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Abstract
With the aim of providing high accuracy post-Newtonian (PN) templates for the analysis of

gravitational waves generated by compact binary systems, we complete the analytical derivation

of the source type mass quadrupole moment of compact binaries (without spins) at the fourth PN

order of general relativity. Similarly to the case of the conservative 4PN equations of motion, we

show that the quadrupole moment at that order contains a non-local (in time) contribution, arising

from the tail-transported interaction entering the conservative part of the dynamics. Furthermore,

we investigate the infra-red (IR) divergences of the quadrupole moment. In a previous work, this

moment has been computed using a Hadamard partie finie procedure for the IR divergences, but

the knowledge of the conservative equations of motion indicates that those divergences have to be

dealt with by means of dimensional regularization. This work thus derives the difference between

the two regularization schemes, which has to be added on top of the previous result. We show that

unphysical IR poles start to appear at the 3PN order, and we determine all of these up to the 4PN

order. In particular, the non-local tail term comes in along with a specific pole at the 4PN order.

It will be proven in a companion paper that the poles in the source-type quadrupole are cancelled

in the physical radiative type quadrupole moment measured at future null infinity.

I. INTRODUCTION

The theory of gravitational waves (GW) generated by binary systems of compact objects
has been developed using perturbative methods in classical general relativity (see [1–4] for
reviews). In particular the post-Newtonian (PN) approximation is a major and widely
developed technique for computing analytically the dynamics and GW emission of compact
binaries. The state of the art on the conservative dynamics are the equations of motion of
point-particle binaries at the 4PN (fourth-post-Newtonian) order [5–14]. Recently progresses
have been made so that the equations of motion are now determined up to two unknown
parameters at 5PN order, and up to six unknowns at 6PN order [15, 16]. Currently the field
is also evolving thanks to new methods coming from effective field theory and scattering
amplitudes, naturally combined with the classical post-Minkowskian approximation [17].

This paper is concerned with the GW emission aspect, which is directly related to the
data analysis of GW detectors. Here, the state of the art is the 3PN approximation in the
waveform, beyond the Einstein quadrupole formula [18–22]. Actually, the flux and orbital
phase evolution due to gravitational radiation are known to the 3.5PN order [23, 24], as
well as the dominant mass-quadrupole mode (ℓ,m) = (2, 2) [25, 26], the current-quadrupole
mode (2, 1) [27] and the mass-octupole ones (3, 3) and (3, 1) [28]. The gravitational flux
and mass quadrupole were confirmed at the 2PN order by means of effective field theory
techniques [29].

Extending the GW emission up to the 4PN (and even 4.5PN [30]) order is the target of
the present program. A central part of this program is of course the control of the mass-type
quadrupole moment of the system with the 4PN precision. This computation faces subtle
issues regarding the choice and proper use of regularization schemes, both for the ultra-
violet (UV) and infra-red (IR) divergences. Recently, a preliminary calculation of the source
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mass-type quadrupole moment of compact binaries (of spinless bodies) at the 4PN order has
been tackled [31]. In this calculation, the UV divergences, appearing because of the point-
like structure of the source (modelling compact objects with negligible internal structure),
were properly treated by means of the powerful dimensional regularization. However, the
IR ones were regularized with the Hadamard partie finie (PF) regularization procedure [32].
Furthermore, in the calculation of Ref. [31], the non-local-in-time contributions, due to
retarded correlations over arbitrarily large time spans in the dynamics of the source [33],
were neglected.

In the present paper and the next one [34], we complete the derivation of the 4PN source
mass-quadrupole moment of compact binaries. More precisely, our goals are two-fold:

1. To derive the non-local (in time) effect in the source mass quadrupole moment which
is due to the radiation modes associated with propagating tails at infinity. This effect
is the analogue of the one occurring in the conservative equations of motion and the
Lagrangian/Hamiltonian at the 4PN order [5, 7, 10];

2. To compute all the contributions to the quadrupole moment due to the IR diver-
gences, implementing a dimensional regularization scheme rather than the Hadamard
PF scheme adopted in [31]. Such procedure leads to the appearance of specific IR
poles which start to arise at the 3PN order and play a crucial role at the 4PN order.

In the follow-up paper [34], we investigate the fate of these IR poles in the radiative-type
quadrupole moment, which represents the actual observable moment at future null infinity,
up to the 4PN order. We will find that they are exactly canceled by radiation contributions
due to non-linear propagation effects (the most important ones being coined as “tails-of-
tails” and “tails-of-memory”) and that we can therefore safely define a three-dimensional
“renormalized” mass quadrupole moment at the 4PN order, which will constitute a basic
ingredient in the construction of 4PN GW templates.

The central object investigated in this work is thus the source-type mass-quadrupole
moment, defined in d spatial dimensions by the expression [27, 31, 35]1

Iij =
d− 1

2(d− 2)
PF
B=0

∫

ddx

ℓd−3
0

(

r

r0

)B{

x̂ij Σ[2] −
4(d+ 2)

c2 d(d+ 4)
x̂ijaΣ

(1)

a[3]

+
2(d+ 2)

c4 d(d+ 1)(d+ 6)
x̂ijab Σ

(2)

ab[4] −
4B(d− 3)(d+ 2)

c2 (d− 1)d(d+ 4)
x̂ija

xb

r2
Σab[3]

}

. (1.1)

We let the reader refer to [31] for a comprehensive review of the definitions and properties
of the quantities entering the source quadrupole moment, as well as its computation using
the IR Hadamard and UV dimensional regularizations. Let us just emphasize a few points.

The main quantity over which the source quadrupole integrates is the pseudo stress-energy
tensor τµν in harmonic coordinates composed of a matter and a gravitational part,

τµν ≡ |g|T µν +
c4

16πG
Λµν , (1.2)

1 The overbar denotes the formal PN expansion; superscript parenthesis (n) denote time derivatives; the hat

refers to the symmetric-trace-free (STF) product, e.g. x̂ija ≡ STF[xixjxa]; PFB=0 denotes the Hadamard

partie finie with regulator (r/r0)
B and associated length scale r0 (B ∈ C); the characteristic dimensional

regularization length scale is ℓ0.
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where T µν is the matter stress-energy tensor and Λµν the non-linear gravitational source
term of the Einstein field equations. It enters Eq. (1.1) through the following PN-expanded
source densities:

Σ =
2

d− 1

(d− 2)τ 00 + τ ii

c2
, Σi =

τ 0i

c
, Σij = τ ij . (1.3)

The PN expansions implicit in (1.1) read as (with Γ the Euler function)

Σ[ℓ](x, t) ≡
+∞
∑

k=0

1

22kk!

Γ(ℓ+ d
2
)

Γ(ℓ+ d
2
+ k)

(

r

c

∂

∂t

)2k

Σ(x, t) . (1.4)

The partie finie procedure PFB=0 comes from the matching between near zone and exte-
rior zone. It is crucial for the proper definition of the multipole moments in 3 dimensions [36].
The derivation of the equations of motion [8, 9] indicated that the PF operator should be
kept even in d dimensions. It was also shown there that, in d dimensions, the limit B → 0 is
finite in physical quantities (without pole 1/B); so, in the end the whole procedure is equiv-
alent to the usual dimensional regularization. We had however to keep the PF operator as
explicit in the expression of the quadrupole moment (1.1). Here, similarly to the equations
of motion [8, 9], we apply first the PF process when B → 0 on the d dimensional expression
and, second, the usual dimensional regularization when ε ≡ d − 3 → 0. We call this mixed
regularization the “Bε” regularization. Note that the last term in (1.1), proportional to
both B and d− 3, will be shown to play no role with this particular regularization.

