

Studiengruppe für Elektronische Instrumentierung der Helmholtz-Zentren

110. Tagung der Studiengruppe elektronische Instrumentierung im Frühjahr 2019

in Jülich vom 8. April - 10. April 2019 am

Editor: Peter Göttlicher (DESY) Verlag Deutsches Elektronen-Synchrotron

Impressum

110. Tagung der Studiengruppe elektronische Instrumentierung im Frühjahr 20198.-10. April 2019, FZJ-ZEA2, Jülich, Deutschland

Conference Homepage https://indico.desy.de/indico/event/22503 oder https://indico.desy.de//event/SEL2019

Online Proceedings auf http://www-library.desy.de/confprocs.html

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Editor: Peter Göttlicher März 2020 DESY-PROC-2020-01 ISBN 978-3-945931-31-8 ISSN 1435-8077

Published by Verlag Deutsches Elektronen-Synchrotron Notkestraße 85 22607 Hamburg Germany

Printed by Kopierzentrale Deutsches Elektronen-Synchrotron

110. Tagung der Studiengruppe elektronische Instrumentierung im Frühjahr 2019

 SEI - Studiengruppe elektronische Instrumentierung der Helmholtz-Zentren
 HZDR (FZJ - Jülich, ZEA-2), 8. April - 10. April 2019

Inhaltsverzeichnis

Allgemeines und Zusammenfassendes		
Eröffnung und Ausblick	P. Göttlicher	3
Bild der Teilnehmer		4
Tagungsprogramm		5
Vorträge FLASH Forward Control System	S Karstensen	8
T LASH FOI ward Control System	9. Ital stellsell	0
Instrument control at MLZ - PLC Interface Layer Stan- dardisation	E. Faulhaber	21
Qualitätssicherung Elektronik-Fertigung für DESY Hamburg	OC. Zeides	32
Simulation durch Auslese - Modellierung von Kern- spulen zur Schaltungsberechnung	W. Sorge	46
Niederfrequente-Magnetfelder an Schaltkästen	J. Burmester	61
Averaging: Was hilft's?	A. Büchner	77
Stromversorgungen - Netzteile mit integrierter Intelli- genz	C. Vief	87

MTCA and MTCA.4 Developments for Large Scale European Accelerators	M. Kirsch	94
Temperature drift correction in a rigid-boom electro- magnetic induction geophysical instrument	X. Tan et al.	117
Development of a simple ion-chamber based dosemeter system	J. Birkhan et al.	125
Development of a Scintillation Neutron Detector Proto- type using Digital SiPMs	M. Herzkamp	134
MTCA.4 based Wire Scanner System for the European-XFEL	T.Lensch	142
The HL-LHC CMS Level-1 Track Trigger	L. Ardila	153
	ир	169
Methodenprojekt: "Gigabit Serial Interfaces"	H. Rongen, G. Schardt	102
Methodenprojekt: "Gigabit Serial Interfaces" Anwendung des 10G Base-R Ethernet UDP/IP Systems im Projekt BrainPET	H. Rongen, G. Schardt S. Völkel	162
Methodenprojekt: "Gigabit Serial Interfaces" Anwendung des 10G Base-R Ethernet UDP/IP Systems im Projekt BrainPET Generic Data Processing board development leveraging a modular approach based on SoM and SoCs	H. Rongen, G. Schardt S. Völkel S. Farina	169 176
Methodenprojekt: "Gigabit Serial Interfaces" Anwendung des 10G Base-R Ethernet UDP/IP Systems im Projekt BrainPET Generic Data Processing board development leveraging a modular approach based on SoM and SoCs Application of heterogeneous FPGA architectures in physics experiments	H. Rongen, G. Schardt S. Völkel S. Farina O. Sander	162 169 176 188

Workshop

Testen

P. Kaever, 206 P. Göttlicher

Peter Göttlicher DESY-FEB 10. November 2019

Eröffnung

Elektronik und Firm-/Software wird mit spezialisierten Anforderungen in vielen Forschungsprojekten benötigt. So haben viele Forschungszentren und auch Universitäten Entwicklungsgruppen, die sich diesen Aufgaben stellen. Auch gibt es Industriebetriebe, die spezialisierte Beiträge beisteuern. Mit der Idee, dass man in diesem Umfeld von einander profitieren und zusammenarbeiten kann, treffen sich jedes Jahr einmal Techniker/-innen, Ingenieure/-innen und Wissenschaftler/-innen, um sich mit Vorträgen, einer Ausstellung und Gesprächen auszutauschen. Organisiert wird die Tagung von den Helmholtz-Zentren, offen für andere Vortragende und Teilnehmer/innen. Dieses Jahr war das ZEA-2, Systemhaus für die Forschung, am Forschungszentrum FZJ in Jülich der Gastgeber.

Es waren sechs Helmholtz-Zentren, DESY, FZJ, GSI, HZG, HZDR und KIT, vertreten. Daneben nutzten Universitätsvertreter/innen die Gelegenheit des Austausches. Die Industrie präsentierte auf High-End Anwendungen spezialisierte Geräte und waren für viele Fachgespräche offen.

