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Abstract 

Previous computations of the topological susceptibility x1, using numerical simu
lations of lattice gauge theory, are extended in a number of ways. Most significantly, 
the statistical errors are now very small. The precision permits a discussion of finite 
volume and finite lattice spacing effects. Lattice spacing effects seem to be under 
control; we estimate the density of "lattice artifacts" and find that it vanishes in the 
(quantum) continuum limit of the Wilson action. Moreover, Xt follows asymptotic 
scaling for 2.5 :<0 f3 ::; 2. 7 and deviates only slightly therefrom for 2.2 :'0 f3 :'0 2.5 .. 
In intermediate volumes Xt rises monotonically in the region 0.6 :'0 z1 :'0 1.8, where 
z, = Lax~/4 is a dimensionless measure of the physical volume of the system. For · 
z, ;::: 1.8 the susceptibility is constant, within statistical errors, yielding the value 

v-oo [( ) ]4 . Xt = 38.7 ± 0.2 Alat . 

•permanent address Mainz 
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Table 1: Parameters of the simulations. The lattice size is always L', f3F and f3A are defined in 
eq. (2.8), below, and Nq is the number of configurations for which the topological charge was 
computed. Typically, there were 15 update sweeps between configurations. 

L f3F f3A Nq L f3F f3A Nq 
6 2.20 0.0 5500 10 2.60 0.0 1800 
4 2.30 0.0 24300 12 2.60 0.0 2600 
6 2.30 0.0 5000 14 2.60 0.0 120 
8 2.30 0.0 20000 2 2.70 0.0 101000 

10 2.30 0.0 1600 4 2.70 o.o 100000 
4 2.40 0.0 11700 6 2.70 0.0 20000 
6 2.40 0.0 3900 8 2.70 0.0 10000 
8 2.40 0.0 12500 12 2.70 o.o 1100 

10 2.40 0.0 19069 16 2.70 0.0 1800 
4 2.50 0.0 9000 8 2.30 0.1 800 
6 2.50 0.0 6100 8 2.30 0.2 900 
8 2.50 0.0 3000 8 2.30 0.3 500 

10 2.50 0.0 7000 8 2.70 -0.2 2500 
12 2.50 0.0 3200 8 3.00 -0.5 2500 

1 Introduction 

In a previous publication we presented Monte Carlo calculations of the topological susceptibility 
in SU(2) lattice gauge theory [1]. The present paper extends that work to a new value of the 
(Wilson action) coupling (/3 = 2.7), to the mixed fundamental-adjoint action, to several new 
lattice sizes, and - most importantly - to very high statistics. Table 1 summarizes the param
eters of the simulations: typical ensembles now contain several thousand configurations, whereas 
in ref. [1 J there were typically only several hundred. Of course, the number of configurations 
can be misleading: the relative statistical errors are more important, and they are now around 
a few per cent. In the past the statistical errors for the topological susceptibility, as well as for 
other observables, were such that they could obscure the effects of finite volume and nonzero 
lattice spacing. However, the present precision means that we are in a position to disentangle 
these effects. In particular, we can analyze the contribution of small scale fluctuations to the 
topological susceptibility. 

SU(N) nonabelian gauge fields are characterized by an integer-valued topological charge 

Q = _ _2__
2 

j<P:r: tr{F,.v*F,.v}, *F,.v = ~'~'"P<TFP<T, 
1k 2 

(1.1) 

the so-called second Chern number in mathematical parlance. It arises because it is impossible, 
in general, to pick a global gauge condition without singularities in the gauge potential Aw The 
topological susceptibility, 

Xt = (Q 2 )/V, (1.2) 

where V is the volume of spacetime, is an observable quantity measuring the role of topologically 
nontrivial gauge fields in the quantum gauge theory. It is also related to physics through the 
celebrated Witten-Veneziano formula [2], 

(1.3) 
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iu the largf' A lirnit. l.Tsing experinH.:~nt.a.l \·alw':- on tlw right-hand sidt' of ~q. ( 1.:~) yield" 
( 180 MeV)', and a value of Xt in this ballpark - .,,·en in the ]\' = 2 theory -- is recogHized '" 

a quantitative resolution of the axial U(1) problem. 
The original motivation for computing Xt was to verify eq. (1.3). With our previous SU(2) 

paper [1] and work in SU(3) [3], one should view this issue as settled. Tlw range of values 

reported, from (261 MeV)4 for SU(2) [1] to (231 MeV) 4 for SU(3) [4], gives an indication of the 

N dependence. Because eq. (1.3) is derived in the large N iintit, one should not expect exactly 

Xt = ( 180Me V) 4 ; also, the Monte Carlo estimates (in MeV) have statistical and systematic errors 

of string tension calculations, as well. Thus, although we will modify the SU(2) result of ref. [1], 

the Witten-Veneziano formula is no longer the primary motivation for this article. 

