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Abstract

We investigate within the standard model the possibility that
nonperturbative QCD effects determine the Fermi scale and
electroweak symmetry breaking is a conseguence of chiral symmetry
breaking. In this scenario the ratio between the Fermi scale and
the guark condensate <4'P1v>°"5 comes out inversely praportional
to the Yukawa coupling of the strange quark, consistent with
observation. The Higgs particle mass is predicted in the range of
200 KeVv.

2

The standard model of electroweak and strong interactions D2

has two different mass scales: The Fermi scale ?% = 174 GeV
determines the strength of weak interactions and the masses of
quarks and leptons. It is given by the vacuum expectation value
{vev) of the scalar doublet which spontaneously breaks weak
SU(2) x U(1) symmetry. The QCD scale I\QCD {a few times hundred
MeV) sets the scale for nuclear masses and interactions. It
characterizes the scale where the gauge coupling dg of SU(3)
becomes strong. In addition, there are important features of the
standard model which depend on a complicated interplay between
@, and /\?99 For example the pion mass me is proportiocnal

(@o/\QCD) It is obvious that even a mederate change in the
ratio
’1Q¢D -3
Y = — = 10 (1)
%

would lead to a very different picture in almost all branches of
physics. (For example the electron to proton mass ratio is pro-
portional X-l.)

It is certainly one of the most important challenges for a
fundamental theory to explain why 3/ is of the order 10"3. In
addition, modern unification is often associated with a huge
unification scale of the order of the Planck mass M_. This not
only leads to the puzzle how to understand the small ratio

?b/Mp {gauge hierarchy problem 3)) but alsoc to the guestion why
AQCD and (Po are so "near" to each other when locked upon from a
characteristic scale Mp. From the viewpoint of the short distance
physics around Mp the difference between AQCD and (Po appears
like a "fine structure" in the effective long distance physics,
similar in size to the structure in the fermion mass matrices 4)
reflected by different Yukawa couplings. We may call this the
"connection problem" between the scales of weak and strong
interactions. What has Le 2 to do with AQCD? The connection
problem and the gauge hierarchy problem are of course not
unrelated. Whenever the tiny ratio /\QCD/MP is explained by the
logarithmic evolution of the strong gauge coupling, a solution of
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the connection problem and thereby an understanding of Y would
automatically solve the gauge hierarchy problem.

In perturbation theory the scales AQCD and qao are essentially
unrelated free parameters of the standard model.l)In presence of
a scale AQCD emerging from strong interactions, however, a
perturbative treatment of electroweak symmetry breaking becomes
questionable. Nonperturbative QCD effects lead to interactions
between the & field (guark-antiguark bound state} and the Higgs
doublet of the type 6'35) G”'(fz' etc. The field @ corresponds to
the mean value of the weak doublet in a volume VQCD with
characteristic length scale AQCD' These interactions are
therefore local only for momenta below AQ but they become
nonlocal when considered at length scales smaller than AQCD It
requires some thought to compare these nonlocal interactions with
the local interactions described by the {classical} potential for

the weak doublet.

To illustrate the problem consider first the pure Higgs model
(four component ? 4 theory) in the spontaneously broken phase,
such that the minimum of the perturbative potential Vp
corresponds to some large scale M. (One may take M in the
vicinity of the Planck scale.) As is well known 3) t}?e effective
scalar potential r'(ﬁ) is convex. (It is the convex hull of the
perturbative potential Vp( a).} In the broken phase perturbation
theory can be trusted only for l@l 2 M 2), but it breaks down
for !i‘il < M due to a failure of the saddle point approximation
{compare fig. 1}. This reflects the fact that only surface energy
is needed to change in a large domain the phase of ? . Bven

though in every small volume with scale M_1 the magnitude of the

1) There is a possible exception for the case of seven or eight
generations where the strong gauge coupling increases
substantially only for momenta below the Fermi scale.

2) There is convincing evidence &) for the reliability of
perturbation theory even for the case of strong guartic bare
couplings.
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mean value of cp is near M, the probability of finding
configurations with mean values ? = 0 or ¢= M becomes almost

degenerate for large volumes.

Let us now include strong interactions and gquarks with Yukawa
couplings. For a first crude estimate we suppose that the
"electroweak" part of the potential relevant at the scale AQCD
is well approximated by r'(@) . We simply add the nonperturbative
QCD effects which will act as perturbations on F(§ ). A per-
turbation linear ing‘i pushes the minimum of f"{q‘p‘)+§6‘3f to a now
uniquely selected minimum of Vp at !@l = M., Here perturbation
theory applies and the nonperturbative QCD effects are completely
negligible. This situation can change drastically for nonlinear
perturbations. It becomes possible that the nonlinear
perturbation VS( q:) develops a minimum within the flat region
of r'((r) The mlm.mum of r’-p-Vwand therefore the expectation
value of ¢ is then determined by the minimum of V?’“' and not by
Vp! Intuitively the QCD effects can favour energetically a
certain mean value of ? within a volume VQCD ilnce VQCD is
large compared to a volume with length scale M it costs very
little "electroweak" energy to arrange the domains within VQCD 50
that this mean value obtains. The nonperturbative QCD effects
could dominate the effective potential!

