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Abstract 

Fermionic propagators and the Wilson loop of the gauge invariant chiral Schwinger 

model are compared with their counterparts in the Schwinger model. It is made 

evident that in the chiral Schwinger model the charges are also shielded as in 

the ordinary Schwinger model. Furthermore we show that the Schwinger model can be 

reformulated in such a way that it becomes the chiral Schwinger model endowed 

with a special regularization scheme. 
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I. Introduction 

In the last years the chiral Schwinger model (CSM) has been proven to be an 

example for a theory which is consistent in spite of being anomalous /1/. The 

CSM has been treated in two different approaches: the original "anomalous" formu

lation /1 - 10/ and the "gauge invariant" formulation /7 - 15/. They differ in the 

existence of a Wess-Zumino scalar e in the latter which renders the theory gauge 

invariant /11, 16, 17/. later it has been shown that the two formulations are not 

very different, the "anomalous" formulation turned out to be a special gauge of 

the gauge invariant formulation, namely the e "' 0 gauge /13/. 

Though there have been many investigations in the CSM /1 - 15/, as well as in 

its nonabelian extension /18- 21/, the physics of the model is still unclear. The 

reason is that most of the treatments use the bosonized version of the model, which 

is not suitable to uncover the behaviour of the fermions. In the ordinary Schwinger 

model (SM) the most interesting feature is the complete shielding of charges /22-25/. 

Therefore it is desirable to know how the fermions behave in the CSM, too. 

There are some efforts to clarify this point. In ref. /3/ the exact fermion 

propagator has been calculated in the "anomalous" formulation. The result suggests. 

the existence of asymptotically free charges (i.e. no screening), in contradistinc

tion with the SM. In this ref. the calculated propagator is considered physical, 

because it is thought to belong to a theory without gauge invariance. However, in 

our opinion the "anomalous" formulation is just a specific gauge of a gauge in

variant theory. Hence it is not allowed to draw physical conclusions from the 

* fermion propagator which is a gauge dependent object In fact, we are going to 

show that screening occurs also in the CSM. In ref. /6/ evidence is given to a 

confining character of the CSM in a specific regularization (a = D). Since the 

* The same feature has been observed in the SM: the fermion propagators suggest 
different behaviour in different gauges /4/, 
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operator solution of the model with a"' 0 is inconsistent /2/,wedo not want to con

sider this case. Instead, we confine ourselves to regularizations which are un-

doutedly reasonable, namely a> 1. After completion of the present work we noticed 

a paper by Miyake and Shizuya /26/, who investigated the fermions in the CSf.l. They used 

the operator solution of the model in its bosonized form to reconstruct the fermions 

from the bose fields. Their conclusion (namely that there is shielding) coincides 

with ours, however, we consider their argument not to be totally convincing (see 

below) o 

It is the purpose of the present paper to study the fermion behaviour from the 

path-integral point of view. To this aim we investigate gauge dependent and gauge 

invariant fermion propagators and the Wilson loop. We use the striking similarity 

of the results in the SM and the CSM to conclude that the charged fermions behave 

in the same way in both models, i.e. that charges are shielded. This statement is 

also supported by the close relationship between the SM and the CSM, which we are 

going to establish. 

This paper is organized as follows: in section II we explain the models and set 

up our notation. In section Ill the fermion two point functions are calculated. We 

present the calculation for the SM and explain how this has to be modified to reach 

the corresponding results for the CSM. In section IV we show that the Wilson loops 

of the two models coincide and in section V we demonstrate that the SM may be re-

formulated in such a way it looks like the CSM with a special regularization. 

Section VI contains the conclusions. 
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II. The Schwinger Model and the Chiral Schwinger Model 

Classically, the models are defined by their classical actions. Upon quantization, 

it is also necessary to fix the fermionic measure for the specification of the 

model. In the SM, having no anomaly, it is fixed by the requirement of gauge in

variance /27/, In the CSM, suc·h a requirement cannot be ful'filled. Hence quanti

zation of the fermions spoils gauge invaria·nce. A detailed analysis of the Faddeev

Popov procedure has shown that gauge invariance automatically is restored by the 

quantization of the gauge fie 1 d /11, 16, 17/. The mechanism i. s such that the gauge 

degree of freedom contained in the gauge field becomes alive as a Wess-Zumino 

scalar field, which cancels the fermionic anomaly. In this way the classical action 

of an apparently anomalous theory is modified by a Wess-Zumino term at the quantum 

level, leading to an anomaly free quantum theory. This quantum action iS called 

the standard action /11/. 

