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Abstract 

In the following report we describe a method for calculating the envelope of a particle 
bunch in linear coupled storage rings and transport systems in the presence of transverse 
and longitudinal space charge forces using the (canonical) variables x, Px, z, Pz, IJ" = 
s- vo · t, p~ = /';E /Eo of the fully six-dimensional formalism. This work is an extension 
of earlier calculations on transverse space charge forces [1] to include the synchrotron 
oscillations. The extension is achieved by defining a 6-dimensional ellipsoid in the 2: -

Px- z- Pz - IJ"- p~ space. The motion of this ellipsoid under the influence of the external 
fields and the instantaneous space charge forces c.an be described by six generating orbit 
vectors which can be combined into a 6-dimensional matrix B(s). This "bunch -shape 
matrix", B( s ), contains complete information about the configuration of the bunch. The 
solution of the equations of motion is carried through in the thin lens approximation. The 
formalism can also encompass acceleration by cavity fields. 
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1 Introduction 

In DESY report 87-161 we described a technique for calculating the beam envelope in 

a storage ring when transverse space charge forces are taken into account [1]. The method 

consists of calculating the motion of the 5-dimensional ellipsoid in x - p, - z - Pz - t:.pjp 
space. The beam envelope at each place in the ring is obtained by projecting this ellipsoid 

on the x - z, X - Pz and z - Pz planes. 
In that paper we dealt only with transverse (betatron) oscillations. In this paper we 

include the longitudinal space charge forces and the general case of coupled synchro-betatron 

motion using the 6-dimensional canonical formalism of particles with arbitrary average speed 

v0 that was developed in Desy report 87-036 [2]. 

2 The Equations of Motion 

The investigation of synchro-betatron oscillations in the presence of space charge forces 

begins with a statement of the equations of motion. We will use the same variables as those 

in Ref. 2: x, z, cr = s - v 0 • t and 'rJ = t:.E / E 0 , where x and z describe the amplitude of trans
verse motion (betatron oscillations), while cr and 'rJ describe the longitudinal (synchrotron) 
oscillations. The quantity cr defines the longitudinal separation of particles from the centre 

of the bunch. 
The equations for transverse motion have already been given in Ref. 1. They are : 

with 

and 

" X 

z" 

-G,·x+(N+H')·z+2H·z'+ 
1 2 ·F:e~1 +K.·f(ry); 

/o. mo. Vo 

-G2·z+(N-H')·x-2H·x'+ 
1 

2 
·F:e~'+Kz·f(ry) 

/o. mo. Vo 

N = ~. _e_. (8B, _ 8Bz) 
2 Po . c ax {)z z=z=O 

H 

g 

f(ry) 
p- Po t:.p 1 1 
:____-__:c = - = - · y ( 1 + 'rJ )2 - ( moc 2 /Eo )2 - 1 

Po Po f3o 

2 

(2.1a) 

(2.1 b) 

(2.2a) 

(2.2b) 

(2.2c) 

(2.3) 

(2.4) 



and where F;elf and F;elf are the space charge forces in the x and z directions. 

In the following we put 

1 . F'e!f F F ------,;-2 :r .x:r . X + :rz • Z ; 

/o · mo · v0 

(2.5a) 

1 ·F"lf - F F ------,;-2 Z Z:t! • X + :Z:Z • z 
/o. mo. Vo 

(2.5b) 

where F •• , F"" F,., F" are introduced in chapter 4. For now, we only need to use the fact 

that 
(2.6) 

The quantity f( 1/) in eqn. (2.1) can be developed in a power series in ry: 

1 
f(ry) = j'(O) ·TJ + 2 · J"(O) ·TJ2 + ... (2. 7) 

with 

J'(ry) 
1 1+ry 1 E 1 
-· =-·-=--; 
f3o J(l + ry)2- (moc2/Eo)2 f3o p. c f3o. f3 

(2.8a) 