Die Thematiken der Tagung umfassten:

- Schnelle Datenaufnahme, -verarbeitung und -übertragung
- ASIC's zu Datenübertragung und spezifischer Messsignalaufbereitung.
- Kontrolle von Aktoren und Auslese langsamerer Sensoren
- Fertigung von Elektronik und Geräten mit Elektronik
- Kooperation zu Entwicklungen mit der Industrie
- Wie testet man Elektronik und Firm-/Software?

An einem halben Tag wurde ein Technikbetrieb zur Papierverarbeitung besichtigt. Auch da wurde gezeigt, dass die Steuerung von Maschinen anspruchsvoll ist und teils ähnliche Aspekte wie die Steuerung der Forschungsanlage aufweist.

Das Tagungsprogramm ist auf dem Internet einzusehen:

https://indico.desy.de/indico/event/22503/ oder

https://indico.desy.de//event/SEI_2019

Die Homepage der Studiengruppe ist auf http://sei.desy.de/ zu finden.

Ein Workshop über "Testen" diente dem Austausch, wie man sich zum einen der Vielfalt der spezialisierten Geräte effizient stellt und spezifische Eigenschaften im Test erfasst, und zum anderen doch von Wiederverwendbarkeit und Standards profitiert.

Ausblick

Die nächste Tagung wird für das Frühjahr 2020 am HZG Geestacht geplant.

Teilnehmer der SEI-Tagung 2019.

Quelle: FZJ-ZEA-2

Tagungsprogramm

Mon 08/04

12:00		
	Kleinigkeiten zur Begrüßung	
13:00	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	12:15 - 13:15
	Eröffnung	Dr. Peter GOETTLICHER
	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	13:15 - 13:25
	ZEA-2 - System House for Research	Prof. Stefan VAN WAASEN
14:00		
	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	13:25 - 14:25
	Das FLASH Forward Kontrollsystem	Mr. Sven KARSTENSEN
	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	14:25 - 14:45
	Instrumentsteuerung am MLZ: Lösungsansatz auf der PLC-Ebene	Dr. Enrico FAULHABER
15:00	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	14:50 - 15:10
	Kaffeepause - Montag	
	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	15:20 - 15:50
	Qualitätssicherung im Servicezentrum Elektronik am DESY Hamburg	Dr. Otto-Christian ZEIDES
16:00	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	15:50 - 16:10
	Simulation durch Auslese - Modellierung von Kernspulen zur Schaltungsbe	erechnung Dr. Wolfram SORGE
	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	16:15 - 16:35
	Niederfrequente Magnetfelder an Schaltkästen	Mr. Joerg BURMESTER
	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	16:40 - 17:00
17:00	Averaging: Was hilft's?	Dr. Andree BÜCHNER
	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	17:05 - 17:25

Tue 09/04

08:00

00.00	Netzteile mit i	ntegrierter Int	elligenz			Mr	. Christoph VIEF
09:00	FZJ Forschungs	zentrum Jülich	- Systeme der Ele	ektronik (ZEA-2)			08:55 - 09:15
	MTCA and MTCA.4 Developments for Large Scale European Accelerators Dr. Matthias KIRSCH						
	FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)					09:20 - 09:40	
	Foto-Termin	Foto-Termin					
	FZJ Forschungs	zentrum Jülich	- Systeme der Ele	ektronik (ZEA-2)			09:45 - 10:00
10:00	Stromver- sorgung - Elektronik fuer Experimente - CAEN – Costruzioni Apparecchiatu	Netzteile für die Automati- sierung und Messtechnik - Kniel System- Electronic	MTCA und MTCA.4 Baugruppen - Struck Innovative Systeme GmbH	Messgeräte für Elektronik- Baugruppen von Tektronix GmbH und Calplus	Oszilloskope, MTCA Digitizer und Generatoren, innovative Messtechnik von Teledyne	Stromver- sorgung für die Forschung - WIENER Power Electronics GmbH	Kaffee - Di
11:00	Nucleari S.p.A	GMDH		GmbH	LeCroy / Teledyne SP Devices		
12:00							
13:00	Besichtigung	einer Papierfab	rik			r	
14:00							
15:00							
16:00							j
6							

Wed 10/04

08:00

Temperature drift correction in a rigid-boom electromagnetic induction geophysical Mrs. Xihe TAN instrument Dr. Jonny BIRKHAN Development of a simple ion-chamber based dosemeter system 09:00 08:55 - 09:15 FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) Development of a Scintillation Neutron Detector Prototype using Digital SiPMs Dr. Matthias HERZKAMP FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) 09:20 - 09:40 MTCA.4 based Wire Scanner System for the European-XFEL Mr. Timmy LENSCH 10:00 FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) 09:45 - 10:05 Developments for the CMS Phase-2 Track Finding System Mr. Luis ARDILA FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) 10:10 - 10:30 Kaffeepause-Mi 11:00 FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) 10:40 - 11:10 **Gigabit Serial Interfaces** Mr. Georg SCHARDT FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) 11:10 - 11:30 Anwendung des 10G Base-R Ethernet UDP/IP Systems im Projekt BrainPET Mr. Sebastian VÖLKEL FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) 11:35 - 11:55 12:00 Generic Data Processing board development leveraging a modular approach Mr. Simone FARINA based on SoM and SoCs The application of heterogeneous FPGA architectures in physics experiments Dr. Oliver SANDER FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) 12:25 - 12:45 Abschluss und Ausblick Dr. Peter GOETTLICHER FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) 12:50 - 13:00 13.00 Mittagspause - Mi FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) 13:00 - 14:00 14:00 Arbeitstreffen - DRAFT: Prüfen: Produktion, Prototypen, Programmierung FZJ Forschungszentrum Jülich -- Systeme der Elektronik (ZEA-2) 17:00