Our notation is: 

1oo -=-~.," £
01

=- ! 01 = 1 

P. 
• 0 

LR=r(1 t•rr> 
' 

:!: 
y "' 
1'-

y,.: 'or'y' 

(1) 
~ l ( q '!:. E ) •/" 

I,I'V ;~<» ..r J 

where X is an arbitrary vector. In this notation the models are specified by the 

actions: 

s"'. Sf-£ 5.vF"'v+"tr,.(<'J"'+eA-")'7f I r/.
2 

)I 
( 2) 

J 

r;"SH= f[ -~ f5..F'"u + 1i rl" ( i ~I<+ e A'" PL. )1!. 
( 3) 

- ~;; (} 0@ + ~~(} ?- [(a-<) r"v+ {)'V J A,} d.' X 
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where the CSM is endowed with a regularization prescription which renders the 

theory gauge invariant. Note that this is only possible in the "gauge invariant" 

fonnulation, where the Wess-Zumino field is present. The parameter "a" in the 

standard action of the CSM reflects the ambiguity in the definition of the fermi-

onic measure /28- 32/. It also occurs in the Wess-Zumino action since this is 

just the Jacobian for a transformation of the Fermions with e as (finite) para

meter /11/. The generating functionals for the models read 

ZSH = fdA d. 1j d.'ii 
, c s'"+ s~.> 

e 

'Z<'JN = { d A d(J d.1i d. if 
,rs""+ s~,> 

e 

(4) 

(5) 

Here SGF denotes the gauge fixing part of the action. For reasons of comparison 

we assume the same gauge fixing condition for both models. 

In two dimensions it is possible to write Aft in terms of two scalar fields 

according to 

~ ,., 
Al'~e(~,V+ ~,;;> !') (6) 

The fermions can be integrated out by rotating the interaction away via the trans-

formation: 

SH : X= 
- < 10-iJ'r f') 

e 't X:="re 
i (V'+ <trf> 

(7) 

C'SH: 
_, (r--fJ PL i(r;--P)PH 

x:~ e 'I :1::'" "1: e (8) 
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Inserting this into the fermionic actions shows that )( is a free (noninteracting) 

fermion field. The resulting effective actions are: 

'H ( [ < ' Soq [A]~ l -4 F,uv ( 1+ "; l F~'" + t .. ,] d'x (9) 

~SH -f[-!.. ;ov.J. e~ -«_ L - d)<~v - + s., [A,9]- 4 ~,F ITT AI' A lTT ~ a A, [H 

- ;;' o ae + f,_e :;_ [(a-•>f""+ E~'" J A.u J d 'x ( 10) 

As we pointed out above, the parameter a coming from the fermion integration has 

to coincide with the regularization parameter in the Wess-Zumino action. For our 

purpose it is allowed to integrate over the Wess-Zumino field, too. Then the effec

tive action for the CSM becomes very similar to eq. (9) /11/: 

{!fl., ....... 1. 

S.q [A]= fH ~, (1+;) F~''"' + tr;.F] d
1
x 

The masses in the SM and in the CSM are given by /33, 1/: 

t 

"" = 

~· 

e' .,. 

eta.'l 

m ~ 4 rr(a-<) 

(II) 

(12) 

(13) 

respectively. This means that the two actions (9) and (11) differ only in the 

masses m and m of the bose field. The effective actions may be used to read off 
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( 
_, ' 

the exact photon propagators, in the lorentz gauge 'lc.r: = U (~k") ) 

they are found to be 

~v " k :_' M z (~I'"- ~ •• 
with M2 = m2 (ffi2 ) in the SM (CSM). 

III. Fermion Two-Point Functions 

) - to{_ k<" k., 
kf 

(14) 

In this section we compare the fermion propagators of the CSM with those of the SM. 

