(t)

a4(t)
, (A.2)

allowing us to relate the energy density at chemical decoupling to later times by

ρrad(t)

ρcd
rad

=
gSM

eff,ρ(t)

gSM,cd
eff,ρ

(
gSM,cd

eff,s

gSM
eff,s(t)

)4/3(
SSM(t)

Scd
SM

)4/3

ā−4 . (A.3)

Switching to the dimensionless time parameter θ = t/τ , the first Friedmann equation

reads H2 =
(
ā′
τ ā

)2
= ρtot

3m2
Pl

with ρtot = ρmed + ρmat + ρrad. Here, ρmat describes the influence
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of any decoupled non-relativistic species, such as a frozen-out dark matter component, which
therefore scales as ρmat = ρcd

mat ā
−3. The Friedmann equation thus reads

ā′(θ) = τ ā(θ)

√
ρmed(θ) + ρmat(θ) + ρrad(θ)

3m2
Pl

(A.4)

=
ā(θ)

θH

√
ρmed(θ)

ρcd
med

+ rcd
rad

ρmat(θ)

ρcd
mat

+ rcd
mat

ρrad(θ)

ρcd
rad

, (A.5)

where we have introduced rcd
mat ≡ ρcd

mat/ρ
cd
med, rcd

rad ≡ ρcd
rad/ρ

cd
med and θH ≡

√
3m2

Pl/(τ
2 ρcd

med).

Employing eq. (A.3) and defining r = ρmed/ρ
cd
med, the first Friedmann equation can be ex-

pressed as

ā′ =
ā

θH

√√√√√r +
rcd

mat

ā3
+
rcd

rad

ā4

gSM
eff,ρ

gSM,cd
eff,ρ

(
gSM,cd

eff,s

gSM
eff,s

)4/3(
SSM

Scd
SM

)4/3

, (A.6)

where all of ā, r, gSM
eff,ρ, g

SM
eff,s and SSM depend implicitly on θ. The last term in eq. (A.6)

describes the amount of entropy that has been injected into the SM bath since TSM = T cd
SM,

thus increasing the radiation energy density therein.

In order to derive a second differential equation quantifying the entropy injection, we
point out the relation

d

dθ

[(
SSM(θ)

Scd
SM

)4/3
]

=
4

3

(
SSM(θ)

Scd
SM

)1/3 S′SM(θ)

Scd
SM

. (A.7)

As the SM and dark sector heat fulfill Q′SM = −Q′DS, see eq. (2.2) and the surrounding text,
we can deduce that

S′SM(θ) =
Q′SM(θ)

TSM(θ)
= −Q

′
DS(θ)

TSM(θ)
= −q

′
DS(θ) a3(θ)

TSM(θ)

= −
(

2π2

45

)1/3
(
gSM

eff,s(θ)

SSM(θ)

)1/3

q′DS(θ) a4(θ) , (A.8)

where we have usedQ′DS = q′DS a
3 along with eq. (A.1). Inserting this expression into eq. (A.7)

and relating the SM entropy at chemical decoupling to the energy density via eq. (A.2), we
find

d

dθ

[(
SSM

Scd
SM

)4/3
]

= −4

3

(
2π2

45

)1/3
[

gSM
eff,s(
Scd

SM

)4

]1/3

q′DS a
4 (A.9)

= −
[
gSM

eff,s(θ)

gSM,cd
eff,s

]1/3
gSM,cd

eff,ρ

gSM,cd
eff,s

q′DS(θ)

ρcd
rad

ā 4(θ) . (A.10)

Together with the Friedmann eq. (A.6), we have derived a set of coupled differential
equations that describe the evolution of the scale factor and the entropy in the SM bath. The
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system is, however, still under-determined since the time evolution of the degrees of freedom
is not trivial. We therefore introduce the functions

γ(θ) ≡
gSM

eff,ρ(θ)

gSM
eff,s(θ)

, G(θ) ≡
gSM

eff,s(θ)

gSM,cd
eff,s

, S(θ) ≡
(
SSM(θ)

Scd
SM

)4/3

, (A.11)

and note that the time evolution of the first two functions is described by

γ′(θ) =
d

dTSM

[
gSM

eff,ρ(TSM)

gSM
eff,s(TSM)

]∣∣∣∣∣
TSM(θ)

T ′SM ≡ γ̂(θ)T ′SM(θ) , (A.12a)

G′(θ) =
d

dTSM

[
gSM

eff,s(TSM)

gSM,cd
eff,s

]∣∣∣∣∣
TSM(θ)

T ′SM ≡ Ĝ(θ)T ′SM(θ) . (A.12b)

Both γ̂ and Ĝ can thus be calculated from the known temperature evolution of the effective
SM degrees of freedom and eq. (A.1) for a given time θ.

