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Abstract

We propose a combined mechanism to realize both winding inflation and de Sitter

uplifts. We realize the necessary structure of competing terms in the scalar potential

not via tuning the vacuum expectation values of the complex structure moduli, but by

a hierarchy of the Gopakumar-Vafa invariants of the underlying Calabi-Yau threefold.

To show that Calabi-Yau threefolds with the prescribed hierarchy actually exist, we

explicitly create a database of all the genus 0 Gopakumar-Vafa invariants up to total

degree 10 for all the complete intersection Calabi-Yau’s up to Picard number 9. As

a side product, we also identify all the redundancies present in the CICY list, up to

Picard number 13. Both databases can be accessed at this link.
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1 Introduction

An ongoing series of observational cosmological probes, among them cosmic microwave

background (CMB) measurements [1–3], type IA supernova data (see e.g. [4]), large-

scale structure (LSS) surveys (see e.g. the very recent results of [5]), and baryon acoustic

oscillation (BAO) measurements (see e.g. [6]), has so far provided increasing evidence

for the ΛCDM cosmological standard model. In particular, this includes support for a

concurrent late-time accelerating expansion of the universe compatible with a descrip-

tion by de Sitter (dS) space with a very small positive cosmological constant (c.c.) and

a very early epoch of extremely rapid exponential expansion called inflation.

This observational background provides the motivation for continued efforts to

search for vacuum solutions (“vacua”) of string theory as a candidate theory of quantum

gravity which can realize both controlled dS vacua and an observationally viable epoch

of slow-roll inflation. In many cases, constructing such string vacua involves stabilizing

all moduli scalar fields, and stringy p-form axion fields using fluxes and orientifold

planes up to typically one or two scalar field directions left massless and “flat” at

leading order. For these remaining few flat directions a scalar potential arises from

taking into account non-perturbative quantum corrections, in particular if these flat

directions are axions for which perturbative corrections are absent.

It is in this context where the study of beautiful mathematical objects of Calabi-Yau

(CY) quantum geometry such as the Gopakumar-Vafa (GV) invariants [7, 8] describing

instanton contributions of branes wrapping the holomorphic curves of a CY acquires
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direct relevance for the low-energy effective field theories (EFTs) derived from models

in string phenomenology.

For us this contact happens for string theory models of axion inflation and dS vacua

arising as uplifts of anti-de-Sitter (AdS) vacua, as the non-perturbative quantum cor-

rections encoded by the GV invariants can provide a controlled lifting of flat directions

left over in the complex structure (c.s.) moduli space by properly choosing fluxes in

type IIB string theory CY orientifold flux compactifications [9, 10]. The work of [9, 10]

uses the ability to arrange the desired ratios of complex structure moduli VEVs by

tuning 3-form fluxes to generate controlled of left-over flat quasi-axion directions in c.s.

moduli space near its large-complex-structure point from the instanton contributions

encoded by the GV invariants. Moreover, [9] shows that properly choosing the fluxes

can generate flat axion valleys with a large path length on a small fundamental domain,

which allows to generate inflationary dynamics once the long flat valley is lifted by the

GV-controlled instanton effects.

Based on these literature results, we show in this paper that having a large database

of CYs with known GV invariants in hand, we can use CYs with a built-in hierarchy

of the lowest-degree GV invariants to collaborate with the tuning of c.s. moduli VEV

hierarchies in controlling the instanton contributions to the scalar potential, and in

some cases remove the need to tune hierarchical c.s. VEVs. Using the set of complete

intersection CYs (CICYs) in projective ambient space as an example database, we

provide explicit examples of the required GV invariant hierarchies necessary to alleviate

hierarchical arrangements for the c.s. moduli VEVs controlling the relevant instanton

contributions, as well as for the control regimes studied in [9, 10]. Together with the

existing results, this provides explicit examples for the mechanism outlined in [9, 10]

to generate both dS vacua and natural-inflation-like slow-roll inflation with the c.s.

moduli sector from fluxes and GV invariant controlled quantum corrections alone.

However, it is important to note that the mechanism discussed here can provide

a controlled uplift only in a consistent setting with full moduli stabilization. Without

reviewing the full discussion of either KKLT-type [11–13] or Large Volume Scenario

(LVS) [14] type stabilization of the Kähler moduli forming the lightest moduli sector,

their respective requirements of either a full set of h1,1 rigid 4-cycles or a CY with h1,1 <

h2,1 imply that our explicit examples of this paper show the existence of the ingredients

intrinsic to the uplift/inflation sector itself but they cannot be made to work as full

examples in particular in the context of LVS. This is because we are able to construct

the GV invariants explicitly for the mirror symmetry partner CYs of the CICYs (the

so-called mirror CICYs), and these mirror CICYs have h1,1 > h2,1 owing to the fact
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that all CICYs themselves have negative Euler characteristic (χ = 2(h̃1,1 − h̃2,1) < 0).1

Rendering our explicit mirror CICY examples of the uplift/inflation mechanism

into full examples including moduli stabilization might work upon invoking the KKLT

mechanism of non-perturbative Kähler moduli stabilization (which does not put a re-

quirement on the sign of χ). However, for the mirror CICYs this would require “rigidify-

ing” a potentially large number of 4-cycles to remove the potential excess of zero-modes

from the required 7-brane stacks providing the non-perturbative quantum corrections

responsible for Kähler moduli stabilization.

We would like to point out further that these difficulties may be overcome if it can

be shown that many of the h̃1,1 > 1 CICYs and CYs of the Kreuzer-Skarke construc-

tion [15] set have mirror duals satisfying the Greene-Plesser construction [16] proper-

ties. For some examples of CICYs in weighted projective ambient spaces (such as, e.g.,

P4
11169) with h̃1,1 > 1 this is known to be the case. If such “Greene-Plesser pairs” can be

shown to be ubiquitous, they can potentially be used to transport the GV invariants

computation and subsequent construction of the c.s. quasi-axion dS/inflation mecha-

nism done for the mirror CY with small h2,1 < h1,1 back to the original CY with small

h̃1,1 < h̃2,1 such that there is a “Greene-Plesser” invariant subsector of all c.s. moduli

governed by the same triple intersection numbers and GV invariants as the c.s. moduli

of the mirror CY.

Let us expand on this idea. Crucially, we compactify not on a mirror CICY X but

on a CICY X̃ itself, or on any CY with h̃1,1 < h̃2,1. The underlying structure of the

Greene-Plesser construction goes as follows. For a Greene-Plesser type CY manifold X̃

with h̃1,1 < h̃2,1 there is an orbifold symmetry Γ̃ by which X̃ can be modded out. Out

of the h̃2,1 c.s. moduli of X̃, h̃2,1
+ will be even under the orbifold group action, and h̃2,1

−
will be odd. It turns out that h̃2,1

+ = h̃1,1. The resulting orbifold X̃/Γ̃, after resolving

the singularities, has h2,1(R(X̃/Γ̃)) = h̃2,1
+ c.s. moduli and h1,1(R(X̃/Γ̃)) = h̃2,1 Kähler

moduli, where R indicates the resolved manifold. This manifold R(X̃/Γ̃) therefore has

the Hodge diamond of the mirror X and can be shown to be diffeomorphic to X. By

the structure of the modding action Γ̃ and the resolution procedure one can now show

that the periods and prepotential (including instanton corrections) of the h̃2,1
+ c.s. mod-

uli of the CICY are identical to the period and the prepotential (including instanton

corrections) for the h2,1(X) = h2,1(R(X̃/Γ̃)) c.s. moduli of X ∼= R(X̃/Γ̃). Finally, the

prepotential for the h2,1 c.s. moduli of X is written by definition in terms of the GV

invariants of its mirror, which is X̃. Hence we conclude that the prepotential of the

Γ̃-invariant h̃1,1 = h̃2,1
+ -dimensional subsector of the h̃2,1-dimensional c.s. moduli space

1Throughout all the paper, we denote the CICYs with a tilde, e.g. X̃ , and h̃1,1 or h̃2,1 respectively

h1,1(X̃) and h2,1(X̃).
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of X̃ can be computed from the GV data of X̃ itself.

In this case χ < 0 examples realizing the uplift/inflation mechanism might be abun-

dant, for which then the most efficient variant of LVS [17] requiring only a single ED3-

instanton correction may solve Kähler moduli stabilization in many cases. We leave the

extension of our mechanism to non-trivial Greene-Plesser pairs to future work.

Although in specific cases algorithms for the computation of such invariants are

known and already implemented [18, 19], the computation is most of the time tedious

and long. It is then useful to have at hand the list of the GV invariants up to a certain

degree for the most used and common CYs used in type II string compactification. We

decided to compute the GV invariants for those CICYs with h̃1,1 ≤ 9 up to degree 10.

We used the algorithm introduced in [18, 19], which we review briefly in Appendix B.

These numbers are accessible from the website link where they are divided by the value

of h̃1,1. Each file is named by the number of the CICY using the convention of the list

introduced in [20]. In Appendix B we give also a pseudocode in Mathematica useful to

extract those numbers for practical use.

The ensuing discussion of this paper about the explicit possibility to construct the

models we propose by using the hierarchy among the GV invariants is based on the

computation of these numbers using INSTANTON [21] and the scan of our database.

While computing the GV invariants, we noticed that sometimes the invariants for a

pair of CICYs sharing the same cohomology were the same up to permuting the degrees

of the associated curve. This caused us to look for redundancies in the new list of CICYs

given by [20], since, as the authors pointed out, their database contained all necessary

inputs to check if Wall’s theorem [22] could have been applied. We looked for favorable

non-product CICYs that can be made equal by a permutation of the basis of H4 of

the CICYs. We list all tuples that are equal up to a permutation of the basis of H4

that we found in Appendix C divided by h̃1,1. In that list, some generic transformation

involving the CICYs with (h̃1,1, h̃2,1) = (14, 16) and h̃1,1 = 15 are missing, because

of long computational time. However, we found more equivalence classes of redundant

CICYs with respect to the one found in [23] using the old database list. In Appendix A

we analyze the distribution of the redundant CICYs for different h̃1,1 and related to

the total number of favorable CICYs in the database.

On the website, we link a Mathematica notebook containing the transformation

matrices that allow to transform the CICYs belonging to the same equivalence class.

We do not provide the matrix for all redundancies, but with the help of Appendix C it

is possible to obtain all the other matrices by a simple multiplication of the matrices

we provide.

We focused on the redundancies given by permutations of the basis element of H4,

so we leave open the possibility that in the CICY list given by [20] there are more
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redundancies for more generic transformations (in the spirit of what has been done, for

instance, in [24], although for rational cohomology).

The paper is organized as follows. In Section 2 we revisit the inflationary model

proposed in [9] and we propose an alternative model that uses the GV invariants of

the lowest degree to avoid creating the hierarchy between the imaginary parts of the

c.s. moduli. In Section 3 we consider the uplift model described in [10] in LVS and we

reinterpret it using the GV invariants for the instantonic corrections of the c.s. moduli

involved. In Section 4 we combine the two GV-inspired inflation and uplift models.

We discuss the effective inflaton potential that is generated, which is no longer of the

pure natural type. We also compute the tunneling transition between an inflationary

saddle point and its lower next neighbor. We conclude with a general discussion in

Section 5. In Appendix A we review the general properties of favorable CICYs and we

analyze the redundancies we have found in the CICYs list. The list of all redundancies

we found in the CICY list divided by h̃1,1 is in Appendix C. In Appendix B we give a

brief description of the algorithm introduced in [18, 19] for the computation of the GV

invariants in the case of a CICY and we explain how to access to the GV invariants in

the database on the website link. We also comment on some properties that the GV

invariants in the database enjoy.

2 Winding inflation from Gopakumar-Vafa hierarchies

In [9], the authors present a model of large field inflation for a Calabi-Yau orientifold X

compactification of type IIB superstring theory. The inflationary sector and dynamics

arise from two c.s. moduli u, v. At the leading order, all other h2,1(X) − 2 moduli are

stabilized at their minimum by fluxes [25]. The same happens for the imaginary parts of

u and v as well as the real part of a particular linear combination of these two moduli,

Re (Mu+Nv), with N �M (M and N being integer flux numbers).2 However, Re (u)

is a flat direction in the superpotential, and it is lifted by the exponential terms coming

from the instantonic corrections. This term induces a cosine potential for this field which

then displays the effective dynamics of a single slow-rolling axion-like field. Therefore,

the field Re (u) is moving along a winding trajectory, whose length is parameterized by

the linear combination Re (Mu+Nv).

