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Abstract

This paper evaluates the predictive out-of-sample forecasting properties of six di�erent eco-

nomic uncertainty variables for both growth in aggregate M2 and growth in household-sector

M2 in the U.S. using data between 1971m1 and 2014m12. The core contention is that eco-

nomic uncertainty improves both forecast accuracy as well as direction-of-change forecasts of

real money stock growth. We estimate linear ARDL models using the iterated rolling-window

forecasting scheme combined with two di�erent indicator selection procedures. Forecast ac-

curacy is evaluated by RMSE and the Diebold-Mariano test. Direction-of-change forecasts

are assessed by means of the Kuipers Score and the Pesaran-Timmermann test. The results

indicate an increased relevance of certain economic uncertainty measures for forecasting

growth in both real aggregate as well as real household-sector M2 since 2000.
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1 Introduction

In this article we seek to analyse whether economic uncertainty provides predictive power to out-

of-sample forecast growth of the U.S. real monetary aggregate M2 as well as real U.S. household-

sector M2. Even though monetary aggregates have not played a central role in the formulation

of U.S. monetary policy since the 1980s, policymakers continue to use monetary data as a source

of information about the state of the economy. For instance, money demand models are still

estimated by policymakers to predict long-run in�ation trends (Bernanke, 2006). Furthermore,

within the New Keynesian camp, money can serve the purpose of an additional indicator of

the monetary conditions prevailing in the market as it may provide timely information about

variables that are measured imperfectly (Coenen et al., 2005; Beck and Wieland, 2007). Others

have shown that targeting money growth leads to improved economic outcomes in standard New

Keynesian models when monetary policy acts under discretion (Söderström, 2005). Hence, there

are good reasons to think that policy makers have a deep interest in accurate money forecasts.

The reason why monetary aggregates have not played a more prominent role in U.S. mone-

tary policy is the recurrent instability in the (long-run) relationship between various monetary

aggregates and other nominal variables. Among the potential factors leading to this instability,

economists see, for instance, institutional deregulation and �nancial innovation. However, others

stress the relevance of di�erent types of economic uncertainty or risk as relevant determinants of

money demand (Carpenter and Lange, 2003). This latter aspect is central to our study.

The recent great �nancial crisis was accompanied by a regained interest in private actors'

liquidity preferences. Studies on money demand indicate that U.S. households are risk-averse

against volatility. Risk-aversion implies that the demand for liquid and safe assets moves pro-

cyclically with changes in, for instance, capital market risk, in�ation risk or macroeconomic risk.

These types of risk or uncertainty1 have increased�at least temporarily�as a consequence of the

recent great �nancial crisis (GFC henceforth) as well as unconventional monetary policy which

has led to money growth rates seen as incompatible with stable price in�ation and increased

stock market volatility (Baker et al., 2013; Jurado et al., 2015; Ludvigson et al., 2015).

The literature discusses some channels through which economic uncertainty may a�ect house-

holds' money holdings. For instance, as the cost of investing in stocks and bonds has declined

and households hold broader sets of monetary assets, there are reasons to believe that money

holdings may have become more sensitive to �nancial as well as in�ation risk (Cook and Choi,

2007). Assuming that the money-growth-to-in�ation nexus remains intact, an in�ation-targeting

central bank needs to monitor �nancial and in�ation risk to future in�ation. This provides an-

other argument for the inclusion of �nancial stability measures into a central bank's objective

function, as the stabilization of �nancial markets can be seen as an additional pillar for ensuring

1In the literature one typically distinguishes between risk and uncertainty. Risk typically refers to the odds of an
outcome when the probability distribution is known, the term uncertainty describes the case when the probability
distribution of the data generating process is unknown. Hence, uncertainty is de�ned as the conditional volatility
of a disturbance that is unforecastable from the perspective of economic agents (Ludvigson et al., 2015). However,
in this paper we will explicitly not distinguish between risk and uncertainty as this distinction is not of importance
for our forecast analysis.
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price stability (Cronin et al., 2011). Another line of argument emphasizes the increased risk of

long periods of secular stagnation in advanced countries accompanied by a high preference for

liquidity as a major cause (Caballero and Farhi, 2013; Bossone, 2014). Lastly, Benhabib et al.

(2001) and Christiano and Rostagno (2001) argue that the stabilizing Taylor principle may break

down if money growth rates exceed some target rate. In such a case, the central bank needs to

adjust money supply for re-stabilisation which requires a close monitoring of actual and expected

money growth rates. For a central bank which has a particular obligation to increased employ-

ment and sustain price stability, these concerns require the need to forecast growth of monetary

aggregates.

While the empirical money demand literature has been mainly concerned with the question

whether the dynamics in economic uncertainty measures help to explain the breakdown of the

standard long-run money demand relationship consisting of a monetary aggregate, an income

and opportunity cost measure (see e.g. Carpenter and Lange, 2003), there has been no extensive

work on the out-of-sample predictive power of economic uncertainty for forecasting the dynamics

of monetary aggregates.

This paper attempts to study the out-of-sample predictive content of various economic un-

certainty measures for growth of both real U.S. aggregate and household-sector demand for M2

using data between 1971m1 and 2014m12. The focus of our analysis, however, will be on more

recent forecasting dynamics since the year 2000 including the New Economy Bust as well as

the recent GFC episode. To do so, we evaluate the pseudo out-of-sample forecasting power of

six di�erent uncertainty measures using a linear ARDL model. Our study makes three main

contributions to the literature:

(i) Even though many papers were published on the relevance of various uncertainty vari-

ables for re-establishing a stable long-run money demand relationship, we are not aware

of any article studying systematically the out-of-sample forecasting properties of economic

uncertainty variables for growth of a monetary aggregate in the U.S.

(ii) Instead of studying the e�ect of a single uncertainty variable, we will evaluate the out-of-

sample forecasting properties of the following six uncertainty variables among which some

have been used in the money demand literature before while others are rather known from

recent business cycle studies. To be more concrete, we evaluate the forecasting power of in-

�ation uncertainty (Stock and Watson, 2007; Wright, 2011), the stock market risk premium

(Fama and French, 1988), the VXO implied volatility measure for the S&P 100 (Bloom,

2009), the �nancial market uncertainty index (Ludvigson et al., 2015), the macroeconomic

uncertainty index (Jurado et al., 2015) and the economic policy uncertainty index (Baker

et al., 2013).

(iii) Apart from out-of-sample forecast accuracy, we also evaluate out-of-sample direction-

of-change forecasts at di�erent horizons by means of the Kuipers score and Pesaran-

Timmermann test. Furthermore, we run rolling-window forecast schemes combined with

two di�erent recursive indicator selection procedures.
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Our main �ndings support the claim that the consideration of certain economic uncertainty

variables helps to improve forecasting monetary aggregates:

(i) The benchmark ARDL(12,12,12) model of money demand including lags of growth of a

real monetary measure, growth of a real income measure and an opportunity cost measure

combined with recursive indicator selection provides good out-of-sample forecast accuracy

(measured by the root mean squared forecast error) at the short- and medium-term horizon

for growth of aggregate M2 for the period between 2000m1 and 2014m12. However, the

implied volatility VXO �nancial market uncertainty series as well as the macroeconomic

uncertainty measure provide additional and relevant forecasting information. These results

are also con�rmed for the U.S. aggregate Divisia M4 money stock measure.

(ii) With regard to forecasting growth of household-sector M2, the benchmark ARDL(12,12,12)

model combined with automatic indicator selection provides reasonable out-of-sample fore-

cast accuracy at the short- and medium-term horizon for the period between 2000m1 and

2014m12. However, in�ation uncertainty series, economic policy uncertainty and simple

equally-weighted model combination helps to improve the point forecast accuracy.

(iii) The standard money demand model yields poor direction-of-change forecasts for growth

of aggregate M2 as measured by the Kuipers Score and the Pesaran-Timmermann test

on market timing between 2000m1 and 2014m12. In�ation uncertainty, �nancial market

uncertainty and economic policy uncertainty provide statistically relevant information for

short- and medium-term direction-of-change forecasts, respectively. Overall, direction-of-

change forecasting monetary growth of aggregate M2 has become much harder since 2000.

(iv) Direction-of-change forecasting growth of household-sector M2 has become much harder

since 2000. While the standard money demand model yields good short-term out-of-sample

direction-of-change forecasts, considering the in�ation uncertainty measure, the economic

policy measure, the stock market risk premium or the �nancial market uncertainty series,

respectively, helps to improve this type of forecast considerably�especially for the period

since 2007m1 covering the recent GFC period.

Especially the e�ects of in�ation risk, income risk and capital market risk on money holdings can

be understood against the background of money as a store of value in intertemporal household

optimization models (Gröÿl and Fritsche, 2006; Gröÿl and Tarassow, 2015). While macroeco-

nomic uncertainty as well as economic policy uncertainty is correlated with future and expected

nominal income, in�ation uncertainty is linked to expected real income as well as expected real

returns on investment. This latter argument plays a crucial role for households' pension plans and

their portfolio allocations. Also �nancial market uncertainties are expected to have repercussions

on allocating resources for pension plans.

As mentioned before, the empirical money demand literature is mainly concerned with the in-

sample �t of otherwise standard money demand models which are augmented by some uncertainty

variable. For instance, Carpenter and Lange (2003) and Cook and Choi (2007) use the implied

volatility VXO measure from the S&P 100 as an additional regressor in their money demand
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model for the U.S. Cook and Choi (2007) use the stock market risk premium (see also Gröÿl and

Tarassow, 2015), a measure of liquidity risk and the corporate spread, respectively, as a potential

measure of uncertainty in a cointegrating framework. Among others, Carstensen (2006) �nds

a signi�cant long-run impact of stock market volatility on euro area money demand. Greiber

and Lemke (2005) show that the consideration of uncertainty factors improves the statistical �t

of the model in both the euro area as well as U.S. Also de Bondt (2009) presents evidence for

the relevance of precautionary motives, stemming from the labour market, for money demand

holdings in the euro area (see Seitz and von Landesberger, 2014, in a similar vein). The e�ect of

macroeconomic as well as monetary uncertainty on U.S. money demand dynamics was studied by

Cronin et al. (2011). Lastly, Higgins and Majin (2009) and Gröÿl and Tarassow (2015) examined

the role of in�ation uncertainty for money demand in the U.S.

The topic of uncertainty has recently gained great interest since the seminal work of Bloom

(2009) for business cycle analysis. This large growing body of literature on uncertainty can be

divided into three branches. One branch of the literature has been concerned with the con-

struction of uncertainty series (Jurado et al., 2015; Ludvigson et al., 2015; Rossi et al., 2016).