			The View Control of Co	
realization – metadata				
 Exan 	nple:	DATA byte		
		0	Type code, see Type codes - special, simple and normal devices, or 0	
		2	Device size or Indexer size	
Byte index	7 6	4	Device address or Indexer offset	
Ν	ACK Ir	nf 6	Device unit or 0	
N + 1	Device num	b 8	Device flags or Indever flags	
N + 2	DATA byte	0 10	Device haps of indexer haps	
		12	Absolute minimum of device value or 0	
N + M-1	DATA byte	N 14		
		16	Absolute maximum of device value or 0	
		18		
		20	Device name or name of the PLC	
8/4/19	Dr. Enrico Faulhaber		12	

Artikeler	10510-01 Dokumente Of-Anster LPB/e5-04				
Algemen Algemen	2 Laser Faiturenus Altonen Inte				
Beschreibung Beschreibung 2	GP-Analog, LP8945-04 MC52,	Stammatlickäste vorhander Dummyartikal			
Beachreibung 3 Beachreibung 4	- Bestückungsänderungen s. Original- Unterlagen und Fertigungsbericht	Ersatztei Versandtei Desstellartikei	5		
		Gesperit Grund Gesperit Abgénge mégéch			
	- 0	Checklole gefuit			
Bassernet.	STK A	Ersatzartikelm: Beschreibung Be	schrebung 2*		
Wederbesch -Zel	8.00 (Kalendertage)				
Werkzeug	10				

NIEDERFREQUENTE-MAGNETFELDER AN SCHALTKÄSTEN

Jörg Burmester Elektronikabteilung TKE Technische Infrastruktur Jülich 8.04.2019

TKE 2019

Serie	Widerstand	Spannung	Р	f _{NI}	NIL	NI
	[kΩ]	[V]	[mW]	[Hz]	[µV/V]	[dB]
Panasonic ERA3A 0603 0,1%	10	5	2,5	2,34	5,98E-03	-44,5
Susumu RG1608 0603 0,1%	10	5	2,5	18,53	1,68E-02	-35,5
Panasonic ERA3A 0805 0,1%	10	5	2,5	0,13	1,40E-03	-57,0
No Name Dickschicht 0603	10	5	2,5	10400	4,00E-01	-8,0
No Name Dickschicht 0603	10	0,5	0,025	98,82	3,90E-01	-8,2
Panasonic ERA3A 0603 0,1%	350	5	0,071	0,21	1,06E-02	-39,5
Panasonic ERA3A 0603 0,1%	0,2 + 0,15	5	71,4	6,72	1,90E-03	-54,4
Vishay SMR1D	0,35	5	71,4			
 Temperature coefficient of resistance (TCR): ± 2 ppm°C typical (- 55 °C to + 125 °C, + 25 °C ref.) Tolerance: to ± 0.01 % Current noise: - 40 dB Voltage coefficient: < 0.1 ppm/V Load life stability: ± 0.005 % (70 °C, 2000 h at rated power) 						
 Tolerance: to ± 0.0 Current noise: - 40 Voltage coefficient Load life stability: :)1 %) dB :: < 0.1 ppn ± 0.005 % (n/V (70 °C. 20	00 h at	rated po	wer)	

<u>Achtung!</u>				
Der Einfluß der Temperatur ist erheblich und ist de facto nicht vom 1/f-Rauschen zu unterscheiden!				
Bei konstantem Strom gilt $\Delta U = U_{DC} * \Delta \delta * TK$				
Bsp.: $U_{DC} = 5 V$; $\Delta \delta = 0,1^{\circ}$ C; TK = 2 ppm/K $\Rightarrow \Delta U = 1 \mu V$	Bsp.: $U_{DC} = 5 \text{ V}; \Delta \delta = 0,1^{\circ}\text{C}; \text{ TK} = 2 \text{ ppm/K} \Rightarrow \Delta U = 1 \mu\text{V}$			
Alle rauscharmen Widerstände haben auch einen kleinen TK!				
Das Spektrum vom Temperaturverlauf soll auch eine 1/f-Form haben:				
"A typical non controlled thermal environment (eg. a laboratory) may have the following temperature characteristics (taken from				
real data): ロンドケノリマ at 10・3日マ				
0.07K/VHz at 10^{-2}Hz				
0.01K/VHz at 10 ⁻¹ Hz"				
DRESDEN () HI	ZDR			
Seite 12 Mitglied der Helmholtz-G	emeinschaft			

