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Abstract 

We discuss a new class of gauges for the gravitational field, 

in which the volume element is fixed. The corresponding ghost 

lagrangian is constructed and the BRS-invariance of the full 

lagrangian is demonstrated. The cosmological term appears as 

part of the gauge fixing lagrangian. If the action is required 

to be invariant under general coordinate transformations, flat 

space-time is the uniquely determined ground state. 
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The Einstein action for the metric tensor g~v' 

\,'[~l • ~ \J'x ~ 1< 11 ) 

is invariant under infinitesimal gauge transformations 

0~r' ·•'~,~r,• '~r•'<J,v • 't<"~r• (2) 

where the fields E~ parametrize infinitesimal local coordinate 

transformations. Quantization of the gravitational field requires 

a choice of gauge QJ. Usually the harmonic gauge condition 

C/'ll • - ~ ~r' 'd, (~ f"') • o 

is employed. In the linear approximation one obtains from 

eqs. (2) and (3) (g~v = ll~v + h~v) 

;;,ere~), ~(~'~•r- i 'Vrk' ,) ~ D tr 

which shows that the conditions (3) lead to a well-defined 

propagator. In the harmonic gauge one has eight real Fadeev­

Popov ghosts u 11 and UY, and the BRS invariance [2] as well as 

the unitarity of the physical S-matrix have been explicitely 

demonstrated I)] . 

In the following we will discuss an alternative set of gauge 

conditions. One of them fixes the volume element by requiring 

that some function C of lg = (-det(g
11
v)) 112 vanishes, for 

instance, 

(3) 

(4) 
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C(~) • ~- o 0 1 • co•<l . 

As additional conditions*), which are required for a complete 

gauge fixing, one may choose 

c (Q) 
r• " 'lrC•l~J- ';)vCr(~) 0 

(5) 

(6) 

where Cll(g) is the harmonic gauge condition (3). Bianchi identities 

imply that only three ot the six equations (6) are independent, 

so that eqs. (5) and (6) are tOgether four gauge fixing conditions 

as in the case of the harmonic gauge (3). 

In the linear approximation one obtains from eqs. (2), (5) and 

(6)' 

b((~) ;>,( l ~'l..) ~ CJ'r,_ 

6C~,(~). ¢l\ 'l'~,.- 'd. 'l~~'l') 

~ 0 l '~r'<v- 'l.rr) 

i.e., the first condition determines the divergence of the gauge 

parameter £ whereas the other three conditions fix the curl 

" of £~· Eqs. (7) show that the conditions (5) and {6) are inde-

pendent, and that the corresponding propagator is well-defined. 

*) 
These gauge conditions arise in the quantization of theories 

where the general coordinate invariance is restricted to 

trahsformations which leave the volume element invariant [4]. 

(7a) 

(7b) 
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One easily verifies that it is not possible to supplement 

eq. (5) in a Lorentz-covariant way by three independent con­

ditions which involve only first derivatives of the metric 

tensor g).L\J. 

Solutions of Einstein's equations which satisfy the gauge 

conditions C).L\J = C = 0 are equally well-behaved as solutions 

in the harmonic gauge Cll = 0. This is obvious for qravitational 

waves in flat space, and can easily be verified for the Schwarz­

schild solution, maximally symmetric spaces and the Robertson­

Walker metric. 

Supplementing the generally.covariant Einstein aCtion by the 

gauge fixing lagrangian*) {cf. (5), (6)) 

LGP 
~ )-'" 
it c crv 

I' t - c 
1 

yields a well-defined propagator for the gravitational field. 

Of course, one cannot just add a gauge fixing term to the 

lagrangian. One has to separate the gauge modes, which are now 

propagating, from the physical subspace _and one has to introduce 

Fadeev-Popov ghost fields which compensate the contrihution of 

(8) 

the gauge modes in loops. Furthermore the gauge invariance of 

physical amplitudes has to be shown. All these required pro­

perties of the quantized theory can be derived from the invariance 

of the full lagrangian under BRS transformations c2=, 

*) 

.., L ~ 0 

Unless explicitly stated indices are raised and lowered with 

the flat metric nJJV. 