This paper is organized as follows. In the next Section II, we derive the non-local in
time part of the source quadrupole, relying on results derived in [8]. We then perform
the proper IR dimensional regularization for all the various categories of terms composing
the quadrupole in Section III. The final result is presented in Section IV in the form of a
pole followed by a finite part contribution, which will be the starting point for the final
renormalization of the quadrupole in the next paper [34]. Appendix A present technical
formulas generalizing the Riesz formula in d dimensions. Appendix B gives the expression
of the local part of the IR shift coming from the 4PN equations of motion.

II. NON-LOCALITY IN TIME OF THE SOURCE QUADRUPOLE MOMENT

Crucial to the completion of the ambiguity-free equations of motion at the 4PN order
was the proper inclusion of the tail effect, i.e. the non-local in time back-scattering of emit-
ted gravitational waves, modifying the conservative dynamics of the system at the current
time [8]. This effect enters at the 4PN order in the near-zone metric and, as such, plays a
key role in the computation of the 4PN source mass quadrupole by introducing a non-local
term, together with a pole.

A. The tail effect in the conservative 4PN equations of motion

Let us first recall how the tail effect is included in the near-zone metric and Fokker action
for the conservative dynamics. In Ref. [8], it was found that the PN-expanded gravitational
field in harmonic coordinates (hµν ≡ √−ggµν − ηµν , which is such that ∂νh

µν = 0) contains

4



the following pieces responsible for tails at the 4PN order:

h
00ii

tail =
8G2M

15c10
xij

∫ +∞

0

dτ

[

Lε(τ) +
61

60

]

I
(7)
ij (t− τ) +O

(

1

c12

)

, (2.1a)

h
0i

tail = −8G2M

3c9
xj

∫ +∞

0

dτ

[

Lε(τ) +
107

120

]

I
(6)
ij (t− τ) +O

(

1

c11

)

, (2.1b)

h
ij

tail =
8G2M

c8

∫ +∞

0

dτ

[

Lε(τ) +
4

5

]

I
(5)
ij (t− τ) +O

(

1

c10

)

, (2.1c)

where we have posed h00ii ≡ 2
d−1

[(d − 2)h00 + hii] and introduced the short-hand notation

for the logarithmic divergence with the associated pole ∝ ε−1 ≡ (d− 3)−1:

Lε(τ) ≡ ln

(

c
√
q̄ τ

2ℓ0

)

− 1

2ε
, (2.2)

where q̄ ≡ 4π eγE with γE the Euler constant, vanishingly small terms O(ε) being neglected.
In our set-up and notation, the two and only two series of multipole moments describing

the radiation field generated by an isolated source are the so-called canonical moments, ML

and SL. Those differ from the source moments IL and JL, e.g. (1.1) and, thus, in principle,
the quadrupole moment in (2.1) should rather be viewed as the canonical moment and
denoted Mij. However, we take here advantage that Mij and the source moment Iij are
equivalent at Newtonian order (and even up to 2PN order).

Still in Ref. [8], we next applied a gauge transformation, at quadratic order, for the
particular interaction M × Iij , so designed as to transfer all relevant tail terms in the “00ii”
component of the metric. Namely, we posed h′µν = hµν + ∂µǫνtail + ∂νǫµtail − ηµν∂ρǫ

ρ
tail, with

PN-expanded gauge vector given by the following tail pieces (used in [8] but published here
for the first time):

ǫ0tail = −2G2M

3c9
xij

∫ +∞

0

dτ

[

Lε(τ) +
37

60

]

I
(6)
ij (t− τ) +O

(

1

c11

)

, (2.3a)

ǫitail = −4G2M

c8
xj

∫ +∞

0

dτ

[

Lε(τ) +
4

5

]

I
(5)
ij (t− τ) +O

(

1

c10

)

. (2.3b)

In the new gauge, the 4PN tail effect is thus entirely described by the single scalar potential
h′00ii

tail (or, equivalently, by the 00 component of the covariant metric g′tail00 ), which becomes

h
′00ii
tail =

16G2M

5c10
xij

∫ +∞

0

dτ

[

Lε(τ) +
41

60

]

I
(7)
ij (t− τ) +O

(

1

c12

)

. (2.4)

This tail piece in the metric yields the tail term in the conservative Fokker action, which is
found to be manifestly symmetric under time reversal,

Stail =
G2M

5c8

∫ +∞

−∞
dt I

(3)
ij (t)

∫ +∞

0

dτ

[

Lε(τ) +
41

60

]

(

I
(4)
ij (t− τ)− I

(4)
ij (t+ τ)

)

. (2.5)

An elegant alternative form is provided by the Hadamard partie finie (Pf) integral

Stail =
G2M

5c8
Pf
τ0

∫∫

dtdt′

|t− t′|I
(3)
ij (t) I

(3)
ij (t′) , (2.6)

with the Hadamard regularization scale τ0 =
2ℓ0
c
√
q̄
exp[ 1

2ε
− 41

60
].

5



B. Direct tail term in the 4PN mass quadrupole moment

Inserting Eqs. (2.1) into the quadrupole moment (1.1), it is straightforward to see that
the only 4PN effect comes from the first term, namely

Itailij =
d− 1

2(d− 2)
PF
B=0

∫

ddx

(

r

r0

)B

x̂ij Σtail + · · · , (2.7)

where only the Newtonian term in the PN series (1.4) needs to be considered, and where the
ellipsis denote other terms that do not participate to the effect at 4PN order. Considering the
order of appearance of the tail integrals in the metric, the only terms in the non-linear source
Λµν which may contribute to the effect at the 4PN order are Λ00 = −hab∂abh

00+ 1
4
∂ah

00∂ah
bb

and Λii = −1
4
(d−2)∂ah

00∂ah
bb. Now, only the components of the metric that are proportional

to 1/c8, namely hab
tail, can subsist at this accuracy level. They are directly given by (2.1c)

and are obviously trace-free. The tail sector of the effective non-linear source in (2.7) thus
reduces to

Σtail = − c2

16πG

2(d− 2)

d− 1
hab
tail∂abh

00 + · · · . (2.8)

On the other hand, to the lowest order, we have h00 = −2(d−1)
d−2

V
c2

+ · · · , with V being, at

leading order, the Newtonian potential in d dimensions. Using also the fact that hab
tail is a

function of time only, we find that the 4PN tail contribution in the quadrupole moment
reads

Itailij =
d− 1

8πG(d− 2)
hab
tail PF

B=0

∫

ddx

(

r

r0

)B

x̂ij∂abV . (2.9)

Injecting the Newtonian potential V = k̃ Gm1
2(d−2)
d−1

r2−d
1 + 1 ↔ 2, with k̃ = π1− d

2Γ(d
2
− 1),

the term (2.9) can be computed by means of the “generalized Riesz integrals” presented in
Appendix A, more precisely Eq. (A2a) with y2 = 0. Finally, applying the operator PF at
B = 0 which reduces here to a simple limit when B → 0,2 we find at 4PN order

Itailij = −8G2M

c8

∫ +∞

0

dτ

[

Lε(τ) +
4

5

](

4

d+ 4
Ik〈i(t)I

(5)
j〉k(t− τ) +

I(t)

d
I
(5)
ij (t− τ)

)

. (2.10)

Here, the STF quadrupole moment reads Iij = m1 y
〈ij〉
1 + 1 ↔ 2 + O(c−2); we have also

introduced the Newtonian moment of inertia I = m1 y
2
1 + 1 ↔ 2 +O(c−2).