Another strand has discussed the issue of whether uncertainty causes an economic outcome (e.g.

a recession) or is actually a consequence of this outcome (Bachmann et al., 2013; Ludvigson

et al., 2015). Several studies on the repercussions of uncertainty shocks on various economic

variables were published during the last couple of years. A common �nding is that uncertainty

proxies are strongly countercyclical even though the macroeconomic impact of the various un-

certainty measures can be very di�erent from each other (Rossi et al., 2016). For instance, a

countercyclical relationship between real activity and stock market volatility was found by Bloom

(2009). The dispersion in �rm-level earnings, industry-level earnings, total factor productivity,

and the predictions of forecasters have been used as other proxies for uncertainty (Bloom et al.,

2013). Others have used disagreement from the Survey of Professional Forecasters and analyst

uncertainty (D'Amico and Orphanides, 2008). Wright (2011) emphasized the role of in�ation

uncertainty for predicting the term structure, and �nds a positive relationship between long-term

in�ation uncertainty and bond term premium in a large cross-section of countries. Stock and

Watson (2012) argue that uncertainty shocks and liquidity/risk shocks are highly correlated.

They �nd that the largest negative shock contributing to the recession period 2007q4�2009q2

are due to both liquidity/risk and uncertainty shocks.

The paper is structured as follows. The next section introduces the forecasting model and

statistics. Section 3 discusses the model speci�cations and presents the time-series used. Section

4 and 5 present the empirical forecasting results for both aggregate M2 and households sector

M2, respectively. Section 6 concludes.
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2 Forecasting models and statistics

2.1 The ARDL model and pseudo out-of-sample forecasting

We follow the original work by Diebold and Mariano (1995), Clark and McCracken (2001) and

others by comparing models according to their forecasting performance in a pseudo out-of-sample

forecasting environment. Our forecasting models are built on an autoregressive distributed lag

(ARDL) model for out-of-sample forecasting money growth. This framework is well-known and

is expected to be more robust to potential misspeci�cation errors compared to a VAR model as

noted by Stock and Watson (2003, p. 791).

In general the h-step ahead linear money demand forecasting regression can be written

∆mh
t+h = α0 +

p∑
j=1

βj∆mt+1−j +

q∑
j=1

θj∆yt+1−j +
k∑
j=1

φjit+1−j +
l∑

j=1

ρjUt+1−j + eht+h (1)

where ∆m, ∆y, i, U and e denote the logarithmic (log-)change in real money, the log-change

in real income, an opportunity cost measure, some uncertainty measure and the h-step ahead

forecast error. The h-step ahead forecast of growth in real money is a linear combination of its

own lagged values as well as lagged values of the remaining regressors.

The h-multi-step ahead forecast will be computed by means of the iterated (or plug-in) forecast

method. Suppose we want to forecast ∆m for period t using a dynamic model, say ARDL(1) for

example. If we have data on ∆m available only up to period t− 2, we can apply the chain rule

of forecasting

∆̂mt−1 = α̂0 + β̂1∆mt−2 + β̂2Xt−2

∆̂mt = α̂0 + β̂1∆̂mt−1 + β̂2Xt−1

where we always have access to the historical realisations of the exogenous regressor X. Hence,

as in Rapach and Strauss (2008), we do not model a separate data-generating process for yt, it

and Ut in eq. 1 but use their historical realisations for computing the iterated forecast for mt,

instead. Marcellino et al. (2006) have shown that iterated forecasts typically outperform the

direct forecasts. Furthermore, the relative performance of the iterated forecasts improves with

the forecast horizon.

Possible cointegrating relationships among the variables are ignored, and all variables are

transformed to eliminate stochastic and deterministic trends. This assumption is not problem-

atic, as Gröÿl and Tarassow (2015) have recently shown that there exists no stable long-run

money demand relationship between the level variables mt (using aggregate M2), yt and it in

the U.S. economy for the period between 1978 and 2013. We treat the logarithm of M2 and the

logarithm of the income measure as I(1), and assume that the opportunity cost measure as well

as additional uncertainty measures are stationary for each rolling window.
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2.2 Forecast model evaluation method

The empirical evidence of parameter instability is widespread in macroeconomic forecasting

(Stock and Watson, 2003). In this work, we apply the rolling-window forecasting scheme using

a �xed number of the most recent data at each point of time to generate sequences of out-of-

sample forecasts which are used for evaluating competing models (Tashman, 2000). Pesaran and

Timmermann (2007) have shown that neglecting existing structural breaks may result in biased

forecasts. The rolling-window approach is more robust against structural breaks compared to a

recursive forecasting scheme with an extending forecast window.

As it remains ambiguous how to select the relevant variables of the ARDL model for each

training set, we combine the rolling-window forecasting scheme by two di�erent indicator se-

lection procedures. In a �rst approach, we conduct a general-to-speci�c (G2S) analysis, and

sequentially eliminate irrelevant variables. The second speci�c-to-general (S2G) approach starts

from a parsimonious model, and sequentially adds relevant variables. To be more concrete, the

two algorithms work as follows:

(i) General-to-Speci�c (G2S ): Regress initially ∆mt on a candidate ARDL model with 12 lags

for each regressor using OLS. Omit the variable with the highest p-value to estimate the

new candidate model. Repeat the steps based on the latest candidate model, until all

remaining variables have a p-value no greater than 5 percent (two-sided).

(ii) Speci�c-to-General (S2G): Regress initially ∆mt on an intercept using OLS. Scan the list

of candidate variables from a candidate ARDL model with 12 lags for each regressor that,

if added, improves the selected AIC criterion to the greatest extent. If improvement is

possible, add the new regressor to the initial model and remove it from the candidate

model, and go to step 1; if not, stop.

Additionally, we compute the equally-weighted mean of all forecasts as proposed by the model

combination literature (see e.g. Rapach and Strauss, 2008). The mean forecast, m̂mean
t+h =

K−1
∑K

j=1 m̂
k
j,t+h, is the simple average using all K separate out-of-sample forecasts. Our set of

individual forecast models comprises K = 7 di�erent ARDL model speci�cations (which will be

described below) for which we (i) set the maximum lag length to twelve, (ii) conduct the G2S

and (iii) S2G indicator selection, respectively. This amounts in total to 21 model speci�cations

for which we compute m̂mean
t+h for each forecast horizon.

As parameters might be changing over time, and because we want to give more weight to recent

observations, we use the rolling-window forecasting scheme. The algorithm works as follows:

(i) The total sample of T+1 observations is split into the �rst 1 to Ts (Ts < T+1) observations.

(ii) Determine the relevant set of regressors of the ARDL model using either the G2S or S2G

indicator selection procedure based on Ts observations. Estimate the model parameters.

(iii) Compute the h-multi-step iterated forecast, ∆mTs+h.
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(iv) Move the initial and �nal sample observations to 2 and Ts + 1, respectively.

(v) Repeat the steps (ii) to (iv) until you arrive at time T , at which the parameters of interest

are re-estimated based on the sample of observations T − Ts + 1 to T to compute the

forecast for T + 1.

In the following applications, the training set consists of Ts = 96 monthly observations (8

years) to do any meaningful forecasting. However, as recently shown by Inoue et al. (2017),

it remains under debate how many recent observations should be used in estimation. Pesaran

and Timmermann (2007) and Inoue et al. (2017) have suggested di�erent criteria to determine

the optimal window size under structural changes. Instead of applying these rather complex

algorithms, we will experiment with two alternative window sizes, Ts, in the robustness section

to show the validity of our results.

2.2.1 Evaluating forecasting accuracy

As our measure for forecast comparison, we use the ratio of the h-step-ahead root mean squared

error (RMSE) for a given h-step-ahead forecast of model k made at time t (denoting the last

observation of the training set), ∆m̂k
t+h, relative to the corresponding forecast of the benchmark

model, ∆m̂b
t+h,t. The equation is given by

Rhk =

√
F−1

∑F
j=1(∆mt+h −∆m̂k

t+h)2√
F−1

∑F
j=1(∆mt+h −∆m̂b

t+h)2
(2)

and where F denotes the number of out-of-sample forecasts. If model k outperforms the com-

petitor on average, Rhk is smaller one, and vice versa. For the forecast analysis, we compute

the relative RMSE as de�ned in eq. (2), relative to the ARDL(12,12,12) benchmark (and hence

without any automatic indicator selection) of the standard money demand model speci�cation.2

This standard money demand speci�cation is described in eq. (1) and consists on the RHS only

lags of ∆mt, ∆yt and it. All forecasts are based on the rolling-window forecasting scheme. The

competitor model is also based on the rolling-window forecasting scheme combined, in contrast

to the benchmark case, with either G2S or S2G indicator selection.

However, the statistics Rhk does not measure whether the loss di�erentials between two com-

peting forecasts are signi�cantly di�erent in a statistical sense. Diebold and Mariano (1995)

proposed an intuitive test of equal predictive accuracy of two models. The test by Diebold and

Mariano (DM, henceforth) relies on assumptions made directly on the forecast error loss dif-

ferential. Denote the h-periods ahead forecast error at time t by et−ht , and the, for instance,

quadratic loss by L(et−ht ) = e2,t−h
t . The loss di�erential of two forecasts for observation t is given

by d12t = e2,t−h
1t − e2,t−h

2t . The null of equal predictive accuracy corresponds to E(d12) = 0, in

2Usually forecasts are compared to a simple AR(p) or Random-walk model. As our focus is on comparing the
standard money demand speci�cation against some uncertainty-augmented model, it is not our focus to compare
these theoretically-guided money demand models against some pure statistical time-series speci�cation.
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which case the test statistics is

DM12 =
d̄12

σ̂ ¯d12

→ N(0, 1) (3)

and where d̄12 = F−1
∑F

j=1 d12j refers to the sample mean loss di�erential and σ̂d̄12 is a consistent

estimate of the standard deviation of d̄12 based on F number of forecasts available.

However, as the forecasts errors may be serially correlated, one can alternatively regress the

loss di�erential on an intercept by OLS using HAC standard errors

d12t = β0 + ut (4)

where ut is an i.i.d. zero-mean error term. The null hypothesis is that there is no di�erence in the

point estimates between the two forecasts, i.e β = 0. The estimate of β follows asymptotically

a standard normal distribution (Diebold and Mariano, 1995). Additionally, we apply the small

sample correction as proposed by Harvey et al. (1997).

It should be noted that the Diebold-Mariano approach is only valid if the estimated fore-

cast models are non-nested. With nested models, however, under the null, the forecast errors

are asymptotically equal and therefore perfectly correlated (Mc Cracken, 2000; Clark and Mc-

Cracken, 2001). Typically, those tests on either equal MSE or encompassing explicitly account

for uncertainty of parameter estimation. However, as noted by Stock and Watson (2003), the

null distribution of the Clark and McCracken (2001) test can only be computed if the number

of lags in the models does not change over time. As we will apply the rolling forecasting scheme

combined with either G2S and S2G indicator selection potentially yielding a time-varying lag

variation, there is no possibility to apply the Clark-McCracken test approach. Hence, we will

rely on the Diebold-Mariano framework following Stock and Watson, instead.