Rauschärms	te Instrumenta	tionsverstärker fi	ür tiefe Frequenzen (0,01 1 Hz)			
	(berechnet nach Datenblattwerten)					
v = 501						
R = 100 kΩ:	INA188	F = 3,61 dB	Parallelschaltung bringt nichts			
R = 10 kΩ:	INA188	F = 3,35 dB	2*INA188: F = 2,47 dB			
			3*INA188: F = 2,32 dB			
R = 1 kΩ:	INA188	F = 10,59 dB	2*INA188: F = 7,95 dB			
			3*INA188: F = 6,54 dB			
			4*INA188: F = 5,63 dB			
R = 100 Ω:	AD8429	F = 16,10 dB	2*AD8429: F = 14,99 dB			
0,01 Hz 10 H	Hz:					
R = 100 kΩ:	AMP01	F = 1,35 dB	Parallelschaltung bringt nichts			
R = 10 kΩ:	INA828	F = 1,88 dB	3*INA828: F = 1,27 dB			
R = 1 kΩ:	AD8421	F = 5,01 dB	3*AD8421: F = 2,59 dB			
			4*AD8421: F = 2,23 dB			
R = 100 Ω:	AD8429	F = 8,69 dB	2*AD8429: F = 7,64 dB			
Seite 18		De Ande	Mitglied der Helmholtz-Gemeinschaft			

IS 1/f NOISE INFINITE AT DC? $V_n = \sqrt{K \ln \frac{fH}{fL}}$ $V_{nA} (0.1Hz to 10Hz) = \sqrt{K \ln \frac{10}{0.1}}$ $V_{nB} (10^{-18} Hz to 10Hz) = \sqrt{K \ln \frac{10}{10^{-18}}}$ $V_{nB} (10^{-18} Hz to 10Hz) = \sqrt{K \ln \frac{10}{10^{-18}}}$ $V_{nB} = \frac{\sqrt{K \ln 10^{19}}}{\sqrt{K \ln 10^{2}}} = 3.08!!$ \therefore If you wait forever, the noise is only 3 times more.	What does "1/f" say about noise at very lo frequencies, like DC? Does noise reach infinity f approaches 0? Not quite, as the equations for show. The ratio between noise in a 0.1Hz to 100 band and a 10 ⁻¹⁸ Hz to 10Hz band is compare 10 ⁻¹⁸ Hz is chosen as the reciprocal of the age the universe, i.e. 1/forever. As can be seen th noise in the "forever" band is only 3.08 time large, and is not infinite.
--	--

DWC8VM1 8 Channel Downconverter One Channel Vectormodulator*				
Model	f _{min} in MHz	f _{max} in MHz		
DWC8VM1LF	350	500		
DWC8VM1	500	3500		
DWC8VM1HF	3500	6000		
DWC8VM1 Overview Table				
*under license	e from DESY	,		

- DWC8VMLF 352 MHz for low energy part
- DWC8VM1 704 MHz for high energy part
- DWC10LF for Beam Position Monitor (BPM)

SIS8300-KU AXI Based VIVADO Project

- Cooperation Lund University/ESS/Struck
- To Meet ESS/ERIC Firmware Specs
- ESS Version \rightarrow COSYLAB EPICS
- Struck Version available to all users

SIS8890 Discriminator RTM for SIS8800 Multi Purpose Scaler

Functionality

- MTCA.4 RTM
- 16 Discriminator Inputs, Connector Type MMCX
- · Leading Edge
- 50 Ω Input Termination
- 14 Bit Threshold DAC for each Channel, 0.4 mV/Step
- 16 Outputs to Zone 3 (to Scalers on SIS8800)
- 16 Front Outputs, Connector Type MMCX
- Programmable Pulse Width 10 ns -250
- Zone 3 Class D1.1 Compatible
- MMC1.0 Compatible

SIS8864 64 channel LVTTL Digital I/O AMC Properties

- AMC with Double Width Mid-Size form factor
- Xilinx XC7A15T-2FGG484C Artix-7 FPGA
- Single lane PCI Express Gen2 Interface
- 1 AMC Port GbE
- 2 AMC Ports Point-to-Point Serial Link
- 4 AMC Ports MLVDS (8 MLVDS lines)
- 2 Front panel 32 data I/O: Mini D Ribbon (MDR) (TTL/LVTTL)
- I/O direction programmable in 8-Bit Groups
- 1 Front panel control Input: LEMO (TTL/LVTTL)
- 1 Front panel control Output: LEMO (LVTTL)
- In field firmware upgrade capability
- Module Management Controller ATxmega128A1U, IPMB-L interface
- DESY MMC1.0 (under LV 91)

- 4 Channel GSPS 16-bit Digitizer
- 8 Channel 500 MSPS 14-bit Digitizer
- Project Driven ...
- ADC/DAC Combination ...