C. Indirect tail contribution due to a 4PN shift and total tail effect

Now, an important point for our purpose is to remark that the gauge transformation
that has been applied to the 4PN equations of motion, with gauge vector (2.3), will induce a
spatial shift of the particles’ world-lines, which has to be taken into account when evaluating
the quadrupole moment. Applying such a shift is crucial to ensure the coherence between

2 The calculation boils down to the single simple elementary integral

k̃

2π
PF
B=0

∫

ddx

(

r

r0

)B

x̂ij r2−d
1 = − 1

d+ 4
y2
1 y

〈ij〉
1 .

6



the coordinate systems used in the derivation of the equations of motion and the multipole
moments. Denoting the value on particle 1 of the gauge vector as ǫµtail 1 ≡ ǫµtail[t,y1(t)], the
spatial shift ζ1(t) ≡ y1(t)−y′

1(t) will be given in general by ζ i1 = −ǫitail 1+ vi1 ǫ
0
tail 1/c+O(ǫ2).

It is clear from the 1/c factors of Eq. (2.3) that only the first term contributes to 4PN order;
hence the shift reads

ζ
i

1 =
4G2M

c8
yj1

∫ +∞

0

dτ

[

Lε(τ) +
4

5

]

I
(5)
ij (t− τ) +O

(

1

c10

)

, (2.11)

and the contribution brought about by this shift in the quadrupole moment at 4PN is

δζIij ≡ 2m1y
〈i
1 ζ

j〉
1 + 1 ↔ 2 +O

(

1

c10

)

. (2.12)

Therefore, again denoting by I = m1 y
2
1+1 ↔ 2+O(c−2) the Newtonian moment of inertia,

we obtain at 4PN order

δζIij =
8G2M

c8

∫ +∞

0

dτ

[

Lε(τ) +
4

5

](

Ik〈i(t)I
(5)
j〉k(t− τ) +

I(t)

d
I
(5)
ij (t− τ)

)

. (2.13)

As the computation carried out in [31] was purely local, none of the non-local effects (nei-
ther the direct effect of the tails nor the contribution of the non-local shift) were included in
this preliminary result. Combining the two new contributions of this work (2.10) and (2.13),
we thus have to add a non-local in time term to the mass quadrupole moment previously
computed in [31] which reads explicitly at 4PN [neglecting terms O(ε)]

Inon-locij ≡ Itailij + δζIij =
24G2M

7c8
Ik〈i(t)

∫ +∞

0

dτ

[

Lε(τ) +
74

105

]

I
(5)
j〉k(t− τ) . (2.14)

An interesting point is that the contribution of the moment of inertia I(t) cancels out, but
there remains a pole. The next section and the following paper [34] will show how this pole
finally combines with other poles coming from IR dimensional regularization to disappear
from the observable radiative moment.

Note finally that Inon-locij contains both conservative and dissipative effects, together with
a purely instantaneous (non-tail) piece. Those will be specified and computed on quasi-
circular orbits in the companion paper [34].

III. IR REGULARIZATION OF THE SOURCE QUADRUPOLE MOMENT

The quadrupole moment in d dimensions given by (1.1), when PN-expanded using
Eqs. (1.4), and after some suitable integrations by part, can be decomposed into four
different types of contributions (see App. C of [31] for the exhaustive list of all those terms):

1. Volume terms, where the integrands are made of products of derivatives of elementary
potentials. The complete list of potentials is provided in Appendix A of [31];3

3 The derivatives of those products of potentials are treated in the context of the theory of distributions.

They can thus include a distributional sector, made with Dirac distributions. Those are naturally regarded

as compact terms.
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2. Compact-support terms, where the integrands are proportional to Dirac distributions
modeling the compact objects, multiplying products of derivatives of elementary po-
tentials;

3. Surface terms, where the integrands are total spatial derivatives and can be replaced
by their expansions at spatial infinity;

4. The “extra” term, which is the last term of (1.1), proportional to B(d−3), and formally
zero in Hadamard’s sense, in 3 dimensions within a UV dimensional regularization
scheme.

Since the calculations concern only the IR bound, we only need the appropriate accurate
values for the potentials when expanded at spatial infinity. Interestingly, the integral giving
the value of a potential at the location of particles extends up to infinity, thus this applies
also to the case of compact terms, which may be affected by the change of regularization
[see Eq. (3.22) below].

In Ref. [31], the applied IR regularization scheme was a pure Partie Finie (PF) one as
B → 0 (with poles 1/B discarded) on the three-dimensional expression of (1.1). Instead,
we resort here to the mixed “Bε” regularization which consists of computing first the limit
B → 0 on the d-dimensional expression of the quadrupole (1.1), and only then apply the
dimensional regularization when ε → 0, of course keeping track of all the poles 1/ε. By
contrast with the pure PF regularization, we expect from the work [8, 9] on equations of
motion that the first limit B → 0, i.e., performed on the top of dimensional regularization,
will be finite in that case (no pole 1/B), which is confirmed by our calculations below.

Each different type of terms is to be dimensionally regularized (following the Bε scheme)
with specific techniques, which are exposed in the rest of the section. In a nutshell, we aim
at computing

DIij ≡ IBε
ij − IHad

ij = DIVolij +DIComp
ij +DISurfij +DIextraij , (3.1)

where IBε
ij represents the source mass quadrupole properly regularized following the Bε pre-

scription, IHad
ij is an abuse of notation for the result of [31], i.e. the source quadrupole

computed with dimensional regularization for the UV divergences and the Hadamard regu-
larization for the IR ones. The terms in the right-hand-side (RHS) represent the differences
for the four types of terms 1 to 4.

A. Volume terms

The most numerous terms to regularize are the volume terms. Their regularizations
consist in two parts: (i) one has to compute the general expression of the difference between
the two regularization schemes Bε and Had for each term, and then (ii) inject the accurate
d-dimensional values for the potentials expanded at spatial infinity.

1. Dimensional regularization of volume terms

Let us consider a generic volume term

V =

∫

ddx

ℓε0

(

r

r0

)B

F (x, t) . (3.2)

8



The function F (x, t) is some product of (derivatives of) potentials and some x̂L; below, we
will drop the time dependence as it plays no role in the regularization procedure. As we
investigate the difference between IR regularization schemes, we can restrict the integral to
r > R, where R is an arbitrary constant scale, significantly larger than the distances of the
particles to the origin, |yA|, so that we do not have to consider the problem coming from
the point-particle approximation, already dealt with in [31].