We investigate the usual (gauge dependent) propagator as well as the gauge invariant 

propagators, where the fermions are connected by a string. In both cases we shall 

present the calculation for the SM as detailed as necessary in order to point out 

which ,modifications have to be made in the CSM. 

a) g~~g~-~~e~D~~D!_er2P~9~!2r 

As usual, the propagators are defined by: 

(;.rH(K-Y)"f" r rJ./1 d ~ d ii 
'( fH 

1f./K I ?flY/ e ' f + .s'._) (15) 

. ( ~"" 5' ) - - t ,J + c., 
(;.<'six·Y/JpfrJ.Atl.9d~d.~ "1-"(X)'I/,CY! e (16) 

Using the transformations of eqs. (7) and (8), respectively, these propagators can 

be calculated in terms of the free ones. Since these transformations are precisely 

the ones which have been used to calculate the effective actions, the propagators 

can be written as 
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Go (X-Y)"P SM 
( 

,·u--~·Yr-f')(K)) 

"G- 0
P-Yiy;r·fdA e "~' 

fH 
./.. -<a·•<Y'rf!Cr>) i~.q [II] 
\e lf e 

( 17) 

(;. (x-y) "().o(X-YI 'f d. A ( iC<r-f'>MP,) . 
cs11 "P yl e "Y 

· ( ( D CfH ·(_,IT-f) Yl'•) iJ'"/1 [A] 
e •r e 

( 18) 

The matrix character can be eliminated by projection onto left and right handed 

states: 

c;. L,. (Y- Yl : PL R c;. (X- y) p N L 
' ' 

( 19) 

the other components of G vanish. The right handed part of GCSM is just the free 

propagator, the left handed part (G~SM) is the same as G~M (with the appropriate 

rescaling of the mass). Hence it is sufficient to calculate the propagators for 

the SM: 

L,f? D'L k f 
(;.5HU-v>~G "cr-y! d.A 

<c~+ r1w -<!f':;r)(v> .- s:;;r,u 
e e e , (20) 

This can be evaluated following the lines of ref. /6/, where the left handed pro

pagator for the CSM is calculated in the 8 ~ 0 gauge. The result is a universal 

correction for the left and right handed propagator, in the Lorentz gauge it reads: 

r_ • r· ·ril'k (-' " )( _ ..... )} <rrH c tl " C: c n Rolf ' e -, ' ' ' + -- 1- e ( 21 l 47T lz (4-m) k' ' 
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For ~ = 0 this can already be found in Schwinger's paper /33/. As indicated 

above, eq. (21) implies for the CSM: 

c;.R en 
<'fH 

• c;.•;R(xJ' 

c;.c UJ•C.';LCKJP~•[ie'rd'kt _, ~~)(1-e-0."')1 
"r" ----r '~rr' r~·c•'-m'> k+ 1. 

(22) 

Eqs. (21) and (22) contain the exact fermion propagators of the SM and CSM, re

spectively. We want to note two observations concerning the CSM: Firstly. the right 

handed fermions remain free in spite of the fact that the regularization of the 

fermion determinant uses a coupling of the gauge field to the right handed fermion 

/29- 32/. Secondly, for the left handed fermions the only difference between the 

SM and the CSM is the modification of the gauge boson mass. Eqs. (17) and (18) show 

that the behaviour of the left handed fermions is only influenced by the effective 

features of the gauge field. In the CSM the interacting right handed fermions of 

the SM are m-imicked by the Wess-Zumino field. This leads to the similarity of the 

effective actions of both models, see eqs. (9) and (11). Hence it has to be expected 

that the left handed fermions in the CSM behave precisely in the same way as they 

do in the SM. This means that fermionic charges are shielded in the CSM, too, since 

they are shielded in the SM /23- 25/. 

For ~ = 0, eq. (22) has also been calculated in ref. /26/. There the behaviour 

for (x-y)2 ~-ao has been used as an argument for confinement. This, however, 

contradicts the interpretation of ref. /3/, where the fermio~ propagators (in e = 0 

gauge) has been shown to become the free one as (x-y) 2 --"" , suggesting the ex

istence of free left handed fermions. Therefore it seems to be in,sufficient to study 

the large x behaviour of the (gauge dependent) fermion propagator in order to draw 

physical conclusions. 
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b) g~~g~-i~~~~i~Q!_Pr2P~9~!2r 