=? j'(O) = ;6 ; (2.8b) 

[ 2rl/2 1 2 moc2 
f"(ry) - f3o. (l+ry) - (Eo) 

1 2 2 moc2 [ 2r3/2 
-f3o ·(l+ry). (1 +TJ)- (To) 

1 Eo 1 
(2.9a) --·-·--. 

f3o E f3312 ' 

=} f"(O) = - • 1 2 
f3o · lo 

( 2.9b) 

To obtain the equations for longitudinal motion we recall that the field in a cavity can be 

written in terms of cr as 

271" 
£Cavity= V(s) · sin[k · L · cr + 'P]; (2.10) 

'P = 0, 7!" for protons. 

Writing the longitudinal space charge forces as 

}:_Foelf = F (s). cr 
Eo $ (f 

(2.11) 

the equation for the variation of 1) is: 

1 eV(s) 271" 
1) = -- ·cos <p • k · - · cr +Fa( s) · cr . 

Eo L 
(2.12) 
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The calculation of Ji'~ is given in chapter 4. 

The variation of u == s - v0 • t( s) is given by : 

With the relatio~ 

dt 
u' = 1 - v0 • ds ; 

dt 
dl 

v 
dl = ds · [1 + K, · x + K, · z + ... ] ; 

, Vo [ ] = u = 1 - - . 1 + K, . X + K, . z + ... . 
v 

Vo 
j3~ . J'( 1)) ; = 

v 

f'('7) = j'(O) + '7 · j"(O) + ... 
1 1 

- j32 - 1) • j34 2 + ... ' 
o o · l'o 

from (2.8) and (2.9) we then obtain in linear approximation: 

t 1 ) u = -- . 1) - (K . X + K . z az 2 z z • 
1-'ol'o 

(2.13) 

(2.14) 

Equations (2.1 ), (2.12) and (2.14) provide a complete description of transverse and longi
tudinal motion in the presence of space charge forces. 

To proceed further, it will be useful to write these equations in canonical form : 

using the Hamiltonian 

il = 

t ail t aH 
X p, =-ax ; ap, 

t aH t aH z Pz =- az ; ap, 
t ail t aH u 

ap~ 
; Pa =-au 

1 1 2 
a 2 2 • -

2
p"- (K, · x + K, · z) · P~ 

1-'ol'o 
1 e V ( s) 21!" 2 1 2 -- · -- · k · - · cos 'P · u - - F ( s) · u 
2 E0 L 2 " 

+ 2~J · { [p, + j3~ · H · zr + [p,- j3~ · H · xn 
1 2 [ 2 2 l +zf3o · G1 · x + G2 · z - 2N · xz 

12[ 2 2] -2/30 • F,, · x + 2F., · xz + F,, . z 

4 

(2.15) 



By eliminating the quantities p, and p 2 from the resulting canonical equations 

xl 

I 
P, 

I z -

I 

Pz 

ul 

I 

Pu 

and putting 

;5 [Px + (3~ · H · z] ; 
K, · Pu + [Pz- (3~ · H · x]· H- (3~ · [G1 ·X- N · Z- F,, ·X- F .. · z] ; 

;
5 

[Pz - (3~ · H · x] ; 
Kz. Pu- [Px + f36. H. z]· H- f36. [G2. z- N. X- F ... X- Fu. z] ; 

1 

(32 2 ·Pu-(K,·x+Kz·z); 
o1'o 

eV(s) 211' --e;- · k · L · costp · u + Fu(s) · u 

Pu = 1J ' 

(2.16) 

(2.17) 

we recover the equations (2.1), (2.2) and (2.14) with the help of (2.6) provided the linear 

approximation 

is valid. 