In Ref. [31], we have computed the pure PF regularization

VHad = PF
B=0

∫

r>R
d3x

(

r

r0

)B

F (d=3)(x) , (3.3)

where F (d=3) denotes naturally the three-dimensional limit of F obtained by performing the
PN iteration in 3 dimensions and given by (3.9). On the other hand, in this work we consider
the mixed regularization scheme Bε,

VBε = PF
B=0

∫

r>R

ddx

ℓε0

(

r

r0

)B

F (x) . (3.4)

Thus, for each volume term, we are to compute the difference of regularization schemes

DV ≡ VBε − VHad . (3.5)

Since, in the limit ε → 0, the complementary integrals over r < R agree with each other,
this difference should be independent of the cut-off scale R. We conclude that DV is the
proper quantity that we have to add to the volume terms computed in [31].

As it appears at the 4PN order, the functions F we consider admit generic far-zone (or
multipolar) expansions in d dimensions when r ≡ |x| → +∞, namely4

F (x) =
∑

p,q

ℓqε0
rp+qε

ϕ(ε)
p,q(n) , (3.6)

with coefficients that can contain poles ∝ 1/ε, i.e. of the type

ϕ(ε)
p,q(n) =

1

ε
ψ(−1)
p,q (n) + ψ(ε)

p,q(n) . (3.7)

We have verified that no double poles ∝ 1/ε2 appear at the 4PN order. The coefficients

ψ
(−1)
p,q of the pole are naturally defined with no dependence upon ε, while the ψ

(ε)
p,q are finite

when ε → 0. An important point is that, despite the poles, the 3 dimensional limits of
the functions F are finite, as clear from their expressions given in the App. C of [31] and
explicitly verified in our computation. This means that (for all p)

∑

q

ψ(−1)
p,q (n) = 0 . (3.8a)

4 By which we really mean that, for any N ∈ N, we can write

F (x) =

N
∑

p=−p0

q1
∑

q=q0

ℓqε0
rp+qε

ϕ(ε)
p,q(n) + o

(

1

rN

)

,

where p0 ∈ N indicates the maximal order of the IR divergence, and q0, q1 ∈ Z represent a finite range of

values for q depending implicitly on N .
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Furthermore, by posing

∑

q

ψ(ε=0)
p,q (n) ≡ ϕp(n) ,

∑

q

q ψ(−1)
p,q (n) ≡ −ϕln

p (n) , (3.8b)

we get the corresponding logarithmic expansion in 3 dimensions

F (d=3) =
∑

p

1

rp

[

ϕp(n) + ϕln
p (n) ln

(

r

ℓ0

)]

. (3.9)

Note that, as a confirmation of the absence of double poles in the d-dimensional expressions,
no squared logarithms appeared in the Hadamard computation.

Using the relations (3.8) linking the d and 3 dimensional quantities, we obtain

DV =
∑

q 6=1

1

ε

[

1

q − 1
− ε ln

(

r0
ℓ0

)]
∫

dΩd−1 ϕ
(ε)
3,q(n)−

1

2
ln2

(

r0
ℓ0

)
∫

dΩ2 ϕ
ln
3 (n)+O (ε) , (3.10)

where dΩd−1 denotes the (d−1)-dimensional solid angle element. As expected, we find that,
modulo O(ε)-terms, this difference does not depend on the cut-off scale R. The result (3.10)
generalizes that of Eq. (2.11) in [8], to include integrands containing poles. Note that the
value q = 1 has to be excluded from the sum in (3.10). This is not an artificial requirement
to ensure that the formula is well-defined: it comes naturally out of the derivation. A last
use of (3.8) yields the more compact equivalent form

DV =
1

ε

∑

q 6=1

1

q − 1

(

ℓ0
r0

)(q−1)ε∫

dΩd−1 ϕ
(ε)
3,q(n) +O (ε) . (3.11)

2. Far zone expansion of the potentials in d dimensions

From (3.11), we see that the difference in regularization schemes depends on specific
orders in the far-zone expansion of the integrand of the volume terms. As those are made
of products of (derivatives of) potentials (defined in App. A of [31]), we need the expansion
of individual potentials in d dimensions.

The expressions of the simplest compact support potentials V , Vi, K and the super-
potentials (defined in Sec. III.B of [31]) in the whole d-dimensional space are already avail-
able, so that we have just to expand them when r → +∞. However, the non-compact
support potential Ŵij is also required at 1PN order, and X̂ , R̂i and Ẑij at Newtonian order,
none of those potentials being known in all d-dimensional space. We thus have to compute
their asymptotic behaviours by iterating the propagator at infinity and, crucially, add an
appropriate homogeneous solution.

The far-zone expansion (or multipolar expansion, indicated by the operator M) of a
potential P with source S (assumed to be PN expanded), i.e., such that �P = S = S in d
dimensions, reads [8]

M(P ) = PF
B=0

�−1

[

(

r

r0

)B

M(S)

]

− 1

4π

∑

ℓ∈N

(−)ℓ

ℓ!
∂LS

L
⋆ . (3.12)
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In principle, the first term is built from the PN-expanded retarded propagator �−1
R , but

we trade it here for the symmetric one �−1 = �−1
S , since we are merely interested in even

orders. The second term of the RHS is a homogeneous solution constructed out of the PN
expansion of

SL
⋆ (t, r) ≡

k̃

2rd−2

∫ +∞

1

dz γ 1−d
2

(z)
[

SL (t− zr/c) + SL (t + zr/c)
]

, (3.13)

where we recall that k̃ ≡ π1− d
2Γ(d

2
− 1), and that γ 1−d

2

(z) is the kernel function entering

the Green function of the d’Alembertian equation in d dimensions, defined by Eq. (3.3)
in [8] and recalled in Eq. (2.3) of the follow-up paper [34]. In other words, SL

⋆ (t, r) is an
elementary monopolar homogeneous solution of the d’Alembertian equation, parametrized
by the moments

SL(u) ≡ PF
B=0

∫

ddx

(

r

r0

)B

xL S(x, u) . (3.14)

Note that these particular moments are chosen to be non-STF, with just xL ≡ xi1 · · ·xiℓ .
Performing explicitly the PN expansion, Eq. (3.12) becomes

M(P ) =
∑

k∈N

(

1

c

∂

∂t

)2k

PF
B=0

∆−k−1

[

(

r

r0

)B

M(S)

]

− 1

4π
d−1

2

∑

k,ℓ

(−)ℓ

ℓ!(2k)!