The preceeding discussion leads us to look at gauge invariant objects. An example 

is built out of two fermi ons connected by a gauge string. In .the SM, this has been 

employed in the construction of the gauge invariant algebra /23/ and in the defi

nition of the fermionic current via point splitting /22, 34/. The corresponding 

time ordered expectation value is the gauge invariant propagator, in the SM it 

reads: 

~ -
C,SH(K-Y!"f ~ r dA c/ ~ ci~ 

ie f.YA ci•"' _ 
'!!,(!(} e x /' 'lfp(Y! · 

, c s'"~ s ... l 
e ( 23) 

In the CSM, only the left handed propagator needs a string because the right handed 

fermions are gauge invariant anyway: 

~L -
C.m,cx-YJ= PL) dAd l cl~ ole '>/ (0 

,rA d~-"-
ie,,;.- 1fcy; e 

,ct"".,r.,) PR 
e 

~ R R 
(;. W= c. (XI 

('(H (fh 
=C.o;R(KJ 

(24) 

(25) 

The phase factor is not unique /35/, for definiteness we understand the line inte

gral to be taken along the straight path between x andy. The gauge invariant pro

pagators can be evaluated in the same way as in the preceeding section: the fermion 

fields are rotated into free ones (eqs. (7) and (8)), then all fields except the 

gauge field are integrated out. This results in~ 
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"'L,If o•LI{ f Go (X-YI • C. '' u-yl · JA IH 

i ( ,.; f}(XI ,·~ fy A "'.M 
I' ~ '/' 

.t'(r•'"~' ,· S'!;lA] e e 

/J.~~~(x-yJ = c.•;L(X-VI. r c{A e iC,.·PJCrJ /'f:A/'tll ~ 
-i(f'-fiCYJ i s::."[A] e e w 

Expressing o- and f in terms of A and parametrizing z(t) = t • (y-x) + x, 

(26) 

(27) 

~MR can be evaluated. In contrast to the calculation of the gauge dependent pro

pagator, here only the (gauge invariant) ~.P" -part of the exact photon propagator 

contributes. The result is 

- ,· .t. ~ 
t .;f-~ _ . r· ·fd'k (~ __ X_) _ . c;. (YJ• C. lYJ M<f •e 471 • k' (k•xJ' .. f/f J ( 28) 

i.e. the correction is the same for the left and right handed parts. For the CSM, 

a new calculation is not necessary, the result can be read off from eq. (28): 

- ,., •K 
'L 2 ' )-t-e ....... L OjL . l rJ I{ -- X 

r;.cn/'''C. 1"~[te f41T'( k' (k.x)' (k'-.f>i') } . (29) 

G~SM has already been calculated in ref. /6/, where the anomalous formulation has 

been used which agrees with the B = 0 gauge in our approach. Due to gauge invari

ance of G~SM the resu_lts coincide. Again, there is no difference between the be

haviour of the left handed fermions tn the two models (apart from the different 

photon mass). 
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IV. Wilson loop 

Usually, the standard test for confinement is the calculation of the Wilson loop 

/36/, which is defined by the expectation value 

'W= 
< e t't ~ A/'.t 2-" > (30) 

Taking the limit that the temporal extension of the integration contour tends to 

infinity, W can be used to define the potential between two static fermionic charges. 

This shows whether it is possible to separate the fermions or not. Unfortunately, 

in chiral gauge theories there seems to be a problem: static charges have to be 

infinitely massive. A mass term for the fermions, however, is in conflict with 

chiral gauge invariance. Hence one has to invent new massive fermions with non-

* chiral coupling to the gauge field which can serve as test charges Nevertheless 

it can be hoped that these additional fermions do not change the interpretation, 

since screening is caused by the polarizability of the vacuum. In the relevant in

finite mass limit the heavy fermions cannot be pair-produced, thus they do not 

contribute to the polarizability. 