2.2.2 Directional forecast evaluation

Another issue concerns the analysis of the correct prediction of the direction-of-change in growth

of the real money stock (e.g. Ups, Downs). The Kuipers score (KS) is an evaluation criterion

de�ned as the di�erence between the hit rate (H, correctly predicted Ups) and the false alarm

rate (F, wrongly predicted Ups) of model k for each h-step-ahead forecast, KSkh = Hk
t+h − F kt+h

(Pesaran, 2015, pp. 396).

Pesaran and Timmermann (1992) (PT) proposed a statistical test of market timing which is

based on

PT =
P̂ − P̂∗√

V̂ (P̂ )− V̂ (P̂∗)
(5)

where P̂ is the proportion of correctly predicted Ups and P̂∗ is the estimate of the probabil-

ity of correctly predicting the events assuming predictions and realizations are independently

distributed. V̂ (P̂ ) and V̂ (P̂∗) are consistent estimates of the variances of P̂ and P̂∗, respectively.

In the following, we will apply the regression based version of the PT test, testing whether
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the predicted Ups, xt = I(Xt) are related to the actual Ups, yt = I(Yt) using a sample of

observations and where I(A) is an indicator function that takes the value of unity if A > 0

and zero otherwise. The PT statistics can be approximated by the t-ratio of the coe�cient of

xt = I(Xt) in the following OLS regression

yt = α+ βxt + ut (6)

where yt = I(Yt) and α is the intercept. Under the null hypothesis, H0 : β = 0, the two stochastic

variables are independently distributed, and vice versa. Serial correlation in the errors, ut, are

likely to occur but can be dealt with by using Bartlett weights to compute HAC standard errors

(see Pesaran, 2015, pp. 398).

We will compute both the KS statistics and the test results of the PT test for each model as

well as di�erent multi-step forecast horizons h.

3 Estimation results

In this section we present and discuss the model speci�cations as well as underlying variables.

Our dataset comprises monthly observations for the U.S. economy, and the selected sample

starts in 1971m1 and ends in 2014m12. We employ the monthly FRED-MD dataset published

by McCracken and Ng (2015) for most variables. For details we refer to the Data Appendix.3

3.1 Model speci�cations

Our benchmark model can be seen as a variant of the standard money demand speci�cation used

in the literature. As the depend variable we take the o�cial measure of aggregate M2 de�ated

by the CPI price index before taking the �rst di�erence of the logarithm, ∆mt = ∆ ln(Mt/Pt).

Apart from real aggregate M2, we also study U.S. real household-sector M2 which is also de�ated

by the personal consumption expenditure price index, PCE. In the robustness section we also

employ the (PCE de�ated) M4 Divisia money stock measure as published by the Center for

Financial Stability (Barnett et al., 2013). For more details on the latter series we refer to the

Data Appendix.

The aggregate as well as the household-sector M2 time-series are both depicted in Figure 1.

Both period growth rates exhibit a few substantial amplitudes over time. For growth of real

household-sector M2 the massive negative value in 2009 is striking. Overall, we see evidence for

time-variation in the unconditional variance in both growth series.

The benchmark model consists on the RHS of an income measure for which we use the �rst

di�erence of the logarithm of real personal income, ∆yt. Our opportunity cost measure, it, is

de�ned as the di�erence between the 3-Month Treasury Bill rate and the own rate of M2. We

treat ∆mt, ∆yt and it as stationary I(0) variables.

3All computations are done by the open-source econometric software Gretl (Cottrell and Lucchetti, 2016).
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Figure 1: Log of real M2 and its �rst di�erence. Sample: 1971m1�2014m12.

We proceed with the speci�cation of the following seven dynamic ARDL models:

(Model I) : ∆mt = α0 +

q1∑
j=1

βj∆mt−j +

q2∑
j=1

θj∆yt−j +

q3∑
j=1

φjit−j + et

(Model II) : ∆mt = α0 +

q1∑
j=1

βj∆mt−j +

q2∑
j=1

θj∆yt−j +

q3∑
j=1

φjit−j +

q4∑
j=1

ρjUπt−j + et

(Model III) : ∆mt = α0 +

q1∑
j=1

βj∆mt−j +

q2∑
j=1

θj∆yt−j +

q3∑
j=1

φjit−j +

q4∑
j=1

ρjUst−j + et

(Model IV) : ∆mt = α0 +

q1∑
j=1

βj∆mt−j +

q2∑
j=1

θj∆yt−j +

q3∑
j=1

φjit−j +

q4∑
j=1

ρjUvt−j + et

(Model V) : ∆mt = α0 +

q1∑
j=1

βj∆mt−j +

q2∑
j=1

θj∆yt−j +

q3∑
j=1

φjit−j +

q4∑
j=1

ρjUft−j + et

(Model VI) : ∆mt = α0 +

q1∑
j=1

βj∆mt−j +

q2∑
j=1

θj∆yt−j +

q3∑
j=1

φjit−j +

q4∑
j=1

ρjUet−j + et

(Model VII) : ∆mt = α0 +

q1∑
j=1

βj∆mt−j +

q2∑
j=1

θj∆yt−j +

q3∑
j=1

φjit−j +

q4∑
j=1

ρjUpt−j + et

Model I marks the standard money demand model speci�cation. Model II is augmented

by the in�ation uncertainty measure, Uπ, as recently applied by Gröÿl and Tarassow (2015)

in their money demand model. This in�ation uncertainty index is the standard deviation of

the permanent component estimated by an unobserved component stochastic volatility model

(UC-SV), as proposed by Stock and Watson (2005), to the CPI in�ation rate. The UC-SV

models heteroskedasticty in in�ation explicitly and might be preferred to standard homoskedastic

(S)VAR models (Chua et al., 2011). Following the perspective of Grimme et al. (2011), the

time-varying standard deviation of the time-varying permanent component of in�ation re�ects

uncertainty in the in�ation rate.

In Model III, we consider the stock market risk premium, Us, as previously applied by Greiber

and Lemke (2005) and Gröÿl and Tarassow (2015) in their money demand studies. Us is de�ned

11



as the ratio of the dividend yield on the S&P 500 stock price index over ten-year U.S. Treasury

notes (Fama and French, 1988). In Model IV we introduce the implied volatility VXO measure,

Uv, as popularized by Bloom (2009). This series is assumed to capture expected stock market

volatility. Variable Uv was applied in the money demand literature among others by Carpenter

and Lange (2003) and Cook and Choi (2007) before. In Model V we replace the VXO series

by an alternative �nancial market uncertainty index, Uf , as recently estimated by Ludvigson

et al. (2015). To be more concrete, we use the series to which Ludvigson et al. refer as the

h = 1�series. To our knowledge this series has not been applied in the money demand context,

yet. In Model VI we include the macroeconomic uncertainty index, Ue, as proposed by Jurado

et al. (2015). Also in this case we use their so called h = 1�measure.4 Again, we are not aware of

any money demand study which considered this series before. Lastly, in Model VII we consider

the popular economic policy uncertainty index, Up, as compiled by Baker et al. (2013). Also this

series has not been applied in the money demand literature before. For more details we refer to

the Data Appendix.

3.2 Uncertainty series

Figure 2 depicts the various uncertainty measures in standardized units. The horizontal bar cor-

responds to 1.65 standard deviations above the unconditional mean of each series (standardized

to zero). From the literature on macroeconomic uncertainty measures, it is well known that

macro uncertainty is strongly countercyclical, and exhibits large spikes in the deepest recession

(Bloom, 2009; Jurado et al., 2015). The correlation with growth of aggregate M2 is less clear,

however.

Panel (a) depicts the in�ation uncertainty series, Uπ. It exceeds 1.65 standard deviations

mainly during the oil price crisis between mid 1973 and 1975m9, almost in 1982m3 and again

during the period between 2008m9 and 2009m12. In�ation uncertainty is weakly negatively

correlated with growth in M2 (ρ = −0.06) using the full sample. However, the rolling-window

correlation coe�cients (using a window-size of 120 months) reveals some time-varying uncondi-

tional contemporaneous correlation between the series. While the correlation is negative between

1975 and 1986 (on average ρ ≈ −0.25), it turns positive in the missing money period during the

mid 1990s (ρ ≈ 0.20) reaching a peak in 1998 before turning almost zero again. Another hike

in correlation (up to ρ ≈ 0.45) can be seen between 2008 and 2009. In their recent study, Gröÿl

and Tarassow (2015) have found that U.S. households increase their demand for M2 in response

to positive changes in this in�ation uncertainty measure.

Economic policy uncertainty (see Panel (b)) exceeds the 1.65 standard deviations in October

1987, the Iraq War, in the beginning of 2000 and frequently between 2009 and 2013. The uncon-

ditional correlation between economic policy uncertainty and growth of M2 is almost negligible

though.

The macroeconomic uncertainty index was constructed by Jurado et al. (2015). The series

4For both the �nancial market uncertainty index (Uf ) as well as the macroeconomic uncertainty index (Ue)
our results are robust against the use of di�erent horizons of both Uf and Ue, respectively.
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(see Panel (c)) indicates that uncertainty peaks and exceeds the 1.65 standard deviation in 1974,

between 1980 and 1982 as well as between 2007 and 2009. While this measure is known to be

highly countercyclical, the full sample correlation indicates a negligible link between macroeco-

nomic uncertainty and growth in M2 as ρ = −0.02. However, the rolling-window correlation

directs attention to some time-variation of this statistics. While the correlation is negative dur-

ing the two oil price crises episodes in the 1970s and 1980s�for which the correlation ranges

between −0.5 to −0.7�the correlation turns slightly positive during the Volcker-era (ρ ≈ 0.15)

and almost zero during the Clinton administration period in the 1990s. However, one can see

that the relationship has turned positive for most periods since 2000 reaching its highest level

between 2008 and 2013 as the correlation is about 0.3. This latter �nding is in line with the

argument by Jurado et al. (2015, p. 1992) that between 2007m12 and 2009m6, uncertainty is

highest for the monetary base apart from non-borrowed reserves and total reserves.

The VXO options-based volatility index was popularized by Bloom (2009). Panel (d) depicts

the standardized VXO series. The series exceeds the 1.65 standard deviation in 1974/75, the

Black Monday in Oct. 1987, the late 1990s and early 2000s during the New Economy boom

and bust episode, and again in early 2009 and 2012. This measure is positively correlated with

growth in M2 as the correlation coe�cient is 0.22. The rolling-window correlation indicates

some switch in the unconditional dynamics between the two series since the mid 1980s: while

the correlation is negative before mid 1985 (average ρ ≈ −0.25) it has turned positive with an

average correlation of about ρ ≈ 0.25 since then. Carpenter and Lange (2003) and Cook and

Choi (2007) found that the VXO series is positively correlated with M2 money demand.