To compute the topological charge of a lattice gauge field, one must devise a lattice ap

proximant to the right-hand side of eq. (1.1) [4]. Unfortunately, simple approximants have no 

topological significance [5] - they do not produce £.n integer for Q. The correct procedure is 

to reconstruct a fiber bundle [6]. Then one automatically obtains an integer, because the topo

logical charge is a topological invariant, the second Chern number, of the bundle. In the rticest 

construction [7] the second Chern number can be computed combinatorically in SU(2), making 

high precision simulations feasible. In these methods one must worry about dislocations, which 

are small scale fluctuations contributing to the susceptibility. In the two-dimensional CP1 model 

these singularities even prevent determination of the susceptibility in the continuum limit [8], 

although in other two-dimensional models this is not necessarily the case [9]. We have examined 

the role of these fluctuations using a lattice action with plaquettes in the fundamental and ad

joint representations: adjusting the adjoint coupling varies the density of small scale fluctuations. 

All indications lead to the co~ elusion that the density of dislocations vanishes in the (quantum) 

continuum lintit of the Wilson action. 
Every numerical simulation of field theory has systematic errors that arise because the sim

ulation is done for a cutoff theory. The two cutoffs are the fiuite volume (infrared cutoff) and 

the nonzero lattice spacing (ultraviolet cutoff). Physically relevant numbers emerge only when 

the cutoff dependence can be controlled. For the infrared cutoff, it is comforting if the volume 

dependence reproduces theoretical formulae for (large volume) firtite size effects. For the ultravi

olet cutoff, control means that contributions suppressed by a power of aA are numerically small, 1 

or, equivalently in practice, that dimensionless ratios remain constant for some range of the bare 

parameters in the Lagrangian, i.e. a scaling window exists. 
Simulations of lattice gauge theory are now at the point where, at least for the pure glue 

theory, one can accumulate enough computer time to examine these aspects in detail. The main 

aim of this paper is to irtitiate such a program using the topological susceptibility to study the 

cutoff dependencies. The topological susceptibility lends itself to such an analysis for a number 

of reasons. Unlike for the glue ball mass or the string tension, no curve fitting is needed to obtain 

the susceptibility- one just measures Q and squares it, thus it is easier to attain small statistical 

errors. In any firtite volume Xt is a genuine observable: using an appropriate lattice approximant 

of the continuum charge, there is no need to normalize or renormalize. The topological charge is 

a nonperturbative quantity with contributions from all length scales. Finally, it is the pure glue 

susceptibility that enters eq. (1.3) [2], so we can with good conscience avoid a ghastly simulation 

with dynamical quarks. Also, the algorithm that we use [1], [7] is quite efficient in computer 

time. In short, the susceptibility is ideally suited to the type of study we have in mind. 

The remainder of this paper is orgartized as follows. The reconstruction of the fiber bundle 

from a lattice gauge field has certain advantages, which are reviewed is sec. 2. This section 

also addresses the conceivable drawbacks due to lattice artifacts in some detail. In sec. 3 we 

present the raw results for the topological charge, including the mixed fundamental-adjoint action 

simulations. We then analyze the volume dependence and scaling behavior of the topological 

1Here a is the lattice spacing and A is some physical scale. 
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susceptibility. Our results do not agree with refs. [10], [11], which determines t.he charge from 
"cooled" configurations. It has long been our feeling that this method removes some of the 
topological structure of gauge fields, and we present numerical evidence for this in the Appendix. 
Finally, sec. 4 provides some pointers for the next generation of numerical simulations. 