Summary

MTCA/MTCA.4 adopted by many European (and Asian) accelerators as instrumentation standard

XFEL (and FLASH) in reliable user operation

ATCA, still VME, custom designs, other standards in use as well \rightarrow niche market

AU	Australian Synchrotron					
BR	LNLS					
СН	CERN, PSI					
CN	IHEP Beijing, SINAP, USTC, IMP					
CZ	ELI (Inst of Physics, Praha)					
DE	DESY, HZDR, PTB, MPG, KIT, HZB, GSI, DESY Zeuthen, HIM					
ES	ESS Bilbao, GMV					
FR	ITER, Saclay					
GB	Diamond, STFC					
IN	TIFR					
JP	KEK, SPring-8					
KR	PAL					
RU	ITER, NICA (Bevatech/DESY)					
SE	ESS, Lund University					
TR	TARLA (DESY)					
TW	NSRRC					
US	SLAC, NSCL/FRIB, ANL, ORNL					

Intro	oduction	Pre-findings/Analy	tical Study Temp	erature Dri	ft Correction	Experimental Results	Conclusion & outlook						
R	RIGID-BOOM EMI SYSTEM												
•	Concept View												
	• Measurement Parameters												
			100	1011	@ Tx 1	frequency = 15 kHz, Tx-F	Rx Separation = 0.8 m						
						I _{out} (mA)	~121						
 System specification 						U _{out} (mV)	~9.8						
	- j	-1			φ (μr	rad) @ECa = 1 mS/m	~19						
	Tx-Rx	Separation (m)	0.3 – 1		φ (μra	ad) @ECa = 50 mS/m	~900						
	Tx Fr	requency (kHz)	5 – 35										
	Maximur	m Detecting Depth	1.5 times Tx-Rx se	eparation	$\varphi = \frac{\mu_0}{\mu_0}$	$\frac{\omega_{tx}s^2}{ECa}$							
		<i>U</i> ₀ (Vp)	10		,	4							
	24-bi	t ADC Fs (kHz)	100		s: Tx-R ω _{tx} : an	x separation gular Tx frequency							
					μ_0 : free	space magnetic permeability							
Mer	nber of the Heli	mholtz Association	12 Mar 2019	Pa	ge 5/13	Ð	JÜLICH Forschungszentrum						

10.04.2019

Member of the Helmholtz Association

137

JÜLICH

no. of triggers

Slide 6

Prototype was partially tested

Reconstruction algorithm still warps image at die boundaries

10.04.2019

- Good resolution (0.5 mm structure visible, standard deviation 0.43 mm)
- Threshold setting must be lowered to increase homogeneity and thus total efficiency
- Second measurement necessary

Member of the Helmholtz Association		

Slide 11

Überblick Desy / MDI European XFEL Was ist ein Wire Scanner? Wire Scanner beim E-XFEL "Richtige" Hardware und Ansteuerung der Drähte Detekor und Auslese Messungen, Slow, Fast und wofür? Herausforderungen Zusammenfassung
DESY / Gruppe MDI

Deutsches Elektronen Synchrotron

MDI – Maschine Diagnose, Instrumentierung

- Ca. 40 Personen (je 30% Wissenschaftler, Ingenieure, Techniker)
- (Vakuum-) Konstruktion, Elektronik+Firmware
- Installation, Betrieb und Service der Systeme

Systeme (unvollständig):

- PETRA 3, Vorbeschleuniger: Machine Protection System, Temperaturinterlock, BPM, Stahlprofil, Strommonitore, ...
- XFEL: Ladungsmessung, Dosimetry, Beam Loss, Wire Scanner und optische Emittanzmessung, BPM, ...
- DESY. | MTCA.4 based Wire Scanner System for the European-XFEL | Timmy Lensch, SEI 10/04/2019

Page 3

"Richtige" Hardware für die Drähte

Motor und Positionsauslese des Drahtes

Eine WS Station jeweils für horizontale und vertikale Ebene:

- > Linearmotor mit Servoantrieb (Fa. Linmot)
 - > Datenblatt: Kraft 48N (passiv gekühlt), Geschw. 3,8 m/s
 - Modifizierter Fast Trigger
- Magnetische Federn kompensieren die Kraft des Vauums, so ausgelegt, dass bei Ausfall des Motors die Gabel mechanisch aus dem Strahl gezogen wird
- Fangschalter, wenn WS Station ausgeschaltet ist wird überprüfbar sichergestellt, dass die Gabel außerhalb bleibt (muss aktiv entriegelt werden)
- Inkrementelle Positionsauslese mit optischer Abstastung (Fa. Heidenhain)
 - > 0.5 µm Schritte
 - Relative Position (Referenzmarke)
 - Linearpoti (50 µm Auflösung) für absolute Position (für MPS)
- Hor/Ver Station verringert Einfluss von Schwingungen der Mechanik gegenüber einer Ebene mit 45°

DESY. | MTCA.4 based Wire Scanner System for the European-XFEL | Timmy Lensch, SEI 10/04/2019

Bunch alle 100 ms	Print
WS L3 WS TL WS T1 (SASE2) WS T4 (SASE3) Detailed Plots RPM Cor Overview	Motors Expert HV Settings Overview Detectors (setting HV of WSDs) Help
Control West position Beampool@Wire Discontrol Stantpool@Wire Discontrol Stantpool@Wire Discontrol	Start Scan 3tart Scan 3tart Scan Wichtig
 Ein Elektronenbunch kommt alle 100 ms Draht wird langsam (z.B. 0.2 mm/s) durch den 	 Motor muss kontinuierlich fahren, kein ruckeln o Drahtes
Strahl gefahren Messung dauert lange (z.B. 10 s)	 Strahljitter muss herausgerechnet werden (BF Daten werden zeitgleich gelesen)
Wird durchgeführt beim Aufsetzen der Maschine	
ESY. MTCA.4 based Wire Scanner System for the European-XFEL Timmy Lensch, SEI 10/04/2019	Page 1