1 
f(1J)=f35·1) 

Since the equations of motion are linear they can be solved in the form 

y(s) = M(s,so) y(so) 

with 

X 

Px 
z 

y= 
Pz 
(j 

Pu 

(2.18) 

(2.19) 

Because the variables x, p., z, p., u, Pu are canonical, the transfer matrix M( s, s0 ) is symplectic[1 ]: 

MT(s, s0 ) • [}_ • M(s, so)= [i (2.20a) 

where 

0 -1 0 0 0 0 

1 0 0 0 0 0 

[i= 
0 0 0 -1 0 0 

0 0 1 0 0 0 
(2.20b) 

0 0 0 0 0 -1 

0 0 0 0 1 0 

In order to construct the matrix M(s,s 0 ), the quantities F,., F,., F .. , F22 and Fu of 

(2.16) which describe the self induced space charge forces F;<~t, F;•lf and F;elt must be 

known. This is the topic of the next chapter. 
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3 The Beam Envelopes 

3.1 The six dimensional ellipsoid in x- Pz- z- Pz- u- Pa space 

To obtain the space charge forces we must know the particle distribution. 
We will assume that at the start point, s0 , the ensemble is distributed on the surface of a 

six dimensional ellipsoid in x - p, - z - Pz - cr - Pu space of the form 

il( so; 'f!, X, fl I, fl II, fl III) = cos 'f! · cos X · [ill (so) · cos fl I + il2 (so) · sin fl I] + 

cos <p ·sin X · [Y3( s0 ) ·cos fin+ i/4( s0 ) ·sin flrr] + 

sincp ·[fl.( so)· cosflw + fls(so) · sin.Sm] 

This ellipsoid can be spanned by six linearly independent vectors 

Yk = 

Ykl 

Yk2 

Yk3 

Yk< 
Yks 
Yk6 

(k = 1,2,3,4,5,6) 

which are defined by the starting shape of the ellipsoid. 
The corresponding vector il at position, s, is given by 

where 

il( S; 'P, X, b I, b II, b III) = cos 'f! · cos X · [ill ( s) · cos b I + ilz ( S) · sin b I] + 

coscp · sinx · [il3(s) · cosfln + !h(s) ·sin orr]+ 

sin <p • [fl.(s) ·cos flw + fls(s) ·sin .Sm] 

(3.1) 

(3.2) 

(3.3) 

Yi<(s) = M(s,s 0 ) Yi<(so); (k = 1,2,3,4,5,6). (3.4) 

Thus the ellipsoid remains an ellipsoid. 
The beam envelopes can then be obtained by projecting the ellipsoid of eqn. (3.3) on the 

individual phase planes. 

3.2 The projections of the six dimensional ellipsoid 

To define the projections we first of all write the ellipsoid (3.3) in eomponent form: 

cos <p • cos X · [y11 ( s) · cos b I + Y21 ( s) · sin 0 I] + 

cos <p ·sin X· [Y31(s) ·cos Dn + Y41(s) ·sin .Srr] + 

sincp · [Ysl(s) · cosbrrr + Y61(s) ·sin bin] ; 

cos 'f! · cos X · [Yl2 ( s) · cos b I + Y22 ( s) · sin b I] + 

coscp · sinx · [y32(s) · cosbrr + Y<2(s) · sinfln] + 

sincp · [Ysz(s) · cos.Sni + YBz(s) · sinflni] 

6 
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z(s; <p, x, or, Ou, Our) 

cr( s; <p, x, Or, Ou, Our) 

P• ( s; 'P, X, 0 I, 0 II, 0 II I) 

cos 'P · cos X · [Y13 ( s) · cos 0 I + Y23 ( s) · sino I] + 

cos<p · sinx · [Y3s(s) ·cos on+ y43(s) · sinou] + 

sin<p · [Ys3(s) ·cos ow+ Yes(s) ·sin ow] ; 

cos <p • cos X · [y14 ( s) · cos 0 I + Yz4 ( s) · sin 0 I] + 

cos <p ·sin X· [Y34(s) ·cos 8u + Y44(s) ·sin ou] + 

sin <p · [Ys4 ( s) · cos 8 III + Y64 ( s) · sin 8 III] ; 

cos <p · cos X · [Yls ( s) · cos o I + Yzs ( s) · sino I] + 

cos <p · sin X • [Y3s( s) · cos o II + Y4s ( s) · sin o II] + 

sin<p · [Yss(s) ·cos Our+ Yes(s) ·sin our] ;. 

