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Abstract

With regard to materials in nature having extraordinary properties, one focus of our research is 
nacre-inspired materials. On the basis of 3D-printing, it was possible to prepare tiny bending bars in 
order to be tested in three-point bending (3PB). However, their cross sections are not rectangular but 
have a special geometric shape. Therefore, analytical calculations concerning the area moment of 
inertia and other physical quantities were performed for the correct analysis of the measured data. 

1.  Introduction

The original  motivation for this  report  was a rough estimate of forces that are  expected in the 
strength measurements of tiny specimens by three-point bending (3PB). The required stress for fail-
ure of the material in 3PB assuming a rectangular cross section is:

     σ =
3 Fmax L

2h2b
(1)

with σ being the maximum stress on the tensile surface before inelastic deformation or fracture and 
Fmax being the corresponding force. L is the support distance, h the (average) height, and b the (aver-
age) width of the sample. It follows that the expected force Fmax is: 

    Fmax =
2σ h2b

3 L
(2)

In Table 1, we assume a support distance of  L = 5 mm and an average width of the sample of 
b = 1 mm. If other values are required, they can easily be estimated with the second equation.  

Table 1: Maximum force calculated for different strengths and
average heights of the specimen (L = 5 mm, b = 1 mm).

h = 100 µm 250 µm 500 µm

σ = 10 MPa 0.013 N 0.083 N 0.33 N

      30 MPa 0.04 N 0.25 N 1 N

    100 MPa 0.13 N 0.83 N 3.3 N 

For a relatively precise measurement with our equipment, the force should be 1 N or more. How-
ever, lower forces can also be measured.  

2.  Area moment of inertia (semi-elliptic cross section)

The area moment of inertia, also named the second (planar) moment of area and which is necessary 
for the evaluation of bending tests, can be calculated analytically if the shape is not too complicated. 
An example is the semi-elliptic shape (Fig. 1). The area moment of inertia with respect to the x-axis 
is given by: 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.15480/882.4355
https://orcid.org/0000-0002-2285-9989


2

  I x = ( π
8
−

8
9π )a h3

= 0.10976⋅ah3     (3)

This  formula  is  the  modified  version  of a 
semi-circular cross section. Nevertheless, it 
can be verified by taking the half area mo-
ment of inertia of a full ellipse and applying 
Steiner’s theorem with the center of area at 
a height of 4h/(3π) = 0.424413  h.  A more 
realistic shape is provided below. 

3.  Area moment of inertia (special cross section)

In the given experiment, the cross section of the samples is neither semi-elliptic nor triangular. 
Therefore, we analyze a special form which is between both given shapes (see Fig. 2). This cross 
section consists of one 90° sector and two right-angled triangles. (Ultimately, the shape will be 
altered to a flatter cross section with an elliptical sector.)

We begin with the determination of the overall center of area, given by the white dot. The distance 
of the center of area of the 90° sector from the 45° line is the same as in Fig. 1. It is 4h/(3π), mean-
ing that its distance from the x-axis is 4h√2/(3π). The centers of area of the two triangles have the 
distance y2 = h/(3√2) from the x-axis. The x-coordinate of the overall center of area is xC = 0 because 
of mirror symmetry. The corresponding y-coordinate,  yC, is given by taking into account the three 
centers of area (black points). With the areas F1 = πh2/4 and F2 = h2/2, we obtain: 

yC =

∑
i=1

3

y i⋅Fi

∑
i=1

3

Fi

=

4√2h
3π

⋅π
4

h2
+ 2⋅

h
3√2

⋅
h2

2

π
4

h2
+ 2⋅

h2

2

=
h

√2⋅(1+π
4 )

= 0.396050⋅h           (4)

The task now is to calculate the area moments of inertia (also referred to as area moments) of the 
three areas in Fig. 2 with respect to the x-axis (running through yC) and add these up. 

Figure 1: Semi-elliptic cross section.

Figure 2: Special cross section consisting of three areas: F1 and twice F2.  
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Area moment of inertia of area F1

The area moment of  F1 can be calculated  in  a simplified way. The 
area moment of the cross section in Fig. 3 is [1]:

I x = (θ−sinθ)⋅
r4

8
       (5)

With θ = π/2, the right side of Eq. (5) becomes (π/2‒1)r4/8. Now, we 
obtain the area moment, I1, of F1 with respect to the x-axis in Fig. 2 
by subtracting this term twice from the area moment of a full circle 
and dividing the result by 2. 