Di. Wechanik, Elektronik, Firmwa	are, motanation,	ZE (Elektronik Werkstatt):	WE I. Flysics Group
betriebhanme, weiterentwicklun	g und Service	D And	0.150
D		R.Apei	S.Llu D.Dautha an
Brenger			B.Beutnner
Gharibyan		MCC4: Device Middlelever Server	M.Scholz
rouptchenkov		WC34: Device-, Middlelayer Server	3
_ensch		Kontrollsystem Support	
Nölle			
Pelzer		O.Hensler	
Smirnov			
Tiessen		FE: DAMC2 Board, Firmware	MSK: Firmware Framework
Werner		Framework und Support	SIS8300-L2D
Wittenburg			
Zioglor		Q.Sha	L.Butkowski, …
ziegiei		F.Krivan	
ontact		P.Vetrov	
	Timmy Lensch		
C 51. Deutsches			
lektronen-Synchrotron	timen and a set of the set		
	timmy.iensch@des	y.de	
/ww.desy.de			
/ww.desy.de			

Philips Components Dete sheet stesse Prefmary spotfoston dete of issue Occober 1989 5	(P2243B ast, 6-stage, red sensi 1 mm (2″) diameter tut	itive, De		
APPLICATIONS				
High energy physics principally.				
GENERAL CHARACTERISTICS	boroslikate plano - concave		NOTES	
GENERAL CHARACTERISTICS Window media refution refution Protocation Protocation active spectral range waveKraph for maximum radiant sensitivity lamious secs outy laminum radiant sensitivity lamious secs outy	bords lease parto - concave 1.43 sem-trataparent, head on the set are 100 to 860 y = 420 = 160 min. 9	mm nm am µA/im mA/W	NOTES	

S	UMMARY	HELN	FOR	GR	AND	CHAL	LENG	ES	CMS	Karlsruher I	nstitut für Techn	ologie
CMS cond - Two - - - -	B needs tracks at L1 for HL-LHC pileup litions p_T modules provide first layer of efficient data reduction all-FPGA approaches: Tracklet and TMTT Use high-performance FPGAs Highly parallelized tracking algorithms Data organization \rightarrow pattern recognition \rightarrow track fitting \rightarrow duplicate removal Both have demonstrated feasibility and good performance with currently available hardware	Effo	W Co	hav ′ork • •	ve st king mor ATC Slov Higl	artec on de i infi CA th w-co h-spe	d to i efinii rasti merm ntrol eed	mer ng a nal s l and opti	ge the t a refere ture R& imulation d shelf i cal link	wo app nce alg D ons and manag test	broach gorith I tests er con	es m

Institute for Data Processing and Electronics (IPE)

- ----

Background: Development of Methods	
Many projects need high speed interfaces BrainPET (and other PET); pnCCD, PANDA_x, Sonde, GLORIA / AtmoSat, 	
 Ethernet is "de-facto" standard Gigabit Ethernet Interfaces: GMII, RGMII, SGMII, XAUI, SFP-optical links, … Protocols: UDP, TCP, ARP, ICMP, … 	
 Aim of the project TCP/IP on FPGA without CPU Feasibility study & Market analysis Development of Test-Cases and demonstrators (based on commercial Evaluation boards) Generate Repositories and Libraries Building Blocks for future projects Documentation 	
Mitglied der Helmholtz-Gemeinscheft	

QUELLEN

- [1] Herzog H, Langen KJ, Weirich C, Rota Kops E, Kaffanke J, Tellmann L, Scheins J, Neuner I, Stoffels G, Fischer K, Caldeira L, Coenen HH, Shah NJ. High Resolution BrainPET Combined with Simultaneous MRI. Nuklearmedizin/NuclearMedicine 2011 50(2) 74-82.
- [2] Bjoern Weissler, Pierre Gebhardt, Peter M. Dueppenbecker, Jakob Wehner, David Schug, Christoph W. Lerche, Benjamin Goldschmidt, Andre Salomon, Iris Verel, Edwin Heijman, Michael Perkuhn, Dirk Heberling, Rene M. Botnar, Fabian Kiessling, and Volkmar Schulz. A Digital Preclinical PET/MRI Insertand Initial Results. IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 11, NOVEMBER 2015
- [3] https://reference.digilentinc.com/_media/sume:netfpga-sume_rm.pdf
- [4] https://www.xilinx.com/support/documentation/ip documentation/ten gig eth pcs pma/v6 0/pg068-ten-gig-eth-pcs-pma.pdf
- [5] https://comblock.com/download/com5502soft.pdf

Mitglied der Helmholtz-Gemeinschaft

10.04.2019

Seite 13

	Generic Data Processing board development leveraging a modular approach based on SoM ar	nd SoCs
Outline	S. Farina, 10.04.2019, FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2)	S. 2
 MicroTCA Technology Lab Introduct ZYNQ Ultrascale+ MPSoC FMC+ of Board overview Block diagram Clock trace 	ction carrier:	
 Power section MPSoC features and performance PCB Characteristics 	nce	
MMC Stamp (Module Managemen	t Controller SoM)	
White Rabbit SoM support		
		DESY