At long distances strong interactions can be described by an
effective (iinear) @ model. Quark-antiguark pairs th-;R form
scalar mesons which transform as doublets under SU(2) with
hypercharge one - just the same as the weak doublet 99 . Chiral
symmetry is spontaneously broken by a vev G;w '3_- fr = &7 Mev.3)
Due to its Yukawa couplings to guarks the mean value ﬁ' will
interact with the gq condensate and therefore with ¢ . The
interaction linear in ﬁ has the form (é" = ({T,6*)

3) In absence cﬁ P the W and 2 bosons would acguire a mass of
the order f



a{e;:,’ = (6N ETE) e ! (6TEN EFF) + brc. (2)

This has three immediate consequences: First, there will be a
vacuum alignment between ¢Tp and & . If we choose a convention
where the lower component of G has a real vev 6'0, we find that
a vev of the lower component of ¢ is energetically favoured
compared to the upper component. This correlation guarantees that
the electromagnetic U(l) symmetry remains unbroken. Similarly,
the phase of D> = @ (compared to G ) is dictated by the phases
of of and . The correlation between the phases of (To and ‘Po
may have implications for the CP problem.

Second, effective terms involving (G’+¢F) break the glckal
SU(ZNG)L b4 SU(ZNG)R flavour symmetry which would exist in the
absence of electroweak interactions. The vev of §$ induces masses
for the quarks and for ¢0 # 0 the pions (and similarly other

mesons) acgqguire a mass.

Finally, the interaction (2) puts a lower bound on the ratio %/6;
if weak interactions are in the spontaneously broken phase. (By
this we mean in our context that the potential for @7 - neglecting
its interactions with G - should not contain a positive

gquadratic term.) A potential of the form V= — ol 6;3?'7 + 'al',"?? ?*

leads to

o ¥,

. 3 (3)
7 = z.z,,) %

and a negative quadratic term — ;?zonly increases ¢ /6, .
Additional interactions with 6 influence the guantitative value
for %/6; but do not change the order of magnitude of the bound.
Without the nonperturbative QCD effects bounds for the Higgs mass
can be obtained for a given value Of.% 8)6), but a lower bound
on the vev % itself does not exist unless the term (2) is
included. All these effects of the linear term are independent of

the detailed properties of the electroweak potential.

For the observed value of g the interaction between & and ?
is dominated by the Yukawa coupling of the strange quark. We
estimate & & 30 hs using the identification

\/?e’ = — o 6,;3 ? + terms nonlinear in ?5' + constM)

% 4 F<acwyrh Gldoly b F(5s) + 4, PLEcy+--

The contribqtion of up and dowp quarks can be neglected and the
condensates of heavier quarks are in leading order inversely
proportional to the guark mass 9). Alternatively, we can

extract &; {and also terms ncnlinear in ?) from the phencmeno-
logical analysis of chiral perturbation theory 10}. (The term
~:E G;'.’t?' leads to the quark mass term in the nonlinear G model.)

There is no reason why the interactions between G and (75 should
be linear in @ - Also the 'ap"(/ condensates depend themselves on c?'
and this introduces an effective nonlinearity in V . Let us
concentrate on the term hsffé's}. We insert the vacuum value G, (@)
and express the resulting @' dependence of Vq;s‘ through the
dependence of the condensate (Es) on the strange quark mass m

0/_://4;‘;4’). =}{s;7%{’—;-( m <s"3>(ms)) (5)

For low values of m the strange quark is effectively massless
and {8s) becomes independent of m. Extrapolating the QCD sum
rule estimate ?) for large mg

— 1 of a ,t‘\?
to a strange quark mass of the order 150-200 MeV gives a value
for {ss) which is a factor 2-3 smaller in size than

(P, & (230 Mev)>. This suggests that (6) is approached from
below and therefore ms(§s>(ms) should have a minimum at m_. The
scale for Eas is obviously given by (ﬁ}b}ol”. This is in the
vicinity of the physical strange guark mass ml;hys_ The same
conclusion is suggested by an expansion in M, within chiral
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10). Taking £, = 0.3 in ref. 10 leads to a

perturbation theory
minimum value m ~ mphys_ The minimum of Vw (Q)corresponds to a
value ms where the strange quark changes its role from a light to
a heavy quark, % m /h . It is puzzling that our naive estimate
of @ fits well the observed value g2 = mzhys/h = 174 GeV!