With the area moment of a full circle of πr4/4 and replacing r with h, 
we find:

Ī 1 =
1
2
⋅( π

4
h4

−2(
π
2

−1)
h4

8 ) = ( 2+π

16 ) h4                                           (6)

Equation (6) represents the area moment of inertia of F1 with respect to the x-axis in Fig. 2. In order 
to obtain the value for the x-axis, which runs through the overall centroid (center of area), we must 
apply Steiner’s theorem (parallel axis theorem) twice. First, we have to shift the axis to a parallel 
axis by a distance of y1, and, second, this axis must be shifted back by the distance y1‒yC. Therefore, 
we obtain the area moment of inertia concerning the area F1 with respect to the x-axis by: 

   I1 = Ī1− y1
2 F1+( y1− yC)

2 F1 = Ī 1+ yC( yC−2 y1)F1

=
2+π

16
⋅h4

+
h

√2(1+π
4 )

⋅(
h

√2 (1+π
4 )

−
8 √2h

3 π )⋅
π
4

h2
=

−416+64 π+30π
2
+3π

3

48(4+π)
2 ⋅ h4     (7)

This way (using Eq. (5)), the calculation of the area moment by integration is not required. However, 
since errors are possible, the result is validated by analytical integration, which is performed in the 
Appendix.  

Area moment of inertia of area F2

If b' and h' are the width and the height of the triangles, we have b' = h·√2 and h' = h/√2. Thus, the 
area moment of one of the triangles with respect to the horizontal axis through the centroids of the 
triangles is I 2 '= b'h'3/36 = h·√2(h/√2)3/36 = h4/72. By shifting this axis by yC‒y2 (see Fig. 2) and ap-
plying Steiner’s theorem, for one triangle we obtain the following area moment of inertia, I2, with 
respect to the overall center of area (x-axis): 

   I2 = I 2 ' + ( yC− y2)
2 F2

=
h4

72
+ (

h

√ 2( 1+ π
4 )

−
h

3 √ 2 )
2 h2

2
=

48−8π +π
2

24 (4+π )
2 ⋅ h4                        (8)

Overall area moment of inertia Ix 

The total area moment of inertia is the sum of the separate contributions. By using the results of 
Eqs. (7) and (8), this means that:

Figure 3: Symmetric circle 
segment.
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   I x = I 1+2 I 2 =
−224+32π+34 π

2
+3π

3

48(4+π)
2 ⋅ h4 (9)

This is the solution for the cross section in Fig. 2, which has a constant ratio b/h = 2√2. In the real 
experiment, this ratio could be different, e.g., as in Fig. 4b. Figure 4 shows a comparison between 
an experimental and the theoretical cross section. Fortunately, we can proportionally stretch or com-
press the cross section in the horizontal or vertical direction. The large prefactor in Eq. (9) would be 
unchanged if we replaced the factor h4 by bh3/(2√2). The final result is provided in Table 2 together 
with the formulas of some other cross sections. 

Table 2: Area moment of inertia for different typical cross sections (x-axis through
the center of area, perpendicular to the symmetry axis).

cross section area moment of inertia

 I x =
bh3

12
= 0.083333⋅b h3                                                 (10)

 I x = ( π
16

−
4

9 π )bh3
= 0.054878⋅bh3                                 (11)

 I x =
−224+32π+34 π

2
+3π

3

96√2(4+π)
2 ⋅ b h3

= 0.044065⋅b h3      (12)

 I x =
bh3

36
= 0.027778⋅b h3                                                  (13)

Figure 4: a) Profile of experimental self-assembly specimen (prepared by Magnus Küpker
at the TUHH); b) adapted theoretical cross section.
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4.  Stress, strain, and Young’s modulus for different cross sections

The relation between the stress σ and the force F in 3PB is: 

 σ 3PB =
F L z
4 I x

=
F L yC

4 I x

   (14)

where L is the support distance and z the distance between the center of area and the surface of the 
specimen with maximal tensile stress. In our case of Eq. (12), z is equal to yC (Eq. (4) and Fig. 2). In 
the following, we add some useful physical quantities with respect to the geometric cross sections 
shown in Table 2. The maximum strain in 3PB at the outer fiber for a rectangular cross section is: 

 ϵ 3PB =
6d h

L2
     (15)

with d being the displacement at the central load point. The general equation for the maximum strain 
of different shapes of the cross sections is:

 ϵ 3 PB =
12d yC

L2        (16)

Consequently, the elastic modulus (Young’s modulus) can be calculated using Eqs. (14) and (16): 

E3 PB =
σ 3 PB
ϵ 3 PB

=
F L yC

4 I x

⋅
L2

12 d yC

=
L3

48 I x

⋅
F
d

=
L3 s

48 I x

  (17)

with  s =  F/d  being the slope in the force-displacement diagram. Table 3 provides the distance 
between the center of area and the outer fiber as shown exemplarily in Fig. 2. The center of area 
defines the height position of the neutral fiber. Note that the lower edge of the cross section corre-
sponds to maximum tensile stress. If the cross sections are turned upside down, all of the values of 
yC, stress, and strain in Tables 3 and 4, except for the rectangular cross section, are changed. In this 
case the distance yC has to be replaced by h ‒ yC.