2 Method 

To assign a topology to a lattice gauge field {Ul}, one must reconstruct the relevant topological 
object, the principal bundle, by interpolating between the lattice points. For SU(2) we use the 
algorithm of Phillips and Stone [7], which is the fastest available. We present no details of the 
algorithm here: interested readers are advised to read ref. [7]; a short summary and the details of 
our implementation on a hypercubic lattice are in ref. [1]. The probability Pq for a configuration 
to have charge Q is (formally) given by 

p _ f[dUl]q exp{ -S[Ui]} 
Q- f[dUl]exp{-S[Ui]}' (2.1) 

where the path integration in the numerator is restricted to the sector with topological charge 
Q. (N.B.: The Pq are volume dependent.) The Pq are directly determined in the numerical 
simulation, and furthermore they are observable quantities. Even though the statement is trivial, 
it is important to emphasize that accurate and precise determination of the Pq is the fundamental 
objective. 

For the moment, let us focus on the topological susceptibility X" especially on its dependence 
on the lattice regulator. Because of its topological basis, the Phillips and Stone algorithm 
preserves the property 

(2.2) 

where V' l denotes group covariant differentiation with respect to the parallel transporter on 
the link C. Hence the topological susceptibility is not (multiplicatively) renormalized. Other 
approaches [5],[12] to the topological susceptibility do not preserve eq. (2.2), and therefore face 
the difficult task of determining the renormalization factor nonperturbatively. However, even 
in the topological approach, ambiguities in the interpolation at the scale of the lattice spacing 
imply that the bare susceptibility x~ has the form 

X~ = Xt + C(aA)P'[ln(aA)IP' + ... , (2.3) 

where Xt is the physical susceptibility. Of course, a similar formula holds for any other physical 
observable. The crucial exponent in eq. (2.3) is p,; ifp1 < 0 then regulator artifacts dominate the 
susceptibility, whereas if p1 > 0 then x~ converges to the physical value in the continuum limit. 
The exponent p1 is regulator dependent: it depends not only on the definition of topological 
charge, but also on the choice of lattice action. 

The configurations responsible for C i 0 in eq. (2.3) are certain structures of size "'=' O(a) 
contributing to the topological charge. These unphysical small scale fluctuations are called 
dislocations [13]. In the continuum limit the physical topological susceptibility scales according 
to the asymptotic formula 

[
1 ( (3 ){3,j2/3i ( (3 )]. 

Xt O< ;;: 2N(3, exp - 4N(3, , 

where ,81,2 are the first two coefficients of the perturbative Callan·Symanzik ,8-function: 

llN 
,8, = 4871'2 , 

(2.4) 

(2.5) 

I 
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Tahle 2: J\1ininnnn action of tb~ Q ...:::: 1 sector and Huxon anion for various pararneters in the 

adjoint action. 

-~-JA-~:·:---Sfluxon-

' 0.8 +0.1 9.6 9.6 
1.0 

I
! 1.2 

1.4 

11.8 

0.0 
-0.1 
-0.2 
-0.4 

12.7 
14.7 
15.9 
17.2 

12.0 

14.4 
16.8 
21.6 

for S U ( N). On the other hand, the dislocations provide a contribution to x? that scales as 

o -4f3p' ( 5- f3) Xt - Xt <X a exp - min , (2.6) 

according to a semiclassical expansion [14] about the dislocation with minimum actioJ;l Smin = 
(3Smin· By folding eq. (2.4) and eq. (2.6) together, one obtains 

- ) ( Nf3,Smin) P1 = 4(Nf315min- 1 and P2 = 2 P3- (3
1 

· (2.7) 

In the CPl, or equivalently 0(3), a-model in two dimensions one has the unhappy situatil!n 

that p 1 < 0, and consequently the initial attempts to compute the topological susceptibility did 

not exhibit scaling [8]. In this case, Liischer [14] computes P3 = -1 anJ estimates Smin "' 6.69, 

and the cpn equivalent of eq. (2.7) yields p1 = -0.935. In fact, the Monte Carlo data [8] 

reproduce eq. (2.6) with Smin "' 6.69 very well [14]. Petcller and Liischer [9] study CP" models 
for n > 1, and they show that for an action improved to suppress small scale fluctuations, one 

can raise Smin in the CP2 model in order to obtain p1 > 0. For sucll actions they find universal 

scaling of Xt with the correlation length. 
To investigate dislocations in SU(2) gauge theory in four dimensions, we have turned to the 

mixed fundamental-adjoint action: 