cos <p • cos X · [Yle ( s) · cos 0 I + Yze ( s) · sin 8 I] + 

cos<p · sinx · [Y3e(s) · cosou + Y4e(s) · sin.Su] + 

sin<p · [Yse(s) · cos.Sm + Yee(s) · sin.Sm] . 

( 3.5c) 

(3.5d) 

(3.5e) 

(3.5f) 

The computation of the single projections is then similar to that in Ref. 1 in which the 

functional relationship between pairs of components was investigated. 

Since the details of the method have already been given in Refs. 1 and 3 only a summary 

will be needed here. 

3.2.1 Projection on the x - z plane. 

We first investigate the projection on the x ·- z plane. This describes the beam cross 

section. We will need the maximum amplitude in the x and z directions. 

a) Maximum oscillation amplitude in the x direction: 

Using the relation 

M ax('P) {A. cos 'P +B. sin 'P} = vA 2 + BZ 

and eqn. (3.5a), the largest possible x amplitude is 

Max('P.xh.oiihiii x(s;<p,x,.Sr,ou,8w) = )yf1 +yi1 +yj1 +yl1 +Yl1 +yi1 = E.(s). (3.6) 

This occurs for the values: 

YZl 
sin 8 I = -r=='=== 

jyf, + Yi1 

. , Y41 
Slll u II = -r=='=== 

jyj, + Yl1 
Y51 

cos .Sur = -r=== 
VYl1 + Yi, 

7 



b~l + Y~t 
Sin ip = ----r====~======== 

VYft + Yit + Y5t + Ylt + Y~I + Y~I 
(3.7) 

The corresponding z coordinate is given by eqn. (3.5c) together with eqn. (3.9): 

1 
G.= E.(s) · {Yn · Yt3 + Yn · Y23 + Y3t · Y33 + Yn · Y•3 + Yst · Ys3 + Yat · Ya3} (3.8) 

b) Maximum oscillation amplitude in the z direction: 
Correspondingly, the maximum amplitude in the z-direction is obtained from eqn. (3.5c): 

The accompanying x-coordinate is then: 

1 
Gx = Ez(s) · {Yn · Yt3 + Y21 · Y23 + Y3t · Y33 + Y4t · Y•3 + Yst · Ys3 + Yat· Ys3} (3.10) 

Thus 

(3.11) 

d) The boundary curve of the beam cross section. 
The projections of the ellipsoid (3.5) are ellipses, and these are described by the three 

independent quantities E., G., Ez. The parameter Gz depends on the other three (see eqn. 
(3.11)). In terms of E., G,, Ex. the ellipse can be written as: 

(3.12a) 

with 

(3.12b) 

and where 7r£,z is the area of the ellipse. 
The half axes E 1 and E 2 of the elliptical beam cross section are: 

(3.13) 

8 



and the twist angle () of the beam is given by: 

3.2.2 

tan 
() _ 2E.G. 

2 - E2-E2 
• • 

\ 
\ 
\ 

Ex __ .., 

\ 
\ 

Projection on the x - fi plane. 

(3.14) 

Fig. 1 

To find the projection of the ellipsoid (3.3) onto the x- fi plane we need equations (3.5a) 

and (3.5e). Since these have the same general form as eqns. (3.5a) and (3.5c), we can obtain 

the projections using exactly the same methods as in the previous section. 