Given that some authors have classi�ed the VXO index as a problematic measure of true

uncertainty as it contains a large component attributable to changes in the variance risk premium

that are unrelated to common notions of uncertainty (Bollerslev et al., 2009), Ludvigson et al.

(2015) proposed the construction of an alternative �nancial market uncertainty measure. We

depict their time-series in Panel (e). This series (Uf ) identi�es almost the same episodes of

extremely uncertain �nancial market episodes as the implied volatility measure (extreme episodes

are those exceeding the historical 1.65 S.D.). Surprisingly, the full sample correlation with growth

in M2 is almost zero (ρ = 0.04). However, the time-varying correlation indicates a strong negative

unconditional correlation between Uf and ∆m before the mid 1980s (average ρ ≈ −0.5), and a

near-zero correlation between 1986 and 1996. The correlation has turned positive for most years

after 1998 with an average correlation of ρ ≈ 0.25. Thus, the unconditional dynamic relationship

is similar to the one between growth of M2 and the VXO measure, Uv.

Finally, Panel (f) displays the stock market risk premium (Us) as previously considered for

instance by Greiber and Lemke (2005) and Gröÿl and Tarassow (2015) in the money demand

literature. While this series seems to follow a stationary process between 1971 and the mid 1990s,

its DGP has changed since then towards a more persistent (probably non-stationary) process.

The Us time-series �uctuates widely and is successively increasing since 2000. The full sample

correlation with growth in M2 is weakly positive (ρ = 0.11). However, there is again evidence for

time-varying unconditional correlation between Us and growth in M2: while the correlation was

negative during the �rst oil price crises, it turned positive during the Volcker-era in the 1980s,
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negative again during the missing money period in the mid 1990s and positive since 2000. In their

extensive study, Gröÿl and Tarassow (2015) document a positive response of U.S. households'

money demand to an increase in Us.
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(f) Stock market risk premium: Us

Note: Risk series are expressed in standardized units. The horizontal line corresponds to 1.65 standard
deviations above the unconditional mean of each standardized series (normalized to zero). Full sample cor-
relations with monthly growth of aggregate M2 money demand are reported in the legend. Rolling-window
correlations with the monthly growth of M2 money demand are based on 120 months.

Figure 2: Economic and �nancial uncertainty over time. Sample: 1971m1 to 2014m12.

For the sake of completeness, we provide the unconditional correlation between all variables

used in our study in Figure 3 for both growth of aggregate M2 and growth of household sector

M2, respectively. The correlation structures between the uncertainty series and monetary growth

are almost equal for both money de�nitions.
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Note: The �rst di�erence operator is denoted by ∆. The abbreviations m, y, i denote the log of real M2
(aggregate or households sector), log of real income and the opportunity cost measure. The abbreviations of
the uncertainty series are de�ned in Figure 2.

Figure 3: Contemporaneous, unconditional correlations between all variables used. Sample:
1971m1 to 2014m12.

4 Forecasting results for aggregate M2

In this section we report the results of the out-of-sample rolling-window forecasting exercise, as

described in Section 2.2 for growth of aggregate M2. The out-of-sample forecasts and forecast

errors are estimated by means of a rolling-window approach with window width Ts = 96 monthly

observations. In the robustness section we show that the main results are robust against the

variation of this window width. Additionally, we show that the outcomes are robust against the

use of the alternative Divisia M4 index series.

4.1 ARDL forecast accuracy

Forecast accuracy is measured by the root mean squared error (RMSE) criteria. To be more con-

crete, we compute the RMSE of a model relative to the RMSE of the benchmark ARDL(12,12,12)

Model I speci�cation (comprising lags of ∆mt, ∆yt and it). The relative RMSE is de�ned as(
RMSEkh/RMSEbh

)
where RMSEbh denotes the RMSE at forecast horizon h of the benchmark

Model I and RMSEkh refers to forecast of some competitor model k for the same horizon. Fur-

thermore, we apply the Diebold-Mariano test on equal predictive accuracy, as described before.

In the subsequent analysis we are mainly interested in the forecast accuracy performance of

di�erent uncertainty augmented money demand models since the year 2000.

As said, all out-of-sample forecasts are based on rolling-window ARDL models with a width

of Ts = 96 monthly observations. However, in order to visualise the time-variation in relative

RMSEs, we run a second rolling-window with width Te = 60 monthly observations over the

out-of-sample forecasts estimated in the �rst step. To get a �rst impression about the time-

varying forecast performances, Figure 4 depicts the rolling-window relative RMSE for each model

(based on S2G indicator selection which performs best in most cases) relative to the benchmark

ARDL(12,12,12) model for the 1-, 2-, 6- and 9-month ahead forecast, respectively.
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The results indicate substantial time-variation in the relative forecasting performance for all

models. For the 1-month ahead forecast horizon, one can observe that the majority of competitor

models, including Model I combined with S2G indicator selection, tend to outperform the bench-

mark for most periods considered. We observe three episodes during which all or at least some

models performed weaker compared to the remaining periods. The �rst episode is between 1988

and 1993 for which we observe large di�erences across models even though most models outper-

form the benchmark. The common drop in relative RMSE (and hence improvement in forecast

accuracy relative to the benchmark) among the competitor models between 1994 and 1999 is

associated with a period of low unconditional variance of growth of aggregate M2, as depicted in

Figure 1. However, in 2000 we observe an immediate deterioration in relative forecast accuracy

across all models followed by a continuous rise in relative RMSE which lasts until 2004�the

period comprising the New Economy Bust and its repercussions. However, most models have

re-gained their relative forecast accuracy in 2004. Lastly, the recent GFC period has triggered

another deterioration in relative RMSE since 2009. Very similar dynamics are observed for the

2-, 6- and 9-month forecast horizons.
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(b) 2-month ahead
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(c) 6-month ahead
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(d) 9-month ahead

Note: These are the RMSEs relative to the RMSE of the benchmark ARDL(12,12,12) model. All model forecasts
are estimated by means of a rolling-window regression with width Ts = 96 observations. Based on 420 out-of-sample
forecast errors for which the �rst observation for the forecast horizon h = 1 is given for 1980m1, we run another
rolling-window with width Te = 60 observations to construct the time-varying relative RMSE with 359 observations.
The �rst observation of the relative RMSE is given for 1985m2. Values on the y-axis exceeding 1.6 are truncated.

Figure 4: Out-of-sample rolling-window forecasting accuracy results after S2G indicator selection
for growth in aggregate M2.

In the following Table 1 we provide a more compact summary of forecast accuracy for each

model with a special focus on the period since 2000. To be more concrete, we report informa-

tion on the relative RMSE compared to the benchmark ARDL(12,12,12) model for the 1-, 2-,

6- and 9-month horizon, respectively. Furthermore, statistics are reported for (i) the full model
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speci�cations (based on an ARDL(12,12,12,12), except Model I which is an ARDL(12,12,12)),

(ii) the selected models after both G2S and S2G indicator selection, respectively, and (iii) for

the forecast combination mean model which is an equally-weighted average of all forecasts avail-

able. Additionally, we provide information on the Diebold-Mariano test results under quadratic

loss. Lastly, these statistics are computed (a) using all forecasts available between 2000m1 and

2014m12 as well (b) between 2007m1 and 2014m12. This sub-sample evaluation allows us to

analyse the e�ects of the GFC period for the recent forecasting performance of our models.

Based on all forecasts available between 2000m1 and 2014m12, we �nd that Model I com-

bined with S2G indicator selection yields a reduction in RMSE by about 38% relative to its

ARDL(12,12,12) counterpart. The second most accurate model includes the policy uncertainty

measure (Up) and yields a relative RMSE of 0.666 while the mean model still yields a relative

RMSE of 0.674. We observe that S2G indicator selection clearly outperforms G2S indicator

selection at all horizons. The full model speci�cations of the competitor models yield less ac-

curate forecasts compared to the benchmark. Most importantly, we can reject the null of the

Diebold-Mariano test on equal predictive accuracy relative to the benchmark model at the 5%

for all top-3 models at the 1-month horizon.

At the 2-month horizon, Model I combined with S2G indicator selection provides the most

accurate forecasts (0.748) again closely followed by the policy uncertainty model (Up; 0.763) and

the macroeconomic uncertainty (Ue; 0.769) model. However, the null of the Diebold-Mariano test

can only be rejected at least at the 10% level for the winning model and the mean model (0.776).

Very similar results are obtained at the 6-month horizon where again Model I combined with

S2G indicator selection yields the most precise forecasts (0.785). Interestingly, at the 9-month

horizon we �nd that the VXO model yields a relative RMSE of 0.796 and hence outperforms

Model I combined with S2G indicator selection as well as the mean model by almost 10%. At

the 9-month horizon, we can reject the null of the Diebold-Mariano test for all three models at

least at the 10% level and for the mean model even at the 1% level.

Next, we analyse all forecasts for the period from 2007m1 to 2014m12. Again Model I combined

with S2G indicator selection yields the lowest relative RMSE at both the 1- (0.665) and 9-month

(0.795) ahead forecast horizons and the second best forecast accuracy results at the 2- (0.76)

and 6-month (0.779) horizon, respectively. While the macroeconomic uncertainty model wins at

the 2-month horizon (0.75), the model including the VXO measure provides the most accurate

forecast at the 6-month horizon (0.778).

Among the top-3 models we also �nd the one including the stock market risk premium, Us,

(at the 1-month horizon) and the mean model (at the 9-month horizon). At the 1-, 2- and

9-month horizons, all top-3 models provide systematically more accurate forecasts compared to

the benchmark while at the 6-month horizon the null of the Diebold-Mariano test can at least

be rejected at the 10% level only for the VXO model and Model I combined with S2G indicator

selection.

Overall, in terms of forecast accuracy the standard money demand model tends to perform very

well for short- and medium-term out-of-sample forecasts of growth of aggregate M2 since 2000.
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This holds for both the period since 200m1 as well as for the sub-sample period between 2007m1

and 2014m12. Nevertheless, we also �nd evidence that the models including the VXO measure

and the macroeconomic uncertainty measure provide some additional forecasting content.

In the robustness section, we show that these �ndings are robust against the use of a shorter

or longer rolling-window width Ts as well as against the use of the real M4 divisia series as an

alternative measure of the aggregate money stock.

Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Uπ 1.147∗∗ 1.104 1.168∗∗ 1.232∗∗ 1.106 1.103 1.108 1.159
Us 1.489∗∗ 1.434∗∗ 1.434∗∗ 1.255∗∗ 1.608∗∗ 1.673∗ 1.759∗∗ 1.466∗∗

Uv 1.305∗∗ 1.345∗∗ 1.448∗∗ 1.389∗∗∗ 1.369∗ 1.390∗ 1.537 1.431∗

Uf 1.325∗∗∗ 1.363∗∗ 1.382∗∗∗ 1.401∗∗∗ 1.414∗∗ 1.578∗∗ 1.514∗∗ 1.570∗∗∗

Ue 1.182∗∗ 1.150∗ 1.163∗ 1.182∗ 1.167∗∗ 1.210∗∗ 1.231∗ 1.221
Up 1.318∗∗∗ 1.405∗∗∗ 1.438∗∗∗ 1.434∗∗∗ 1.501∗∗∗ 1.739∗∗∗ 1.675∗∗∗ 1.859∗∗∗

B: G2S

Mod. I 0.714∗∗ 0.810 0.826 0.924 0.758 0.839 0.886 0.885
Uπ 0.801 0.828 0.987 0.959 0.888 0.877 1.124 1.010
Us 0.926 1.049 1.030 0.953 1.092 1.295 1.253 1.041
Uv 0.836 0.975 0.964 0.980 1.040 1.100 1.107 0.948
Uf 0.908 1.111 1.210 1.216∗ 0.996 1.218 1.193 1.238
Ue 0.830 0.990 0.961 0.985 0.889 1.101 1.129 0.987
Up 0.979 1.089 1.064 1.295∗ 1.219 1.402∗∗ 1.401∗∗ 1.625∗∗

C: S2G

Mod. I 0.624∗∗ 0.748∗ 0.785∗ 0.856∗ 0.665∗∗ 0.760 0.779∗ 0.795∗∗

Uπ 0.693∗∗ 0.800 0.886 0.997 0.792 0.837 0.921 0.946
Us 0.689∗∗ 0.834 0.881 1.027 0.671∗∗ 0 .762 0 .794 0.864
Uv 0.696∗∗ 0.846 0 .816 0.796∗ 0.795 0.948 0.778∗ 0.835∗

Uf 0.706∗ 0.834 0.841 0.954 0.797 0.916 0.821 0.926
Ue 0.704∗ 0 .769 0.941 1.006 0 .726 ∗ 0.750∗ 0.985 1.018
Up 0.666∗∗ 0.763 0.828 0.879 0.745 0.833 0.951 0.977

D: Mean Model

Mean 0 .674 ∗∗ 0.776∗ 0.804∗ 0 .862 ∗∗∗ 0.754∗∗ 0.844 0.874 0 .842 ∗∗

Note: The table reports the RMSE relative to an ARDL(12,12,12) comprising lagged values of the endogenous
money growth variable, a real income measure and an opportunity cost measure. We also report the test results
on equal predictive accuracy using the test proposed by Diebold and Mariano (1995) under a quad-quad loss
function. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Diebold-Mariano test.
The 1st, 2nd and 3rd lowest relative RMSEs are highlighted by bold, underlined and italic font, respectively.
All model forecasts are estimated by means of a rolling-window regression with width Ts = 96 observations.
Based on 384 out-of-sample forecast errors for which the �rst observation for the forecast horizon h = 1 is given
for 1983m1, we compute the statistics of interest.

Table 1: Relative RMSE and Diebold-Mariano test results for growth of aggregate M2 using a
rolling-window with width Ts = 96 observations.
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4.2 Direction-of-change forecasts based on ARDL forecasts

Next we present the direction-of-change forecast results, as described on page 9. We will report

both the Kuipers Score (KS) and the test results of the Pesaran-Timmermann (PT) test on

predictive failure.

To get an idea about eventual time-variation in the direction-of-change forecasting performance

of our models, again we compute the KS statistics based on all available forecasts using a second

rolling-window of width Te = 60 monthly observations. Figure 5 depicts the results for all models

based on S2G indicator selection for the 1-, 2-, 6- and 9-month horizon, respectively.

We observe the following basic patterns: After an initial drop in the KS values for all models

and horizons between 1986 and 1987, we observe a succeeding increase in the KS values reaching

its maximum in 1999 re�ecting the fact that it is easier to predict direction-of-changes for periods

marked by rather low unconditional variance (see again Figure 1). The New Economy Bust phase

around 2000 was accompanied by a drastic fall in the average KS value among all models and at

all horizons. The period since 2000 was associated with a substantial increase in the unconditional

variance in growth of aggregate M2. For instance, at the 1-month horizon the average KS across

models is 0.8 in 1999 but close to zero in 2000. Qualitatively, similar dynamics can be observed

for the remaining horizons. This shows that it has become much harder to forecast the direction-

of-change of growth of real aggregate M2 since 2000. Nevertheless, we still observe that some

models yield higher KS values compared to others.
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(d) 9-month ahead

Note: For details, see note below Figure 4.

Figure 5: Out-of-sample rolling-window Kuipers Score after S2G model selection for growth in
aggregate M2.
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Table 2 replicates Table 1 but reports the Kuipers Score and the Pesaran-Timmermann test re-

sults instead. For the period between 2000m1 and 2014m12 we see that the full ARDL(12,12,12,12)

model including in�ation uncertainty (Uπ) yields the highest KS values at both the 1- (0.18) and

2-month (0.203) forecast horizon, respectively, and the second highest KS values at the 6- (0.187)

and 9-month (0.18) horizons. The winning model at the 6-month horizon is the VXO model (Uv;

0.189) and at the 9-month horizon the �nancial uncertainty model (Uf ; 0.203) performs best.

The policy uncertainty model (Up) yields two times the third rank. However, Model I, either

with or without automatic indicator selection, performs rather poorly in direction-of-change fore-

casting. For instance, the benchmark ARDL(12,12,12) models yields only a KS value of 0.134,

0.118, 0.172 and 0.104 at the 1-, 2-, 6- and 9-month horizon, respectively.

The null of the PT test of predictive failure can be rejected at least at the 10% level for each

top-3 model at any forecast horizon. The PT test also indicates some weaknesses of the standard

money demand speci�cation in terms of direction-of-change forecasting.

The weak performance of the standard money demand speci�cation is con�rmed when analysing

the recent GFC period between 2007m1 and 2014m12. At the 1-month horizon, the model in-

cluding the policy uncertainty series combined with S2G indicator selection yields the highest

KS value of 0.282 which is almost three times larger than the KS value of the benchmark model

(0.103). The in�ation uncertainty model (S2G; 0.155) and the macroeconomic policy model

(S2G; 0.142) rank second and third, respectively. At the 6-month horizon the in�ation uncer-

tainty model (S2G) clearly outperforms all remaining models with a KS of 0.205 while the policy

uncertainty model yields the second highest KS of 0.126. The �nancial uncertainty model yields

a KS of 0.203 at the 9-month horizon while the in�ation uncertainty model (S2G) yields a KS

of 0.142. For the remaining models we �nd KS values close to zero or even negative.

The PT test con�rms that direction-of-change forecasting growth of real aggregate M2 has

become harder during the GFC period, as most models su�er from predictive failure at all

horizons. For instance, at the 1-month horizon we can only reject the null of the PT test

for the two best performing models including the in�ation uncertainty (at the 10% level) and

macroeconomic policy model (at the 5% level). Surprisingly, we cannot reject the null for any

model at the 2-month horizon. At the 6-month horizon, the null can be rejected for the in�ation

uncertainty model, and at the 9-month horizon for the mean model (both at the 10% level).

Overall, the results strongly show that the standard money demand model performs rather

poor in terms of direction-of-change forecasting. However, the inclusion of in�ation uncertainty,

policy uncertainty, the VXO measure and �nancial uncertainty yield a substantial gain in forecast

performance. This �nding is robust against the use of a shorter or longer rolling-window width,

as will be shown below.

4.3 Robustness exercise

Recently, Pesaran and Timmermann (2007) have shown that the mean squared forecast error

may depend on the window-width of the rolling-window forecasting scheme under the assumption
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Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Mod. I 0.134 0.118 0.172∗ 0.104 0.103 −0.011 0.089 0.076
Uπ 0.180∗∗ 0.203∗∗ 0.187∗∗ 0.180∗∗ 0.142 0.179 0 .116 0 .126
Us 0.059 0.097 0.068 0.067 0.053 0.039 −0.013 −0.039
Uv 0.120 0.084 0.189∗ 0.150 0.024 −0.066 0.034 0.024
Uf 0.082 0.083 0.118 0.203∗∗ 0.076 −0.026 0.016 0.203
Ue 0.106 0.091 0.037 0.039 0.039 −0.024 −0.074 −0.024
Up 0 .158 ∗ 0.189∗∗ 0 .172 ∗∗ 0.135 0.126 0.113 0.126 0.037

B: G2S

Mod. I 0.072 0.088 0.043 0.013 0.105 0.103 −0.024 −0.061
Uπ 0.058 0.005 0.051 0.127 0.129 −0.021 0.016 0.053
Us 0.126∗ 0.120 0.141∗ 0.134 0.092 0 .139 0.029 0.026
Uv 0.052 0.021 0.128 0.127 0.050 0.050 0.026
Uf 0.080 0.090 0.080 0.081 0.053 −0.013 0.016 −0.021
Ue −0.002 0.082 −0.009 0.104 0.005 0.026 −0.111 0.018
Up 0.179∗∗ 0 .172 ∗∗ 0.088 0.104 0.103 0.103 0.016 −0.050

C: S2G

Mod. I 0.086 0.086 0.093 0.161∗∗ 0.082 0.095 0.071 0.058
Uπ 0.094∗ 0.072 0.132∗ 0 .178 ∗∗ 0.155∗ 0.092 0.205∗ 0.142
Us 0.102 0.132∗ 0.056 0.064 0.082 0.082 0.018 0.045
Uv 0.004 0.005 0.102 0.118 0.032 −0.008 0.032 −0.058
Uf 0.087 0.004 0.057 0.102 0.092 −0.071 0.053 −0.071
Ue 0.156∗∗ 0.133 0.080 0.049 0.142 0.055 0.055 0.018
Up 0.132∗ 0.103 0.110∗ 0.125∗ 0.282∗∗ 0.192 −0.008 −0.045

D: Mean Model

Mean 0.102 0.140 0.148∗ 0.034 0.105 0.016 0.029 −0.121∗

Note: The table reports the Kiupers score as the di�erence between the hit-rate and the false-alarm rate.
We also report the test results on predictive failure using the test proposed by Pesaran (2015) with HAC
standard errors. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Pesaran-
Timmermann test. The 1st, 2nd and 3rd hightest Kiupers Scores are highlighted by bold, underlined and
italic font, respectively. All model forecasts are estimated by means of a rolling-window regression with
width Ts = 96 observations. Based on 384 out-of-sample forecast errors for which the �rst observation for
the forecast horizon h = 1 is given for 1983m1, we compute the statistics of interest.