(2.8) 

For f3 A < 0 ( > 0) this action suppresses (enhances) dislocations, compared to the standard 

Wilson action (f3A = 0). Starting from a fixed smooth SU(2) configuration with Q = 1, we 

have searched for quasistable configurations using the diffusion equation on the group manifold 

in the Euler approximation. Specifically, we replace iteratively the configuration {Ul} by {U/} 

obtained by 
U/ = exp( -£'<J tS)Ue (2.9) 

with stepsize ' = 0.025. The history of the diffusion is shown in fig. 1 for five clloices of the 

couplings (f3F, f3A) with f3F + 2f3A = 1, i.e. with the same naive continuum limit. For each choice 

one can perceive two plateaus: the first, especially stable one corresponds to the instanton; the 

second, less stable one is the dislocation. Using the topological charge program we have verified 

that Q = 1 before and Q = 0 after the collapse of the dislocation. From this plot one can read off 

the value of the action for the dislocation, as collected in Table 2. Notice that even the Wilson 

action has Smin > 12,.2/11:::: 10.77, so that according to eq. (2.7) p1 > 0. Furthermore, we note 

that for f3A ;:>: -0.1 the dislocation obtained in this way resembles a fluxon: the six plaquet.tes 

surrounding a specific link have a high action density, whereas the rest of the plaquettes have 
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negligible action density. (The fluxon it.self is the extreme case where the six plaquet.tes have 
tr(Up) = -2.) This substantiates the claim in ref. [1] that 

Smin 2: Sauxon = 12 (2.10) 

for the Wilson action. For SU(N) the fluxon has Sfluxon = 24/N (Wilson action); using it as a 
guide one finds 

(
llN ) P1 = 4 
2

7!" 2 - 1 , (2.11) 

which yields p1 = 0.458 for SU(2) and p1 = 2.687 for SU(3). 
Let us now return to the probability distribution P Q. In this language the lesson of the 

foregoing analysis is that the distribution is essentially unaffected by dislocations if the exponent 
p1 > 0, as it indeed is for the Wilson action. Dislocations still contribute to the dtarge assigned 
to a given configuration, but any systematic tendency to broaden the distribution disappears in 
the continuum limit. 

3 Results 

This section discusses the results of the numerical simulations. Since sec. 2 indicates that dislo
cations are suppressed in the continuum limit of the Wilson action, we will generally not make 
the distinction between the bare and physical susceptibilities in this section. 

For the sake of reference, Tables 3 and 4 display the distribution of topological charge in 
the most interesting simulations. The tables provide the number of times cllarge Q occurred in 
the course of the simulation. The errors (in parentheses) are determined from fluctuations in 

successive subensembles. The tables also list (Q) and (Q 2), and x~14 / Alat· 
Fig. 2 shows our Monte Carlo results for a4x, in SU(2) as a function of (3. The •'s represent 

simulations performed with the Wilson action, whereas the ... 's and the •'s were done for the 
mixed fundamental-adjoint action, eq. (2.8). For the mixed action we use (3 = 4/g2 obtained 
from the one-loop expression [ 15] 

(3.1) 

whicll is consistent with the scaling behavior in previous work [16], [17], as long as the one
loop term remains small. We estimate statistical errors by computing the standard error of the 
susceptibility of various sized subensembles. The resulting error bars are much smaller than 
the symbols. Our results agree with other topological methods [18], [19], [20], within the errors 
of those studies (our errors are neglible in comparison). The solid line represents the (3 = 2.6, 
L = 12 result extended to other values of (3 using the two-loop scaling formula, eq. (2.4). 

The three ... 'shave (f3F,f3A) = (2.3,0.1), (2.3,0.2), and (2.3,0.3) whicll enhance dislocations 
by decreasing p1 in eq. (2.3). These points do not agree with the Wilson action values: the 
dashed line through them indicates dislocation dominated scaling with Srnin = 9, whicll is the 
Srnin for (f3F,f3A) = (2.3,0.2). The two •'s have (f3F,f3A) = (2.7,-0.2) and (3.0,-0.5) whicll 
suppress dislocations by increasing p1 • Taking volume dependence, statistical errors in Xt, and 
systematic errors in (3- which matter for the (f3F,f3A) = (3.0, -0.5) point- they agree with 
the Wilson action results. 