Crucially, the model achieves a long winding trajectory working in a regime of

large complex structure for some of the c.s. moduli. Moreover, in order for the winding

trajectory to exist, the authors of [9] require that the F-term conditions stabilize u and

2We are using a different convention with respect to the one in [9], instead we are using the

convention of [10]. One can restore the convention of [9] setting M = 1, N −→ −N and z −→ 2πz.
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v such that

e−Im (u) � e−Im (v) � 1 . (2.1)

As another assumption, they choose appropriate flux integers so that u and v appear

only linearly in the superpotential and include only the instantonic contribution coming

from v. The authors proceed defining an expansion parameter

ε = e−Im (v) , (2.2)

and expand the Kähler potential and the superpotential at leading order in ε. The

point is that the F-term conditions stabilize in general all c.s. moduli and the axio-

dilaton, but the presence of Re (Mu+Nv) in the superpotential breaks one of the two

remaining shift symmetries of u and v. The shift symmetry parameterized by Re (u)

(which does not appear neither in the Kähler potential nor in the superpotential) is

a flat direction before introducing the corrections proportional to ε. Such corrections

generate an oscillating potential, responsible for the inflationary period.3

We argue that there is another interesting way to realize this hierarchy, by ex-

ploiting some properties of the geometry of the extra dimensions. In the following, we

develop this idea.

We consider a type IIB Calabi-Yau orientifold X with h2,1
− (X) = 2 c.s. moduli {zi}

and h1,1
+ Kähler moduli (also called volume moduli). X has a mirror X̃ with h̃1,1

+ = 2.

For the sake of concreteness, we take X̃ to be a CICY.4

We assume further that stabilization of the c.s. moduli, the axio-dilaton and the

Kähler moduli proceed in hierarchical steps with the following characteristics

• We supplement the Calabi-Yau orientifold compactification of type IIB string the-

ory by quantized 3-form fluxes as in [25]. These generate a scalar potential for the

c.s. moduli and the axio-dilaton, stabilization at mass scales typically somewhat

below the KK scale. At this level the Kähler moduli remain flat direction in a

so-called 4d N = 1 no-scale compactification.

• Taking into account both perturbative and non-perturbative quantum corrections

stabilize the Kähler moduli at a lower mass scale in either a supersymmetric

(KKLT scenario [11]) or supersymmetry breaking (LVS scenario [14]) AdS vac-

uum. The stabilization of the Kähler moduli must proceed such, that large enough

values for the 4-cycle volumes (the individual Kähler moduli) as well as the total

Calabi-Yau volume are obtained to guarantee decoupling of the volume moduli

stabilization from the flux stabilization of the c.s. moduli.
3See also [26] for other realizations based on the mechanism of [9].
4See Appendix A for a brief review of this class of CY manifolds, and [27, 28] for a more compre-

hensive treatment.
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• A final step of controlled further supersymmetry breaking and uplifting (a positive

contribution to vacuum energy) is needed to generate classical stable dS vacuum

at the end (see e.g. [11]).

We will see that our analysis shows the ingredients of the winding inflation and uplift

mechanisms below to be expected to work in any string vacuum satisfying the above

generic characteristics.

The Kähler potential of the c.s. moduli for the effective 4d supergravity model in

this setup is

K = − ln

(
−4

3
κijkIm (zi)Im (zj)Im (zk) + ic+

− 2
∞∑

β1,β2

nβ1,β2

(
Li3

(
eiβiz

i
)

+ Li3

(
e−iβiz

i
))

+

−2
∞∑

β1,β2

nβ1,β2βiIm (zi)
(

Li2

(
eiβiz

i
)

+ Li2

(
e−iβiz

i
)))

.

(2.3)

Here, κijk are the triple intersection numbers of X̃, while

c = − i

4π
ζ(3)χ(X) , (2.4)

where χ(X) is the Euler characteristic of the compactification manifold X, ζ(3) ' 1.202,

and Lin(x) is the polylogarithm function. The quantities nβ1,β2 in (2.3) are the genus

0 GV invariants, counting the number of holomorphic curves of genus 0 in a given

homology class [β] = [β1, β2] of X̃. Such quantities will play a prominent role in our

proposal. For reviews see [29, 30].

Now, a few comments about the above Kähler potential are in order. The 4d N = 1

Kähler potential in Eq. (2.3) is obtained by a projection of the underlying 4d N =

2 Kähler potential to the orientifold-even subsector. The underlying N = 2 Kähler

potential itself is obtained in a large complex structure (LCS) limit by mirror symmetry

considering the instantonic quantum corrections and it is the same, for instance, of [9].

Later on in our set up, we stabilize our complex structure moduli at moderate LCS to

be slightly larger than O(1) and never larger than O(10), so that the use of the LCS

limit is justified.

It is now important to note that the truncated Kähler potential in Eq. (2.3) is

tree-level with respect to genuine N = 1 quantum corrections. For a general N = 1

orientifold background, such N = 1 quantum corrections will mix Kähler and complex

structure moduli space. Indeed, the factorization is only preserved at tree-level [31].
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Once quantum corrections are taken into account there are mixing terms that break

the factorization. These string loop corrections to the tree-level Kähler potential K0

are suppressed inverse powers of the volume of the compactification space (see for

instance [32–35]). Moreover, they possess a particular structure and scaling property

which leads to Kähler potential corrections δK ∼ V−p appearing in the scalar potential

as δV ∼ V−2−2p instead of the expected scaling ∼ V−2−p (the factor V−2 arises from the

prefactor eK0 in the scalar potential). This automatic cancellation of the ∼ V−2−p-terms

in the scalar potential is called ‘extended no-scale’.

Next, the string loop corrections do depend in their coefficients on the c.s. moduli

(e.g. via Eisenstein functions [33]). These functions become large for parametrically

large values of the c.s. moduli. However, the full loop correction coefficients are also

suppressed by the usual 1/(16π2) loop factors.

Hence, as long as the dynamics of winding inflation or winding uplifts is realized

using stabilized c.s. values at moderately large complex structure (corresponding to c.s.

moduli VEVs Im zi & O(1)), then the extended no-scale structure of the string loop

corrections ensures that, already for quite moderate values of the stabilized volume V ,

the induced scalar potential terms are subdominant to any parts of V induced from

fluxes, non-perturbative corrections and/or α′-corrections used for moduli stabilization

and the winding c.s. axion dynamics in e.g. the KKLT or LVS scenarios. Hence, provided

these conditions are satisfied we can neglect the string loop corrections which would

spoil the factorization of the moduli space.

We can now introduce the usual Gukov-Vafa-Witten superpotential [36]

W = (NF − τNH)T · Σ · Π , (2.5)

where NF , NH ∈ Z are flux integers coming from the integration of F3 and H3 on a

symplectic base of the 3-cycles of the orientifold CY, τ is the 10d axio-dilaton and

Σ =

(
0 −1
1 0

)
. (2.6)

Π is the period vector with entries

Π =



1

zi

1

2
κijkz

jzk +
1

2
aijz

j + bi −
∞∑

β1,β2

nβ1,β2βiLi2

(
eiβiz

i
)

− 1

3!
κijkz

izjzk + biz
i +

c

2
+ 2i

∞∑
β1,β2

nβ1,β2Li3

(
eiβiz

i
)
−

∞∑
β1,β2

nβ1,β2βiz
iLi2

(
eiβiz

i
)


.

(2.7)
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Here aij are related to the triple intersection numbers, while bi are related to the

intersections of the second Chern class and the divisors of X̃.5

Differently from [9], in our setup we assume that the F-term conditions stabilize

z1 = u and z2 = v in such a way that their imaginary parts are comparable, i.e.

Im (u) ∼ Im (v) . (2.8)

The requested hierarchy which leads to a winding trajectory is then realized by con-

sidering

n1,0e
−Im (u) � n0,1e

−Im (v) � 1 , (2.9)

provided that the corresponding GV invariants n0,1 and n1,0 satisfy

n0,1 � n1,0 . (2.10)

In order for this hierarchy to be not spoiled by higher instanton effects, we further need

to require that

Im (u) ∼ Im (v)� ln
n0,2

n0,1

, (2.11)

and

Im (u)� ln
n1,1

n0,1

and Im (v)� ln
n1,1

n1,0

. (2.12)

If Eqs. (2.11) and (2.12) are satisfied, all other contributions coming from higher order

GV invariants are suppressed by the exponential terms and we can disregard them.

To check if Eqs. (2.10) to (2.12) can be realized, we scanned the GV invariants of

the CICYs with h̃1,1 = 2, and we found that the hierarchy among the invariants for this

inflationary model can be achieved for the CICYs 7819, 7823, 7840, 7867, 7869, 7885,

7886 and 7888.6 Using these CICYs, the ratio in Eq. (2.10) is varying from 31.5 to 160.

Interestingly, these CICYs also have the invariants n0,m way larger and monotonically

increasing with respect to n0,1, and n1,1 is equal or a little larger. We need then to fix

the expectation values for the imaginary parts of u and v to be larger than the ratio of

n1,1 and n0,1.

We now need to identify a small ε parameter, as in [9], to get the inflationary

potential via a perturbative expansion. The natural definition we adopt is

ε = n0,1e
−Im (v) . (2.13)

Eq. (2.13) gives another condition on the values that Im (v) (and Im (u)) can assume,

since we want ε � 1. Notice that requiring ε � 1 implies that Im (u) and Im (v) are

5Explicit expressions in their convention can be found e.g. in [12, 13, 37].
6Modulo redundancies that we discuss in Appendix A and we list in Appendix C. We are using the

numeration of the CICYs as in [20].
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stabilized at large complex structure. In general, this condition alone is sufficient to

satisfy all previous ones for the CICYs for which this hierarchy can be realized.

It is then possible to proceed as in [9]. At leading order Im (u), Im (v), the axio-

dilaton as well as the linear combination Re (Mu+Nv) are stabilized at the minimum.

The only remaining flat direction is, once again, aligned with Re (u). To proceed with

the lifting to get the inflationary potential, we then repeat the discussion already pre-

sented in [9] in more detail.

It is convenient to reparameterize the fields as

φ ≡ u and ψ ≡Mu+Nv , (2.14)

and we thus require N > M to have one of the winding directions which is longer than

the other. In this way, the expansion parameter becomes

ε = n0,1e
−Im (v) = n0,1e

− Im (ψ)−MIm (φ)
N , (2.15)

and

n0,1e
iv = n0,1e

iψ−Mφ
N = ε ei

Re (ψ)−MRe (φ)
N . (2.16)

By choosing appropriately the fluxes and introducing the term W0(τ) which includes

all the fields already stabilized at leading order by the F-terms, we can write the

superpotential as

W = W0(τ) + f(τ)ψ + ε g0,1(τ, ψ, Imφ) e−i
MReφ
N +O(ε2) , (2.17)

where g0,1(τ, ψ, Imφ) is a function of all stabilized fields. We can repeat the same

discussion in terms of Kähler potential, obtaining

K = K0(τ, ψ, Im (φ)) + ε g̃0,1(τ, ψ, Im (φ)) e−i
MReφ
N +O(ε2) . (2.18)

We have shown that using the hierarchy given by the GV invariants, we could

revisit the model introduced in [9] keeping the expectation values of the c.s. moduli

to be at the same order. To conclude this analysis, let us comment on the inflaton

potential. The scalar potential for the c.s. moduli sector and the axio-dilaton is given

by

V = eKKIJ̄DIWDJ̄W . (2.19)

At zeroth order in ε, DIW = 0 sets τ, ψ, Im (φ) to their minimum and we are left with

a flat direction parameterized by ϕ = Re (φ). This flat direction is lifted by the first

order corrections in ε to K0 and W0, which induce a shift in the VEVs of the other

moduli. To see this, it is useful to write the structure of the F-terms as

DIW = DI |0W0 +K0,I∆WGV + ∆KGV,IW0 ≡ DIW |0 + ∆DIW |GV . (2.20)

– 10 –



Since on the supersymmetric flux vacua we have DiW |0 = 0, this entails that the scalar

potential along ϕ is lifted by the GV corrections at O(ε2), because the non-vanishing

potential at the SUSY locus of all other fields is given by

Vinf ∼ eK0(K0)IJ̄∆DIW |GV ∆DJ̄W̄ |GV . (2.21)

To give an explicit expression for the effective inflationary axion-like potential in (2.21),

in [9] the authors make an orthogonal transformation on Eq. (2.19) to diagonalize the

Kähler metric. We can define ϕ = Re (φ), so that the potential, splitted in real and

imaginary parts of the moduli, takes the following form

V = eK0

6∑
α=1

w̃2
α , (2.22)

where

w̃α = ãα + ε

[
b̃α cos

(
Mϕ

N

)
+ c̃α sin

(
Mϕ

N

)]
(2.23)

with ãα, b̃α and c̃α being functions of all moduli. From the classical F-terms, ãα = 0

for all values of α. However, considering the O(ε) corrections coming from the GV

invariants, the VEVs of ãα, b̃α and c̃α get shifted. Since Eq. (2.22) is proportional to

w̃2
α and we are interested in a potential up to order O(ε2), it is sufficient to consider

order 1 corrections in ε only for ãα, while keeping at leading order b̃α and c̃α. A further

rotation and a change of basis in the fields [9] cancel all six terms but one combination,

which is the inflaton potential

Vinf (ϕ) ∼ eK0κ ε2

[
sin

(
M

N
ϕ+ θ

)]2

∼ eK0κ ε2

[
1− cos

(
2
M

N
ϕ+ 2θ

)]
, (2.24)

where κ encodes numerical and τ -independent factors and θ is a phase.