Table 2: Kiupers score and Pesaran-Timmermann test results for growth of aggregate M2 using
a rolling-window with width Ts = 96 observations.
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that a structural break has in fact occurred. In order to account for this potential issue, we will

repeat our analysis for two di�erent window-widths.

In Tables A1 and A2 in the Appendix, we report the relative RMSE and Diebold-Mariano

test results based on a rolling-window forecast with width Ts = 84 and Ts = 120 monthly

observations, respectively.

Using the smaller rolling-window with width of 84 monthly observations, we can con�rm that

in terms of forecast accuracy Model I after S2G indicator selection still performs well. For

the period between 2000 and 2014, this model ranks �rst both at the 1- and 2-month forecast

horizon, respectively, and second at both the 6- and 9-month forecast horizon, respectively. The

winning model at the 6- and 9-month horizons is the VXO model which, however, outperforms

Model I only by a small margin. Among the top-3 models we also �nd the macroeconomic

uncertainty model, the mean model, the �nancial uncertainty model and the policy uncertainty

model. Considering only the period since 2007m12 underlines the forecast accuracy performance

of Model I combined with S2G indicator selection: this model ranks �rst at the 1-, 2- and 9-

month horizon and second at the 6-month horizon at which the VXO model ranks �rst. Lastly,

we can always reject the null of the Diebold-Mariano test for all top-3 models at every horizon

considered.

Table A2 reports the results using a longer rolling-window width of 120 monthly observations.

Most importantly, this time the Diebold-Mariano test cannot be rejected for any of the models

with a relative RMSE below unity indicating that none of the competitor models systematically

outperforms the benchmark. Second, one can see that the gain in automatic indicator selection

decreases substantially such that the gain in forecast accuracy does not exceed 10% compared

to the benchmark ARDL(12,12,12) model. Nevertheless, for the period between 2000m1 and

2014m12, Model I combined with automatic indicator selection ranks best one time, second one

time and third two times. The mean model yields the most accurate results at the 1- and 9-month

horizon, respectively, while Model I combined with G2S indicator selection wins at the 2-month

horizon and the VXO measure ranks �rst at the 6-month horizon. However, for the period since

2007m1, Model I ranks again two times best followed by the stock market risk premium (Us)

model.

In terms of direction-of-change forecasts we can con�rm the rather weak performance of the

standard money demand model speci�cation. Tables A3 and A4 summarize the results of the

Kuipers Score and Pesaran-Timmermann test, respectively, for both the rolling-window based

forecasts with width Ts = 84 and Ts = 120 monthly observations. As depicted in Table A3,

Model I ranks only once on the third place (and never better) when considering the period

between 2000 and 2014 at the 6-month horizon. The winning models are the policy uncertainty

model, the stock market risk premium model and the in�ation uncertainty model at the 1-,

2-, 6- and 9-month forecast horizon, respectively. Among the second best models we �nd the

�nancial uncertainty model, the economic policy model and the mean model. Also for the period

since 2007 we �nd that the policy uncertainty model and the in�ation uncertainty model rank

best while the standard money demand model performs rather poorly. These results are robust
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against the use of a larger window of width Ts = 120 monthly observations as reported in Table

A4. In this latter case we �nd even stronger support for the relevance of the stock market

premium and the macroeconomic uncertainty series for direction-of-change forecasts.

Lastly, we replace growth of aggregate M2 by growth of M4 Divisia as computed by Barnett

et al. (2013). Table A5 shows the relative RMSE and Diebold-Mariano test results based on a

rolling-window with width Ts = 96. The economic uncertainty model dominates at all horizons

for the period between 2000m1 and 2014m12, and outperforms Model I after S2G indicator

selection by about 3% to 5% at each horizon. This latter model ranks second at the 1-, 2- and

6-month horizon, respectively. Among the top-3 models we also �nd the mean model and the

�nancial uncertainty model. Very similar results are obtained for the recent GFC period between

2007m1 and 2014m12 even though the in�ation uncertainty model can also be found among the

top-3 models during this period.

With regard to direction-of-change forecasts we can con�rm the poor performance of standard

money demand formulations as shown in Table A6. Irrespective of the chosen sample, one can

see that the macroeconomic uncertainty model, the �nancial uncertainty model and the stock

market model dominate the race. Among the top-3 models we also �nd the policy uncertainty

model and, at least for the period between 2000m1 and 2014m12, the mean model. Furthermore,

the PT test can always be rejected at least at the 10% level for the top-3 models at any horizon

and for both sub-samples.

In contrast, while the PT test can be rejected for the standard money demand Model I with

G2S indicator selection at each horizon for the sample since 2000, all Model I variants su�er from

predictive failure for the period between 2007m1 and 2014m12. This underlines the relevance of

speci�c uncertainty series for forecasting direction-of-changes of growth of the aggregate money

stock in the U.S.�especially during the recent GFC period.

5 Forecasting results for households' demand for M2

Recently, Cook and Choi (2007) reported evidence that the money demand behaviour for M2 is

not homogeneous across the di�erent sectors in the U.S. The authors show that U.S. households

react di�erently in their demand for M2 to certain types of �nancial market risk compared to

the U.S. non-�nancial �rm sector. In this section, we follow the arguments put forward by Cook

and Choi (2007), and proceed with our forecasting exercise for growth of real U.S. household

sector M2. Regarding the de�nition of this sub-aggregate of M2, we closely follow Cook and

Choi (2007) and Gröÿl and Tarassow (2015). See the Data Appendix for further details.

5.1 ARDL forecasts

Figure 6 replicates Figure 4 for growth of real household-sector M2. While all competitor models

clearly outperform the benchmark ARDL(12,12,12) in terms of RMSE at the 1-month forecast

horizon over the whole time span considered, this is not necessarily the case for longer forecast
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horizons. As can be seen, there is large variance across models in relative RMSE between 1985

and 1994, around the high-volatility periods in 2000/1, and lastly between 2009 and 2010 for

forecast horizons longer than 1 month. However, most competitor models tend to yield more

accurate forecasts, independent of the horizon considered, relative to the benchmark for most

periods since 1995.
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(c) 6-month ahead
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(d) 9-month ahead

Note: These are the RMSEs relative to the RMSE of the benchmark ARDL(12,12,12) model. All model forecasts
are estimated by means of a rolling-window regression with width Ts = 96 observations. Based on 420 out-of-sample
forecast errors for which the �rst observation for the forecast horizon h = 1 is given for 1980m1, we run another
rolling-window with width Te = 60 observations to construct the time-varying relative RMSE with 359 observations.
The �rst observation of the relative RMSE is given for 1985m2.

Figure 6: Out-of-sample rolling-window forecasting accuracy results after S2G model selection
for growth in household-sector M2.

In Table 3 we replicate Table 1 and report the results on forecast accuracy and the Diebold-

Mariano test on equal predictive accuracy relative to the benchmark ARDL(12,12,12) Model I.

Again, we conduct this analysis for all forecasts between 2000m1 and 2014m12 as well as 2007m1

and 2014m12 to allow for eventual breaks in the forecast performance of models due to the GFC

event.

For the period between 2000m1 and 2014m12 we see that indicator selection results in a

substantial improvement in forecast accuracy for all models and horizons. For instance, at the

1-month forecast horizon, Model I combined with S2G indicator selection yields a reduction in

RMSE by about 65% relative to the ARDL(12,12,12) counterpart. The winning model, however,

is the mean model with a relative RMSE of 0.344. The mean model also provides the most

accurate forecasts (0.478) at the 2-month horizon closely followed by Model I combined with

G2S indicator selection (0.49). Model I combined with S2G indicator selection also dominates

at both the 6- (0.634) and 9-month (0.611) forecast horizon, respectively, closely followed by the
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in�ation uncertainty model, the mean model and the policy uncertainty model. We can reject the

null of the Diebold-Mariano test for almost all models at the 1-month horizon. At the 2-month

horizon, the null can only be rejected for the winning mean model, Model I combined with G2S

indicator selection and the in�ation uncertainty model (G2S). Surprisingly, both for the 6- and

9-month forecast horizon, the DM test cannot be rejected for any model with a relative RMSE

below unity.

We obtain very similar results when focusing on the period between 2007 and 2014. Again

the mean model ranks �rst at the 1- and 2-month horizons, the in�ation uncertainty model

dominates at the 6-month horizon and Model I combined with S2G indicator selection ranks �rst

at the 9-month horizon. This latter model ranks second at the 1- and 6-month horizon and third

at the 2-month horizon. While we can reject the null of the DM test for the top-3 models at

the 1-month horizon at least at the 5% level, the null of this test can only be rejected for the

in�ation uncertainty model (G2S) and the mean model at the 2-month forecast horizon (both

at least at the 10% level). However, one of the models provides statistically di�erent forecast

accuracy compared to the benchmark Model I at longer horizons.

In total, at the �rst two forecast horizons, the mean model, Model I combined with automatic

indicator selection and the in�ation uncertainty model dominate. At longer horizons, Model

I combined with S2G indicator selection and the in�ation uncertainty model yield substantial

improvements in RMSE even though these latter results must be interpreted carefully given that

the null of the DM test cannot be rejected for any forecasting model at both the 6- or 9-month

horizon, respectively.

In our robustness Section 5.3 we show that in terms of forecast accuracy of growth of household-

sector M2, the top-3 models are the mean model, the in�ation uncertainty model (with some

automatic indicator selection) and Model I (with some automatic indicator selection). This holds

for shorter as well as longer rolling-window widths.

5.2 Direction-of-change forecasts based on ARDL

Figure 7 replicates Figure 5 for growth of household-sector M2. We depict the rolling-window

based Kuipers Score for the period between 1985 and 2014. Again we �nd some di�erences across

models in the KS values over time.

At the 1-month forecast horizon the KS values vary around a cross-sectional mean value of

about 0.4 for the period between 1988 and 2000. After 2000 one can observe a decline in the

average KS values reaching its historical low close to zero in 2007. This deterioration in direction-

of-change forecasting remains for most models until the end of the sample. Interestingly, at least

at the 1-month horizon some models are able to improve their KS values after 2010 reaching

again a level close to 0.4 again.