I					C	Generic Data	Process	ing boa	rd dev	elopmen	t leve	raging a modular approach based on SoM and SoCs
	DAMC-FMC	:2ZL	JP PCB	Specific	cation	6. Farina, 10.0	04.2019,	, FZJ Fo	orschu	ngszentr	um Ji	ülich Systeme der Elektronik (ZEA-2) S. 15
			Polar Samples	SM/001	Liquid Photolmageable M	ask SolderMask	25,000	4,000				16 Javer PCB with Blind
ł		/ —	Polar Samples	FO/002	Copper Foil	Copper	35,000		Signal	Ω		TO-layer FCD with Dilliu,
L			Panasonio	R-5670 Megtron6	PrePreg 1x1078	Dielectric	77,000	3,225				Buried and Stacked Vias
P			Polar Samples	FO/002	Copper Foil	Copper	35,000		Plane			Dulleu allu Stackeu vias.
I			Panasonic	R-5670 Megtron6	PrePreg 1x1078	Dielectric	104,000	3,135				
L	() 🖬 () 🔺 (1 💻	Polar Samples	FO/002	Copper Foil	Copper	35,000		Signal	Ω		Via in had for EPGAs and
L			Panasonic	R-5670 Megtron6	PrePreg 1x1078	Dielectric	77,000	3,225			-	Via ili pau iui i i OAS aliu
I			Panasonic	R-5670 Megtron6	PrePreg 1x1078	Dielectric	77,000	3,225				DDP modules
I							18,000		Plane			DDIVINIOUUIES
I			Panasonic	R-5775 Megtron6	Core 1x1078	Dielectric	75,000	3,245	Signal	0		
I			Panasonic	R-5670 Megtron6	PrePreg 1×1078	Dielectric	89,000	3,185	Signal	12	•	8 signal layers with
I			Panasonic	R-5775 Megtron6	Core 1×1078	Dielectric	18,000 65,000 18,000	3,320	Plane	0		controlled impedance:
I			Panasonic	R-5670 Megtron6	PrePreg 1×1078	Dielectric	104,000	3,135	Signal	12		•
I			Panasonic	R-5775 Megtron6	Core 1×1078	Dielectric	18,000 65,000	3,320	Plane			 6 outer signal layers (40
I			Panasonic	R-5670 Megtron6	PrePreg 1×1078	Dielectric	104,000	3,135	Fiane	•		and 50 Ω SE , 80 and 100
I			Panasonic	R-5775 Megtron6	Core 1×1078	Dielectric	18,000 65,000 18,000	3,320	Signal	Ω		Ω DIFF)
I			Panasonio	B-5670 Mentron6	PrePreg 1x1078	Dielectric	89.000	3 185				• 2 inner signal layers (50 Ω
I							18.000		Signal	0		SE and 100 O DIEE)
I			Panasonic	R-5775 Megtron6	Core 1×1078	Dielectric	75,000 18,000	3,245	Plane	52		SE and 100 12 DIFF)
I			Panasonio	R-5670 Megtron6	PrePreg 1x1078	Dielectric	77,000	3,225				
1			Panasonic	R-5670 Megtron6	PrePreg 1x1078	Dielectric	77,000	3,225				
I		1 👿	Polar Samples	FO/002	Copper Foil	Copper	35,000		Signal	Ω		
1			Panasonic	R-5670 Megtron6	PrePreg 1x1078	Dielectric	104,000	3,135				
h			Polar Samples	FO/002	Copper Foil	Copper	35,000		Plane			
ſ			Panasonic	R-5670 Megtron6	PrePreg 1x1078	Dielectric	77,000	3,225				
h			Polar Samples	FO/002	Copper Foil	Copper	35,000		Signal	Ω		
I			Polar Samples	SM/001	Liquid Photolmageable M	ask SolderMask	25,000	4,000				
								TEC			1	

	Generic Data Processing board development leveraging a modular approach based on SoM and SoCs						
DAMC-FMC2ZUP WMC SOM	S. Farina, 10.04.2019, FZJ Forschungszentrum Jülich Systeme der Elektronik (ZEA-2) S						
Why? MTCA management is a challenging development (very often underestima	part of the ated)						
IPMI via micro controller is necessary	RTM						
 Allows hot-swap, power control, status i temperature alerts, etc. 	information, User I2C						
 FPGA control including HPM update, JT 	TAG selection MP→PP						
Different solutions are possible:							
 Design for reuse with snippets: 	ENCLUSTRA MARS Spartan-6 module						
 still prone to mistakes (com HW/SW modifications likely MMC SoM: 	ponents spread across the PCB) required for each AMC						
Fully integrated solution (onSoftware package with all n	nly external temperature sensors needed) nanagement functions						