Table 3: Distances yC between the neutral fiber (through the center of area)
and the outer fiber under maximum tensile stress (compare Fig. 2).

cross section center of area

yC =
h
2

yC = 0.424413⋅h

yC = 0.396050⋅h

yC =
h
3
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Table 4 summarizes the main quantities in a form allowing for an easy application. The equations 
for the rectangular cross section can be compared with the corresponding formulas in Table 1 of 
Ref. [2]. Note that the equations for the stress, σ, can also be used for four-point bending with the 
inner and outer support distances s1 and s2 if L is replaced by s2 – s1. 

Table 4: Stress, strain, and Young’s modulus for 3PB and different shapes of the cross section (s = F/d).

cross section stress strain Young’s modulus

σ =
3
2
⋅

F L

b h2
ϵ = 6⋅

dh

L2 E =
1
4
⋅

L3 s
b h3

σ = 1.93342⋅
F L

b h2
ϵ = 5.09296⋅

d h

L2 E = 0.37963⋅
L3 s
b h3

σ = 2.24699⋅
F L

b h2
ϵ = 4.75260⋅

d h

L2 E = 0.47279⋅
L3 s
b h3

σ = 3⋅
F L

b h2
ϵ = 4⋅

d h

L2 E =
3
4
⋅

L3 s
b h3

5.  Summary

The shape of the cross sections of tiny bending bars could be well approximated by a special geo-
metric contour, and the corresponding physical quantities, being the area moment of inertia, the 
position of the neutral fiber, stress, strain, and Young’s modulus, were determined analytically. The 
calculations and results are presented together with the known formulas of some common cross sec-
tions. 

Acknowledgment 

This work was supported by the German Research Foundation (DFG), project number 192346071, 
SFB 986. 

Appendix

Area F1 in Figure 2

The following integration of the area moment of 
inertia of area F1 in Fig. 2 is a test of the correct-
ness of Eq. (7). For the analytical integration, we 
need the two functions in Fig. 5 as integration 
bounds for the y-integration. These are: 

 f 1(x ) = √ h2
−x2

− yC            (A1)

and             f 2(x ) = x− yC                      (A2)

with yC given by Eq. (4). Figure 5: Symmetric circle segment F1 in Fig. 2.
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If we integrate the right half of the sector in Fig. 5 and multiply it by 2, we obtain the following area 
moment of inertia of the area F1 with respect to the x-axis: 

                I1 = ∬
F1

y2 dydx = 2⋅∫
0

h/√ 2

∫
x− yC

√ h2
−x2

− yC

y2 dydx

                   = 2 ∫
0

h/√2

[ y3

3 ]
x− yC

√h2
−x2

− yC

dx =
2
3

∫
0

h/√ 2

((√h2
−x2

− yC )
3
−(x− yC)

3)dx

=
2
3 ∫

0

h/√2

((h2
−x2

)

3
2−3h2 yC+6 x2 yC+3√h2

−x2 yC
2
−x3

−3 x yC
2 )dx             (A3)

The first summand in the integrand can be evaluated by the following indefinite integral taken from 
Ref. [3]:

∫(a2
−x2

)

3
2 dx =

1
4 (x(a2

−x2
)

3
2 +

3 a2 x
2

√a2
−x2

+
3 a4

2
sin−1 x

a )             (A4)

Thus, we find:

             
2
3

∫
0

h/√2

(h2
−x2

)

3
2 dx =

2
3 [ 1

4 (x (h2
−x2

)

3
2 +

3 h2 x
2

√h2
−x2

+
3 h4

2
sin−1 x

h )]
0

h/√2

                                              =
1
6 ( h

√2 (h2
−

h2

2 )
3
2 +

3 h3

2√2 √h2
−

h2

2
+

3 h4

2
sin−1 1

√2 )

 =
h4

6 (1+
3π

8 ) (A5)

The fourth summand in the integrand of Eq. (A3) can be handled using Ref. [3]:

∫√a2
−x2 dx =

1
2 (x √a2

−x2
+ a2 sin−1 x

a )                               (A6)

Similarly, this yields:

2
3 ∫

0

h/√2

√h2−x2 dx =
2
3
⋅3 yC

2 [ 1
2 (x √h2−x2 + h2sin−1 x

h )]
0

h/√2

= yC
2 h2( 1

2
+ π

4 )      (A7) 

Integrating the four remaining summands in Eq. (A3) is a standard procedure and performed as fol-
lows:  

  
2
3

∫
0

h /√2

(−3 h2 yC+6 x2 yC− x3
−3 x yC

2 )dx =
2
3 [−3 h2 yC x + 2 x3 yC−

x4

4
−

3
2

x2 yC
2 ]

0

h /√2
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     =
2
3 (

−3 h3 yC

√2
+

2 h3 yC

2√2
−

h4

16
−

3
2
⋅

h2

2
yC

2 )

 =
2
3 (h3 yC(

−3
√2

+
1
√2 ) −

h4

16
−

3
4

h2 yC
2 ) = −

2√2
3

h3 yC −
h4

24
−

1
2

h2 yC
2      (A8)

By adding the results of Eqs. (A5), (A7), and (A8), for the area moment of inertia of the area F1 we 
obtain:

I1 =
h4

6 ( 1+
3π

8 ) + yC
2 h2( 1

2
+ π

4 ) −
2 √ 2

3
h3 yC −

h4

24
−

1
2

h2 yC
2          (A9)

The last summand cancels with another term and h4/24 is subtracted from the first bracket. Inserting 
yC by means of Eq. (4) yields:

I 1 = h4( 6+3π

48 ) +
h4

π

8( 1+π
4 )

2 −
2 h4

3( 1+ π
4 )

=

(6+3π )( 1+π
4 )

2

+6π −32( 1+ π
4 )

48(1+π
4 )

2 ⋅ h4    (A10)

Further reduction leads to: 

I1 =
−416+64π +30π

2
+3 π

3

48(4+π )
2 ⋅ h4                                       (A11)

being identical to the result of Eq. (7). 

Area F2 in Figure 2

We also briefly calculate the area 
moment of inertia for the area F2, 
at which F2 is one of the triangles 
in Fig. 2.  Thus, we validate Eq. 
(8). The two functions, being the 
integration limits in the following 
integration (see Fig. 6), are:

f 3( x) =
h

√2
− yC−x     (A12)

f 4(x) = − yC                (A13)

Next, we calculate the area mo-
ment of inertia for the right half 
of the triangle in Fig. 6 and multi-
ply it by 2: 

I2 = ∬
F2

y2 dydx = 2⋅∫
0

h/√ 2

∫
−yC

h/√ 2−yC−x

y2 dydx                               (A14)

Figure  6:  One of the two triangular parts F2 of  the cross section in
Fig. 2. The white dot indicates the centroid of the whole cross-sectional  
area in Fig. 2. 
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It follows:

    I2 = 2 ∫
0

h/√ 2

[ y3

3 ]
− yC

h/√ 2− yC−x

dx =
2
3

∫
0

h /√ 2

(( h
√ 2

−yC−x)
3

−(− yC)
3) dx

=
2
3 [ ( h/ √ 2−yC−x )

4

−4
+ yC

3 x]
0

h /√ 2

=
2
3 ( yC

4

−4
+ yC

3 h
√ 2

−
( h/ √ 2− yC )

4

−4 )     (A15)

For the sake of simplicity, yC is replaced by:              yC =
4 h

√ 2(4+π )

and the term in the last numerator of Eq. (A15) by:  
h

√ 2
− yC =

h

√ 2
−

4 h

√ 2(4+π )
=

π h

√ 2(4+π )

Inserting these terms into Eq. (A15) yields:

       I2 =
2
3 (−1

4
⋅(

4 h
√ 2(4+π ))

4

+ (
4 h

√ 2(4+π ))
3 h
√ 2

+
1
4 (

π h
√ 2(4+π ))

4

)

=
2 h4

3
−43

+43
(4+π )+π

4
/4

4(4+π )
4 = h4

⋅
768+256π +π

4

24 (4+π )
4 =

48−8π +π
2

24(4+π )
2 ⋅ h4        (A16)

This result is identical to that of Eq. (8) and shows that the previous calculation using Steiner’s 
theorem is correct. The last equality in Eq. (A16) is not very obvious. However, it is valid because 
the polynomial π4

 + 256 π + 768 can be factorized as follows: 

π
4
+256π +768 = (π +4)

2
(π

2
−8π +48)                                    (A17)

Remark: Although the calculation might appear easy, the integration of  I2 took hours of trial and 
error. Ultimately, a relatively simple way of performing the calculation was found. Apart from the 
fact that this validates the previous result, of course, it was much easier to apply Steiner’s theorem. 
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