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Abstract

We consider families of systems of two-dimensional ordinary dif-
ferential equations with the origin 0 as a non-hyperbolic equilibrium.
For any number s ∈ (−∞,+∞) we show that it is possible to choose
a parameter in these equations such that the stability index σ(0) is
precisely σ(0) = s. In contrast to that, for a hyperbolic equilibrium
x it is known that either σ(x) = −∞ or σ(x) = +∞. Furthermore,
we discuss a system with an equilibrium that is locally unstable but
globally attracting, highlighting some subtle differences between the
local and non-local stability indices.
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1 Introduction

Attraction and stability of invariant sets are crucial concepts in the qualita-
tive theory of dynamical systems: the degree to which a set possesses these
properties is directly linked to the way it influences the overall (longterm)
dynamics of a system. Beyond the classic notion of asymptotic (Lyapunov)
stability several levels of so-called non-asymptotic stability have been identi-
fied. These include fragmentary asymptotic stability (f.a.s.) [12] and essential
asymptotic stability (e.a.s.) [11] to mention probably the two most frequent
ones. Loosely speaking, an f.a.s. set attracts something of positive measure
while an e.a.s. set attracts “almost everything” in a small neighbourhood.

In 2011 Podvigina and Ashwin [13] introduced a (local) stability index as
a means of quantifying stability and attraction of invariant sets in discrete
and continuous dynamical systems. It is linked to the stability properties
mentioned above: roughly speaking, positive indices correspond to essen-
tial asymptotic stability, while fragmentary asymptotic stability is associated
with indices that are greater than −∞, see [10] for a detailed discussion of
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this. In the last decade, this concept has been used to characterize vari-
ous types of attractors, e.g. heteroclinic cycles/networks [3, 5, 6], invariant
graphs in skew product systems [7] or attractors with riddled basins [14].

For the simple case of a hyperbolic equilibrium the stability index does
not reveal significant information, since it turns out to be either +∞ (for a
sink) or −∞ (for a saddle or source). In this paper we discuss two families
of ordinary differential equations on R

2 that possess the origin 0 as a non-
hyperbolic equilibrium. We show that

(i) for any given real number s > 0 we can choose a parameter in the first
family such that we obtain σ(0) = s, and

(ii) the same is possible for any s < 0 in the second family.

This confirms that non-hyperbolic equilibria can indeed be f.a.s. or e.a.s
without being asymptotically stable.

We also present an example of a smooth system with a non-hyperbolic
equilibrium that is strongly attracting (stability index equal to +∞) but
at the same time locally repels most initial conditions (local stability index
equal to −∞). Systems with similar properties in previous work [9] lacked
smoothness.

In higher-dimensional systems our results may be useful for understand-
ing the dynamics along the centre manifold of an equilibrium, thus helping to
better describe stability and attraction properties of non-hyperbolic steady
states. Moreover, the way we design these systems might serve as a pro-
totype for controlling stability indices in more involved settings, e.g. along
heteroclinic connections.

The paper is organized as follows: in section 2 we briefly discuss non-
asymptotic stability and the (local) stability index. In section 3 we present
our examples and prove that the equilibria possess the desired stability in-
dices. We conclude with some comments in section 4.

2 Preliminaries

In this section we reproduce the definitions of fragmentary and essential
asymptotic stability of a compact, invariant set X ⊂ R

n for a dynamical
system on R

n given by ẋ = f(x). Moreover, we recall the stability index that
was introduced to quantify stability and attraction of such a set.

In line with standard notation we write Bε(x) for an ε-neighbourhood of
a point x ∈ R

n and use ℓ(.) for Lebesgue measure. The basin of attraction of
X , i.e. the set of points in R

n with ω-limit set in X , is denoted by B(X). For
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δ > 0 the δ-local basin of attraction Bδ(X) is the subset of points in B(X)
for which the trajectory never leaves Bδ(X) in positive time.

With this terminology we revisit the following definitions.

Definition 2.1 ([12], definition 2). X is called fragmentarily asymptotically
stable (f.a.s.) if ℓ(Bδ(X)) > 0 for any δ > 0.