Γ
(

d
2
− 1− k

)

Γ
(

1
2
− k

)

1

c2k
S(2k)
L (t) ∂Lr

2k+2−d , (3.15)

plus odd powers of 1/c which can be ignored for the present purpose.
Computing each of those terms requires different techniques:

• Particular solutions. There are no specific issues with the multipolar expansion of the
sources; so, computing the first term in (3.15) is straightforwardly done by means of
iterations of the d-dimensional “Matthieu” formula [37]

∆−1
[

rα n̂L

]

=
rα+2 n̂L

(α + d+ ℓ)(α+ 2− ℓ)
. (3.16)

• Homogeneous solutions. The delicate part in the computation of expanded d-dimensional
potentials is the control of the homogeneous solutions. Indeed, the source integral
SL(u) of (3.14), of non-compact support, is composed of terms like

∫

ddx xL rB rα1 r
β
2 n

P
1 n

Q
2 . (3.17)

Those can be computed either by means of the generalized Riesz formulae described
in Appendix A below, or by implementing the nice method of App. A in [38], relying
on the use of prolate spheroidal coordinates. In addition to the integrals (3.17), we

had to deal with the cubic sector of the potential X̂ , which is defined by Eq. (A.4f)
in [31] and whose source contains the delicate term

Wij ∂ijV . (3.18)
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This cubic part requires a priori the knowledge of the potential Ŵij all over the space
in d dimensions at Newtonian order, but this has not been calculated yet. We could
have done it relying on the generalization of the Fock function g = ln(r1 + r2 + r12) in
d dimensions, which has been derived in [37]. However, its expression is only given in
an integral form, which is not very convenient in practice. Instead, we employed the
method of super-potentials [31] in order to replace Ŵij by the expression of its source,
which is now, indeed, known all over the space. Therefore, the asymptotic behaviours
of required potentials have been fully determined with the appropriate accuracy.

Nevertheless, these computations are heavy5 and some consistency checks are required.
The first and most stringent one is that they were performed in a “double-blind” fashion.
In addition, we investigated the three-dimensional limits of our potentials, confirming that
they agree with the asymptotic expressions that were used to compute the three-dimensional
surface terms in [31]. We have also verified that the harmonicity relations ∂µh

µν = 0 hold, up
to 1PN order and to the highest achievable order in 1/r. At the 1PN order, those conditions
read [31]

∂µh
µ0

=
d− 1

2(d− 2)
∂tV + ∂iVi (3.19a)

+
1

c2

[

∂t

(

−(d − 1)(d− 3)

(d− 2)2
K̂ +

Ŵ

2
+

(d− 1)2

2(d− 2)2
V 2

)

+ ∂i

(

2R̂i +
d− 1

d− 2
V Vi

)

]

,

∂µh
µi
=∂tVi + ∂j

(

Ŵij −
Ŵ

2
δij

)

+
1

c2

[

∂t

(

2R̂i +
d− 1

d− 2
V Vi

)

+ 4 ∂j

(

Ẑij −
Ẑ

2
δij

)]

.

(3.19b)

The cancellation of ∂µh
µ0 has been checked exactly at Newtonian order, and up to O(r−6)

at 1PN order. The fact that ∂µh
µi vanishes has been checked up to O(r−7) at Newtonian

order, and to O(r−5) at 1PN order.

B. Compact terms

An interesting and non-trivial feature of the IR regularization scheme is that it affects the
evaluation of the potentials at the location of the particles. This is due to the fact that most
of the potentials have a non-compact support source: the non-linear source terms extend
towards infinity, so that the value of the potential at, say, y1 is sensitive to the IR regu-
larization process. (Naturally, this effect does not impact the compact-support potentials,
whose sources are proportional to Dirac distributions, and which are thus sensitive to the
UV regularization only.) Therefore, the IR regularization scheme affects the compact terms
that involve some non-compact potentials evaluated at y1 or y2.

Let us consider a potential P with d-dimensional source S. As in the previous section, we
are interested in the IR behaviour of S, hence we will expand it in the far zone. In practice,
none of the sources we are interested in develop poles (or equivalently, logarithms in three

5 For instance, it took more than 160 CPU hours to compute the 1PN Ŵij up to O(r−4). At this order, its

expression contains more than 10 000 terms, of which ∼ 8 000 come from the homogeneous part.
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dimensions); so, we can safely consider that

S(x, t) =
∑

p,q

ℓqε0
rp+qε

ϕ(ε)
p,q(n, t) , (3.20)

where ϕ
(ε)
p,q has no pole. The source takes the three-dimensional limit

S(d=3)(x, t) =
∑

p

ϕp(n, t)

rp
, with ϕp ≡

∑

q

ϕ(ε=0)
p,q . (3.21)

Let us first deal with the Newtonian case, i.e., let us compute the difference induced by
the change of IR regularization scheme in the Poisson integral evaluated in y1,

P (y1) = − k̃

4π
PF
B=0

∫

r′>R
ddx′

(

r′

r0

)B
S (x′)

|y1 − x′|d−2
, (3.22)

where we have safely replaced x by y1 in the kernel, as we integrate over the domain
r′ ≡ |x′| > R ≫ |y1|, where we are free from UV divergences. Expanding the kernel at
spatial infinity according to

1

|y1 − x′|d−2
=

∑

ℓ∈N

2ℓ

ℓ!

Γ
(

d−2
2

+ ℓ
)

Γ
(

d−2
2

)

yL1 n̂L

r′d−2+ℓ
, (3.23)

and using the machinery developed for the treatment of volume terms, we find that the
difference between the Bε and Hadamard regularization schemes turns out to be

DPNewt(y1) = −
∑

ℓ∈N

(2ℓ− 1)!!

4πℓ!
yL1

∑

q 6=0

1

q

[

1

ε
− q ln

(

r0
ℓ0

)

+
ℓ

∑

k=0

1

2k − 1

]

∫

dΩd−1

Ωd−1

n̂L ϕ
(ε)
2−ℓ,q(n) ,

(3.24)
where we recall that the volume of the (d−1)-dimensional sphere is Ωd−1 = 2πd/2/Γ(d/2). As
expected, the scale R disappears from the difference in regularizations. The q 6= 0 criterion
is a natural consequence of the derivation. The main structural difference with the formula
for the volume terms (3.11) is the sum over ℓ. Nevertheless, this sum is finite by virtue of
the form of the source term (3.20), since ℓ is bounded by 2− p0.

The formula (3.24), which is merely Newtonian, has to be generalized to higher PN
orders. For this purpose, instead of starting from the Poisson integral (3.22), we have to
use the d-dimensional propagator. Again, we can restrict ourselves to an integration region
r′ > R ≫ |y1| in which we are allowed to replace x by y1, so that

P (y1) = − k̃

4π
PF
B=0

∫

r′>R

ddx′

|y1 − x′|d−2

(

r′

r0

)B∫ +∞

1

dz γ 1−d
2

(z)S
(

x′, t− z|y1 − x′|/c
)

, (3.25)

where the time-dependence of the source is now crucial. By PN-expanding this propagator,
it can be seen that the action of the full propagator, in a formal PN sense, up to any
PN order, is equivalent to the action of the mere Poisson integral (3.22) but acting on the
effective source

Seff (x′, t, r′1) =

∫ +∞

1

dz γ 1−d
2

(z)S (x′, t− zr′1/c) , (3.26)
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with x′ just playing a spectator role. The PN expansion of this effective source is given by

S
eff ≡ S

eff

even + S
eff

odd , (3.27a)

S
eff

even =
∑

j∈N

√
π

(2j)!

Γ
(

1+ε
2

− j
)

Γ
(

1+ε
2

)

Γ
(

1
2
− j

)

(r1
c

)2j

S(2j)(x, t) , (3.27b)

S
eff

odd =
∑

j∈N

(−)j

j!