Fig. 2 is not very useful because it is impossible to tell if the deviations from the two-loop 
scaling curve are due to scaling violations or to finite volume effects. However, the errors are small 
enough so that we can disentangle the two. Ideally one would like to compare a dimensionless 
measure of the physical volume, such as z, = Lax:!•, to another dimensionless ratio of physical 
observables. Fig. 3 uses the two-loop A1at-parameter because the scaling behavior of fig. 2 is so 



t 

I 
I 
I 

- 7 -

I' Table 3: Topological charge distributions. Simulations are labelled by lattice size and f3 value. 

{ The entries are the number of configurations with charge Q with errors in parentheses. 

I 

I Q 64 2.2 64 2.3 84 2.3 104 2.3 84 2.4 104 2.4 

-16 1( 1) 

-15 1( 1) 

-14 1( 1) 7( 3) 1( 1) 

-13 5( 2)/ 6( 2) 2( 1) 

-12 11( 3) 15( 3) 3( 1) 

-11 1( 1) 22( 5) 12( 5) 6( 3) 

-10 3( 2) 52( 5) 24( 3) 1( 1) 33( 7) 

-9 18( 5) 96(11) 33( 8) 1( 1) 42( 4) 

-8 30( 4) 158(13) 47( 8) I 6( 2) 107( 6) 

-7 52( 7) 3( 2) 376( 9) 60( 6) 10( 3) 270(13) I 
-6 93(10) 12( 2) 551(20) 71( 6) 1 41( 8) 440(16) 

-5 186(12) 48( 6) 835(22) 67( 4) I 110( 8) 760(34) 

-4 320(15) 117( 9) 1139( 41) 93( 8) I 34 7( 8) 1066(22) 

-3 443( 17) 288(24) 1556(36) 94(14). 729(28) 1585(31) 

~2 570(29) 615(19) 1924(30) 96(11) 1 1434(37) 1960(38) 

-1 712(14) 876( 15) 2198( 40) 116(10) I 2174(33) I 2266(.55) 

0 692(22) 1104(34) 2122(50) 113( 8) I 2494(37) 2214(53) 

+1 643(20) 853(24) 2164(53) 94(11) 2220(56) 2214(57) 

+2 562(19) 586(18) 1979( 48) 99(11) l 1539(37) 1868( 48) 

+3 458(25) 319(25) 1543(16) 84( 11) 817(23) 1496( 41) 

+4 316(20) 103(14) 1207(31) 98( 7) 385(18) 1051(25) 

+5 181(11) 57( 7) 834(28) 88( 5) 136(15) 741(16) 

+6 123( 8) 12( 4) 535(29) 60( 5) 39( 9) 464(27) 

+7 55( 6) 4( 3) 331(21) 75( 8) 10( 3) 254(11) 

+8 28( 5) 3( 2) 184( 9) 53( 6) 5( 2) 117(15) 

+9 7( 2) 101(11) 29( 6) 2( 1) 54( 6) 

+10 4( 2) 38( 5) . 27( 5) 32( 5) 

+11 2( 1) 24( 5) 9( 2) 15( 4) 

+12 1( 1) 9( 3) 13( 4) 6( 1) 

+13 3( 1) 4( 3) 1( 1) 

+14 2( 1) 4( 2) 1( 1) 

+15 3( 1) 

+16 0( 1) 

+17 2( 1) 

+18 1( 1) 

(Q) 0.007( 43) 0.006( 34) 0.000( 22) 0.063( 98) 0.062( 12) -0.017( 26) 

(Q') 9.692(168) 3.908( 59) 12.905(139) 31.178(732) 4.238( 86) 11.038(135) 

;I• At / Alat 37 .601( 163) 38.537(145) 38.962(105) 38.860(228) 37.961(193) 38.579(126) 
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Table 4: More topological charge distributions. 