For a more accurate treatment we have to account for the fact
that AQCD {and therefore the gluon condensate and <1p§b> )
depends on ? via the heavy fermion mass thresholds in the
evolution equation for the strong gauge coupling. Also the other
quarks have to be included in V,’,g . It is still plausible that
?—7 = m_/h, is near a local minimum of Vge . The question if it is
a global minimum seems more complicated. The quadratic term at
the minimum 4), Mﬁ =%d‘\("/d§t (@) , depends on the
smoothness of the transition between light quark and heavy quark
regime., For a rough estimate we approximate

V?‘ - -ﬂs <';T4p>°?'5 'l"/@ 4?“')%2’%432. |
{(7)

fo=h <Py g = O(4)

and obtain
2 ' vy
H - Zs <'W3">o
H
2 Po
This is an unusually small value for the Higgs particle mass! It

is easy to understand the large value for <p,/s;, intuitively:
Although the linear term driving § away from the origin at §= a

2,
&~ (0.2 MeV) (8)

is small -vhs, a minimum can only occcur once the restoring force

is of eqgual strength than the driving term. Restoring forces are
suppressed by even higher powers of hs (/va hi) . Therefore @,

must come cut proportional to the inverse of the small coupling
hs.

4) Strictly speaking there is a mass matrix involving & and 5 .
Corrections to the eigenvalues are small (O(hs)) in the present
case.

8

For our estimate of % we have made a very crude assumption,
namely that the relevant scalar potential is U(¢')= F(?’)-ﬂ-\{?‘.(q‘,).
The effective potential /7 is relevant for an infinite veolume
whereas we are interested in the volume VQCD' Also the short
digtance fluctuations of QCD have to be incorporated. (For a most
naive guess they only lead to a modification of the perturbative
potential V_ and in consequence to a shift in the value of M.}
This suggests the use a "finite volume potential' U( ?) defined
symbolically (in Euclidean space)} by

_ YL =
Ulp) =~ fo £ 30 5 (7 [ dete) = F)sep-S L]

The exponential exp(-ﬂ%(if})ls a measure for the probaglllty
that the mean value of g; within a finite volume Vk'vk is given
by Q . (The volume 1 is used as a purely technical device and
the limit J2.~» e should be taken at the end.) The finite volume
potential interpclates between r'( (?) and the "tree potential"

Vo(?) defined at M

bowe Uy(3) = TUF) lom Up(F) = VL(P)
40 /KM 10)
Tt is not necessarily convex for nonvanishing k. (This potential
is similar - up to effects from the boundary of Vk - to the
"constraint effective potential" ll)). We may interprete the
definition (9) as a specific way of integrating out fluctuations
in tp with typical length scales smaller than k—l. Choosing a
coordinate vy in the center of Vy we

can consider ?_7 (y) as a "block spin" variable. Writing the

Euclidean partition function
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2 = [Dp sup-SLe]
"‘f@?(w[a?:fx}cf( [elx - Fy)eep-SLel

= [opep pep(- [y £(5) %5, --)

we identify U(¢) with af(?) for constant Efa . {One should use a
renormalization of the variable '@(y) to bring the kinetic term
in € into standard form. The & distribution could also be
replaced by an appropriate Gaussian.) The short distance
{perturbative} QCD contributions can be incorporated into Uk(? )
by an appropriate extension of the block spin approach. The
nonperturbative effects from chiral symmetry breaking can now be
ineluded by adding V, (qv)'to Uk(cp) at a scale k= A ocp+ (Note that
QCD(‘P) is also a funct::.on of the mean value of the weak doublet
in a volume VQCD‘) The combined potential U + V'Pf can be
extrapolated to scales below AQCD and approaches the full
effective potential for k-» 0. If the minimum of U“b+ Vw,. is
determined essentially by V‘PG' the flat region of the full
effective potential extends only between the minima of Vq,g—
istead of Vp. The importance of VQG' depends on how fast Uk( ?)
converges to n (@) in the spontaneously broken phase. Since the
difference between the two quantities involves only surface
effects it is plausible that - r'(f) becomes a good approximaticn
to U (Q} at ke A QeD for a wide range of "tree" parameters
" (M) and A.(M}, J.ncludlng mass terms u.?(M) of the order of M2
which would lead to a minimum of the perturbative potential at a
large scale M.