2
√
π Γ (ε)

Γ
(

1+ε
2

)

Γ
(

−j − ε
2

)

Γ (2j + 2 + ε)

(r1
c

)1+2j+ε
∫ +∞

0

dτ τ−εS(2j+2)(x, t− τ) .

(3.27c)

These expansion series correspond to the PN-even and PN-odd parts of the expansion of a
homogeneous monopolar retarded solution of the wave equation in d dimensions (see App. A
in [8] for more details). As expected, the j = 0 term of Seff

even is exactly given by S. Note
that the PN-odd piece appears to be non-local in d dimensions [8]. Nevertheless, as already
stated, we are merely interested in even terms6 and, thus, will not consider it. For a potential
entering the source at a given PN order, we can simply apply the Newtonian result (3.24), but
using the effective source Seff

even truncated at the appropriate PN order following Eqs. (3.27).

The required potentials that developp a non-vanishing difference at point y1 are Ŵ 2PN
1 ,

Ẑ1PN
1 , X̂1PN

1 , T̂N
1 and M̂N

1 (with the index 1 denoting the value at particle 1 and the super-
script the PN order) while the ones of the super-potentials vanish. The calculations reveal
that all the non-vanishing corrections in our potentials are connected. Indeed, we found the
interesting, but probably not very profound, relations

DŴ 2PN
1 =

4

c2
DẐ1PN

1 = −2ε

c2
DX̂1PN

1 =
8

3c4
DT̂N

1 = −16ε

3c4
DM̂N

1 . (3.28)

None of the other potentials receives corrections at the required order. These relations are
valid up to the O(ε0) order only, as the O(ε) remainders do not play any role in the IR
dimensional regularization of the compact-support terms. Note that only the trace of the
potential M̂ij at Newtonian order (i.e. M̂ ≡ M̂ii) as well as the potential X̂ at 1PN order

develop poles. Moreover, only the “scalar” sector of the potentials is affected: neither R̂i

nor Ŷi are modified at the particles’ positions; regarding the tensor potentials Ẑij and M̂ij ,
only their traces are impacted. In addition to those relations, the difference itself can be
compactly written in terms of the Newtonian moment of inertia I ≡ m1y

2
1 +m2y

2
2 as

DM̂N
1 =

(

3

8
− ε

)

c2DX̂1PN
1 =

G2(m1 +m2)

4

[

ln

(

r0
√
q̄

ℓ0

)

− 1

2ε
+

1

2

]

I(4) , (3.29)

where we recall that q̄ ≡ 4πeγE . The regularization induced differences of those potentials
yield corrections in the effective mass µ̃1 (see Eq. (2.17) in [31]), and in a few compact-
support terms that all enter the source mass quadrupole moment at 4PN order.

C. Surface terms

Turning now to the surface terms, we will not calculate the difference between their
values obtained in the two regularization schemes, but rather directly compute them in d

6 We will add the already known 2.5 and 3.5PN terms [26] to our final result, together with the 4PN

dissipative non-local tail term (see Eqs. (6.11) and (6.12) in the companion paper [34]).
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dimensions and show that they actually vanish. As presented in [31], surface terms appearing
in the mass quadrupole are of two kinds: “Laplacian” and “divergence” terms.

• A surface term of Laplacian type reads

TL = PF
B=0

∫

r>R

ddx

ℓε0

(

r

r0

)B

x̂L ∆G , (3.30)

where G is a d-dimensional function (in practice a product of potentials). As before,
we have restricted ourselves to an integral over r > R. Like for the volume terms, the
function G we will consider can be expanded near spatial infinity as:

G(x) =
∑

p,q

ℓqε0
rp+qε

γ(ε)
p,q(n) , (3.31)

allowing the γ
(ε)
p,q to contain poles. Inserting this expansion into the integral (3.30),

performing an integration by parts, using ∆(rBx̂L) = B(B+ d+2ℓ− 2)rB+ℓ−2n̂L, and
dropping the integrated terms that are vanishing by analytic continuation in either B
or ε near zero, we are led to

TL = − (2ℓ+ 1 + ε)

∫

dΩd−1n̂L γ
(ε)
ℓ+1,1(n) . (3.32)

• A surface term of divergence type reads

K = PF
B=0

∫

r>R

ddx

ℓε0

(

r

r0

)B

∂iH
i , (3.33)

where H i is a product of potentials or super-potentials. We again have the far-zone
expansion

H i(x) =
∑

p,q

ℓqε0
rp+qε

η(ε)ip,q (n) , (3.34)

where the η
(ε)i
p,q can contain poles. A similar procedure yields

K =

∫

dΩd−1ni η
(ε)i
2,1 (n) . (3.35)

The noteworthy point is that the d-dimensional values of both types of surface terms,
in Eqs. (3.32) and (3.35), are non zero only in the special case q = 1. Now, as explicit
in their expressions displayed in App. C of [31], the integrands of those terms are made of
non-linear products of potentials. As such, the coefficients of their asymptotic expansions
all bear q > 2, which make them vanish.

More precisely, it is immediate to see, from the Green function ∆−1δ(d)(x − y1) =

−k̃ r−1−ε
1 /(4π), that the expansions of compact support potentials have q = 1. Now, the

sources of non-compact support potentials are made of products of compact support ones,
and the iteration of the Poisson integrals cannot reduce the number of q’s. The latter fact
can be understood from the Matthieu formula (3.16), together with the fact that the ex-
pansion of the homogeneous solution bears q = 1, as explicitly shown by Eq. (3.15) where
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the second term is ∝ ∂Lr
2k+2−d ∝ r2k−ℓ−1−ε. Thus, all individual potentials V , Vi, Ŵij,

etc. admit asymptotic expansions with q > 1. A similar argument applies to the case of
super-potentials, which implies that all non-linear products of (derivatives of) potentials or
super-potentials have q > 2.

The conclusion is that the surface terms are vanishing in d dimensions, so that we have
simply to subtract their Hadamard values from the final result:

DISurfij = −ISurf,Had
ij . (3.36)

D. The “extra” term

The argument developed in [31] to discard the contribution of the B(d − 3) piece of Iij
[the last term in (1.1)] does not a priori hold with IR dimensional regularization; further
investigation is required. We can restrict ourselves to an integration in the far zone r > R,
and recast

Iextraij = Cd PF
B=0

∑

k∈N

1

2k k!

Γ
(

d
2
+ 3

)

Γ
(

d
2
+ 3 + k

)

(

1

c

d

dt

)2k ∫

r>R

ddx

ℓε0

(

r

r0

)B

B
x̂aij xb

r2−2k
Σab , (3.37)

with Cd = − 2
c2

(d−3)(d+2)
d(d−2)(d+4)

. The source density Σab (1.2)–(1.3) is composed of two pieces: The

first one, coming from the stress-energy tensor T µν , involves Dirac distributions and, thus,
does not enter our computation, since we take r > R. The second piece, entailing the non-
linear (NL) gravitational interactions Λij, is composed, as such, of products of potentials.
We expand it as

Σ
NL

ab (x, t) =
∑

p,q

ℓqε0
rp+qε

σ(ε)ab
p,q (n, t) , (3.38)

where the functions σ
(ε)ab
p,q contain many PN orders and can develop poles. Inserting (3.38)

into (3.37), we can perform the radial integration, which yields

Iextraij = −Cd

∑

k∈N

1

2k k!