For longer forecast horizons, we observe that most models yield very low KS values close to

zero or even negative for the period between 1986 and 1993. Most models are able to improve

their KS values to about 0.3 during the rather tranquil (in terms of low unconditional variance)
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Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Uπ 1.167 1.193∗ 0.914 0.873 1.206 1.208 0.837 0.798
Us 1.319∗∗∗ 1.321∗ 1.545∗∗ 1.429∗∗ 1.380∗∗ 1.373∗ 1.663∗∗ 1.565∗∗∗

Uv 1.465∗∗ 1.686∗∗∗ 1.789∗∗ 1.836∗ 1.651∗∗ 1.844∗∗∗ 1.897∗∗ 1.990∗

Uf 1.360∗∗∗ 1.404∗∗ 0.998 0.944 1.435∗∗ 1.475∗ 0.895 0.863
Ue 1.303∗∗∗ 1.319∗∗ 1.123 1.064 1.302∗∗ 1.362∗∗ 1.102 1.018
Up 1.123 1.131 1.223∗ 1.238 1.111 1.159 1.247∗ 1.279

B: G2S

Mod. I 0 .375 ∗∗ 0.490∗ 0.803 0.861 0.329∗ 0.458 0.861 0.869
Uπ 0.439∗ 0.566∗ 0.786 0.769 0.371∗ 0.499∗ 0.779 0.744
Us 0.468∗ 0.652 1.099 1.158 0.415∗ 0.591 1.191 1.242
Uv 0.498 0.775 1.076 1.393 0.460 0.757 1.102 1.507
Uf 0.410∗ 0.663 0.760 0.870 0.365∗ 0.631 0.729 0.818
Ue 0.471∗ 0.670 0.848 0.811 0.380∗ 0.593 0.800 0.744
Up 0.386∗∗ 0.580 1.036 0.991 0 .315 ∗∗ 0.524 1.077 1.023

C: S2G

Mod. I 0.355∗∗ 0 .528 0.634 0.611 0.311∗∗ 0 .481 0.609 0.578
Uπ 0.400∗∗ 0.597 0.640 0.643 0.344∗ 0.529 0.586 0.606
Us 0.414∗ 0.679 0.856 0.830 0.387∗ 0.683 0.914 0.870
Uv 0.394∗∗ 0.608 0.680 0.714 0.353∗ 0.586 0.691 0.717
Uf 0.385∗∗ 0.608 0.749 0.730 0.328∗∗ 0.560 0.742 0.717
Ue 0.380∗∗ 0.602 0.795 0.698 0.331∗ 0.558 0.764 0.663
Up 0.416∗ 0.570 0.685 0 .672 0.372∗ 0.527 0.691 0 .644

D: Mean Model

Mean 0.344∗∗ 0.478∗ 0 .666 0.684 0.298∗∗ 0.433∗ 0 .661 0.664

Note: The table reports the RMSE relative to an ARDL(12,12,12) comprising lagged values of the en-
dogenous money growth variable, a real income measure and an opportunity cost measure. We also report
the test results on equal predictive accuracy using the test proposed by Diebold and Mariano (1995) under
a quad-quad loss function. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the
Diebold-Mariano test. The 1st, 2nd and 3rd lowest relative RMSEs are highlighted by fat, underlined and
italic font, respectively. All model forecasts are estimated by means of a rolling-window regression with
width Ts = 96 observations. Based on 384 out-of-sample forecast errors for which the �rst observation for
the forecast horizon h = 1 is given for 1983m1, we compute the statistics of interest.

Table 3: Relative RMSE and Diebold-Mariano test results for growth of household-sector M2
using a rolling-window with width Ts = 96 observations.
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period of real money growth during the mid 1990s. Since 2000, however, the average KS values

are close to zero for forecast horizons larger than 1 month. This indicates that direction-of-change

forecasting growth of real household-sector M2 is hard.
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(c) 6-month ahead
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(d) 9-month ahead

Note: These are the forecasting accuracy results using a rolling-window estimation method. For the sample 1971m1
to 2014m12 the initial training set uses 120 observations from 1971m1 to 1980m12 to determine the optimal lag length
before computing the h-multi-step iterated forecasts. Next, the beginning and end of the training set is extended
by one additional observation such that it ranges from 1971m2 to 1981m1. Again, the optimal lag length based on
the extended training set is determined before computing the h-multi-step iterated forecasts. The last training set is
reached for the sample end 2014m11 to compute at maximum h = 1 multi-step iterated forecasts. The number of
the out-of-sample observations is 396. Based on the sequence of 396 out-of-sample forecasts, we compute the average
RMSE for a sequence of h-multi-step forecasts for a speci�c period, e.g. 1971m1 to 1999m12.

Figure 7: Out-of-sample rolling-window Kuipers Score after S2G model selection for growth in
household-sector M2.

Table 4 summarises the KS statistics and Pesaran-Timmermann test results and replicates

Table 2 for household-sector M2. For the period between 2000m1 and 2014m12 and at the 1-

month forecast horizon, Model I combined with G2S indicator selection ranks �rst with a KS

value of 0.349, closely followed by the mean model (0.333) and the benchmark model (0.323).

Interestingly, the benchmark model yields the highest KS value (0.223) at the 2-month horizon

followed by the policy uncertainty model combined with G2S indicator selection (0.221). For all

top-3 models and at both the 1- and 2-month forecast horizon, respectively, we can reject the

null of the PT test at the 1% level.

The winning model at the 6-month horizon is the in�ation uncertainty model (0.128) followed

by the VXO model combined with G2S indicator selection (0.117). At the 9-month horizon the

policy uncertainty model (S2G) ranks �rst with a rather low KS value of 0.099 closely followed

by the �nancial uncertainty model (G2S; 0.089). However, at both the 6- and 9-month forecast

horizons we cannot reject the null of the PT test for any model indicating serious predictive
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failures in terms direction-of-change forecasts for all model speci�cations.

These results are robust against the use of the smaller sample ranging from 2007 to 2014.

Again, at the 1-month horizon Model I combined with S2G indicator selection yields a rather

high KS value of 0.402 closely followed by the mean model (0.379) and the policy uncertainty

model (0.36). At the 2-month horizon, though, the policy uncertainty model (G2S) outperforms

the benchmark with a KS value of 0.234 against 0.191. Again the PT test can be rejected for all

top-3 models at both the 1- and 2-month forecast horizons, respectively. At the 6-month horizon,

the stock market risk premium model ranks �rst with a low KS value of 0.04 while the �nancial

uncertainty model wins at the 9-month horizon with a KS value of 0.127. However, the PT test

indicates serious predictive failures for all models at the 6- and 9-month horizon, respectively.

Nevertheless, the standard money demand speci�cation model never ranks among the top-3 at

both the 6- and 9-month horizons.

In total, these results indicate that in terms of direction-of-change forecasts for growth of real

household sector M2 the in�ation uncertainty index, the �nancial uncertainty index, the policy

uncertainty index and the mean model provide relevant forecasting information.

The robustness exercise in Section 5.3 will show that especially the policy uncertainty measure,

the in�ation uncertainty measure, the stock market risk premium and partly the VXO series

provide additional information for forecasting growth in household-sector M2 since 2000. This

conclusion can be drawn for di�erent widths on which our rolling-window forecasting exercise is

based on.

5.3 Robustness exercise

Tables A7 and A8 in the Appendix report the relative RMSE and Diebold-Mariano test results

for both a rolling window of width Ts = 84 and Ts = 120, respectively.

For the shorter window width we �nd that in terms of forecast accuracy Model I combined

with S2G indicator selection ranks �rst at the 1-, 6- and 9-month horizon and second at the

2-month horizon using all forecasts between 2000m1 and 2014m12. Among the top-3 models we

also �nd the mean model (ranks �rst at the 2-month horizon), the VXO model, the in�ation

uncertainty model and the economic uncertainty model. The results for the period between

2007m1 and 2014m12 are similar with the only exception being the VXO model which does not

rank among the top-3 models at any horizon now. Again the stock market risk premium model

does not rank among the top-3 models in any case.

According to the DM test, we can reject the null for all models at the 1-month horizon for which

the relative RMSE is below one. Interestingly, at the 2-month horizon, the DM test can only be

rejected at least at the 10% level for the mean model and Model I after S2G indicator selection.

Furthermore, none of the competitor models yields systematically more accurate forecasts at the

6- and 9-month horizons compared to the benchmark Model I according to the DM test. These

�ndings hold for both samples considered.
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Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Mod. I 0 .323 ∗∗∗ 0.223∗∗∗ −0.039 −0.042 0.359∗∗∗ 0 .191 ∗ −0.208∗ −0.145
Uπ 0.185∗∗ 0.136∗ 0.128 0.015 0.252∗∗ 0.024 0 .023 −0.061
Us 0.224∗∗∗ 0.149∗ 0 .080 0.188∗ 0.061 0.040 −0.106
Uv 0.295∗∗∗ 0.111 0.013 0.037 0.290∗∗∗ 0.021 −0.170 −0.042
Uf 0.241∗∗∗ 0.127∗ 0.045 0.002 0.290∗∗∗ 0.145 −0.002 −0.023
Ue 0.108 0.085 −0.123 −0.036 0.126 0.086 −0.225∗ −0.015
Up 0.256∗∗∗ 0 .189 ∗∗∗ −0.045 −0.025 0.316∗∗∗ 0.212∗∗ −0.119 −0.054

B: G2S

Mod. I 0.349∗∗∗ 0.152∗∗ −0.111 −0.152∗ 0.402∗∗∗ 0.067 −0.247∗∗ −0.267∗∗

Uπ 0.264∗∗∗ 0.183∗∗ 0.021 −0.027 0.338∗∗∗ 0.065 −0.060 −0.123
Us 0.146∗∗ 0.128∗ −0.027 −0.113 0.106 0.062 −0.147 −0.269∗∗

Uv 0.194∗∗ 0.144 0.117 0.033 0.232∗∗ 0.127 −0.041 −0.083
Uf 0.217∗∗∗ 0.017 −0.043 0.089 0.313∗∗∗ 0.020 −0.079 0.127
Ue 0.079 0.108 −0.040 0.006 0.127 0.149 0.028 −0.031
Up 0.269∗∗∗ 0.221∗∗∗ −0.033 0 .081 0 .360 ∗∗∗ 0.234∗∗∗ −0.119 0.008

C: S2G

Mod. I 0.199∗∗∗ 0.102 0.040 0.018 0.315∗∗∗ 0.046 −0.062 −0.082
Uπ 0.211∗∗∗ 0.084 0.065 0.046 0.357∗∗∗ 0.065 0.019 −0.102
Us 0.162∗∗ 0.139∗ 0.019 −0.013 0.171∗ 0.004 −0.124 −0.250∗∗

Uv 0.235∗∗∗ 0.030 0.024 −0.051 0.336∗∗∗ −0.038 −0.082 −0.123
Uf 0.219∗∗∗ 0.031 −0.004 −0.007 0.251∗∗ −0.040 −0.085 −0.001
Ue 0.057 −0.009 −0.111 −0.053 0.090 −0.074 −0.120 −0.055
Up 0.141∗ 0.099 0.027 0.099 0.191∗∗ 0.067 −0.058 −0.017

D: Mean Model

Mean 0.333∗∗∗ 0.144∗ 0.002 −0.071 0.379∗∗∗ 0.086 −0.163 −0.226∗

Note: The table reports the Kiupers score as the di�erence between the hit-rate and the false-alarm rate. We
also report the test results on predictive failure using the test proposed by Pesaran (2015) with HAC standard
errors. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Pesaran-Timmermann test.
The 1st, 2nd and 3rd hightest Kiupers Scores are highlighted by fat, underlined and italic font, respectively. All
model forecasts are estimated by means of a rolling-window regression with width Ts = 96 observations. Based on
384 out-of-sample forecast errors for which the �rst observation for the forecast horizon h = 1 is given for 1983m1,
we compute the statistics of interest.