We shall now pause shortly to comment about the interplay among Kähler moduli

stabilization and the c.s. axion winding potential. Stabilizing the volume moduli e.g.

as prescribed in the KKLT or LVS scenarios leads to a mass hierarchy between the

c.s. moduli and Kähler moduli (which is more pronounced for the LVS) as well as a

hierarchy between the terms of the flux scalar potential fixing the c.s. moduli O (V−2)

and the volume moduli scalar potential (O (|W0|V−2) for KKLT, and O (V−3) for LVS,

see the discussion in [14]). Next, the terms of the c.s. axion winding scalar potential are

controlled by the GV invariants and the VEVs of the c.s. moduli. However, these VEVs

were determined by the 3-form flux scalar potential and hence receive only suppressed

corrections from the stress-energy sources driving Kähler moduli stabilization by virtue

of the above hierarchies. We conclude that the Kähler moduli stabilizing part of the
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moduli scalar potential, which indeed does in general spoil factorization of the moduli

space, will not affect the c.s. moduli stabilization generated c.s. axion winding potential

at leading order.

The generalization of the previous discussion to an arbitrary number of c.s. moduli

could in principle be straightforward. Consider a Calabi-Yau X with h2,1 > 2 which is

mirror to a CICY X̃ and assume that the imaginary parts of all moduli are comparable.

Then, consider two different GV invariants ni1,...ih̃1,1 and nj1,...jh̃1,1 both of degree 1. We

request that ni1,...ih̃1,1 � nj1,...jh̃1,1 , and furthermore all the other degree 1 invariants are

smaller than those two.

However, by looking at the scanned GV invariants of all CICYs, it is quite hard to

find such a hierarchy. Instead, the values of the GV invariants are always more com-

parable when h̃1,1 of the CICY increases. Therefore, our proposal for a generalization

must include a fine-tuning of the VEVs of all moduli but two. We tune the fluxes in

such a way that all c.s. moduli are stabilized except for two of them. These two moduli

must then be associated to GV invariants which display the hierarchy (2.10). If the

imaginary parts of these moduli guarantee that Eq. (2.13) is smaller than 1, we can

thus reproduce the procedure above for any CY which is mirror to a CICY with an

arbitrary h̃1,1. In particular, we checked in our database that 77 CICYs display a hi-

erarchy of 1 : 30 for two GV invariants, i.e., the same hierarchy we required in this

section. Such hierarchy involves the smallest positive GV invariant and the largest one.

However, if we relax this requirement and demand a smaller hierarchy, for instance

1 : 10, we have that around 23% of all the CICYs can provide such scenario. Notice

that all these numbers must be intended as “at least”, as our scan covers the cases up

to h̃1,1 = 9 only.7

3 Uplift mechanisms from Gopakumar-Vafa hierarchies

Our next goal is to exhibit the role of the GV invariants when their associated in-

stanton contributions are used to construct a de Sitter uplift. This was recently done

in [10] in the context of type IIB Calabi-Yau orientifold compactification in the large

complex structure limit. By tuning the flux quanta, the authors were able to generate

an oscillating potential for the c.s. moduli, involving several cosines. This potential has

a sequence of minima of increasing positive vacuum energy contribution, which are re-

7The maximum value of the degree GV invariant for the CICYs from h̃1,1 = 1 to h̃1,1 = 9 is

decreasing with h̃1,1, going from 2875 of the quintic, i.e. 7890, to 30 of the CICYs 1121, 1127, 1157,

1247, 1258. It is always more difficult to find the hierarchy we are looking for when you increase

h̃1,1. We comment on the properties we found on GV invariants in the database we constructed in

Appendix B.
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sponsible for the controlled SUSY breaking. Choosing the parameters of this potential

such that the difference between two adjacent minima is smaller than the depth of the

scalar potential produced by the stabilization of the Kähler moduli, for instance, in

LVS [14], it is possible to realize an uplift of either a KKLT-type or LVS-type AdS

vacuum to a de Sitter vacuum. In their paper, the authors considered both LVS and

KKLT [11] setups, as well as type IIA compactifications with fluxes [38–41]. Here we

will focus only on LVS-type vacua.

The situation here is different from what we described in Section 2. In the current

case, the authors of [10] tune the saxion VEVs Im (u) and Im (v) to be comparable,

such that

ε ≡ e−Im (u) ∼ e−Im (v) � 1 , (3.1)

and the relative magnitude is encoded in the parameter

α ∝ eIm (v)−Im (u) ∼ O(1) . (3.2)

By making an analogous discussion as the one performed around Eq. (2.21), but with

the above assumptions, the resulting potential coming from the F-terms of the super-

potential is found [10] to be parameterized by8

V (u) =
gs
V2
κ ε2

[
cos (Re (u))− α cos

(
P

Q
Re (u)

)]2

, (3.3)

where κ contains all the information coming from the Kähler metric and the Kähler

potential, P and Q are flux integers such that P/Q > 1 and V is the volume of the

CY. This potential has a stationary point when Re (u) = 0 but, differently from the

inflationary potential of Section 2, the value of the minimum is different from zero.

Instead we have

V (0) =
gs
V2
κ ε2(1− α)2 . (3.4)

From LVS, the supersymmetric minimum of the potential is negative, i.e.

VAdS = −O(1)
gs|W0|2

√
ln (V)

V3
< 0 , (3.5)

with |W0| coming from the stabilization of all c.s. moduli and the axio-dilaton. It is

possible to consider the superposition of the LVS potential with (3.3) and tune the

parameters to get a controlled SUSY breaking and an uplift from AdS to Minkowski

or dS vacuum.

8Notice that here we took K0 ∼ ln
(
gsV−2

)
already.
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The purpose of this section is to argue that it is possible to realize the uplift using

a GV hierarchy, to recover a setup similar to the one in [10]. As an example, we will

consider type IIB orientifold on X, where X is the mirror of a given CICY X̃ with

h̃1,1 = 2.

Requiring the VEVs of the saxions Im (v) and Im (u) to be comparable, as in [10], i.e.

Im (u) ∼ Im (v) (3.6)

one should look for a CICY X̃ whose degree 1 GV invariants satisfy

n0,1

n1,0

∼ O(1) . (3.7)

In particular, we checked that such CYs exist inside the CICY database. There are

5 CICYs (7644, 7761, 7799, 7863 and 7884) that have this ratio exactly equal to 1.

Moreover, there are other 17 CICYs9 that have a ratio O(1) (7643, 7668, 7725, 7726,

7758, 7759, 7807, 7809, 7816, 7821, 7822, 7833, 7844, 7853, 7868, 7882 and 7883).

Imposing Eq. (3.7), we can modify the definition of ε in Eq. (3.1) in this context to

ε = n0,1e
−Im (v) ∼ n1,0e

−Im (u) , (3.8)

leaving the relative magnitude α as defined in Eq. (3.2). We have then realized the same

setup described in [10] with a slightly different definition of ε that keeps into account

the values of the GV invariants. Since n0,1 ∼ n1,0, there are no substantial differences

with [10], because we have not required a hierarchy either between the VEVs of the

axions or among the relevant GV invariants. However, we have seen in Section 2 that

there are many CICYs that have GV invariants satisfying Eq (2.10). For those CICYs

it is not possible to define ε as in Eq. (3.7) keeping the ratio of the VEVs of the

saxions O(1). By looking at the CICYs with h̃1,1 = 2, we see that 6 CICYs (7806,

7808, 7817, 7858, 7873 and 7887) have a ratio of GV invariants that will not be able

to reproduce the model of [10], if we insist in Eq. (3.6). This is why we would like to

propose another possibility that generates the setup of [10]. We could play the same

trick we did in Section 2, redefining the parameter ε of the expansion as in Eq. (3.8),

but compensating for the large ratio between the GV invariants with a specific tuning

of the VEVs of the saxions. It is then possible to revisit the model introduced in [10]

by choosing ε� 1 in Eq. (3.8) but requiring

Im (v)− Im (u) ∼ ln

(
n0,1

n1,0

)
. (3.9)

9Up to redundancies listed in Appendix C.
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The relative magnitude in Eq. (3.2) is then modified as

α ∝ n1,0

n0,1

eIm (v)−Im (u) (3.10)

and it is still O(1) due to the condition in (3.9).

Given the definition of ε in Eq. (3.8), we can proceed as in the previous section by

parameterizing u and v as in (2.14), i.e. ψ ≡ Pu+Qv. At leading order in ε, the fields

τ , ψ and Imφ are stabilized in their minimum while Re φ is left as a flat direction.

To uplift this direction, we must consider the first order in the ε expansion for the

superpotential and Kähler potential, which read

W = W0(τ, ψ) + ε
[
g0,1(τ, ψ, Imφ) e−i

P
Q

Reφ + h0,1(τ, Imφ) eiReφ
]

+O(ε2) ,

K = K0(τ, ψ, Imφ) + ε
[
g̃0,1(τ, ψ, Imφ) e−i

P
Q

Reφ + h̃0,1(τ, Imφ) eiReφ
]

+O(ε2) ,

(3.11)

where the presence of two contributions in ε now comes from the requirement in (3.8).

Once again, at the zeroth order in ε, DIW = 0 sets τ , ψ and Im (φ) to their minimum

and we are left with a flat direction given by ϕ ≡ Re (φ). The flat direction is lifted

by the first order corrections in ε as shown in Section 2. Keeping into account that the

superpotential and the Kähler potential this time are given by (3.11), and performing

an analogous rotation of c.s. moduli in [10], the authors suggest a potential of the

following form:

VdS(ϕ) = eK0κ ε2

[
cos (ϕ+ θ1)− α cos

(
P

Q
ϕ+ θ2

)]2

. (3.12)

Here, κ encodes numerical and τ -independent factors, θ1,2 are phases and α is the O(1)

parameter introduced in Eq. (3.10).

By tuning the phases to zero, the potential has a stationary point at

VdS(0) = eK0κ ε2(1− α)2 ,

V ′′dS(0) = 2eK0κ ε2(1− α)

(
P 2

Q2
α− 1

)
,

(3.13)

which is a minimum for Q2/P 2 < α < 1, provided that P/Q > 1. In [10], then, the

authors assume that the potential is given by the sum of (3.5) and (3.12), i.e.

V (V , ϕ) = VLVS(V) +
gs
V2
κ ε2

[
cos (ϕ+ θ1)− α cos

(
P

Q
ϕ+ θ2

)]2

. (3.14)
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Finally, it is possible to scan the flux landscape and to tune α to make an uplift from

the AdS vacuum to a dS one, imposing at the stationary point the relation for (3.12)

κ ε2(1− α)2 = O(1)
|W0|2

√
ln (V)

V
. (3.15)

We can now discuss a possible generalization of this treatment to h̃1,1 > 2, anal-

ogously to what we did for the inflationary setup in Section 2. Whenever the GV

invariants involved in the potential are of the same order of magnitude, it is possible to

follow [10] again. We provide here an estimate of how many CICYs with h̃1,1 > 2 could

display such feature. In this case we require two CICYs to have at least some degree 1

GV invariants equal, and that these invariants should be numerically the smallest ones.

We require this to be able to stabilize all other c.s. moduli via larger GV invariants and

an appropriate tuning of the VEVs. It turns out that at least the 24% of the CICYs10

fulfill such requirement, since they have the smallest positive degree 1 GV invariant

repeated exactly twice on different directions inside the Mori cone. As an example, for

the CICYs 7236 and 6968 (whose h̃1,1 = 5) two degree 1 GV invariants vanish, and two

others are equal to 3. The remaining degree 1 invariant is equal to 144 in one case and

117 in the other. For these CICYs, the hierarchy between the GV invariants is already

good enough to realize the uplift described above, provided that we choose the VEVs of

the moduli associated to the invariants equal to 3 in such a way that (3.8) is satisfied.