The boundary curve of the elliptical projection on the x - fi plane is: 

(3.15) 

with 

(3.16a) 
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1 
Eu · {Yn • Y1s + Yn · Y2s + Y31 · Y3s + Yn · Y•s + Ys1 · Yss + Ye1 · Yad ; (3.16b) 

- Eu · VE';- (G~z))2 • (3.16c) 

The meaning of Eu and G~z) is explained by Fig.2. 7rfuz is the area of the ellipse (3.15). 

Ex 

- --
--

\ 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 

3.2.3 Projection on the z - u plane. 

X 

---
I 
I 
I 
I 

I 
I 

CT 

Fig. 2 

Finally, the projection of the ellipsoid on the z- u plane (see Fig.3) has the boundary 
curve: 

E 2 2 2E G<•l E2 2 _ 2 z " U - q q • (/ Z + 0' " Z - f.O'Z 

with 

1 
- Eu · {Yl3 · Y1s + Y23 · Yzs + Y33 · Y3s + Y<3 · Y•• + Ys3 · Yss + Ye3 ·Yes} 

Euz = Eu·VE'f.-(G~z))2 

(7rEuz is the area of the ellipse (3.17)). 

10 

(3.17) 

; (3.18a) 

(3.18b) 



Now that we have the projections of the ellipsoid on all three planes we can calculate the 

space charge forces. We assume that the particle distribution is uniform in the x-z-s space. 

\ z 
\ 
\ 
\ 
\ 
\ 
\ 

--------Ez --
-- -- G!;l ---- 9za ------ a ---- \ ------ -- \ ---- \ -- ----- \ 

\ 
\ 
\ 
\ Ea \ 

\ 
\ Fig. 3 I 

4 Calculation of Space Charge Forces 

In calculating the space charge forces, we assume that the synchro-betatron c.oupling is 

small and we therefore ignore the twist angles ()zq and ()zq of the bunch with respect to the 

rJ axis (Fig. 2, 3). 
Since (see chapter 2) the variable rJ describes the distance of a particle from the centre of 

the bunch, then Eq describes the half length of the bunch in the laboratory system. E 1 and 

E 2 describe the transverse bunch extensions. 
The whole bunch can now be represented by a three dimensional ellipsoid which, m " 

rotated (x, z, ry) coordinate system (see Fig.l), can be described by the equation 

( 4.1) 

11 



in the laboratory system and by the equation 
x2 z2 uz 
E z + E2 + ( E )2 = 1 

1 2 /'O • u 
(4.2) 

in the rest system of the bunch ( u = /'o · o- describes the longitudinal coordinate in the rest 
system) . 

Now for a uniform charge distribution in the (rest system) ellipsoid 

e ,2 (2 
z-+b2 +z-=1, (4.3a) 
a c 

the potential inside is given by [4] 

with 

U =-A· e- B · ry 2
- C · ( 2 + D 

A = 1l"abc . p . roo dT . 
Jo (a2 + 7 ). ;;r;J' 

B = 1l"abc . p . roo dT . 
lo (b2 + 7 ). j;i;} ' 

C = 1!"abc . p • roo dT . 
Jo (c2 + T). j;i;} ' 

D 1l"abc . p . roo dT ; 
•lo j;i;} 

( a 2 + T) · w + T) · ( c2 + T) ; 

(p = charge density). 

The total charge in the bunch is 

Thus comparing ( 4.2) and ( 4.3) the space charge force in the rest system is 

with 

Il 

I2 = 

I, -

'if;( T) = 

pjO) 
z 

p(O) 

' 

3 
zeQ · I 1 · x; 

3 -
-zeQ · I2 · z ; 

3 
-eQ · I 3 • u 
2 

!ooo dT 
0 (Ef + T). ji[;) ' 

!ooo dT 
0 (Ei + T). /i{;) ' 

!ooo dT 
0 ( 1'5 . E; + T) . /i{;) ' 

( Ei + T) . ( Ei + T) . b5 E; + T) . 
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( 4.5a) 

(4.5b) 

( 4.5c) 

(4.6) 



The terms 11 , 12 , ! 3 can be expressed in terms of elliptical integrals of the second kind. 