As discussed in [8] being f.a.s. is equivalent to having a basin of attraction
of positive measure.

Definition 2.2 ([4], definition 1.2). X is called essentially asymptotically
stable (e.a.s.) if it is asymptotically stable relative to a set N ⊂ R

n which
satisfies

lim
ε→0

ℓ(Bε(X) ∩N)

ℓ(Bε(X))
= 1.

Here asymptotic stability relative to N means that the usual conditions for
asymptotic stability must be fulfilled for the intersection of a neighbourhood
of X with N , but not necessarily in an entire neighbourhood.

Note that in [11] e.a.s. is used in the same sense as above, even though a
slightly different definition is given.

Definition 2.3 ([13], definition 5). For x ∈ X and ε, δ > 0 set

Σε(x) :=
ℓ(Bε(x) ∩ B(X))

ℓ(Bε(x))
, Σε,δ(x) :=

ℓ(Bε(x) ∩ Bδ(X))

ℓ(Bε(x))
.

Then the stability index at x with respect to X is defined as

σ(x) := σ+(x)− σ−(x),

with

σ−(x) := lim
ε→0

ln(Σε(x))

ln(ε)
, σ+(x) := lim

ε→0

ln(1− Σε(x))

ln(ε)
.

The convention that σ−(x) = ∞ if Σε(x) = 0 for some ε > 0, and σ+(x) = ∞
if Σε(x) = 1 for some ε > 0, implies σ(x) ∈ [−∞,∞].

Analogously, the local stability index at x ∈ X is defined to be

σloc(x) := σloc,+(x)− σloc,−(x),

with

σloc,−(x) := lim
δ→0

lim
ε→0

ln(Σε,δ(x))

ln(ε)
, σloc,+(x) := lim

δ→0
lim
ε→0

ln(1− Σε,δ(x))

ln(ε)
.
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B(X)

Bε(x)

(a)

B(X)

Bε(x)

(b)

Figure 1: (a) an e.a.s. equilibrium with a positive stability index; (b) an f.a.s.
equilibrium with a negative stability index.

For an invariant set X ⊂ R
n and a point x ∈ X the index σ(x) quantifies

attraction to X near x in the system. In the same way the local index σloc(x)
characterizes (Lyapunov) stability of X near x. While these two properties
often go hand in hand (and the local and non-local indices may coincide), it
is well-known that they are independent of each other (so local and non-local
indices may differ), see examples in [9].

For a geometric intuition consider Figure 1: if σ(x) > 0, then in a small
neighbourhood of x an increasingly large portion of points is contained in the
basin of attraction B(X) and therefore attracted to X . If on the other hand
σ(x) < 0, then the portion of such points goes to zero as the neighbourhood
Bε(x) shrinks. The meaning of signs for the local stability index may be
illustrated analogously.

Since here we are interested in the stability of equilibria, we typically
have X = {0} in the following, which prompts us to conveniently shorten
our notation to B(0) = B({0}) etc.

3 Stability Indices

In this section we discuss several families of systems in R
2, each with a non-

hyperbolic equilibrium which, depending on a parameter in the equations,
may possess any given real number as its stability index. Note that we define
the systems only for x, y ≥ 0, but they can easily be symmetrically extended
to the whole plane. Most of the time local and non-local stability indices
coincide – we therefore only distinguish between the two when this is not the
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case.

3.1 Positive Stability Indices

We first present a class of systems in R
2 with the origin 0 as an equilibrium

that can have any stability index in (0,+∞). With a parameter a > 1, for
x, y ≥ 0 our system reads:

{

ẋ = x(xa − y)

ẏ = y
(

1

2
xa − y

) (1)

We remark that the right-hand side is at least C1, but not C∞ if a 6∈ N.
It is easy to see that 0 is a non-hyperbolic equilibrium of the system since

the Jacobian is just the zero matrix. Both coordinate axes are invariant: for
y = 0 we have ẋ = xa+1 > 0, so the x-axis belongs to the unstable set of 0.
Similarly, for x = 0 we have ẏ = −y2 < 0, so the y-axis belongs to the stable
set of 0.