In order to obtain a closed system of coupled differential equations, we further need to
describe T ′SM. Dividing eq. (A.1) by the corresponding expression evaluated at θ = θcd yields

TSM(θ)

T cd
SM

=
a

acd

(
SSM

Scd
SM

)1/3
(
gSM,cd

eff,s

gSM
eff,s

)1/3

=
āS1/4

G1/3
(A.13)

⇒ d

dθ

TSM(θ)

T cd
SM

=
3G āS ′ − 12G ā′ S − 4G′ āS

12G4/3 S3/4 ā2
. (A.14)

Note that the time evolution of TSM itself depends on G′. Inserting the expression just
obtained into eq. (A.12b) and solving for G′ yields

G′(θ) = −3

4

T cd
SM G Ĝ
S3/4 ā

4S ā′ − S ′ ā
T cd

SM Ĝ S1/4 + 3G4/3 ā
. (A.15)

Since G′ is now determined, we can also use eq. (A.12a) to describe the time evolution of
γ(θ):

γ′(θ) = γ̂ T cd
SM

3G āS ′ − 12G ā′ S − 4G′ āS
12G4/3 S3/4 ā2

. (A.16)

The final piece needed to obtain a fully determined set of differential equations can
be obtained by including a specific time evolution of the mediator species, as it has been
discussed in section 3.1. Consider that the volume heat rate of our dark sector is given by

q′DS(θ) = ρ′med(θ) + 3
ā′(θ)
ā(θ)

ζ(θ) ρmed(θ) = −ρmed(θ) . (A.17)

The factor q′DS/ρ
cd
rad, which is of relevance for the entropy injection in eq. (A.10), can therefore

be simplified to

q′DS(θ)

ρcd
rad

= −ρmed(θ)

ρcd
rad

= −ρ
cd
med

ρcd
rad

r(θ) = −r(θ)
rcd

rad

, (A.18)
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where

r′(θ) = −r(θ)− 3
ā′(θ)
ā(θ)

ζ(θ) r(θ) . (A.19)

The time evolution of the scale factor, the SM entropy, the mediator energy density and
the effective degrees of freedom in the SM bath can therefore be described by the following
set of coupled differential equations:

ā′ =
ā

θH

√
r +

rcd
mat

ā3
+
rcd

rad

ā4

γ

γcd

S
G1/3

,

S ′ = r ā4

rcd
rad

G1/3 γcd ,

r′ = −r − 3
ā′

ā
ζ r , (A.20)

G′ = −3

4

T cd
SM G Ĝ
S3/4 ā

4S ā′ − S ′ ā
T cd

SM Ĝ S1/4 + 3G4/3ā
,

γ′ = γ̂ T cd
SM

3G āS ′ − 12G ā′ S − 4G′ āS
12G4/3 S3/4 ā2

.

The equations used in the main text are then obtained by neglecting the contribution from
non-relativistic matter (rcd

mat = 0) and focusing on temperatures above the MeV-scale, for
which γ = 1.

B Modifications of CosmoTransitions

To perform our analysis of possible phase transitions in dark sectors, we used a customized
version of CosmoTransitions [60]. CosmoTransitions comes with the necessary tools
to trace the global and local minima of a given effective potential of one or multiple scalar
fields. Moreover, it allows to identify the possible phase transitions between these minima.
CosmoTransitions is often used as a benchmark code in the literature [8, 66], as it is
sufficiently stable and fast. Apart from the identification of first-order phase transitions, also
the calculation of bounce actions and bubble profiles is possible with CosmoTransitions.

We first updated the individual modules of the program to work with Python 3 and
extended it by an accurate nucleation criterion for first-order phase transitions in dark sectors
with a temperature different from the SM bath. Next, we added the code necessary to
compute the important phase transition parameters α and β/H. This requires a model file,

in which the effective potential V 1−loop
eff (φ) and the mass spectrum of the dark sector are

given, and an additional module to calculate the effective degrees of freedom. Furthermore,
we added a module for the calculation of dilution factors DSM, in which the decay of the
dark sector is modeled. Another module for the calculation of stochastic gravitational wave
spectra and the signal-to-noise ratios has been added to interpret the observability of the
generated signals. This set of modules is controlled by an interface, which itself is executed
by a small scan file, which defines the region of parameter space that one wishes to analyze.
In addition, there are a few parameters for adjusting the settings, such as the accuracy of
scans and the grid for the scan.
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