However, it can also happen that the smallest positive degree 1 GV invariants are

repeated more than twice in different directions inside the Mori cone. In this case,

we could fix the VEVs via an appropriate tuning for all c.s. moduli except for two of

them, and then choose the imaginary parts of the latter two in such a way that we can

realize (3.8) by varying the VEVs of the moduli. Such examples will also display the

right structure of GV invariants to realize the above discussed uplift mechanism. The

percentage of CICYs satisfying these conditions is over 47%. Therefore, we conjecture

that the uplift mechanism of [10], realized by a GV hierarchy, can be a quite generic

construction.

An important comment is now due. In this section we argue that it is possible to

realize the contribution to the uplift coming from the complex structure potential in

LVS by choosing to compactify on a CY X whose mirror CY X̃ has a suitable set of

GV invariants, and we show that such CY X̃ exists in the CICY database.

However, we stress that one cannot make a realistic complete model for the uplift

with this mechanism by compactifying on X, because a crucial point for the LVS moduli

10We stress again that we are looking at the scan we have done, that contains CICYs up to h̃1,1 = 9.
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stabilization to hold is to have the Euler characteristic χ < 0 in the BBHL correction

term [42] to the Kähler potential. All the CICYs have a non-positive Euler characteristic

which in turn means that their mirrors have χ ≥ 0.

We hope that it is possible to find CYs whose mirrors have the right pattern of

GV invariants and at the same time the right sign of χ, and we leave this to fur-

ther investigation. Perhaps, it is possible to find such examples among the much larger

database of CYs realized as the anticanonical hypersurface in a 4-dimensional toric am-

bient space [15]. Since this database is closed (by construction) under mirror symmetry,

half of the CYs there have the right sign for the Euler characteristic. The question is

then repeating a scan similar to the one we performed in this paper, to look for right

Gopakumar-Vafa structures. We leave this to future work.

4 Combining GV-inspired inflation and uplifts

In the previous sections we discussed setups where using CYs with hierarchical lowest-

degree GV invariants leads to a scalar potential which in the presence of full moduli

stabilization can realize winding inflationary models and or a dS uplift of an AdS LVS

vacuum very similar and much along the lines of [9, 10].

In this section, we ask if it is possible to combine an inflationary sector with an uplift

sector, both arising from similar effects as discussed before. The idea is to generalize

the examples presented before to a case in which you have more c.s. moduli. To simplify

the example, we choose a manifold X whose mirror is a CICY with h̃1,1 = 4. Let us call

the complex structure moduli u1, v1, u2 and v2. At the minimum, their imaginary parts,

the axio-dilaton, Re (Mu1 + Nv1) and Re (Pu2 + Qv2) are stabilized, but Re (u1) and

Re (u2) are flat directions when we do not consider the exponential terms. By tuning

the fluxes, we can choose

φ1 = u1 , ψ1 = Mu1 +Nv1 (4.1)

and define the expansion parameter

ε1 = n0,1,0,0e
−Im (v1) = n0,1,0,0e

− Im (ψ1)−MIm (φ1)
N . (4.2)

This definition should remind of the discussion in Section 2 for N > M where again

the hierarchy among the GV invariants must be

n1,0,0,0e
−Im (u1) � n0,1,0,0e

−Im (v1) . (4.3)
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Therefore, we can neglect the contributions coming from the instantonic corrections for

u1. The idea is once again to generate an inflationary potential provided that (4.2) is

smaller than 1.11

A similar discussion can be carried out for the other two moduli u2 and v2, by

introducing

φ2 = u2 , ψ2 = Pu2 +Qv2 (4.4)

and

ε2 = n0,0,1,0e
−Im (v2) = n0,0,1,0e

− Im (ψ2)−P Im (φ2)
Q ∼ n0,0,0,1e

−Im (u2) = n0,0,0,1e
−Im (φ2) . (4.5)

This time, the instantonic contributions coming from both the moduli u2 and v2 are

comparable and must be both kept in the expansion. Such conditions can be obtained

by tuning the expectation values and fluxes as in Section 3, but it is possible to scan

over all GV invariants for the CICYs at h̃1,1 = 4 to check if the hierarchy of Eq. (4.3)

and the condition in Eq. (4.5) can be realized.

Another condition that must be guaranteed is the one controlling the order in

which inflation and uplift must happen. What we want to ask is that ε1 is controlling

the dynamics of the inflationary regime at an energy smaller than the one used for the

uplift controlled by ε2. Crucially, we should require that ε1 � ε2. Since we also want

the two regimes to happen (almost) independently, we can assume that the effects of

the two expansions are just a superposition of the single effects. The superpotential

and the Kähler potential after these reparametrizations are

W =W0(τ, ψ1, ψ2) + ε1 g0,1,0,0(τ, ψ1, Imφ1)e−i
M
N

Re (φ1)+

+ ε2

[
g0,0,1,0(τ, ψ2, Imφ2)e−i

P
Q

Re (φ2) + h0,0,1,0(τ, Imφ2)eiRe (φ2)
]

+O(ε2) ,

K =K0(τ, ψ1, ψ2, Imφ1, Imφ2) + ε1 g̃0,1,0,0(τ, ψ1, Imφ1)e−i
M
N

Re (φ1)+

+ ε2

[
g̃0,0,1,0(τ, ψ2, Imφ2)e−i

P
Q

Re (φ2) + h̃0,0,1,0(τ, Imφ2)eiRe (φ2)
]

+O(ε2) .

(4.6)

In the previous equations we are neglecting all terms of order ε2
1, ε2

2 and ε1ε2. Let

us spend some more words about this approximation. Suppose we want to realize the

situation described in [10] and reviewed in our set-up in Section 3. The potential is found

after having integrated out the other c.s. moduli. Similar to the discussion above, the

F-terms split as

DIW = DI |0W0 +K0,I∆W
(φ1)
GV + ∆K

(φ1)
GV,IW0 +K0,I∆W

(φ2)
GV + ∆K

(φ2)
GV,IW0

≡ DIW |0 + ∆DIW |(φ1)
GV + ∆DIW |(φ2)

GV . (4.7)

11We are choosing the GV invariants associated to v1 arbitrarily, we are not referring to a specific

CICY at the moment. We will comment later about the hierarchy that you need among the GV

invariants and the VEVs of the moduli.
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Hence, the total scalar potential at O(ε2) scales as

Vtot ∼ eK0(K0)IJ̄
(
∆DIW |(φ1)

GV +∆DIW |(φ2)
GV

)(
∆DJ̄W |(φ1)

GV +∆DJ̄W |(φ2)
GV

)
. (4.8)

This scalar potential has three pieces

Vtot ∼ V
O(ε21)
inf + V

O(ε22)
dS +

√
Vinf

√
VdS

∣∣∣
O(ε1ε2)

, (4.9)

where V
O(ε21)
inf and V

O(ε22)
dS read

Vinf(ϕ1) = eK0κ ε21

[
sin

(
M

N
ϕ1 + θ1

)]2
, (4.10)

VdS(ϕ2) = eK0κ ε22

[
cos (ϕ2 + θ2,1)− α2 cos

(
P

Q
ϕ2 + θ2,2

)]2
, (4.11)

and we have defined ϕ1 ≡ Re (φ1) and ϕ2 ≡ Re (φ2). It is easy to see from Eq. (4.9)

that
√
Vinf

√
VdS

∣∣O(ε1ε2) has the same stationary points with respect to ϕ2 of V
O(ε22)
dS .

The hierarchy ε1 � ε2 may thus enable us to stabilize into dS using V
O(ε22)
dS while

having a slow-roll inflation valley given by the suppressed cross-term
√
Vinf

√
VdS

∣∣O(ε1ε2)

modulated by the far stronger suppressed term V
O(ε21)
inf .

ϕ2

ϕ1

V
to
t(
ϕ
1
,ϕ

2
)

Figure 1: An example of the potential in Eq. (4.9). We use M/N = 1/10, P/Q = 25,

all the phases zero, α2 = 1, ε1 = 0.02, ε2 = 0.1.
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Very interestingly, the effective inflaton potential is no longer of the pure natural

inflation type. For instance, a Fourier decomposition of the effective scalar potential

V valley
eff. (ϕ1) in a ϕ1-valley defined by the condition (∂ϕ2V )(ϕ1) = 0 will generically have

the form

V valley
eff. (ϕ1) ∼

[
1− cos

(
2
M

N
ϕ1 + 2θ1

)]
+
∑
n≥2

cn cos(ωnϕ1) , (4.12)

with rapidly decreasing cn, frequencies ωn being multiples of 2M/N . Therefore, we

expect the predictions for CMB observables like the spectral tilt ns and the tensor-to-

scalar ratio r to deviate from pure natural inflation. We leave an analysis of the ensuing

phenomenology for future work.

A natural question one can ask when looking at Figure 1 is how likely it is for

the two axions to undergo a tunneling transition between two local minima [43] of the

potential Vtot. To avoid complications coming from considering a Coleman-de Luccia

tunneling [43] with two fields, we restricted ourselves to compute the probability for

the field ϕ2 to undergo tunneling, for a fixed value of ϕ1. Indeed, we set ϕ1 to the value

where the largest probability of tunneling is expected, i.e. on the plane where Eq. (4.9)

has a local maximum for ϕ1. This happens for ϕ1 = 5π + 10nπ, with n ∈ Z. Looking

at the sections of the potential at fixed ϕ1 we can apply the well-known formulas for

the decay probability for a single field [43]:12

Γ = exp(−B) with B = B0 r(x, y) ≡
(

27π2T 4

2(∆V )3

)
r(x, y) . (4.13)

Here B is the bounce action and T is the tension of the domain wall. We have also

defined the field theoretic bounce B0 and its gravitational correction

r(x, y) = 2
1 + xy −

√
1 + 2xy + x2

x2(y2 − 1)
√

1 + 2xy + x2
, (4.14)

with

x =
3T 2

4M2
P∆V

, y =
Vf + Vt

∆V
and ∆V = Vf − Vt . (4.15)

We have denoted the values of the potential in the false and true vacuum, respectively,

with Vf ≡ Vtot(5π, ϕ2 = ϕf ) and Vt ≡ Vtot(5π, ϕ2 = ϕt).

In particular, we choose ϕf ∼ 0.25 and ϕt ∼ 0.50, for the plots shown in Figure 2. It

is clear from those that the decay rate is highly suppressed for a value of x & 0.004. An

important comment is now due: so far, we have not canonically normalized the kinetic

12We follow the notation of [44].
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(a) We show the profile for the potential of Figure 1 at ϕ1 = 5π. The orange and the green dots

correspond to the values of the potential at the two local minima, respectively at ϕ2 ∼ 0.25

and ϕ2 ∼ 0.50. The red dot is the value of the potential at the local maximum, i.e. ϕ2 ∼ 0.38.

This plot is given for f = 1.
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(b) B defined in (4.13) as a function of x.
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(c) Γ defined in (4.13) as a function of x.

Figure 2: In Figure 2a we show the potential at the fixed value of ϕ1 = 5π. We notice

that since VB −Vf � Vf −Vt, the thin-wall approximation can be used to compute the

domain wall tension T . From Figures 2b and 2c we can find a critical value of x ∼ 0.004

for which the tunneling probability is enough suppressed.
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term for the ϕ2 axion. By doing so, the canonically normalized field space distance

between the true vacuum ϕt and the false vacuum ϕf will depend on the axion decay

constant f for the ϕ2 field. We define then

∆Φ = (ϕt − ϕf )f ∼ 0.25f . (4.16)

We further call the difference of the potential between the red and green dots in Fig-

ure 2a as ∆VB = VB−Vf , i.e. ∆VB is the height of the barrier between the two minima.

Since ∆VB � ∆V , the thin-wall approximation is well justified in our context. In this

approximation, the tension of the domain wall reads

T =

∫ Φf

Φt

dΦ
√

2 (Vtot(5π,Φ/f)− Vtot(5π,Φf/f)) ∼
√

2∆VB ∆Φ ∼ 0.35f
√

∆VB .

(4.17)

From the definition of x in Eq. (4.15), we can find a parametric dependence between x

and f , i.e.

x ∼ f 2

M2
P

∆V

Vt
. (4.18)

In order for the tunneling probability to be sufficiently suppressed, we require B to be

larger than an order O(100) number.

In a full model with moduli stabilization consistent with an inflationary sector

producing the right CMB-scale curvature perturbation, the typical scale of moduli

and inflationary scalar potential will be fixed for large-field models where the slow-

roll parameter is εV ∼ 0.01 to be
∣∣∣V valley

eff.