Which heterogeneous architectures do exist?								
	Microsemi Pere Marrix SMARTFUSION'2 SOC FPGA	ARRIA'10 inside		STRATIX'10 inside				
	Smart Fusion2	Arria 10 SX	Zynq	Stratix 10 SX	Zynq US+			
Processors	ARM Cortex M3	2x ARM A9	2x ARM A9	4x ARM A53	4x ARM A53 2x ARM R5			
Peripherals (I2C, SPI, ETH)	yes	yes	yes	yes	yes			
Neon Extensions	-	yes	yes	yes	yes			
Security Ext.	yes	yes	yes	yes	yes			
FPGA complexity	146 k LE	660 k LE	444 k LC	2750 k LE	1100 k LC			
GPU	-	-	-	-	Mali 400-MP2			
High Speed IO	16x 3.2 Gb/s	48x 17.4 Gb/s	16x 16 Gb/s	64x 28.3 Gb/s 32x 17.4 Gb/s	28x 32.75 Gb/s 44x 16.3 Gb/s			
4 17.02.2020	SEI Workshop @ FZJ				IPE - EPS			

3-1,451				/	<i>\</i>
3-1,451					1
3-1,451					
3-1,451					~
	356-1,143	783-5,541	862-3,780	103-1,143	678-930
7-75.9	12.7-34.6	44.3-132.9	23.6-94.5	4.5-34.6	27.8-38.0
	0-36		90-360	0-36	13.5-22.5
			0-8		
3-5,520	1,368-3,528	600-2,880	2,280-12,288	240-3,528	3,145-4,27
3,180	6,287	4,268	21,897	6,287	7,613
12-64	16-76	36-120	32-128	0-72	8-16
16.3	32.75	30.5	58.0	32.75	32.75
2,086	3,268	5,616	8,384	3,268	1,048
2,400	2,666	2,400	2,666	2,666	2,666
12-832	280-668	338-1,456	208-832	82-668	280-408
3 3 11	-5,520 ,180 2-64 .6.3 ,086 ,400 2-832	0-36 -5,520 1,368-3,528 ,180 6,287 2-64 16-76 .6.3 32,75 ,086 3,268 ,400 2,666 2-832 280-666	0-36 -5,520 1,368-3,528 600-2,880 ,180 6,287 4,268 2-64 16-76 36-120 .6.3 32,75 30,5 .086 3,268 5,616 .400 2,666 2,400 2-832 280-668 338-1,456	0-36 90-360 -5,520 1,368-3,528 600-2,880 2,260-12,288 ,180 6,287 4,268 21,897 2-64 16-76 36-120 32-128 .6.3 32,75 30.5 58.0 .086 3,268 5,616 8,384 .400 2,666 2,400 2,666 2-832 280-668 338-1,456 208-832	0-36 90-360 0-36 -5,520 1,368-3,528 600-2,880 2,280-12,288 240-3,528 180 6,287 4,268 21,897 6,287 2-64 16-76 36-120 32-128 0-72 .6.3 32,75 30.5 58.0 32,75 .086 3,268 5,616 8,384 3,268 .400 2,666 2,400 2,666 2,666 2-832 280-668 338-1,456 208-832 82-668

P. Kaever, P.Göttlicher

Arbeitstreffen: Testen

Es wurden die verschiedenen Phasen der Projekte angesprochen.

1. Hardware:

- **Testen während der Entwicklung**. Hier geht es meist mit dedizierten Messaufbauten darum, die Ideen des Designs und deren Umsetzung zu validieren.
 - Es werden didizierte Messgeräte benötigt
 - Es wird Software benötige
 - o Es wird Firmware für FPGAs genötigt

Vielfach ergeben sich in den Instituten oder Gruppen dortige Standard-Instrumente und Softwarepakete

- Tests der Produktion.

- Es wurden Standardisierte Testmethoden angesprochen:
 - o Flying Probes für Impedanzen aller Netze
 - o JTAG basiertes Boundary Scan
 - o Optische Kontrollen
 - o EMV
 - o Kontinuierliche Qualitätssicheruntg der Werkzeuge, e.g. Löten
 - 0
- **Funktionale Tests** in den entwickelnden gruppen oder zentralen Gruppen in Zusammenarbeit mit den Entwicklern. Hier gelten ähnlich Überlegungen wie zu den Tests während der Entwicklung, allerdings mit einem weiteren Schritt zu einfacher routinierter Bedienung.

2. Software/Firmware

Längere Gespräche ergaben sich zum Test von Software.

Konzept Softwarereview und -test:

Reviewer sind Projektmitarbeiter mit Softwarekenntnissen

- Review- und Testsituation:
- Zu testende Systeme: häufig SPS-Software
- Testcases werden mit Python-Skripten geschrieben
- Falls möglich wird mit Hardware in the Loop getestet z.B. bei häufig verwendeten Systemen

Tooling im Projekt:

- Redmine für Versionsverwaltung und als Ticketsystem
- Gerith als Review-System
- Jenkins als Buildsystem und für Test Runs

Angestrebt wird eine testgetriebene Entwicklung

- Definition der Testcases
- Codierung der Unit-Tests
- Einbindung in Jenkins
- Codierung der Funktionalität
- Programmierung gegen die Testcases und sukzessive Iteration von Codierung und Test

DESY-PROC-2020-01 ISBN 978-3-945931-31-8 ISSN 1435-8077