Q s• 2.5 104 2.5 124 2.5 124 2.6 124 2. 7 164 2.7 
-11 1( 1) 
-10 1( 1) 
-9 3( 1) 
-8 4( 2) 
-7 2( 1) 18( 5) 
-6 14( 4) 37( 6) 4( 2) 1 ( 1) 
-5 46( 9) 87(14) 7( 2) 9( 3) 
-4 4( 2) 138{13) 168(11) 22( 5) 24( 6) 
-3 44( 7) 396(19) 262( 6) 102{10) 6{ 3) 68( 7) 
-2 180(11) 774(20) 335{14) 263(18) 39( 6) 197( 6) 
-1 660( 40) 1287{28) 403{12) 551(27) 205(10) 372( 6) 

0 1235(31) 1621{45) 441{17) 724(27) 572(17) 444{20) 
+1 656{24) 1389{38) 498{17) 521{24) 228(12) 352{14) 
+2 172{12) 798{18) 359(15) 282{17) 44( 5) 202{11) 
+3 43( 9) 358(17) 278{13) 92{10) 6( 2) 87( 9) 

+4 5( 2) 126{12) 144{10) 26( 7) 32( 4) 
+5 1( 1) 35( 6) 93( 9) 5( 2) 7( 2) 
+6 14( 3) 43( 3) 1( 1) 4( 3) 
+7 1( 1) 15( 4) 1( 1) 
+8 0( 0) 6( 2) 
+9 1( 1) 4( 2) 

(Q) -0.005( 26) -0.009( 24) 0.045( 56) -0.013( 30) 0.030{ 31) 0.052( 38) 
(Q2) 1.225( 41) 3.319( 62) 7.486( 98) 2.402( 80) 0. 794( 37) 2.911{126) 

~/4 Xt / Alat 35.847(300) 36. 793(172) 37.574(123) 36.442(303) 35.628(415) 36.975( 400) 

' ""'"''" " "'" II ' ''' "'''I'' I'' '' ' 'I '' ""' 'I "''' ''" tl• "I 1'1'''"" '" "' ""' ""'" '""'''"''I"~ 'I'"' I 1'1 ' I'll '1°'1 'I• '"I" ' •' I,. "' '1''1 • Ill • II• II I'll I I' "' ' I"' '10' ""'1'1 " "" "' 'I '11"1 
,,,,1 
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tantalizing~ and in order to avoid thf ~tati~tiral nror of anotlwr numeriral ::-hnulation. lf' t!w 

nonuniversal terms in eq. (2.3) are negligible. and if two-loop scaling applies. the ~1onte Carlo 

data should lie on a smooth curve. For f3?: 2.c> tbe data Jo indeed lie on the dashed curve. drawn 

to guide the eye. as shown in fig. 4. In similar plots with other coefficiems of d in the scaling 

law, for instance .'imin, the Monte Carlo data at different f3 values do not lie on a universal rurve 

on the sensitive scale of the vertical axis of fig. 4. This indicates that t.he constant C in eq. (2.:l) 

does not dominate the bare susceptibility, even at i3 e: 2.3. 

Now consider the data for f3 < 2.5. Since the contribution of dislocations C seems to be small 

relative to the physical susceptibility, it is fair to use \t as a standard of mass. i.e. to define 

A!at in the region 2.2 S f3 S 2.5. By insisting that Xt at distinct values of f3 match at equal 

physical volume, one arrives at fig. 5. Extrapolating to infinite volume on this plot, we obtain 

the estimate 
v ~00 [( . ) ]4 Xt = 38.7 ± 0'. 2 Alat1 , ( 3.2) 

where the error is purely statistical. Systematic errors are harder to estimate, but the hand 

tuning of the A-parameter, for instance, introduces at most 7%, the amount the /3 = 2.3 data 

shifts in moving from fig. 3 to fig. 5. Thus eq. (3.2) is an excellent measure of the susceptibility, 

in (almost) physical units. Unfortunately, neither other Monte Carlo simulations nor laboratory 

experiments provide a well accepted result for Alat, so we are reluctant to state ;;:;/• in MeV; the 

reader is, however, welcome to insert his favorite value for Alat· Also, given the uncertainties of 

eq. (1.3) we do not wish to exploit it in order to predict A!at; avid enthusiasts of eq. (1.3) can 

insert 180 MeV, if they so choose. 
The volume dependence of Xt at intermediate z1 is also very interesting, especially in light 

of ref. [21]. In small and intermediate volumes it is possible to perform analytic calculations 