(9) 



~ ' 
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where s is a real, nilpotent antiderivation, 

'$?.. -= 0 11 Oa) 

c;(t\lS) (<;1\)15 
(1'>1 

(-) 1\ (sTS) I 10bl + 

(s A)• 11>1 • 
- (-) ( (A ) ( lOc) 

with IAI = 1 (0) for anticornmuting (commUting) fields. 

The BRS invariant extension of the gauge fixing lagrangian (8) 

requires 10 ghosts: uu, v, UU and V, i.e., two additional ghosts 

compared to the harmonic gauge {3). The ghost lagrangian reads 

(cf. eqs. (7)) 

LGH ~" u~,(Cr. • 'lrC) _, ·~ ur'drv + ·~ v<: c 

where K is an arbitrary real parameter. The BRS transformation 

on the field . g · is obtained in the ,uspal way from the Lie "v 
derivative (2} by replacing the gauge parameter £U by the ghost 

uu. The complete BRS transformation for all fields readS~ 

''Jr• ~ u"'~" ~,... + 'lru"~"" • 'd.u"'~r"' 

<> u r = u""ro ... u~ 

<; v ~ 0 
' 

<: u r • ·'de''~' 
l • ' 

<; ~ • - i c 

111 ) 

(12a) 

( 12b) 

(12c) 

11 2d) 

( 1 2e) 

~ 
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Using s 2 g =s 2 u = sv = o one easily proves the invario.nce 

"v " under BRS transformations (cf. (8), (11)): 

<; \d''x (LG~ + LGF) 0 

On the antighosts u~ and v s is nilpotent only "on-shell", 

i.e., for 

<; 'O~Cr = s c 0 

which follows from the ghos~ equations of motion. 

In the linear approximation (cf. (4), (7)) the ghost lagrangian 

( 11 ) becomes 

LGH ~ ,.,1Jr(o'1,..,•"',~Ju' + •~Li~';lrv+ ·~ v~rul' . 

The corresponding path integral is nothing but the determinant 

of the d'Alembert operator for vector fields with vanishing 

divergence: 

\ l>u 'Du 'Dv 'Dv <>xp ( • jJ\ fur co ~r· + 1c •r 'l,) u" 

+ ur'lr v • \i '~r url) 

= \-tu"Du ~>C•"~r)6l'l"ur) <>xp(;j J\ uro ur) 

In the Fadeev-Popdv procedure· [5] this determinant results from 

the change of variables (C,C ) -..·(a'\:,,£ ) , t: = a s -a t: 
~v A ~v ~v u v v ~ 

(cf. eqs. (7)). This explains why the gauge condition Cuv = 0 

leads to two additional ghosts compared to the harmdnic gauge . 

( 13) 

114) 

( 1 5) 

116) 
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The ghosts v and V are necessary to obtain a well-defined 

ghost propagator for arbitrary values of K. With w =(u~,v) 

one easily finds 

• 'l ~· 
( t.JtX) W l~) J 

0 
~ I 

0 
'tr - '5 '~r ) ' ~0'-'J) 

~· -(Itt) 

The complete ghost lagrangian (11) reads explicitly 

LaH = i~u~(~r.l•,·r~,l(~·s1>1 u~. ~~~l>,u') 

- '~rtl- t~l 1>. u·). ~ "r:, (~.,'Dr+ ~r$1lJ u1 ) 

+i~ur~,v • ij\ii~"Dru" 

A straightforward calculation yields for the graviton 

propagator: 

( [. 1 { J" _ (" I [( ') ')>)( 'dv 'lrJ ( 'I.Jrl( '), ~>) 
r·[""" 'J ~.-- l i. '!",- 1i ~.,- n • ~rr- o 1··- a 