∣∣∣ ∼ 10−10. Rescaling the scalar potential in

Figure 2a to these values and reevaluating the bounce action, we get

B ∼ 102

(
f

MP

)2
1

Vt
. (4.19)

The longevity requirement B & 100 thus translates in a lower bound on f , given by

f

MP

&
√
Vt & 10−5 . (4.20)

In Sections 2 and 3 we found the conditions that the GV invariants and the VEVs of

the moduli must satisfy to get, respectively, the potential for the inflationary period

and for the uplift to a dS vacuum. In this section, we have introduced two parameters,

i.e., Eqs. (4.2) and (4.5), that must be smaller than 1, but they must also satisfy the

following relation:13

n1,0,0,0e
−Im (u1) � n0,1,0,0e

−Im (v1) ≡ ε1 � ε2 ≡ n0,0,1,0e
−Im (v2) ∼ n0,0,0,1e

−Im (u2) . (4.21)

13Remember that we are not considering a specific CICY with h̃1,1 = 4, the labels for the degrees

are used only to distinguish the various GV invariants.
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Following hypothesis of Section 2, we impose

Im (v1) ∼ Im (u1) , (4.22)

provided that

n1,0,0,0 � n0,1,0,0 . (4.23)

One possibility is that the four saxions are all tuned to have comparable VEVs, i.e.

Im (v1) ∼ Im (u1) ∼ Im (v2) ∼ Im (u2) . (4.24)

The condition (4.21) is only satisfied for a mirror CICY with

n1,0,0,0 � n0,1,0,0 � n0,0,1,0 ∼ n0,0,0,1 . (4.25)

We used our database of all favorable CICYs with h̃1,1 = 4 to see if it was possible

to realize Eq. (4.25). The positive GV invariants14 have been ordered from the smallest

to the largest and we asked a hierarchy of a factor 1 : 30 or 1 : 10 among three of them

and the largest of three to be comparable with a fourth one with a ratio of at most

4 : 5. There are no CICYs that satisfy that condition.

The other possibility is to generate the hierarchy required in Eq. (4.21) by tuning

the VEVs for Im (v2) and Im (u2) when their corresponding GV invariants are not

comparable among each other but the conditions of ε2 still satisfy the hypothesis of

Section 3. The only other condition that Eq. (4.21) imposes is on the VEVs between,

for instance, Im (v2) and Im (v1), i.e.

Im (v2)− Im (v1)� ln

(
n0,1,0,0

n0,0,1,0

)
. (4.26)

We conclude that Eq. (4.26) is the only possibility, and the different choices of CICYs

could just change how large the VEVs must be chosen in order to satisfy Eq. (4.26).

A generalization of this proposal to a higher number of c.s. moduli should be done

completely by tuning the VEVs of the moduli that are not involved in the model. We

have commented in Footnote 7, that the ratios between the smallest and the largest

GV invariants reduce when h̃1,1 increases. This means that it is always more difficult to

create a hierarchy between them. We found very few CICYs that satisfy the hierarchies

we are looking for to get the uplift and none of them have the correct hierarchy to

make the inflationary setup. The only possibility is to look at the flux landscape and

tune the VEVs of the moduli accordingly.

14There are no negative GV invariants of degree 1 but they could be zero.

– 23 –



Given that the combined sector providing a mechanism for both inflation and uplift-

ing works along the same lines as the individual mechanisms discussed in the previous

sections, we would like to stress again that for the mirror CICYs for which our GV

invariants describe the non-perturbative corrections to the c.s. moduli prepotential, a

full embedding into a scenario with moduli stabilization is difficult because the required

negative Euler characteristic needed for the LVS setup is absent and rigidifying all typ-

ically dozens of 4-cycles of the mirror CICYs required to operate KKLT is difficult (for

more details, please refer to the discussion in the introduction as well the last paragraph

of Section 3).

5 Discussion and Conclusions

The importance of the GV invariants for phenomenological applications became evi-

dent in the previous sections. We quantified the influence of the GV invariants among

the parameters involved in the construction of the inflationary model proposed in [9]

and of the uplift model in [10]. Interestingly, there exist CYs with hierarchies among

the lowest-degree GV invariants. We explained how we can use these hierarchies to

alleviate the need to tune hierarchies in the c.s. moduli.

In particular for the inflationary model, we found that our setup still satisfies the no-

go theorem for aligned winding trajectories with two moduli proposed in [45].15 The

issues found in [45] for obtaining a superplanckian decay constant are still present in

our construction, even if we can avoid a hierarchy among the VEVs of the moduli.

Additionally, using both the GV hierarchies and flux-tunable c.s moduli VEV hierar-

chies we present a mechanism involving a sector of four c.s. moduli which can realize

both vacua with SUSY breaking and positive vacuum energy contribution and (in ab-

sence of the no-go theorem) large-field inflation. Upon combination with a proper CY

realizing full moduli stabilization in an AdS vacuum, this may lead to the construction

of dS vacua with an inflationary sector in type IIB string theory. While the no-go the-

orem still presents obstacles for this type of setup which uses on two out of four axions

to arrange for inflation, we use the relative simplicity of this setup to show that the dS

vacuum sector operates rather decoupled from the inflaton sector. This in turn makes it

plausible that extending the inflaton sector to e.g. 3 axions to avoid the no-go theorem

can still co-exist with the dS sector. We leave for future work the task of working out

a full model along these lines.

Moreover, we cannot use the CYs in the CICY database to exhibit such a full model,

as their mirror symmetry partners for which we can construct the c.s. moduli sector

15We thank A. Hebecker for pointing out the no-go theorem to us and suggesting to check if it was

still satisfied.
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realizing our combined mechanisms have properties which render LVS constructions

impossible (the mirror-CICYs have positive Euler characteristic) and KKLT-like con-

structions practically difficult (h1,1 is large). However, if, for instance, in the future the

existence of so-called Greene-Plesser mirror CY pairs were established to be widespread

in the set of CICYs or, e.g. the Kreuzer-Skarke set of anticanonical hypersurfaces in

toric ambient spaces, then for such pairs involving mirror partners with h1,1 ≥ 2 the

Greene-Plesser construction properties would likely allow realization of our combined

dS and inflation sector in a full model with moduli stabilization. In anticipation of such

examples, we estimated the life-time of the inflationary valleys in our combined mech-

anism due to Coleman-de Luccia tunneling to neighboring valleys. Quite interestingly,

guaranteeing sufficient longevity of a given inflationary valley places a lower bound on

the axion decay constant of the axion direction responsible for generating the valley

structure of f & 10−5MP.

This application of the GV invariants of the CICYs to string phenomenology con-

vinced us of the necessity of a database of the principal GV invariants of the CICYs up

to a certain degree of the curves. We believe that such a database can be useful also for

purely mathematical reasons to understand the distribution of these numbers. It would

be interesting to analyze how these numbers change with respect to, for instance, h̃1,1

of the CICYs at a fixed or also varying degree.

For interested readers and to give access to the database, we provide a website to

download it. We explain how to extract the data from the database in Appendix B,

together with comments on some empirical properties of the GV invariants that we

noticed.

The study of the GV invariants for the CICYs made us also look for redundancies in

the CICY database. The kind of redundancies we looked for involved only a permutation

of the basis elements of H4 of a given CICY and we explain them in Appendix A.

We also list the tuples of CICY that have been found redundant under this kind of

transformation in Table 1 in Appendix C. It would be interesting to see if there are

more redundancies and how they are distributed with respect to h̃1,1 on the same footing

of what we show in Figure 3a.
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A CICY Redundancies

In this appendix we firstly review some relevant facts about the database of complete

intersection Calabi-Yau manifolds in an ambient space Ã given by a product of projec-

tive spaces Pn1× ...×Pns . We later discuss the systematic search we performed, in order

to check which CICYs are actually redundant, in the sense that they are topologically

equivalent.

Given the ambient space Ã, a compact Kähler 3-fold can be constructed as the

zero-locus of k homogeneous polynomials pj (z) in Ã, subject to the constraint:

s∑
i=1

ni − k = 3 . (A.1)

Each pj is characterized by its multi-degree qij (where j = 1, . . . , k and i = 1, . . . , s),

which specifies the degree in the homogeneous coordinates of each Pni . A convenient

way to encode this information is by means of a configuration matrix:
Pn1 q1

1 · · · q1
k

Pn2 q2
1 · · · q2

k
...

...
. . .

...

Pns qs1 · · · qsk

 . (A.2)

If we require the zero-locus of the pj to be a Calabi-Yau manifold, the vanishing con-

dition for the first Chern class imposes

ni + 1 =
k∑
j=1

qij ∀ i = 1, ...s . (A.3)

A natural question that can be asked is when two Calabi-Yau manifolds are the

same. In this paper, every time we say that two Calabi-Yau are the same, we mean

that they are diffeomorphic as real manifolds. A famous theorem by Wall [22] implies

that two simply-connected, closed Calabi-Yau 3-folds X and Y are isomorphic as real

manifolds, if
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1. The Hodge numbers agree, namely h1,1(X)=h1,1(Y ) and h2,1(X)=h2,1(Y ).

2. There exist a choice of base in H4(X,Z) given by Di, i = 1, . . . h1,1(X), and a

choice of base in H4(Y,Z) given by D̂i, i = 1, . . . h1,1(Y ) such that
∫
Di
c2(X) =∫

D̂i
c2(Y ), where c2(X) (resp c2(Y )) is the second Chern class of (the tangent

bundle) of X (resp Y ).

3. With the same choice of base of the point above for H4(X,Z) and H4(Y,Z)

the triple intersection numbers agree, namely
∫
X
Di · Dj · Dk =

∫
Y
D̂i · D̂j ·

D̂k, ∀i, j, k = 1, . . . h1,1(X) = h1,1(Y ).

Clearly, if two real manifolds are diffeomorphic, then this implies that also they

will be homeomorphic as topological spaces, therefore topologically equivalent.

It is worth stressing that the choice of a configuration matrix for a given CICY

X̃ is not unique, in the sense of Wall’s theorem stated above. The same CY manifold

X̃ can be realized in multiple ways by different configuration matrices. Nevertheless,

different choices of the configuration matrix for the same CICY X̃ can make more

explicit (or hide) different features of the CY itself. For example, the number of complex

structure deformations visible as versal deformations of the polynomial equations, and

the fibrations trivially visible from the configuration matrices, both depend on the

choice of the configuration matrix for X̃.

One could naively think that the construction outlined above leads to infinitely

many topologically distinct CYs, as one could in principle increase both the number

of Pni factors and their dimensions, and add more equations accordingly. However,

this is false. It was shown [46] that all topologically distinct CYs realizable with this

construction can be obtained from ambient spaces for which both the number s of

Pni factors and the size of the ni is bounded from above. Therefore, the full set of

topologically distinct CICYs can be obtained from a set of finitely many configuration

matrices. A database of 7890 configuration matrices was famously built in [47] and it

was shown that such a database is complete, in the sense that any other configuration

matrix not present in the database will describe a CY topologically equivalent to the

one already present in the list. We will refer to such a database as “the old CICY

database”, or sometimes as “the original CICY database”.

A configuration matrix M(X̃) representing a CY X̃ for which h1,1(X̃) = h̃1,1(Ã) is

said to be favorable. When this happens, all divisors of the CICY X̃ are inherited from

the ones of the ambient space Ã. It turns out that not all 7890 configuration matrices

in the old CICY database are favorable, just 4896 of them are. However, favorability is

not an intrinsic property of the CY X̃ itself, but rather depends on the choice of the

configuration matrix used to describe X̃.
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In the work of [20] the old CICY database was improved: for almost all non-

favorable configuration matrices in the old CICY database, a new configuration matrix

representing the same CY was found, such that the new configuration matrix is now

favorable. This was achieved by chains of ineffective splittings, performed on the old

configuration matrix [20]. The number of favorable configurations was then pushed up

to 7842. The remaining CICYs, which still does not admit a favorable configuration

matrix, admit nevertheless a completely different description as a single hypersurface in

a product of two del Pezzo surfaces, dPm×dPn and a theorem by Kollár [48] guarantees

that such description is favorable. Furthermore, out of the 7842 favorable CICYs, 22 of

them are either 6-tori, or direct products of K3 and 2-tori. A new database was created

by keeping only the 7820 favorable and non-product CICYs. We refer to this database

as “the new CICY database”, and we will use this database everywhere in our paper.