Leptons and their Yukawa couplings are easily added. Inclusion of
the electroweak gauge interactions needs an even more complex
discussion since the mean value, V"'f A ?(x) is not a gauge
invariant quantity anymore. There are nc massless Goldstone
bosons in this case. Nevertheless, the flatness of guantities

10

like U(@') is not directly related to the existence of
propagating massless modes but only to the fact that the
coherence in the phase of the mean value of P becomes weak over
large distances. In a gauge fixed version the problem locoks at
first sight not very different from the glcbal SU(2) x U(1l) model
discussed before.

Two possible objections against our scenario should be shortly
addressed. One concerhs the stability of our approach with
respect to radiative corrections. One may wonder if fermion or
gauge boson loops w1th momenta near AQCD or % do not induce
terms A q; ot A 4; compared to which the nonperturbhative QCD
effects are completely negligible. Such loops induce effective
nonlocal scalar interactionsS) and they influence the way how
Uk(‘?) approaches (). The behaviour of U ?7), however, cannot
be determined by standard perturhation theory. (The standard
perturbative renormalization group equations for /u“" and ;l are
inadequate for [9'514 M. In contrast, the renormalization group
analysis remains walid for Yukawa couplings and gauge couplings.)
An appropriate (perturbative?) block spin formalism is needed.
This must account for the fact that the behaviour of Uk(a) is
determined by the physics of domain adjustment in the presence of
light fermion and gauge hoson lcops. Not much about the
importance of these effects can be said before. '

The other is about the relevance of the @CD G -model for weak
processes involving the exchange of W or Z bosans. Naively cne
could think that at momenta around the Fermi scale the
nonperturbative QCD effects should not be relevant. The weak
bosons propagate through the vacuum for which §=€P° . The vev @,
sets the scale for all weak interaction processes. Once we know
@, we can forget its origin, use perturbative weak interaction
field theory and neglect all nonperturbative QCD effects. The
value of % itself, however, is a property of the surrounding

5) In principle the combination of such effects could also
produce a nontrivial minimum of Uk and determine ¢, .
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6) rather than to the momenta

vacuum and related to zero momentum
of ‘a particular weak scatteiing progess. Its.value is therefore
sensitive torthe-long-distance behaviour of . the. theory -where

nonperturbative QCD effects become iﬁportant.

Many gquestions dre left open. Nevertheless. it seems not excluded
that electroweak symmetry breaking is indeed determined by the
chiral -symmetry breaking in QCD. The connection between
nonperturbative .QCD effectsand:{perturbative). electroweak.
physics~certainly needs-andmerits-a-more profound investigation.
This shéwé:that there aie;stillmi@portaﬁt holes in_oux- -
uiderstanding of-spontaneocus symmetry--breaking-within- the stan-
dard imodel. Although we are aware of the somewhat speculative
character of this hypothesis it seems worthwhile to mention some
of-the consequences of- this version of electroweak symmetty
breaking: The gauge hierarchy problem would be solved_and. 4%
becames calculable in terms-of /1QGD and Yukawa couplings. There
is- a-possible reduction in-the number of parameters sinee-the
parameters u??(m 9y atid A ("2) became irrelevart if they
CarréSﬁaﬁd &8 region lﬁ’ﬁﬁfaméter space for wirich UQGD(qp) is
effect1ve1y flat. This could alsc have important consequences for
the issues of*dllatation symmetry, the cosmological constant and
a possible new intermediate range interaction since.A oCD is
now the only low energy mass Sscale. } The mass of the Higgs
sealar ks predisted -to be -very low--{&-200 keV). The sealar is
thereiorexnot:expgstedytoudgeayqinto-Q§e7-anﬁ;muﬁt;hgyg_a rather
Yong Iifetime.—A-scalar of this type is not excluded
experimentally. so far. It may -be.possible. to -detect it by fukure
precision experiments. There are experimental bounds 13)
scalar couplings to nucleons. These are not easy to evaluate

~on the

6) One may ask if for a weak process the relevant quantity iglnot

the mean value of the doublet_in a volume of Fermi size ( 1.
In any case;- by ‘simple dimensionalt arquméhts, thls mean value

cannot be-very different: from z -

7) If there is a cosmon forece its range should be in the
kilometer range (~ Dgp/ Aacn ).
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theoretically. In particular we should menticn that the Higgs
scalar has residual "“strong" interactions since there is a mixing
with the G field of order¢z ~ hs‘ The physical Higgs scalar is
a sort of collective excitation. At energies belaw /\QCD it can
be treated as a fundamental scalar, but higher energy scales need
a detailed investigation. The chiral and weak phase transitions
would look quite different from the standard picture. This has
possibly important conseguences for the early universe. In view
of these prospects the questions concerning the connection
between the scales of strong and electroweak interactions should
be an important task for a deeper field theoretical investigation

of symmetzry breaking in the standard model.

Figure caption

Effective potential I (@) and perturbative potential Vp( ?} in
the spontanecusly broken phase.
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