The x- and y-nullclines off the coordinate axes are given by:

ẋ = 0 ⇔ y = xa and ẏ = 0 ⇔ y =
1

2
xa

This enables us to sketch the dynamics of system (1) as in Figure 2. We
now proceed to state and prove our result about the stability index.

x

y

y = xa

y = 1

2
xa

Bε(0)

Figure 2: Nullclines for system (1) with a > 1.
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Proposition 3.1. In system (1), for a > 1 the stability index of the origin
is σ(0) = a− 1 > 0.

Proof. From Figure 2 it is clear that all points (x, y) with y < xa do not
belong to the basin of attraction B(0). This enables our first estimate:

ℓ(Bε(0) ∩ B(0)) ≤ ε2 −

ε
∫

0

xadx = ε2 −
1

1 + a
ε1+a

and therefore

Σε(0) =
ℓ(Bε(0) ∩ B(0))

ℓ(Bε(0))
≤

1

ε2

(

ε2 −
1

1 + a
ε1+a

)

= 1−
1

1 + a
εa−1,

or equivalently

1− Σε(0) ≥
1

1 + a
εa−1.

Hence

σ+(0) = lim
ε→0

ln(1− Σε(0))

ln(ε)
≤ lim

ε→0

ln(εa−1)

ln(ε)
= a− 1,

which finally implies σ(0) = σ+(0)− σ−(0) ≤ a− 1.

For the other inequality we show that there is a constant k > 1 such that
all (x, y) with y > kxa belong to B(0), in fact, even to all Bδ(0) with suitable
δ > 0. In other words: we show that this region is forward invariant under
the dynamics of system (1) and all trajectories in it converge to the origin.

We claim that for a given a > 1 a choice of k >
a− 1

2

a−1
> 1 suffices. This we

prove by showing that the vector (ẋ, ẏ) in this region always points down-
wards and “to the left” of the curve (x, kxa), which means the corresponding
solution is for all positive times confined between (x, kxa) and the y-axis, and
thus must limit to 0. To see this, first note that clearly ẏ < −1

2
y2 < 0 in this

region. Furthermore, we calculate that the angle α between (ẋ, ẏ) and the
normal vector (−akxa−1, 1) is always in (−π

2
, π
2
) along (x, kxa), see Figure 3.

To that end, consider the scalar product:
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x

y
y = kxa

α

Figure 3: The angle α between the (dotted) normal vector to (x, kxa) and
the flow of system (1).

〈(ẋ, ẏ), (−akxa−1, 1)〉 = −akxa(xa − y) + y

(

1

2
xa − y

)

= −akxa(xa − kxa) + kxa

(

1

2
xa − kxa

)

= kx2a

(

a(k − 1) +
1

2
− k

)

= kx2a

(

k(a− 1)− a+
1

2

)

,

which is positive for all x > 0 if and only if k > 1 is chosen as above. Such
a choice is obviously possible for any a > 1. An analogous calculation to
that at the beginning of this proof now yields σ+(0) ≥ a − 1 and therefore
σ(0) ≥ a− 1. Therefore, σ(0) = a− 1 as claimed.

Corollary 3.2. Given any s > 0, set a := s + 1 > 1 to obtain σ(0) = s in
system (1).

Corollary 3.3. For a > 1 the origin in system (1) is e.a.s.

3.2 Negative Stability Indices

We now strive for a similar result with negative stability indices. An anal-
ogous calculation for system (1) with a < 1 does not yield the desired flow,
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since no suitable k can be found to obtain a positive scalar product as above:
we would need k > 1 as before, but with a < 1 obtaining a positive scalar

product requires k <
a− 1

2

a−1
< 1.

However, with a ∈ (0, 1) the following modification of system (1) does
the job:

{

ẋ = x(1
2
xa − y)

ẏ = y2 (xa − y)
(2)

Note that the smoothness of system (2) is most severely limited by the x-
term in the y-equation: since a ∈ (0, 1), the derivative of the second equation
with respect to x is undefined at the origin. It is also worth pointing out
that a stronger contraction in the y-direction than in system (1) is required
to achieve the desired result, as becomes apparent in the calculations below.