[21], and these results agree very well with Monte Carlo cakulations [22] of glueballmasses 

and 't Hoeft electric flux energies. In the approach of ref. [21] instanton mediated tunnelling is 

neglected, i.e. Xt = 0. There are several indications that the approximations used in the analytic 

calculations break down near z0 = Lam0 "" 5, where m0 is the mass of the "O+" glueball. (For 

reference with fig. 5 we note that z0 ""4.7zt-) In particular, ref. [21] anticipates that instantons 

become important at z0 "" 5; a signal for the validity of this idea would be a sudden jump in Xt 

near zo ""5 (z, ""1). The numerical results do not seem to reflect this scenario. For z1 > 1.5, Xt 

is more or less fiat, which is fine, but there is no drastic suppression at small z,. In fact we see 

a smooth rise from z, "" 0.5 to z1 "" 1.5, and the data is very consistent at z, "" 1 -right where 

the jump ought to be. 
Several remarks can reconcile the discrepancy between the ideas of ref. [21 J and the results 

of fig. 5. Firstly, there is presumably some instanton mediated tunnelling even in small and 

intermediate volumes; it just turns out that the tunnelling does not affect the spectrum much. 

Hence, Xt "" 0 for z0 < 5 is probably too much of an idealization. Secondly, very rare tunnelling 

at small volumes leads to a surprisingly large susceptibility, simply because the volume factor in 

eq. (1.2) is small. For example, in the L = 4, /3 = 2.7 run, ouly 0. 7% (none) of the configurations 

are in the one-(two- )instanton sector; indeed, the exceedingly small fraction of configurations 

with Q i 0 is reflected in the large statistical errors in Xt, despite the large total number 

of configurations. Thirdly, although the effects of dislocations become more obnoxious if the 

physical susceptibility shrinks, the data do not support the hypothesis that dislocations with 

Smin "" 12 dominate the bare susceptibility at low z1• If this were the case, then the low .8 

points should appear higher in fig. 3 than the high /3 points, whereas the data are the other 

way around. Finally, though, our low z, results may just be inconclusive: at L = 4, say, the 

distinction between ultraviolet and infrared is probably too muddled. 

We end our analysis with the nonperturhative /3-function, as determined from the suscepti· 
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bility at two adjacent values of the coupling: 

a 1/4 (a) 
Ina I = 1 In ;x, a ~--'1 
8;3 (ll,+/3,)/2 !31- !32 x~'4a(f32) 

at constant z,, (3.3) 

which is shown in fig. 6. To attain the same Zt for both values of ;3 we interpolate x;1• linearly in 

z,, if necessary. Fig. 6 also shows the ;3-function as determined from the string tension [23], which 

shows larger deviations from asymptotic scaling. 2 Note that the hump in fig. 6 is qualitatively 

consistent with the "dip" in Ll/3(;3), the shift in ;3 needed for a factor-of-two scale change, seen 

in other simulations [25], although for Xt the deviations from two-loop scaling are much, much 

smaller. 

4 Conclusions 

The introduction stressed that the primary motivation for this study was to understand the 

effects of ultraviolet and infrared cutoffs in numerical simulations of lattice gauge theory, using 

the topological susceptibility as a tool. In the ultraviolet we conclude that nonun.iversallattice 

artifacts are not a problem, that the topological susceptibility scales asymptotically, for ;3 ;:: 2.5, 

and that the deviations from such behavior are small in any case. In the infrared we conclude 

that there is a nontrivial volume dependence up to z, "' 1.8 (i.e. z0 "' 8.5 ); the volume dependence 

is not precisely in line with the anticipation of ref. [21 ], but the discrepency can be reconciled. 

The results presented in this paper can be improved in perhaps three repects, should another 

order of magnitude in computer power become available. First, the very large volume estimate 

in eq. (3.2) ought to be confirmed by simulations at L = 16 to 20 at ;3 = 2.5 and on even 

larger lattices at higher values of ;3. As it stands data in the asymptotic scaling regime are in 

an intermediate volume. Second, contact with ref. [21] should be made at larger values of L so 

that there is still a distinction between infrared and ultraviolet: L = 8 to 32 at ;3 = 3.1 to 3.5 

should suffice. Finally, the Callan-Symanzik ;3-function would be better determined by a finer 

scan in ;3 = 4 j g2 , designed to match the physical volume. Clearly such a program calls for a 

very large scale project, one which presumably also aims at the string tension, glueball masses, 

and other observables. Such a project could perhaps resolve the lack of universal scaling: unlike 

the topological susceptibility the other observables do not scale asymptotically in the present 

range of ;3. In the meantime, other workers in lattice gauge theory are reminded that Xt is a 

well-defined, interesting observable that can be computed on any lattice geometry. 