On the one hand, the new CICY database, despite being maximally favorabilized,

is still not a list of unique Calabi-Yau manifolds. It is therefore important to check

for redundancies, to provide for a minimal list of topologically distinct and favorable

CICYs. On the other hand, the existence of redundancies in the original CICY database

was realized many years ago [49–52], and many of them were identified in [23], within

the subset of the 4896 favorable CICYs of the old database. In such case, the check

of the redundancies was done using Wall’s theorem [22]: the authors of [23] checked

whether given two CICYs X̃ and Ỹ with identical Hodge numbers, they could find a

change of basis in H4(X̃,Z) and H4(Ỹ ,Z) such that also the second Chern classes and

triple intersection numbers agree. In particular, they focused on the change of variables

given by permutations of the divisors.16

We perform a similar scan within the new CICY database. Given two CICYs with

different configuration matrices, the first trivial check is to look at their Hodge num-

bers. If they agree, we can check if a permutation of the basis elements of H4(X̃,Z)

could exist, such that the second Chern class and the triple intersection numbers of

X̃ computed in the new basis agree with those of Ỹ . We find that there are three

qualitatively distinct cases:

1. The CICYs that already have Hodge numbers equal, (the integrals of) c2 (over the

16An alternative way to select redundant CICYs was also proposed in [24]. There, not only permuta-

tions of the basis elements of H4(X̃,Z) and H4(Ỹ ,Z) were considered, but also linear transformations

with rational coefficients. This allowed the authors to claim the existence of some other redundancies,

by finding a suitable new basis for H4(X̃,Q) and H4(Ỹ ,Q), which would now match the triple inter-

section number and second Chern class. However, it is not clear to us why Wall’s theorem immediately

applies in this case. For this reason, we decided to stick to linear changes of basis with integer coef-

ficients, and only work with integral cohomology. Even less generally, we restrict ourselves to looking

for permutations of the divisors.
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base elements of H4) equal, and also the intersection numbers equal. No change

of basis is needed, and Wall’s theorem trivially applies.

2. The CICYs that have all Hodge numbers equal and (the integrals of) c2 (over the

base elements of H4) equal. The triple intersection numbers can be made equal

with a permutation of the basis elements of H4 that leaves (the integrals of) c2

(over the basis elements of H4) unchanged.

3. Finally, the CICYs that have only Hodge numbers equal, but both (the integrals

of) c2 (over the basis elements of H4) and the intersection numbers can be made

equal with a permutation of the basis elements of H4. These are the most general

set.

We list the tuples of redundant CICYs, divided by h̃1,1, in Appendix C. In such a list,

each parenthesis contains all CICYs that are redundant by a permutation of the basis

elements in H4. For some of the CICYs in the cases above, we also give the explicit

change of basis matrix. The list of such matrices can be accessed at link.

We found all redundancies up to h̃1,1 = 13. We have not been able to check the

most general transformations for the CICYs with h̃1,1 = 15 (which are 15) and for those

with (h̃1,1, h̃2,1) = (14, 16) (which are 14). However, even for h̃1,1 = 14, 15 we managed

to find the right change of basis also for these CICYs belonging to the case 2 above.

We find around 536 equivalence classes involving a total of 1169 non-product fa-

vorable CICYs. This can be compared with the number of equivalence classes found

in [23] and in [24]. We find a larger number of redundancies, essentially for two reasons.

Firstly, we consider the new CICY database, while in [23] the authors perform this scan

on the old CICY database. Since more CICYs X̃i are now favorable, it is easier to study

change of basis in H4(X̃i), since now H4(X̃i) ' H4(Ãi). Secondly, we push our scan to

h̃1,1 = 13 while the authors of [24] stopped at h̃1,1 = 6.17 Therefore we conclude that at

least 6651 CICYs are topologically distinct, and thus could lead to phenomenologically

distinct models.

It is possible now to analyze the distribution of the redundant CICYs. We show in

Figure 3a an histogram of the CICYs involved per h̃1,1. The exact numbers of redundant

CICYs is shown in a table next to the figure. It is interesting to compare this with the

histogram of the total number of favorable non-product CICYs per h̃1,1 in Figure 3b.

We see that, despite the histogram in Figure 3b peaks at h̃1,1 = 7, the redundancy

histogram in Figure 3a peaks before.

17Also recall the qualitative difference between our methods and those of [24], explained in Foot-

note 16.
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Figure 3: In Figure 3a we show the number of redundant favorable CICYs per h̃1,1,

while in Figure 3b we show the number of favorable non-product CICYs per h̃1,1.
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Figure 4: Distribution of redundant CICYs per h̃1,1 normalized for the number of

favorable CICYs at fixed h̃1,1.

Normalizing the number of redundant non-product favorable CICYs per h̃1,1 by the

number of total non-product favorable CICYs with the same h̃1,1 we get the percentage

of redundant CICYs in the plot shown in Figure 4. It is very tempting to speculate

that for some reasons the percentage number of redundant CICYs per h̃1,1 lies on a

parabola with minimum at h̃1,1 = 8. This is also beautifully consistent with the following

fact. Right now we are only considering redundancies in the set of favorable CICYs,

however, for h̃1,1 = 19 there are 15 non-favorable CICYs which are well known to be all

redundant, and all of them are the Schoen manifold [20]. Therefore, the percentage of

redundant CICYs at h̃1,1 = 19 is 100%. Adding to Figure 4 this extra case, we would
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have a point that exactly lies on the interpolating parabola found from the points in

the plot.

We stress the fact that for h̃1,1 = 15 we have not checked all possible combinations

to find redundancies. It is possible that there are more redundant CICYs than the 5

we have found. Looking at Figure 4, the interpolation of the shape of the distribution

would suggest that there might be over 50% of the CICYs with h̃1,1 = 15 which are

redundant. There are also 14 CICYs with (h̃1,1, h̃2,1) = (14, 16) that have not been

scanned completely for a generic transformation (i.e. the one belonging to the case 3 in

the previous list), but, using the same argument of the interpolation, we may expect

that there are no more redundancies in that sector.

It is also possible that some more redundancies can be found by allowing for a more

general linear change of base, and not just permutations. This could maybe improve the

situation of points at h̃1,1 = 2, 13, 15 in Figure 4. However, it is also perfectly possible

that there is no actual distribution of the redundancies and the percentage is smaller

than the one naively expected by fitting the data with a parabola.

Let us now discuss how to access the information about the change of basis matrices.

For the some of the tuples collected in cases 2 and 3 we give the transformation matrix

in a Mathematica notebook on the website link. The notebook contains a table where

in the first component we state on which CICY the transformation must be applied

to get the other CICY. In the second component we write the transformation matrix

itself. Such a matrix acts on the basis of divisors of the CICY given in the list of [20].

We show how the matrix acts on CICYs {7865, 7871} in Appendix C. For these tuples

(the integrals of) c2 (on the divisor basis) are trivially equal for both the CICYs, and

given by

c2 = {24, 24, 56} . (A.4)

The intersection polynomials are naively different since

R7865 = 8D3
3 + 6D1D

2
3 + 4D2D

2
3 + 3D1D2D3 ,

R7871 = 8D̃3
3 + 6D̃2D̃

2
3 + 4D̃1D̃

2
3 + 3D̃1D̃2D̃3 .

(A.5)

In the Mathematica notebook, we give the matrix

M =

 0 1 0

1 0 0

0 0 1

 , (A.6)

that transforms the basis Di permuting D1 with D2 and we notice that such matrix

does not change the values of c2.
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A similar example can be done for the tuple {7574, 7593} that has the most general

transformation we considered. For those CICYs we have

c2|7574 = {24, 24, 52, 44} ,
c2|7593 = {24, 24, 44, 52}

(A.7)

and the intersection polynomials read

R7574 =4D3
3 + 4D1D

2
3 + 2D2D

2
3 + 10D4D

2
3 + 8D2

4D3 + 2D1D2D3 + 6D1D4D3+

+ 5D2D4D3 + 2D3
4 + 2D1D

2
4 + 4D2D

2
4 + 3D1D2D4 ,

R7593 =2D̃3
3 + 4D̃1D̃

2
3 + 2D̃2D̃

2
3 + 8D̃4D̃

2
3 + 10D̃2

4D̃3 + 3D̃1D̃2D̃3 + 5D̃1D̃4D̃3+

+ 6D̃2D̃4D̃3 + 4D̃3
4 + 2D̃1D̃

2
4 + 4D̃2D̃

2
4 + 2D̃1D̃2D̃4 .

(A.8)

In the Mathematica notebook, we give the matrix

M =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , (A.9)

that transforms c2|7593 into c2|7574 but also matches the two intersection polynomials.

B A database of Gopakumar-Vafa invariants for CICYs

In this appendix we recall the usual technique to compute the genus 0 GV invariants

of Calabi-Yau threefolds, as explained in [18, 19]. By using this technique, we created a

database of GV invariants for the set of favorable complete intersection Calabi-Yau’s,

searching for compactification spaces showing the required hierarchy of invariants to

make viable the models of Sections 2 to 4.

Suppose we want to compute the GV invariants of a given CICY X̃. Let ti, i =

1, . . . h̃1,1 be the number of Kähler moduli of such manifold. By mirror symmetry, there

will exist a mirror manifold X with c.s. moduli zi, i = 1, . . . , h2,1 = h̃1,1.18 The main

idea of the algorithm will be to explicitly compute the period vector in the mirror side

X, and then from this extract the quantum corrected triple intersection numbers of the

CICY X̃.

A configuration matrix for X̃ as in Eq. (A.2) is given by
Pn1 q1

1 · · · q1
k

Pn2 q2
1 · · · q2

k
...

...
. . .

...

Pnh̃1,1 qh̃
1,1

1 · · · qh̃
1,1

k

 . (B.1)

18Following the convention introduced in the main text (Footnote 1), we denote h1,1(X̃) as h̃1,1.
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From the generators of the Mori cone of the mirror manifold X, it is possible to

define vectors l(i), given by

l(i) =
(
−q(i)

1 , . . .− q(i)
k ; . . . , 0, 1, . . . , 1, 0, . . .

)
≡
({
l
(i)
0j

}
;
{
l(i)r
})

, (B.2)

where i = 1, . . . , h2,1 and j = 1, . . . , k and the number of 1’s in
{
l
(i)
r

}
are equal to ni+1

at a position corresponding to the Pni that has been considered.

The period vector Π(z) for X is a vector with 2h2,1 + 2 components. The first

component, also called the fundamental period, is given by

w0(z) =
∑
n1≥0

. . .
∑

nh2,1≥0

c(n)
h2,1∏
i=1

znii , (B.3)

where19

c(n) =

∏
j

Γ

(
1−

h2,1∑
s=1

l
(s)
0j ns

)
∏
i

Γ

(
1 +

h2,1∑
s=1

l
(s)
i ns

) . (B.4)

Notice in particular that it is possible to write down the fundamental period of X, just

from the information encoded in the configuration matrix of X̃.

One then extends such a solution of the Picard-Fuchs for arbitrary values of h2,1

parameters ρi, defining

w0(z, ρ) =
∑
n1≥0

. . .
∑

nh2,1≥0

c(n+ ρ)

h2,1∏
i=1

zni+ρii . (B.5)

In terms of (B.5), the full period vector Π(z) can be defined as [18, 19]

Π(z) =



w0(z)

∂

∂ρi
w0(z, ρ)

∣∣∣∣
ρ=0

1

2
κ0
ijk

∂

∂ρj

∂

∂ρk
w0(z, ρ)

∣∣∣∣
ρ=0

−1

6
κ0
ijk

∂

∂ρi

∂

∂ρj

∂

∂ρk
w0(z, ρ)

∣∣∣∣
ρ=0


, (B.6)

19n! = Γ(n+ 1) is the Euler’s Gamma function.
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where κ0
ijk are the classical triple intersection numbers of X̃.

At this point one has obtained the GV invariants for X, but in order to extract

them one needs to rewrite such period vector in terms of the Kähler moduli of X̃, which

are defined by the mirror map

ti(z) =
wi(z)

w0(z)
, (B.7)

where

wi(z) =
∑
n1≥0

. . .
∑

nh2,1≥0

1

2πi

∂

∂ρi
c(n+ ρ)

∣∣∣∣
ρ=0

h2,1∏
i=1

znii + w0(z)
ln zi
2πi

. (B.8)

At the technical level, the most complicated point of the algorithm is the inversion of

Eq. (B.7) to get the c.s. moduli z as a function of t. This is the part which limits the

most every attempted implementation of the code.

The quantum-corrected triple intersection numbers κijk can be expressed as

κijk(t) =
∂

∂ti

∂

∂tj

1

2
κ0
kab

∂

∂ρa

∂

∂ρb
w0(z, ρ)

∣∣∣∣
ρ=0

w0(z)
(t) , (B.9)

where it is clear that the fraction is computed first as function of the c.s. moduli zi,

then, one substitutes the inverse of Eq. (B.7), and takes the last two derivatives with

respect to the Kähler moduli ti.