Γ
(

d
2
+ 3

)

Γ
(

d
2
+ 3 + k

)

(

1

c

d

dt

)2k [∫

dΩd−1 n̂aijnb σ
(ε)ab
5+2k,1(n, t)

]

. (3.39)

Exactly as in the case of the surface terms, only the terms with q = 1 contribute. However,

recalling that σ
(ε)ab
p,q is made of products of potentials, it cannot involve q = 1 terms. We see

therefore that, even with the present IR Bε regularization scheme, the “extra” piece does
not contribute:

DIextraij = 0 . (3.40)

IV. FINAL EXPRESSION OF THE SOURCE QUADRUPOLE MOMENT

Summing up the pieces computed in the previous sections, and adding the local IR shift
χi
1,2 coming from the cancellation of the remaining poles in the conservative equations of

motion [8] (as described in Appendix B), we obtain the full dimensionally regularized source
mass quadrupole moment at 4PN order,

Iij = IHad
ij + Inon-locij +DIij + δχIij . (4.1)
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Here, IHad
ij stands for the end result of [31],7 then Inon-locij is the non-local part computed

in Sec. II and given by Eq. (2.14), DIij is the sum of the four contributions (3.1) whose
calculation has been detailed above, and δχIij is the contribution of the IR shift of Ap-
pendix B. Remember that the non-local sector Inon-localij is composed of both a direct tail
contribution (2.10) and a shift contribution [see Eq. (2.13)].

As the complete expression for the regularized source moment is long and not very en-
lightening nor interesting per se, we do not display it, but rather discuss its most striking
feature: the remaining poles. Indeed, the source moment Iij contains poles, which will have
to be compensated by the proper treatment in dimensional regularization of the non-linear
interactions (such as tails-of-tails) relating the source and radiative moments. This will be
proven in the companion paper [34].

While the non-local tail Inon-locij and shifted pieces δχIij are purely 4PN contributions,
the effect of the dimensional regularization DIij starts already at the 3PN order. It can be
written in a convenient form as

DI3PNij = −βI
G2M2

c6

[

Πε +
246 299

44 940

]

I
(2)
ij + 2βI

G2M

c6

[

Πε +
252 599

44 940

]

P〈iPj〉 , (4.2)

where we have used a notation similar to (2.2) for the “dressed” pole:

Πε ≡ ln

(√
q̄ r0
ℓ0

)

− 1

2ε
, q̄ ≡ 4πeγE . (4.3)

In Eq. (4.2), Pi is the constant linear momentum and βI = −214
105

is the coefficient associated
with the renormalization of the mass quadrupole moment [39]. The appearance of this coef-
ficient, which is known to be associated with the “tail-of-tail” interaction [23], indicates the
soundness of the removal of the poles by the correct treatment in dimensional regularization
of the non-linear interactions in the radiative quadrupole.

As for the poles showing up at the 4PN order, once taken the 1PN correction of Eq. (4.2)
into account, they can be expressed in the center-of-mass (CoM) frame as

Ipole,CoM,4PN
ij = −G2M

2c8ε

[

12

7
I
(2)
a〈i I

(2)
j〉a −

24

7
I
(1)
a〈i I

(3)
j〉a −

4

7
Ia〈i I

(4)
j〉a +

4

3
I
(3)
a〈iJj〉|a

]

, (4.4)

where Ji|j is the d-dimensional constant angular momentum defined in [27]. Once again, the
fact that this pole can be recast as a combination of non-linear interactions (in particular
the expected coupling M × Iij × Iij corresponding to “tails-of-memory”) is a strong indica-
tion that it will be compensated by the proper dimensional-regularization treatment of the
tail/memory effects. This will be the topic of the next paper [34].
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Appendix A: Generalized Riesz formulae

The standard Riesz formula in arbitrary dimension d (with a, b ∈ C) reads:

∫

ddx ra1r
b
2 = πd/2Γ(−a+b+d

2
)Γ(a+d

2
)Γ( b+d

2
)

Γ(−a
2
)Γ(− b

2
)Γ(a+b

2
+ d)

ra+b+d
12 . (A1)

It is a priori valid when the integral converges, i.e., for a+d > 0, b+d > 0 and a+b+d < 0.
However, the result can be extended by analytic continuation everywhere but, possibly, a
countable set of parameter values. On the other hand, this formula may be generalized to
similar integrals involving additional STF angular factors x̂L and various r2. Among the
most useful ones, we have

∫

ddx x̂Lra1r
b
2 = πd/2 Γ(−a+b+d

2
)

Γ(−a
2
)Γ(− b

2
)
ra+b+d
12

ℓ
∑

s=0

(

ℓ

s

)

Γ(a+d
2

+ s)Γ( b+d
2

+ ℓ− s)

Γ(a+b
2

+ d+ ℓ)
y
〈L−S
1 y

S〉
2 ,

(A2a)
∫

ddx r2x̂Lra1r
b
2 = −πd/2Γ(−a+b+d

2
− 1)

Γ(−a
2
)Γ(− b

2
)

ra+b+d
12

ℓ
∑

s=0

(

ℓ

s

)

Γ(a+d
2

+ s)Γ( b+d
2

+ ℓ− s)

Γ(a+b
2

+ d+ ℓ+ 1)
×

× y
〈L−S
1 y

S〉
2

[( b

2
− s+ 1

)(b+ d

2
+ ℓ− s

)

y21 +
(a

2
− ℓ + s+ 1

)(a + d

2
+ s

)

y22

+ 2
(a+ d

2
+ s

)(b+ d

2
+ ℓ− s

)

(y1y2)
]

, (A2b)

with
(

ℓ
s

)

denoting the usual binomial coefficient, and y2A = y2
A, (y1y2) = y1 · y2.

Let us sketch for instance the proof of the first one. The starting point consists in rewriting
xL as (r1n1+y1)

L ≡ (r1n
i1
1 +yi11 ) · · · (r1niℓ

1 +yiℓ1 ), where n
i
1 is the unit vector n

i
1 = (xi−yi1)/r1,

and expanding the product. After permuting the integration and summation symbols, we
get a sum of elementary integrals of the form

∫

ddx ra+s
1 rb2 n̂

L
1 , (A3)

for a summation index 0 6 s 6 ℓ, with nL
1 ≡ ni1

1 · · ·niℓ
1 . For each integral, the parameters a,

b and d are chosen in a domain of C3 where the convergence is guaranteed. We can always
manage to avoid the situation where one of them is an integer. We then express the factors
ra+s
1 n̂L

1 as a multi-derivative using the relation

∂̂Lr
α
1 = (−)ℓ∂̂1Lr

α
1 = 2ℓ

Γ(α/2 + 1)

Γ(α/2− ℓ+ 1)
rα−ℓ
1 n̂L

1 , (A4)

with ∂1i = ∂/∂yi1, valid as long as ∂̂1Lr
α
1 does not involve any distributional contribution,

which is indeed the case when α is a non-integer. Next, we commute the derivatives and
the integral (taking for instance 2s < d, 2s < −a < d and a + d < −b < d to bypass any
convergence issue). We find