As shown in Appendix A, if 

l 1,l2 ,l3 can be calculated approximately by analytical means. 
We now Lorentz transform to the laboratory frame to obtain the forces 

F, 

!._. F(O) . 
;; ' 'Yo 

!._. F!O) . 
z ' 'Yo 

F(O) 

' 
so that the space charge forces in the laboratory system are 

F~elf 1 3 
= - · -eQ · l 1 · x ; X 

'Yo 2 

F!elf 1 3 
= - · -eQ · l 2 • z ; z 

'Yo 2 

F'elf 
' 

3 
2 eQ · l3 · 'Yo · 17 , 

where in (4.7c) we use the relation (Lorentz contraction): 

if = 'Yo . O" • 

The components of space charge force in x and z directions are 

F:elf cos e · F;; - sine · F; 

!._ · ~eQ · [x · (I1 cos2 9 +l2 sin2 9) + z · sin0cos9 · (l1 - l 2 )] 
'Yo 2 

F:elf = sine · F;; + cos e · F, 

!._ · ~eQ · [x ·sin 9 cos()· (11 - l 2 ) + z · (11 sin2 9 + l 2 cos2 B)] 
'Yo 2 

(4.7a) 

( 4. 7b) 

( 4.7c) 

( 4.8a) 

( 4.8b) 

By comparing eqn. (4.7c) and eqns. (4.8a,b) with (2.11) and (2.5a,b) we finally obtain 

3 1 [ 2 2 l - eQ · 2 2 · l 1 cos 9 + [2 sin 9) 
2 'Yo· mov0 

3 1 [ 2 2 l - eQ · 2 2 · l 1 sin e + l 2 cos 9) 
2 'Yo· mov0 

3 1 
-eQ · 2 2 ·sin9cos0 · (!1 - l 2 ) 
2 'Yo· mov0 

Fz~; 

3 'Yo 
Fu - -eQ · - · l3 . 

2 Eo 

13 

( 4.9a) 

(4.9b) 

( 4.9c) 

( 4.9d) 



The angle(} is defined by eqn. (3.14) and the quantities 11 , Iz and !3 by eqn. ( 4.6). 
In particular, we see that eqn. ( 4.9c) reproduces eqn. (2.6) which was used to derive the 

Hamiltonian (2.15). 
Equation (4.9) can now be used together with eqn. (2.16) (and with the help of (3.6), 

(3.8), (3.9), (3.16a), (3.13) and (3.14)) to obtain explicit forms for the (canonical) equations 
of motion under the influence of both external and space charge effects. 

Remark: 

In eqn. ( 4.8) the effects of orbit curvature described in Ref. 5 are not included but the 
linear part of these additional forces could be easily incorporated. Linear wakefield effects 
could be taken into account in the same way. 

5 Solution of the Equations of Motion 

The solution of these equations will be obtained in transport matrix form. We write 

with 

A12 

At3 

An 

A23 

Az4 
Az6 

A3t 

A34 

A41 
A4z 
A43 

A46 
Ast 

As, 

As6 

A6s 

Aik 

d - ( ) -dsy =A s . y 

1 

!36' 
+H; 

-!36 · [at- F •• + H 2
] 

+f36 · [N +F.,] 
= +H; 

K:r ; 

-H; 
1 
-· 
!36 ' 
+f36 · [N + F.,] 
-H; 

-!36 · [Gz -- Fzz + H 2
] 

!36 . 16 
eV(s) 211" 
-- . k . - . cos ,o + F · 

Eo L ,- " ' 
0 otherwise . 