Let us introduce

qi = exp (2πiti) , (B.10)

and the general expression for κijk as

κijk = κ0
ijk +

∑
d1≥0

. . .
∑

dh̃1,1≥0

nd1,...,dh̃1,1didjdk

h̃1,1∏
l=1

qdll

1−
h̃1,1∏
l=1

qdll

. (B.11)

Matching the coefficients of the series expansion in qi for both Eqs. (B.9) and (B.11),

it is possible to extract the GV invariants nd1,...dh̃1,1 for a given CICY.

The algorithm, schematically reviewed above, was coded in the Mathematica pro-

gram INSTANTON [21]. By using such a program, we collected all genus 0 GV invariants

for all the favorable CICYs listed by [20] up to h̃1,1 = 9. For any CICY in this subset,

we computed all GV invariants such that the sum of their degrees is smaller or equal

than 10.
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It is possible to find the list of the invariants on the website link. They are divided

in zip files by h̃1,1, each one containing a .dat file named with the number of the CICY

they are referred to, following [20]. The extraction of the GV invariants can be done

with a simple pattern search. Here we provide a pseudo-code in Mathematica for that.

Suppose you have put the files .dat on a folder with a Mathematica notebook. Then

it is possible to extract all the numbers of the CICYs in the folder from the name of

the files using

numberCICY =

Thread [ FileBaseName [ FileNames [ ” ∗ . dat ” , NotebookDirectory [ ] ] ] ]

while we can import the ith CICY in numberCICY with

GVCICY = Import [ StringJoin [ numberCICY [ [ i ] ] <> ” . dat ” ] ,

”Table” , F i e l dSepa ra to r s −> ”\n” ]

Finally, the degree of the jth curve and the corresponding value of the GV invariants

can be found using

degree = Flatten [ ToExpression [ StringReplace [

Flatten [ StringCases [GVCICY [ [ j ] ] ,

RegularExpression [ ” \ [ ( . ∗ ? ) \ ] ” ] ] ] , {” [ ” −> ”{” , ” ] ” −> ”}” } ] ] ]

va lue = ToExpression [ StringDrop [ Flatten [

StringCases [GVCICY [ [ j ] ] , RegularExpression [ ”\=(.∗$ ) ” ] ] ] , 1 ] ]

We now comment on some empirical properties of the GV invariants in the database,

and some patterns which we recognized.

For any given favorable CICY X̃ the Mori cone will be h̃1,1 dimensional. For every

integer point in the Mori cone, there corresponds a curve class [β], and one can compute

the genus 0 GV invariants for this curve class. One can then move further away in the

following sense. Pick any line passing through [β], with rational angular coefficient.

Such a line will hit the boundary of the Mori cone on one side, but will continue

indefinitely towards infinity on the other side. In particular, it will intersect infinitely

many integer points inside the Mori cone, each corresponding to a curve class. One can

then compute the GV invariants for curve classes lying on such line. There are three

qualitatively different ways in which the GV invariants behave when moving towards

infinity in the Mori cone, in a specific direction. For some choices of the direction,

the GV invariants will grow indefinitely and exponentially. We will call such directions

exponentially infinite rays.
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Figure 5: Occupation sites for the CICY 7858.

Much more interesting is a second type of behavior, in which for some specific

directions the GV invariants will eventually become zero. We will call these directions

vanishing rays. An important role is played by those vanishing rays which are normal to

a boundary of the Mori cone. As already pointed out in [19, 51, 53] for the CICYs and

in [13] in the context of the Kreuzer-Skarke database, the existence of such vanishing

rays signals the presence of a conifold transition, or a flop.20 In particular the GV

invariants of a CY Ỹ connected to X̃ by a conifold transition can be recovered by

summing all the GV invariants of X̃ in each of those vanishing ray. We illustrate this

in the context of the CICY 7858, which is connected by a conifold transition to the

quintic.

In Figure 5 we plot the Mori cone of the CICY 7858. We put a blue dot for every

curve class [β] for which we computed that n[β] 6= 0. We put a red dot for all curve

classes for which we have not computed the GV invariant, but we strongly believe it is

going to be non-zero. We finally put a black dot for all curve classes such that n[β] = 0.

We can clearly see that, for example, the ray given by (0, 3)+Span(1, 1) (corresponding

to the green line in Figure 5) is an infinite ray. On the other hand, the ray given by

(0, 2) + Span(1, 0) (corresponding to the purple line in Figure 5) is a vanishing ray. We

20The existence of flop phases in CICYs was recently discovered in [54].
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see that in general, in this example, all rays of the form (0, n)+Span(1, 0), for all n ∈ N
are vanishing rays.

The Mori cone of the quintic is then identified with the vertical axis in the figure,

and the GV invariants of the quintic of degree i, can be found by summing over all

GV invariants corresponding to the same vanishing ray normal to the boundary of the

Mori cone. Namely,

ni =
∞∑
j=1

nj,i . (B.12)

We can see explicitly that this is true since, for example, for the quintic n1 = 609250,

while the non-vanishing GV invariants on the purple vanishing ray of Figure 5 for the

CICY 7858 are

n0,2 = 2670 , n1,2 = 73728 , n2,2 = 255960 ,

n3,2 = 231336 , n4,2 = 45216 , n5,2 = 360 , n6,2 = −20,
(B.13)

and we can verify that Eq. (B.12) is satisfied. The same holds for any other vanishing

ray perpendicular to the boundary of the Mori cone of the quintic in Figure 5. Although

we discussed just one specific example here, we observe that this phenomenon is generic

in the CICY database and can be regarded as a confirmation of the well-known fact

that all CICYs are connected by conifold transitions [51]. For every couple of CICYs

connected by a single conifold transition, the GV invariants of the two manifolds are

related in the manner discussed above. This behavior is expected, as, to access a conifold

transition from the resolved side, one shrinks some P1 curves, and therefore projects

the Mori cone onto one of its boundaries.

We now move to a third type of interesting direction in the Mori cone, which

we call infinite periodic ray. Along these directions, the GV invariants continue to be

always non-vanishing, but they do not grow exponentially. Instead, they will repeat

periodically. We observe this phenomenon, for example, in 13 h̃1,1 = 2 CICYs (7643,

7668, 7725, 7758, 7807, 7808, 7821, 7833, 7844, 7853, 7868, 7883 and 7884), in particular

for the GV invariants n0,m. We do not have an argument for why such periodicity arises.

However, we note empirically that this is related to the presence of P2 factors in the

ambient space geometry. A peculiar example of this is the bi-cubic CICY (7884), where

the invariants repeat along both the [1, 0] and the [0, 1] direction of the Mori cone and

are Z2 symmetric. One can find that infinite periodic rays also exist for h̃1,1 = 3, anytime

a P3 is present in the configuration matrix. We conjecture that this phenomenon is

generic. However, as we go to a larger h̃1,1, it is more difficult to study such behavior.

The last thing that we notice from our database is the fact that the numerical

values of degree 1 GV invariants tend to decrease with h̃1,1. For example, the quintic
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has h̃1,1 = 1 and its degree 1 GV invariant is n1 = 2875, the largest one in the whole

database. On the other hand, the degree 1 GV invariants of the CICY number 7858 of

Figure 5 are

n0,1 = 366 , n1,0 = 36 . (B.14)

We wish to address these empirical properties in a future work.

C List of redundancies in the CICY list

h̃1,1 Tuples of redundancies

2 {7816, 7822}, {7819, 7823}, {7867, 7869}, {7886, 7888}

3 {7450, 7481}, {7464, 7485}, {7465, 7466}, {7558, 7584}, {7560, 7579}, {7570, 7587},

{7576, 7577}, {7578, 7588}, {7626, 7647}, {7627, 7645}, {7638, 7648},

{7714, 7735, 7745}, {7720, 7730}, {7721, 7734}, {7753, 7769}, {7755, 7763},

{7779, 7789}, {7780, 7788, 7792, 7795}, {7782, 7783}, {7841, 7848, 7851},

{7843, 7847}, {7865, 7871}, {7877, 7881}

4 {5784, 5823}, {5805, 5806}, {6206, 6224}, {6524, 6558}, {6527, 6557}, {6545, 6546},

{6776, 6839}, {6784, 6828}, {6814, 6815}, {6816, 6835}, {7039, 7074}, {7042, 7113},

{7049, 7080}, {7056, 7077}, {7059, 7075}, {7089, 7090}, {7204, 7218, 7241, 7270},

{7205, 7245}, {7209, 7292}, {7217, 7250, 7285}, {7221, 7248, 7276},

{7222, 7223, 7274, 7275}, {7277, 7278}, {7334, 7405}, {7348, 7391}, {7349, 7373},

{7352, 7400}, {7354, 7395}, {7355, 7389}, {7357, 7394}, {7359, 7371}, {7423, 7424},

{7435, 7462, 7491, 7522}, {7446, 7493}, {7449, 7476, 7490, 7495}, {7458, 7497},

{7461, 7498}, {7468, 7507}, {7478, 7492, 7505}, {7548, 7605}, {7557, 7582},

{7569, 7598}, {7572, 7573}, {7574, 7593}, {7618, 7629, 7654}, {7628, 7649},

{7639, 7650}, {7656, 7657}, {7681, 7690}, {7719, 7736, 7742}, {7722, 7733},

{7751, 7772}, {7786, 7793}, {7818, 7825}, {7820, 7827}

5 {5249, 5313}, {5256, 5301, 5452}, {5270, 5338}, {5271, 5340},
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{5284, 5285, 5322, 5323}, {5352, 5355}, {5353, 5354, 5356}, {5758, 5896},

{5775, 5914}, {5780, 5835}, {5793, 5849}, {5814, 5860}, {5821, 5830}, {6040, 6041},

{6091, 6313}, {6110, 6329}, {6121, 6122}, {6146, 6278}, {6168, 6330}, {6169, 6332},

{6176, 6225}, {6191, 6323}, {6205, 6248}, {6208, 6233}, {6209, 6239}, {6210, 6235},

{6211, 6236}, {6255, 6256}, {6520, 6631}, {6542, 6577}, {6543, 6575}, {6544, 6610},

{6554, 6584}, {6582, 6583}, {6659, 6660}, {6711, 6941},

{6715, 6788, 6836, 6927, 6947}, {6722, 6911}, {6726, 6931, 6946},

{6732, 6777, 6802, 6834, 6890, 6896}, {6734, 6735, 6805, 6806, 6899, 6900},

{6736, 6737, 6901, 6902}, {6741, 6908}, {6743, 6808, 6895}, {6744, 6914},

{6747, 6891}, {6758, 6789, 6856}, {6764, 6909}, {6766, 6916}, {6768, 6926},

{6775, 6841}, {6787, 6855}, {6794, 6860}, {6821, 6843}, {6822, 6842}, {6823, 6869},

{6825, 6866}, {7010, 7092}, {7012, 7098}, {7026, 7093}, {7028, 7102}, {7029, 7107},

{7058, 7085}, {7167, 7306}, {7174, 7279}, {7194, 7225, 7257, 7269}, {7195, 7272},

{7198, 7289}, {7207, 7251}, {7231, 7258}, {7287, 7288}, {7294, 7295}, {7338, 7393},

{7345, 7401}, {7442, 7508}, {7443, 7511}, {7444, 7526}, {7447, 7487}, {7474, 7494},

{7502, 7503}, {7513, 7514}, {7547, 7600}, {7625, 7660}, {7705, 7741}

6 {3208, 3513}, {3902, 4255}, {3905, 4283}, {4027, 4178}, {4039, 4194}, {4041, 4195},

{4055, 4218}, {4575, 4924}, {4605, 4606, 4798, 4799}, {4622, 4787}, {4623, 4788},

{4630, 4631, 4632, 4633}, {4669, 4826}, {4671, 4827}, {4681, 4838}, {4740, 4795},

{5111, 5535}, {5125, 5502}, {5165, 5525}, {5166, 5526}, {5167, 5534}, {5168, 5532},

{5177, 5319}, {5187, 5336}, {5196, 5369}, {5238, 5454, 5518}, {5241, 5457},

{5281, 5342}, {5297, 5377}, {5528, 5552}, {5597, 5598}, {5667, 5668}, {5690, 5937},

{5694, 5960}, {5702, 5888}, {5703, 5889}, {5708, 5948}, {5721, 5863}, {5722, 5864},

{5723, 5862}, {5729, 5859}, {5733, 5734}, {5751, 5886}, {5753, 5887}, {5755, 5885},

{5766, 5901}, {6087, 6333}, {6089, 6334}, {6099, 6302, 6367},
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{6100, 6101, 6300, 6301, 6363, 6364}, {6103, 6365}, {6104, 6339}, {6135, 6253},

{6136, 6252}, {6139, 6266}, {6151, 6286}, {6152, 6289}, {6154, 6290}, {6156, 6254},