-

- ('! - 1 ~tl' )(" -1'l'1r' _ 1 1r ?, '>, 'l., 1 
~· 0 I~T 0 I O' 

~ 'l. ~. 'l, ~t 
t ~ ' 0 

• J ( ~r' ~. ?, • ~·> 'lr 'l, • ~I'' 'l, 'l > 

• '1 7 7 - <t 'lr~· 1,'1,) !... }.!.. 6'0<- l 
vt r • n o' o ~ 

117) 

I 18) 

I 19) 

.,..,. 
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This result differs from the familiar propagator in the harmonic 

gauge by projection operators on longitudinal gauge degrees of 

freedom and by two terms which depend on the parameters a and 

S of the gauge fixing lagrangian. Since the term a(Cuv) 2 contains 

four derivatives the propagator (19) contains an infrared singular 

piece proportional to 1/a. Since the limit a4oo exists we do not 

expect that this infrared singular term causes any 9roblems with 

respect to gauge invariant quantities. 

Gauge conditions which fix the volume element are of interest 

in connection with the problem of the cosmological constant. 

The "volume gauge" (5) has the surprising property that, up 

to an irrelevant constant, a cosmological term can be absorbed 

into the gauge fixing part of the lagrangian: 

- ~ (\ + ~ (~- ·d ~ ~(~-'6')l- 1\t 
?.jl 

where y' = y+ A/S. This is a puzzling result since the cosmolo­

gical constant determines the curvature of the ground state 

which is generally believed to be a gauge invariant observable 

quantity. 

One might expect that the effect of the choice of gauge on the 

curvature is a pathological feature of "volume gauges", and 

120) 

that the familiar relation between the "physical" vacuum energy 

density A and the ground state curvature is restored if boundary 

conditions are properly taken into account. As we will see, 

however, this is not the case and the cosmological constant is 

indeed a gauge breaking term. 

The variation of an arbitrary scalar lagrangian L{~) under in­

finitesimal gauge transformations is given by 

6 ( 1 L) = ~r ( t~ ~ L) I 21 I 



~ 
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Hence the action is invariant only if the boundary term 

'b<;(q>l = ~ ct<Jr '<~ ~ LCQ>) 
oH 

vanishes for arbitrary parameters£~, i.e., if the state~ 

satisfies the boundary condition 

l cq>) I 
'll1 

0 

In the case of the Einstein action with cosmological term, 

L- t'R-1\ 

the equations of motions yield 

'R = 4 (\ 

For Lorerttz signature of the metric there always exists a 

boundary dM either at t=± oo or r = ""· Hence eqs. (23) and (25) 

imply: 

{\ 0 

We conclude that a gauge invariant ground state exists only for 

vanishing cosmological constant. 

(22) 

( 23) 

(24) 

(2 5) 

(26) 

A cosmological term yields a covariantly constant contribution 

to the energy momentum tensor, which is the source of the gravi­

tational field. The breaking ,of gaug~ invariance through a 

cosmological term is analogous to the breaking of gauge in­

variance in electrodynamics thr?ugh an external current. The 

variation of the action 
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'>:[A l \ d\ (- ~ 
H 

F F~' - - A~) 
~'" lr 

under a gauge transformation OAU CIUA is given by 

~\(Al - \ dvr 'A / 
'IN 

which, for arbitrary A(x), is zero only if the current 

vanishes at the boundary. This is known [6] to be a con­

sistency requirement for the quantization of the electro­

magnetic field. In particular a constant external current 

is excluded. 

We have shown that the gravitational field can be consistently 

quantized in a new class of gauges in which the volume element 

(27) 

(28) 

is fixed. These gauges give rise to the question whether the 

cosmological constant breaks gauge invarianc~. An investigation 

of boundary terms shows that this is indeed the case and that the 

existence of a gauge invariant ground state requires vanishing 

cosmological constant. This suggests that the observed flatness 

of space-time may be understood as a consequence of gauge in­

variance. 
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