As before the coordinate axes are invariant, and for y = 0 we have ẋ =
1

2
xa+1 > 0, so expanding dynamics on the x-axis; while for x = 0 we have

ẏ = −y3 < 0, so contracting dynamics on the y-axis. Note that the position
of the x- and y-nullclines has been reversed compared to system (1), and we
may sketch the phase portrait as in Figure 4.

x

y
y = xa

y = 1

2
xa

Bε(0)

Figure 4: Nullclines for system (2) with a < 1.

Proposition 3.4. In system (2), for a < 1 the stability index of the origin
is σ(0) = 1− 1

a
< 0.

Proof. We argue in the same way as in the proof of Proposition 3.1 but with
reversed justifications for the two inequalities: first observe from Figure 4
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that for y > xa we have ẋ, ẏ < 0 and therefore all such points belong to the
(local) basin of attraction of the origin. Thus, we obtain:

ℓ(Bε(0) ∩ B(0)) ≥

ε
∫

0

x
1

adx =
a

1 + a
ε1+

1

a

and therefore

Σε(0) =
ℓ(Bε(0) ∩ B(0))

ℓ(Bε(0))
≥

1

ε2
a

1 + a
ε1+

1

a =
a

1 + a
ε

1

a
−1,

hence

σ−(0) = lim
ε→0

ln(Σε(0))

ln(ε)
≤ lim

ε→0

ln(ε
1

a
−1)

ln(ε)
=

1

a
− 1,

which finally implies σ(0) = σ+(0)− σ−(0) ≥ 1− 1

a
.

For the other inequality, we also proceed in a similar way as before,
showing that along (x, kxa) the angle between (ẋ, ẏ) and the normal vec-
tor (akxa−1,−1) is in (−π

2
, π
2
) for suitable 0 < k < 1

2
. This implies that the

region with y < kxa is forward invariant under the dynamics of system (2).
Moreover, solutions with initial conditions in it do not limit to the origin
in forward time and thus do not belong to B(0), which enables our second
estimate for the stability index. Again we consider the scalar product:

〈(ẋ, ẏ), (akxa−1,−1)〉 = akxa

(

1

2
xa − y

)

− y2(xa − y)

= akxa

(

1

2
xa − kxa

)

− (kxa)2(xa − kxa)

= kx2a

(

a

(

1

2
− k

)

− kxa(1− k)

)

.

The second term in parentheses goes to zero when x → 0, while the first
one is constant in x and positive for 0 < k < 1

2
. Thus, with k ∈

(

0, 1
2

)

the scalar product is positive for sufficiently small x > 0. Again, similar
calculations as above now yield σ−(0) ≥

1

a
−1 and thus finally σ(0) = 1− 1

a
<

0.

Corollary 3.5. Given any s < 0, set a := 1

1−s
∈ (0, 1) to obtain σ(0) = s in

system (2).

Corollary 3.6. For a < 1 the origin in system (2) is f.a.s., but not e.a.s.

With Propositions 3.1 and 3.4 we have established that in these systems
of equations we can obtain any positive or negative number as the stability
index of the origin.
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3.3 Infinite Stability Indices

More generally, instead of x 7→ xa let us now take any function x 7→ φ(x)
and consider the following system for x, y ≥ 0:

{

ẋ = x
(

y − 1

2
φ(x)

)

ẏ = y(y − φ(x))
(3)

The smoothness of system (3) is determined by the smoothness of φ. If φ
is non-negative and vanishes only at 0, we can draw similar initial conclusions
as above: the coordinate axes are invariant with contraction along the x-axis,
where ẋ = −1

2
xφ(x) > 0; and expansion along the y-axis, where ẏ = y2.

Looking at the nullclines we obtain the sketch of the dynamics in Figure 5.

x

y

y = φ(x)

y = 1

2
φ(x)

Figure 5: Dynamics for system (3).

We now pick a specific function for φ which is used in [9] to show that
it is possible to have an equilibrium with a stability index equal to +∞,
but a local stability index equal to −∞. This is achieved by making the
equilibrium globally attracting, but confining the local basin of attraction
within the region where y < φ(x). With this choice of φ for system (3),
we obtain the same extreme discrepancy between the local and non-local
stability index of the origin, but achieve a higher degree of smoothness of the
system than in [9].