We solve eqn. (5.1) using thin lens approximation [1]. 
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Using notation similar to that of Ref. 1, we obtain for the transfer matrix 

M(s + lls,s) = Mv (s + ils,s + ~s) · [1 + C(s) · lls]· R(l.\0) · Mv (s + ~s ,s) (5.3) 

with 

C(s) A(s)- D- F; (5.4a) 

0 1 0 0 0 0 
0 0 0 0 0 0 

D 
1 0 0 0 1 0 0 

!3( 0 0 0 0 0 0 
(5.4b) 

0 0 0 0 0 1/rg 
0 0 0 0 0 0 

0 0 1 0 0 0 
0 0 0 1 0 0 

F H· 
-1 0 0 0 0 0 

0 -1 0 0 0 0 
(5.4c) 

0 0 0 0 0 0 

0 0 0 0 0 0 

Mv(s+l,s) = l+l·D; (5.4d) 

(transfer matrix for a simple drift space of length 1) ; 

cosl.\0 0 +sinl.\0 0 0 0 
0 cosl.\0 0 +sinl.\0 0 0 

R(ll<~) = -sinl.\0 0 cosl.\0 0 0 0 
( 5.4e) 

0 -sinl.\0 0 cosl.\0 0 0 
0 0 0 0 1 0 
0 0 0 0 0 1 

(l.\0 = H · lls). 

As in Ref. 1, this thin lens form is symplectic and the matrix A depends on the shape of 
the bunch. The latter depends on the generating orbit vectors ~ ( k = 1, 2, 3, 4, 5, 6) which 
change during the motion of the bunch according to the equation [1] 

(5.5) 

Periodic solutions must be obtained by self consistent iteration [1]. 
Finally, we point out that the 6 equations ( 5.5) for the generating vectors ~ ( k = 1 - 6) 

can be handled in a compact way by introducing the "bunch-shape matrix" 

B = (y"i,y2,y3,y4.,y5,y6) (5.6) 

so that 
B(s + lls,s) = M(s + lls,s) · B(s). (5. 7) 

Acceleration by a cavity field is described in Appendix B. 
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6 Summary 

We have investigated the influence of longitudinal and transverse space charge forces 
on the motion of charged particles in storage rings and transport systems by a simultanous 
treatment of synchrotron and betatron oscillations. 

The motion is described in terms of the fully six-dimensional formalism with the canonical 
variables x, p., z, p" <T = s - Vo · t, Pu = !:>.E /Eo. 

In order to describe the bunch we have introduced a 6-dimensional ellipsoid in the x -

Px- z- Pz- <T- Pu space represented by the "bunch-shape matrix", B(s), which contains 
as columns, six independent orbit vectors. As in Ref. 1, this matrix B(s) contains complete 
information about the configuration of the bunch at the point s and can be obtained by 
matrix multiplication with the transfer matrix M. 

In thin lens approximation the matrix takes a simple form which can be conveniently 
coded for computer. 

The equations so derived could be used for studying beam transport in DESY III . 
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Appendix A: Calculation of the Space Charge Integrals 

!1, Iz, !3 

In order to calculate the space charge integrals I 1 , I 2 ,13 of eqn. ( 4.6) we assume that 

E3 = roEu > E,,E2 

In this case, for I 1 we may write (approximately): 

1 { 00 dr 
I,"= E3 "Jo (Ef+r)·V(Ef+r)·(E?+r) 

With the substitution 

2 E2 f = T + 2 

we get 

2 1.00 dt 
I, "'" E3. E, Jt2 + Ef- El 

2 

Ef ~ Ei . [ Jt 2 + ~f - E?] :, E3 

2 1 
= 

E3 E1(E, + E2) 
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12 can be obtained in the same way: 

2 1 
Iz "=' - • -.,----.,-

E3 Ez(E1 + Ez) 
(A.5) 

Finally, also using assumption ( A.1 ): 

1 {E' dT 
13

"" E~ . lo j(Ei + T) · (Ei + T) 
(A.6) 

or with the substitution (A.3): 

(A.7) 

Appendix B: The Acceleration Process 

In the solution of the equations of motion we assumed that the average energy E0 remained 

constant i.e. that the cavity phase was either set at 0 or 7r so that no acceleration took place 

(see eqn. (2.10). 
To describe the acceleration process we now consider the case where 

sin<p f 0, 7r. 