For the evaluation of the Wilson loop all fields but the gauge field are integra-

ted out, this yields 

WjH • l d. A 
<e9AdzA 

e I' e 
<' {H 
''#[A] 

( 31) 

w('f, = r ciA 
iefA dl-" 

e I' 

, f' c'{H 

e' "'II [A 1 (32) 

In fact, this has to be done in the ordinary SM as well because the massless 
fermions in the model cannot be used as test charges, either. 
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Since the only difference between the effective actions is the photon mass, the 

result for the Wilson loop is the same in both models. For the SM, it has been 

calculated in refs. /37, 38/. There the potential between two static charges in 

the distance d has been found to be: 

VSH 
~· ( 1- e-'""') ,. 

which can easily be converted to the corresponding potential in the CSM: 

Vr!SH = 
a.' 
.;;:,• 

(1-e-m") 

(33) 

(34) 

Both potentials show confinement for small d (linearly rising potential) and 

complete screening for large distances (constant potential). This shows that 

(apart from the difference between m and Iii) in the CSM the pol arizabil ity of the 

vacuum is sufficiently strong to screen the test charges completely, precisely 

as it is the case in the SM. 

V. Relation between the Schwinger Model and the Chiral Schwinger Model 

Now we want to show that the SM can be reformulated in such a way that it looks 

like a CSM with a special regularization prescription. This is done by decoupling 

the right handed fermions only. Then the resulting fermionic action is the same as 

in the CSM. The fermionic Jacobian for the transformation ~ ~ et'/L PR ~ reads 

h JR[ A,;!]=~·: J d'x { /[ :J.v F/"' +ea-<J ~ /[ o A] ( 35) 
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with /32/ 

F"'" = ~"A""- u" l!~' ~ . -
A ~aA +12-a!A.., ,,.. ;'< / 

(36) 

Here we have fixed the regularization for the right handed Jacobian such that 

i) the left handed Jacobian is regularized as in the CSM /32/ and ii) vector

like transformations are treated as in the SM /27/. The right handed fermions are 

decoupled if A>=- (CJ+ f') • Then eq. {35) becomes 

-t·el.f, [ +-l!"'t;llJ+ 
.II, 7 [A -(>•n] ·- d x (l-a! A A-"- irA - 0 A 

OR I 1'7r /"' ,r v ] . (37) 

It may easily be verified that the combination of 'h_[A
1
-CV+f'l] with the 

result of integrating out the left handed fermions (eq. (10) with 8 = 0) just 

gives the effective action of the SM (eq. (11)). As usual, the nonlocal term is 

removed by introducing an auxiliary scalar field ~ , This gives for the genera-

ting functional of the SM: 

Z SH = J d_ A d ~ d i/ d. 'f' e 
s 

with 

S = [ f -; F F-""+ if,_,. (<Ci"'• e A-"PL )'I + (2-a!.!'...' A A-" 
J l ' ~v <;< p~ ~ 

' iir Cf a cr f 
e 

2Tr 
/< + 1 f ' r:t'd A f '"' d.x /' 

(38) 

(39) 

Identification of Cf with 9 (eq. (3)) shows that the ordinarySMcan be vieweduponas 

the special case a = 2 of the CSM (note that the SM is independent of a and that 

the CSM does depend on a)~) So it is not astonishing at all that the left handed 

fermions in both models show the same behaviour. 

N.K. Falck thanks 8. Schroer for useful discussions on this point. 
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VI. Conclusion 

We have studied fermion propagators and the Wilson loop in the CSM. As a result, 

we have found that the left handed fermions behave in the same way as they do in 

the SM. This is evident by the striking similarity of the considered quantities 

in the two models. This coincidence is true for all Green's functions containing 

only left handed fermions and gauge bosons, as can be proven in the same way as 

we showed it for the left handed propagators. Hence also in the CSf1 the polariza

bil ity of the vacuum is strong enough to sh i e 1 d charges camp 1 ete 1 y, as it is the 

case in the SM /22- 24/. This proves that the left handed fermions do not show 

up in the physical spectrum. 

The CSM defines a whole class of quantum theories which only differ by the 

value of the regularization parameter "a". We have shown explicitly that this 

class contains the ordinary SM by bosonizing the right handed fermions. The CSM, 

in its bosonized version, containes a massless state in addition to the massive 

"" + state of the S~1 /1/. This does not harm because the noninteracting state cp-;; e 0 Ar 

in eq. (39) can be added at will without altering physics. Hence it is due to the 

bosonization procedure, which is also evident from the fact that in the fermionic 

CSt~ the exact boson propagators do not show such a massless state /14/. 

Finally, we want to remark that our investigations concern the topologically 

trivial sector only. For a treatment of the nontrivial sectors in the SM, see 

/39, 40/; in the CSM up to now not much progress has been made into this direction. 
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