∫

ddx x̂Lra1r
b
2 =

ℓ
∑

s=0

(

ℓ

s

)

(−)s

2s
Γ(a/2 + 1)

Γ(a/2 + s+ 1)
y
〈L−S
1 ∂1S〉

∫

ddx ra+2s
1 rb2 . (A5)

18



We now use the standard Riesz formula (A1), which produces a dimensional factor ra+b+d+2s
12 ,

and apply the derivative ∂̂1S as in Eq. (A4). At this stage, we simplify some factors under
the sum by noticing that, for s ∈ N,

Γ(z + s+ 1)Γ(−z − s) =
π

sin[−(z + s)π]
= (−)sΓ(z + 1)Γ(−z) , (A6)

and expand the position-dependent factor ra+b+d+s
12 n

〈S
12 y

L−S〉
1 = ra+b+d

12 (y1 − y2)
〈Sy

L−S〉
1 . The

result is obtained by resummation:8

+∞
∑

s=0

(−)s

(ℓ− k − s)!s!

Γ(a+d
2

+ s + k)

Γ(a+b
2

+ d+ s+ k)

=
Γ(a+d

2
+ k)

(ℓ− k)!Γ(a+b
2

+ d+ k)

Γ(a+b
2

+ d+ k)Γ( b+d
2

+ ℓ− k)

Γ(a+b
2

+ d+ ℓ)Γ( b+d
2
)

, (A7)

for k non-negative integer lower than ℓ.
A third particularly useful generalization of Eq. (A1) reads

∫

ddx ra1 r
b
2 n

L
1n2K = πd/2Γ(−a+b+ℓ+k+d

2
)Γ(a+b+ℓ+k+d

2
+ 1)

Γ(−a−ℓ
2
)Γ(− b−k

2
)Γ(a+b+ℓ+k

2
+ d)

ra+b+d
12 ×

×
[ ℓ+k

2
]

∑

i=0

min (2i,ℓ)
∑

j=max(0,2i−k)

[ j
2
]

∑

p=max(0,j−i)

Γ(a+ℓ+d
2

+ i− j)Γ( b+k+d
2

+ j − i)

Γ(a+b−ℓ−k+d
2

+ i+ 1)
×

×
(−)k+i+jℓ!k! δ(2I2P−2Jn12KJ−2Iδ

(J−2P
J−2P )n

L−J
12 δ2P )

22i+2p−j(ℓ− j)!(k + j − 2i)!p!(i+ p− j)!(j − 2p)!
, (A8)

with the convention that the contravariant indices belong to {L} = {i1, · · · , iℓ} and the co-
variant ones to {K} = {j1, · · · , jk}, while δJ−2P

J−2P = δa1b1 · · · δ
aj−2p

bj−2p
, δ2P = δaj−2p+1aj−2p+2 · · · δaj−1aj ,

and δ2I2P−2J = δbj−2p+1bj−2p+2
· · · δb2i−j−1b2i−j

. The upper (lower) symmetrization only affects
the contravariant (covariant) indices, respectively.

The most delicate task in the derivation is the symmetrization over the multi-indices L
and K of the multi-derivative

δ(2S∂
L−2S)
1 δ(2R∂2K−2R)r

a+b+ℓ+k−2(s+r)+d
12 . (A9)

It is achieved with the help of the convenient identity

δ(2InL−2S
12 n12K−2R−2I) = i!

(ℓ+ k − 2s− 2r − 2i)!

(ℓ+ k − 2s− 2r)!

min(2i,ℓ−2s)
∑

j=max(0,2i+2r−k)

[ j
2
]

∑

p=max(0,j−i)

1

22p−jp!
×

× (ℓ− 2s)!

(ℓ− 2s− j)!

(k − 2r)!

(k + j − 2r − 2i)!

1

(i+ p− j)!(j − 2p)!
×

× δ(2P2I2R−2Jn12KJ−2R−2Iδ
(J−2P
J−2P )n

L−2S−J
12 δ2P ) . (A10)

8 It is a mere consequence of the relation 2F1(a, b; c; 1) =
Γ(c)Γ(c−a−b)
Γ(c−a)Γ(c−b) for ℜ(c−a−b) > 0, where 2F1(a, b; c; z)

is the Gaussian hypergeometric function, with standard notations.
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In this manner, we find that the integral on the left-hand side of Eq. (A8), after the appro-
priate change of indices, may be put in the form

[ ℓ+k
2

]
∑

i=0

min(2i,ℓ)
∑

j=max(0,2i−k)

[ j
2
]

∑

p=max(0,j−i)

p
∑

s=0

p+i−j
∑

r=0

ra+b+d
12 λi,j,p

s,r δ(2I2P−2Jn12KJ−2Iδ
(J−2P
J−2P )n

L−J
12 δ2P ) , (A11)

with

λi,j,p
s,r =

(−)s+r+ℓ2j−2p−2i
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2
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2
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×
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Γ( b+k
2
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2
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2

+ i+ 1)

[
∫

ddx ra+ℓ−2s
1 rb+k−2r

2

]

r12=1

. (A12)

Resorting to techniques similar to those employed to compute the previous integrals, we can
perform explicitly the sums over s and r,

+∞
∑

s=0

+∞
∑

r=0

λi,j,p
s,r =

ℓ!k!
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2
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2
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Γ(a+b−ℓ−k+d
2

+ i+ 1)
, (A13)

which yields the desired result.

Appendix B: The local piece of the IR shift

In addition to the non-local shift due to tails, as obtained in Eq. (2.11), the source
quadrupole has to be shifted by the exact same IR shift that was applied to the conservative
sector to compensate the remaining poles in the equations of motion [8]. This IR shift χi

1,2 is
local and starts at the 4PN order. Thus, its contribution to the source quadrupole moment

is simply given by δχIij = 2m1 y
〈i
1 χ

j〉
1 + 1 ↔ 2. The local IR shift χi

1 can be decomposed as

χi
1 =

1

c8

(

1

ε
χ
i (−1)
1 + χ

(0,y1)
1 yi1 + χ

(0,n12)
1 ni

12 + χ
(0,v1)
1 vi1 + χ

(0,v12)
1 vi12

)

. (B1)

Recalling that q̄ ≡ 4πeγE , m ≡ m1 +m2 and ν ≡ m1m2/m
2, the various terms of Eq. (B1)

are given by

χ
i (−1)
1 =

8G4m3ν

5r124

[

m(n12y1)n
i
12 + r12(2m1 −m2)n

i
12 −

m

3
yi1

]

− 4G3m2ν ni
12

5r312

[

2v212 (r12(m1 − 2m2)− 3m (n12y1))− 8mr12 (v1v12)

+ (n12v12)
2 (30m (n12y1) + 9m2r12) + 6m (n12v12) (2r12 (n12v1)− 3 (y1v12))

]

+
4G3m2ν vi12

5r123

[
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]
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− 8G3m3ν yi1
15r312

[

3 (n12v12)
2 − v212

]

− 16G3m3ν (n12v12)

15r212
vi1 , (B2a)
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