In linear approximation, the cavity field <cavity varies as 

<cavity= V(s)sin<p + V(s)cos<p · k. 
2
;. tj' 

and if the cavity is point like at s = s0 : 

V(s)=V·b(s-s 0 ) 

the energy gain is 

(B.1) 

(B.2) 

0 0 27r 
E( s + s0 ) - E( s - s0 ) = eV sin <p + e V cos <p · k · L · (j( s0 - 0). (B.3) 

The average energy gain is thus 

so that we can put : 

Eo(so+O) 

Po(so+O) 

vo(so+O) 

!lEo = e V · sin <p, 

Eo( so- 0) +!lEo; 

= J :2 • E5(so + 0)- moc2 
; 

c2 ·po(so+O) 

Eo( so+ 0) 
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(B.5) 
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(B.7) 



Writing the variable 

O"(s) = s- v0 • t(s) 

in the form 

O"(s) = v0 (s) · [to(s)- t(s)] 

( t0 ( s) is the time for the synchronous particle) and recalling that t 0 ( s) and t( s) are continous 

fundions : 

we then obtain 

to(so+O) 

t(s0 +0) 

to(so-0); 

= t(so-0) 

vo(so+O) 
O"( so + 0) = ( ) · O"( so - 0) . 

Vo so- 0 

Furthermore, using (B.3), (B.4) and (B.5) we find that 

E(s0 + 0)- Eo( so+ 0) 
7J(so+O) = 

Eo(so+O) 

(B.8) 

1 [ • 271" l = · E0 (s 0 - 0) · 7J(so- 0) + eV · cos<p · k ·- · O"(s0 - 0). (B.9) 
Eo( so+ 0) L 

For the variables x, x', z, z' of the transverse motions we have (see Ref. 2) : 

x(s0 +0) x(s0 -0); (B.10a) 

x'(so + 0) = Po( so- 0) . x'(so _ O) . 
Po(so+O) ' 

(B.10b) 

z(s0 +0) z( so - 0) ; (B.lOc) 

z'(so + 0) Po( so- 0). z'(so _ O) . 
Po(so+O) 

(B.10d) 

Equations (B.8), (B.9) and (B.10) can now be collected together in matrix form to give 

where 

fl(s + 0) = M Cavity( so+ 0, So- 0) · fl(s- 0) 

Mcavity(so + O,so- 0) 

Mu 

Mss 

((M;k)) ; 

1 ; 

Po(so-0) 
Po(so+O) 
1 ; 

= Mz2; 
vo(so- 0) 
vo(so+O) 

e V 271" 
-=c-c----c . cos 'P . k . - . 
Eo(so+O) L ' 

= Eo(so-0). 
Eo(so+O)' 

= 0 otherwise 
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(B.ll) 
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and where Eo( so+ O),p0(s 0 + O),v0 (s 0 + 0) can be taken from eqns. (A.5), (A.6) and (A.7). 
In particular we get for the generating vectors Yk ( s) of the 6-dimensional ellipsoid : 

Yk(so) +0) = Mcavity(so +O,so- 0) ·'Yk(so)- 0); 

(k = 1,2,3,4,5,6) 

In the variables ( x, x', z, z') the transfer matrix 

Mcavity(so + O,so- 0) 

(B.13) 

is no longer symplectic and transverse damping occurs in x, x', z, z' space. For a symplectic 
treatment of the acceleration process within the framework of a non-linear theory see Ref. 6 
and 7. 

The transfer matrices for the magnetic lenses remain as in chapter 5 . 
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