Proposition 3.7. In system (3) define φ as φ(x) = (2x + 1) exp(− 1

x
) for

x > 0 and φ(0) = 0. Then we have σloc(0) = −∞ and σ(0) = +∞.
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Proof. We start with the claim about the local stability index. It is clear
from Figure 5 that all (x, y) with y < φ(x) belong to B(0), even to Bδ(0)
for suitable δ > 0. For (x, y) with y > φ(x) we have ẋ, ẏ > 0, so these
trajectories first move away from the origin in both coordinates and do not
belong to Bδ(0) for sufficiently small δ > 0. Thus, by the same arguments as
in [9], we have σloc(0) = −∞.

To prove the second claim we show that in system (3) all trajectories off
the coordinate axes limit to 0 in forward time and are thus homoclinic to the
origin. In fact, because of the above it suffices to ensure that all trajectories
starting with y > φ(x) eventually cross the graph of φ.

To this end we show that V (x, y) := x
y
is a Lyapunov function for sys-

tem (3):

∂

∂t
V (x, y) =

ẋy − xẏ

y2

=
x(y − 1

2
φ(x))y − xy(y − φ(x))

y2

=
x

y

(

y −
1

2
φ(x)− (y − φ(x))

)

=
xφ(x)

2y

> 0

Thus, V increases along solutions to system (3). The level sets of V are
straight lines through the origin, with the values of V increasing as the slope
of these lines decreases. Since the derivative above is bounded away from zero
off the coordinate axes, solutions cross level sets of V with non-vanishing
speed and thus every solution eventually crosses the graph of φ, therefore
converging to the origin. Thus, σ(0) = +∞ as claimed.

Note that the corresponding example in [9] has a right-hand side that is
only continuous, not differentiable. Our choice of φ in Proposition 3.7 makes
system (3) C∞, so we provide a smooth example of this kind.

4 Concluding Remarks

We have discussed two families of systems of ordinary differential equations
on R

2 that possess a non-hyperbolic equilibrium with an arbitrary real num-
ber s ∈ R \ {0} as its stability index. While we give an explicit construction
for any such s, it is worth pointing out that similar results can be obtained
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by taking system (1) or (2) with a fixed parameter a and transforming it
through (x, y) = (up, v). This coordinate change maps a curve given by
y = kxa to that given by v = kxpa and thus yields a different stability index.
For example, if a > 1 is fixed and system (1) is transformed with p ∈ R such
that pa > 1, then it follows directly from Proposition 3.1 that σ(0) = pa− 1
in the transformed system.

Generalizing our construction and employing results from [9], in Propo-
sition 3.7 we have designed a system with a strongly attracting equilibrium
(σ(0) = +∞) that is far from being asymptotically stable (σloc(0) = −∞).
In contrast to earlier such examples ours has a C∞ right-hand side, answering
an open question posed in [9].

In section 3 we have not considered the case σ(0) = 0. However, it is
straightforward to write down such a system: one simply needs to make sure
that Σε(0) is constant, i.e. independent of ε > 0. This is the case if the basin
of attraction is linearly bounded, see e.g. the piecewise linear vector field on
R

2 displayed in Figure 6, where we have Σε(0) =
1

4
for all ε > 0.

Our work establishes explicit examples for non-asymptotically stable equi-
libria that are fragmentarily or essentially asymptotically stable. This may
prove useful in future endeavors to develop more complicated systems with
heteroclinic connections that possess a prescribed level of stability, thus ex-
tending previous efforts towards the design of systems with a desired connec-
tion structure between equilibria, see e.g. [1, 2].

Acknowledgements: The author is grateful for insightful comments by
two anonymous reviewers of an earlier version of this work.
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x

y

ẋ = x, ẏ = yẋ = −x, ẏ = y

ẋ = x, ẏ = −yẋ = −x, ẏ = −y

Bε(0)

Figure 6: A system with σ(0) = 0.
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