{6187, 6281}, {6202, 6231}, {6471, 6646}, {6472, 6636}, {6473, 6647}, {6474, 6637},

{6488, 6590}, {6489, 6589}, {6497, 6573}, {6511, 6613}, {6623, 6625}, {6723, 6934},

{6759, 6868}, {6761, 6904}, {6774, 6840}, {7000, 7001}, {7011, 7121}, {7014, 7117},

{7030, 7031}, {7228, 7249}, {7460, 7499}

7 {2317, 2335, 2665}, {2354, 2682}, {2359, 2688}, {2375, 2701}, {2820, 2871},

{2821, 2857}, {3193, 3351}, {3194, 3352}, {3202, 3374}, {3224, 3524}, {3225, 3526},

{3226, 3528}, {3353, 3498}, {3828, 4315}, {3829, 4314}, {3836, 4038}, {3987, 4348},

{3994, 4147}, {3995, 4146}, {4029, 4250}, {4030, 4268}, {4044, 4202}, {4071, 4108},

{4073, 4117}, {4078, 4185}, {4096, 4097}, {4139, 4140}, {4225, 4232}, {4243, 4342},

{4244, 4336}, {4245, 4329}, {4264, 4341}, {4274, 4346}, {4349, 4350, 4351},

{4530, 4620}, {4537, 4573}, {4549, 4572}, {4550, 4571}, {4551, 4579}, {4649, 4819},

{4748, 4761}, {4963, 4964}, {5102, 5216}, {5104, 5105}, {5109, 5213},

{5141, 5259, 5406}, {5144, 5519}, {5145, 5497}, {5150, 5485, 5548}, {5197, 5531},

{5214, 5520}, {5215, 5512}, {5223, 5493}, {5226, 5445}, {5228, 5447}, {5252, 5310},

{5272, 5396}, {5277, 5311, 5423}, {5278, 5422}, {5280, 5341}, {5424, 5449},

{5484, 5547}, {5749, 5943}, {5750, 5944}, {5781, 5837}, {5880, 5906, 5917},

{6141, 6343}, {6159, 6353}, {6161, 6162}, {6165, 6324}, {6192, 6241}, {6599, 6622},

{6807, 6865}, {7265, 7282, 7299}

8 {1620, 1908}, {1627, 1920}, {1689, 2064}, {1702, 1910}, {2284, 2803}, {2322, 2683},

{2323, 2684}, {2324, 2685}, {2336, 2666}, {2380, 2381}, {2480, 2631}, {2512, 2787},

{2513, 2786}, {2529, 2662}, {2577, 2617, 2659}, {2785, 2892}, {3114, 3622},

{3120, 3621}, {3141, 3590}, {3164, 3307}, {3165, 3306}, {3213, 3245}, {3299, 3300},

{3396, 3434}, {3397, 3436}, {3398, 3419}, {3435, 3484, 3499}, {3453, 3454},

– 41 –



{3456, 3457}, {3476, 3503}, {3890, 4337}, {3891, 4324}, {3898, 3911}, {3910, 3956},

{3927, 4087, 4198}, {3928, 4199}, {3939, 4227}, {4019, 4359}, {4043, 4201},

{4051, 4210}, {4103, 4164}, {4135, 4208}, {4172, 4209, 4219}, {4174, 4216},

{4263, 4313}, {4524, 4525}, {4674, 4828}, {4753, 4767}, {4884, 4944},

{5210, 5240, 5409, 5455}, {5227, 5446}, {5350, 5387, 5414}, {5844, 5913},

{6082, 6123}, {6857, 6922}

9 {1003, 1312}, {1102, 1463}, {1121, 1247}, {1122, 1160}, {1138, 1309}, {1158, 1231},

{1159, 1325}, {1285, 1300}, {1666, 2039}, {1667, 2040}, {1695, 1797}, {1703, 1790},

{1705, 1706}, {1724, 1806}, {1789, 1879}, {1791, 1880}, {1832, 1864, 1873},

{1846, 1849}, {2334, 2338, 2366, 2663, 2670, 2699}, {2337, 2667}, {2339, 2534},

{2350, 2477}, {2357, 2403, 2596, 2640}, {2361, 2383, 2645, 2660, 2834, 2839},

{2363, 2689}, {2364, 2503}, {2376, 2394}, {2389, 2465}, {2426, 2594},

{2427, 2514, 2595, 2647}, {2445, 2446}, {2447, 2448}, {2481, 2632}, {2505, 2506},

{2748, 2865}, {2811, 2823, 2825}, {2818, 2826}, {3207, 3379}, {3260, 3330},

{3295, 3363}, {3329, 3375}, {3918, 4197}, {3945, 4024}, {3966, 4168}, {4133, 4220},

{4262, 4292}, {4586, 4678}, {5115, 5239}, {5182, 5183}, {5184, 5237}

10 {577, 886}, {660, 749}, {664, 688}, {667, 670}, {683, 684}, {726, 729}, {735, 827},

{736, 759}, {737, 758, 814}, {748, 839}, {754, 836}, {756, 835}, {974, 975},

{1116, 1250}, {1139, 1147, 1243, 1310, 1313, 1402}, {1163, 1164}, {1166, 1169},

{1181, 1220}, {1184, 1219}, {1191, 1193}, {1192, 1194}, {1244, 1403}, {1307, 1407},

{1315, 1316}, {1328, 1428}, {1330, 1430, 1435}, {1333, 1381, 1424},

{1427, 1441}, {1452, 1453, 1454}, {1911, 2031}, {1912, 1921, 1933}, {1925, 2058},

{1934, 2057}, {1971, 1972}, {1987, 2049}, {2032, 2033}, {2047, 2048}, {2449, 2450},

{2591, 2646}, {2629, 2661}, {2664, 2807}, {2743, 2794}, {2765, 2795, 2804},

{3531, 3591}
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11 {264, 322}, {269, 318}, {270, 282}, {271, 281, 315}, {276, 327, 414, 481}, {278, 324},

{279, 323}, {341, 372}, {369, 370}, {383, 403}, {386, 388}, {412, 426, 428},

{419, 445}, {420, 442}, {425, 427}, {440, 467}, {446, 447}, {450, 453}, {572, 653},

{742, 763, 765}, {764, 766}, {768, 811, 832}, {772, 805, 818}, {773, 806}, {778, 780},

{779, 781}, {1004, 1008, 1021}, {1010, 1095}, {1051, 1087}, {1286, 1295},

{1342, 1343}, {1827, 1883}

12 {143, 152}, {144, 153, 179}, {155, 168}, {157, 159}, {158, 160}, {165, 166},

{170, 172}, {171, 173}, {175, 176}, {190, 204}, {194, 195}, {209, 213, 223},

{220, 224}, {222, 226}, {273, 284, 285}, {311, 317}, {355, 356}, {661, 701},

{1176, 1249}, {2641, 2837}

13 {75, 77}, {82, 87}, {83, 84}, {102, 109}, {119, 121}, {197, 198}, {415, 465, 484},

{466, 480}

14 {56, 57}, {59, 60}, {103, 104}, {107, 111}

15 {3, 12}, {7, 11, 13}

Table 1: List of redundancies in the CICY list.
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[37] R. Álvarez-Garćıa, R. Blumenhagen, M. Brinkmann and L. Schlechter, Small Flux

Superpotentials for Type IIB Flux Vacua Close to a Conifold, 2009.03325.

[38] O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization,

JHEP 07 (2005) 066 [hep-th/0505160].

[39] F. Marchesano and J. Quirant, A Landscape of AdS Flux Vacua, JHEP 12 (2019) 110

[1908.11386].

[40] D. Junghans, O-Plane Backreaction and Scale Separation in Type IIA Flux Vacua,

Fortsch. Phys. 68 (2020) 2000040 [2003.06274].

[41] F. Marchesano, E. Palti, J. Quirant and A. Tomasiello, On supersymmetric AdS4

orientifold vacua, JHEP 08 (2020) 087 [2003.13578].

[42] K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime

corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254].

[43] S. R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys.

Rev. D 21 (1980) 3305.

[44] A. Hebecker, Lectures on Naturalness, String Landscape and Multiverse, 2008.10625.

[45] A. Hebecker, D. Junghans and A. Schachner, Large Field Ranges from Aligned and

Misaligned Winding, JHEP 03 (2019) 192 [1812.05626].

[46] P. Green and T. Hubsch, Calabi-yau Manifolds as Complete Intersections in Products

of Complex Projective Spaces, Commun. Math. Phys. 109 (1987) 99.

[47] P. Candelas, A. Dale, C. Lutken and R. Schimmrigk, Complete Intersection Calabi-Yau

Manifolds, Nucl. Phys. B 298 (1988) 493.

[48] J. Kollar, Deformations of elliptic Calabi-Yau manifolds, 1206.5721.

– 46 –

https://doi.org/10.1016/j.nuclphysb.2004.08.005
https://arxiv.org/abs/hep-th/0403067
https://doi.org/10.1016/j.physletb.2005.08.024
https://arxiv.org/abs/hep-th/0507131
https://doi.org/10.1088/1126-6708/2005/11/030
https://arxiv.org/abs/hep-th/0508043
https://doi.org/10.1088/1126-6708/2007/09/031
https://arxiv.org/abs/0704.0737
https://doi.org/10.1088/1126-6708/2008/10/105
https://arxiv.org/abs/0805.1029
https://doi.org/10.1016/S0550-3213(00)00373-4
https://doi.org/10.1016/S0550-3213(00)00373-4
https://arxiv.org/abs/hep-th/9906070
https://arxiv.org/abs/2009.03325
https://doi.org/10.1088/1126-6708/2005/07/066
https://arxiv.org/abs/hep-th/0505160
https://doi.org/10.1007/JHEP12(2019)110
https://arxiv.org/abs/1908.11386
https://doi.org/10.1002/prop.202000040
https://arxiv.org/abs/2003.06274
https://doi.org/10.1007/JHEP08(2020)087
https://arxiv.org/abs/2003.13578
https://doi.org/10.1088/1126-6708/2002/06/060
https://arxiv.org/abs/hep-th/0204254
https://doi.org/10.1103/PhysRevD.21.3305
https://doi.org/10.1103/PhysRevD.21.3305
https://arxiv.org/abs/2008.10625
https://doi.org/10.1007/JHEP03(2019)192
https://arxiv.org/abs/1812.05626
https://doi.org/10.1007/BF01205673
https://doi.org/10.1016/0550-3213(88)90352-5
https://arxiv.org/abs/1206.5721


[49] P. Candelas and X. de la Ossa, Moduli Space of {Calabi-Yau} Manifolds, Nucl. Phys. B

355 (1991) 455.

[50] A. Avram, P. Candelas, D. Jancic and M. Mandelberg, On the connectedness of moduli

spaces of Calabi-Yau manifolds, Nucl. Phys. B 465 (1996) 458 [hep-th/9511230].

[51] P. Candelas, P. S. Green and T. Hubsch, Rolling Among Calabi-Yau Vacua, Nucl.

Phys. B 330 (1990) 49.

[52] P. Candelas, X. de la Ossa, Y.-H. He and B. Szendroi, Triadophilia: A Special Corner

in the Landscape, Adv. Theor. Math. Phys. 12 (2008) 429 [0706.3134].

[53] P. Candelas and X. C. de la Ossa, Comments on Conifolds, Nucl. Phys. B 342 (1990)

246.

[54] C. R. Brodie, A. Constantin and A. Lukas, Flops, Gromov-Witten Invariants and

Symmetries of Line Bundle Cohomology on Calabi-Yau Three-folds, 2010.06597.

– 47 –

https://doi.org/10.1016/0550-3213(91)90122-E
https://doi.org/10.1016/0550-3213(91)90122-E
https://doi.org/10.1016/0550-3213(96)00058-2
https://arxiv.org/abs/hep-th/9511230
https://doi.org/10.1016/0550-3213(90)90302-T
https://doi.org/10.1016/0550-3213(90)90302-T
https://doi.org/10.4310/ATMP.2008.v12.n2.a6
https://arxiv.org/abs/0706.3134
https://doi.org/10.1016/0550-3213(90)90577-Z
https://doi.org/10.1016/0550-3213(90)90577-Z
https://arxiv.org/abs/2010.06597

	desy007
	InnenseiteDESY-Berichte
	desy21-007
	1 Introduction
	2 Winding inflation from Gopakumar-Vafa hierarchies
	3 Uplift mechanisms from Gopakumar-Vafa hierarchies
	4 Combining GV-inspired inflation and uplifts
	5 Discussion and Conclusions
	A CICY Redundancies
	B A database of Gopakumar-Vafa invariants for CICYs
	C List of redundancies in the CICY list