Appendix 

There have been attempts to compute the topological susceptibility in SU(2) and SU(3) gauge 

theories using a method based on cooling [10], [11]. Cooling is a useful heuristic tool for un

derstanding the structure of the QCD vacuum, but it always underestimates Xt· In ref. [11] 

the method is used to extract the topological charge by computing a naive lattice approximant 

to Jd4 :c tr{F1w•F,.v} after an empirically determined number of cooling sweeps. Instead of the 

diffusion method refs. [10], [11] use a much harsher method, equivalent to heat-bath updating 

at infinite ;3. Because the method is heuristic, it suffers from several theoretical drawbacks: one 

cannot prove that it is gauge invariant or that it has the correct continuum limit. The cooling 

method is not based on topology, so it does not yield integer values for Q. For smaller values this 

2 However, corrections for finite L effects, which may be sizable at [3 = 2.7 and 2.8, have not been performed in 

ref. [23] (F. Gutbrod, private communication). A global fit to the static qcj-potential with explicit scale breaking 

has been given in ref. [24], leading to a nonuniversal .8-function. 
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can be artificially rounded to the nearest integer. hut for larger charges, which naturally occur 

in large volumes, the identification becomes more and more ambiguous. 

One aim of the cooling method is to eliminate the dislocations, yet if sucessful, it obviously 

eliminates small instantons as well. Even more striking, the cooling algorithm used in refs. [10], 

[11], can even miss large instantons. In fig. 7 we show the evolution of the action and those 

references' lattice approximant to fd4 x tr{F~v'Fw} during cooling. The starting configuration 

is the lattice instanton of ref. [26] with core diameter 6a on a 124 lattice. By construction it 

has Q ~ 1, and in practice both the algorithms of Liischer and of Phillips and Stone yield 

Q ~ 1. Also, the staggered fermion matrix has a zero mode [26]. In summary, the configuration 

has the topological and physical structure of a semiclassical instanton surrounded by quantum 

fluctuations. Under the cooling algorithm of refs. [10], [11] it just dies. Notably, the diffusion 

equation, which cools more slowly, preserves the instanton (now with core diameter 3a on a 64 

lattice, which might be less stable), as indicated by ~he solid line in fig. 7. 

The net effect of these systematic effects is that the distribution obtained by the cooling 

method is much too narrow, and the susceptibility derived from it is a severe underestimate. 
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Figure 1: Cooling history of a smooth Q = 1 configuration. The value {)I the action S (defined 
in the figure) is plotted versus the time of diffusion. Only for f3od = +0.1 is the dislocation 
plateau below the f3·function value 10.77 (dashed line). All dislocations have Wilson action very 
close to S = 12; after decay of the dislocation, the topological charge (using the Phillips-Stone 
algorithm) is Q = 0. 
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Figure 2: Topological susceptibility ax:t• in SU(2) lattice gauge theory. The number next to the 
symbols are the lattice size L. • uses the Wilson action; for these points the errors are too small 
to plot. • uses a mixed action that favors dislocations. • uses a mixed action that suppresses 
dislocations. 
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Figure 3: x:14 / A1at vs. z,. Here A1at is taken from the two-loop perturbative formula. 
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Figure 4: Same as fig. 3, but restricted to f3 2: 2.5. The line emphasizes that the data lie on a 
universal curve (drawn to guide the eye). 
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Figure 5: Same as fig. 3, but with Alat adjusted, for {3 = 2.3 and 2.4, so that all data lie on a 
universal curve (drawn to guide the eye). 
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Figure 6: The nonperturbative {3-function as deterinined by the topological susceptibility Xt 

and the heavy quark potential [23]. Except at /3. = 2.75 the string tension extract.ed from the 
potential yields the same result. 
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Figure 7: History of the configuration of ref. (26] during cooling. • shows the action and o the 
lattice approximant to the topological charge using the method of ref. (10], and (11], in units so 
that both are 21r2 for an exact instanton. The solid line shows the fate of this configuration using 
diffusion. 
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