Table 4: Kiupers score and Pesaran-Timmermann test results for growth of household-sector M2
using a rolling-window with width Ts = 96 observations.
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Using a longer window width of Ts = 120 observations, we �nd that in terms of forecast

accuracy the mean model dominates at the 1- and 2-month horizons, respectively (see Table A8),

and outperforms Model I (with our without indicator selection) by at least 10%. At both the

6- and 9-month horizon, respectively, the in�ation uncertainty model dominates closely followed

Model I with S2G indicator selection. Among the top-3 models we also �nd the policy uncertainty

model and the VXO model. Again these �ndings hold for both samples considered.

While the null of the DM test can be rejected for all models combining one of the two indicator

selection algorithms at the 1-month horizon, the picture is much more heterogeneous at longer

horizons. For instance, at the two month horizon the null of the DM test can only be rejected

by Model I (G2S and S2G), the in�ation uncertainty model, the VXO model, the economic

policy uncertainty model and the mean model. Interestingly, the null of the DM test cannot

be rejected for any model at the 6-month horizon even though we can reject this test for the

in�ation uncertainty model at the 9-month horizon. This latter results shows that in�ation

uncertainty provides statistically relevant information for medium-term forecasts of growth of

real household-sector M2 since 2000. These results also hold for the smaller sample period since

2007.

The direction-of-change forecast evaluation results are reported in Tables A9 and A10. Based

on a rolling-window with width Ts = 84 monthly observations and evaluating the sample between

2000m1 and 2014m12, we see that Model I after G2S indicator selection ranks �rst closely followed

by the VXO model. At the 2-month horizon the stock market risk premium model (S2G) wins

before the macroeconomic policy uncertainty model. At both the 6- and 9- month horizons the

economic policy uncertainty model (S2G) yields the highest positive KS values. Considering

only forecasts for the period since 2007m1, the in�ation uncertainty model ranks �rst at the

1-month horizon, the policy uncertainty model wins at the 2-month horizon while the policy

uncertainty model provides the highest KS values again at both the 6- and 9-month forecast

horizons, respectively.

Irrespective of the chosen sub-sample, the standard money demand speci�cation su�ers from

predictive failures for forecast horizons longer than 1 month. Again, we �nd that considering

one of the before-mentioned uncertainty variables provides relevant information for direction-

of-change forecasts. These results are con�rmed when using a longer rolling-window width, as

reported in Table A10.

6 Conclusion

This paper investigates the predictive power of di�erent uncertainty measures to out-of-sample

forecast growth of U.S. aggregate real M2, U.S. aggregate real Divisia M4 as well as household-

sector monetary real M2 using monthly data between 1971m1 and 2014m12. Our �ndings sup-

port recent arguments that private actors' liquidity preferences are correlated with economic

uncertainty dynamics. However, instead of evaluating the in-sample �t of risk-augmented money

demand models, we focus on the out-of-sample forecast content of various economic uncertainty
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measures.

In particular, we compare both forecast accuracy and direction-of-change forecast ability of an

otherwise standard benchmark ARDL money demand model comprising lagged values of a real

monetary measure, a real income measure and an opportunity cost measure with an augmented

money demand model additionally including lagged values of some uncertainty measure. The

list of potential uncertainty measures comprises recent time series heavily applied in the business

cycle literature and others which have been used in the money demand literature before. Lastly,

we combine two di�erent indicator selection procedures with a rolling-window forecasting scheme

to detect the optimal ARDL model speci�cation in a recursive manner.

With regard to forecasting growth of real aggregate M2, we �nd that the benchmark money

demand speci�cation provides reasonable forecast accuracy at the short- and medium-term hori-

zon for the period between 2000 and 2014. Nevertheless, the implied volatility VXO capital

market risk measure and the macroeconomic uncertainty series help to improve forecast accu-

racy. These �ndings are con�rmed for forecasting growth of real aggregate M4 Divisia. This

standard money demand speci�cation, however, performs poorly in terms of direction-of-change

forecasts since 2000. Especially the in�ation uncertainty series, the �nancial market uncertainty

series and economic policy uncertainty yield an improvement regarding this type of forecast.

The standard money demand speci�cation also provides reasonable short- and medium-term

forecast accuracy for growth of real household-sector M2 since the year 2000. However, the in�a-

tion uncertainty series, the macroeconomic uncertainty index and simple model combination help

to improve point forecast accuracy. The standard model again performs poorly for this monetary

aggregate in terms of direction-of-change forecast. However, the consideration of in�ation uncer-

tainty, economic policy uncertainty, stock market risk premium or �nancial market uncertainty

provides relevant forecasting information content�especially for the period since 2007 covering

the recent GFC event.

In total our results stress the relevance of economic uncertainty variables for forecasting growth

of monetary aggregates in the U.S. We �nd that speci�c economic uncertainty measures are

helpful to improve forecast accuracy as well as direction-of-change forecasts of money growth.

Thus, improved forecasts of monetary growth may strengthen the purpose of (expected) monetary

growth dynamics to provide timely information about central macroeconomic variables such

as the in�ation gap or the output gap which are measured imperfectly Coenen et al. (2005).

Furthermore, and as recently stressed by Ball (2012), understanding money demand in a zero

interest rate and quantitative easing environment will tell the central bank how much it must

reduce the monetary base to raise interest rates.
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Data Appendix

Most series were collected from the FRED-MD monthly Database for Macroeconomic Research

provided by McCracken and Ng (2015) or from the Financial Accounts of the United States. The

variables are de�ned as follows:

Real income, yt, is the logarithm of real personal income (FRED: RPI, monthly, SA).

The opportunity cost measure, it, is the di�erence between the 3-Month Treasury Bill (FRED:

TB3MS, NSA monthly) minus the own rate of M2 (FRED: M2OWN, NSA, monthly).

The real monetary aggregate M2, mt, is the logarithm of the real M2 money stock de�ated by

the CPI price index (FRED: M2REAL, SA, monthly).

The real monetary aggregate M2 of the household sector, mt, is the logarithm of the di�erence

between the nominal aggregate money stock M2 (FRED: M2NS, NSA, monthly) minus the sum

of the following M2 components of the four non-household sectors:

1. Non-�nancial business sector

• Checkable deposits and currency (FoF: FL143020005, quarterly, NSA)

• Time and savings deposits (FoF: FL143030005, quarterly, NSA)

• Money market fund shares (FoF: FL143034005, quarterly, NSA)

2. General government sector

• Checkable deposits and currency (FoF: FL363020005, quarterly, NSA)

• Time and savings deposits (FoF: FL363030005, quarterly, NSA)

• Money market fund shares (FoF: FL213034003, quarterly, NSA)

3. Domestic �nancial sector

• Foreign deposits (FoF: FL633091003, quarterly, NSA)

• Checkable deposits and currency (FoF: FL793020005, quarterly, NSA)

• Time and savings deposits (FoF: FL793030005, quarterly, NSA)

• Money market fund shares (FoF: FL793034005, quarterly, NSA)

4. Rest of the World

• U.S. checkable deposits and currency (FoF: FL263020005, quarterly, NSA)

• U.S. time deposits (FoF: FL263030005, quarterly, NSA)

• Money market fund shares (FoF: FL793034005, quarterly, NSA)

The quarterly series are expanded to monthly frequency using a cubic spline method. The

resulting nominal series is de�ated by the PCE (FRED: PCEPI, SA, monthly) price de�ator
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before taking the logarithm. The logarithmic series is de-seasonalised by means of the X-12-

Arima procedure.

The stock market risk premium, Us, is the logarithm of the ratio of the dividend yield over the

10-year Treasury Rate (FRED: GS10, NSA, monthly). The dividend yield is computed by the

dividends paid (from Shiller http://www.econ.yale.edu/~shiller/data/ie_data.xls, NSA,

monthly) divided by the lagged S&P 500 stock price index (FRED: SP500, NSA, monthly).

The economic policy uncertainty measure, Ue, is constructed by Baker et al., and can be down-

loaded from http://www.policyuncertainty.com/media/US_Policy_Uncertainty_Data.xlsx

(monthly, NSA).

The VXO implied volatility index, Uv, is the CBOE S&P 100 volatility index (FRED: VXOCLSx,

NSA, monthly).

The macroeconomic uncertainty index, Ue, proposed by Jurado et al. (2015) can be obtained

from https://www.sydneyludvigson.com/s/MacroFinanceUncertainty_2016Aug_update.zip

The �nancial market uncertainty index, Uf , proposed by Ludvigson et al. (2015) can be obtained

from https://www.sydneyludvigson.com/s/MacroFinanceUncertainty_2016Aug_update.zip

The in�ation uncertainty measure, Uπ, is estimated by means of the Stock and Watson (2007)

unobserved-component-stochastic-volatility (UCSV) model. In�ation, xt, is measured by the

annualized growth rate of the CPI price index (FRED: CPIAUCSL, SA, monthly). The setup of

the UCSV model can be described as follows: It is assumed that the series of interest, xt, can be

decomposed into a permanent and transitory component with time-varying volatility. Allowing

for time-variations is based on the empirical fact that parameter shifts in the estimated variances

of the components have occurred over time for the U.S. economy (Stock and Watson, 2007). The

dynamics of in�ation closely follow an integrated moving-average process which can be re-written

as an unobserved component model. It is assumed that xt is driven by a stochastic trend, τt,

with serially uncorrelated innovations ηt. The stochastic trend is driven by another white noise

innovation εt:

xt = τt + ηt (7)

τt = τt−1 + εt . (8)

Both innovations ηt and εt are i.i.d normally distributed. Furthermore, the logarithms of the

variances of both the transitory part, σ2
η,t (ηt ∼ N(0, σ2

η,t)), as well as permanent part, σ2
ε,t

(εt ∼ N(0, σ2
ε,t)), evolve as separate random-walks according to:

log σ2
η,t = log σ2

η,t−1 + νη,t (9)

log σ2
ε,t = log σ2

ε,t−1 + νε,t . (10)

The innovations to the variances, νt = (νη,t, νε,t)
′, are i.i.d. N(0, γI2) and orthogonal to each

other. The parameter γ controls the smoothness of the stochastic volatilities σ2
∗,t. The model

is estimated using the Gibbs sampling approach. We �t the UCSV(0.2) model to our CPI price
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in�ation time series, πt using a prior for the initial condition of γ = 0.2. This prior was also used

by Stock and Watson (2007) for GDP in�ation. We found that the results were robust against

di�erent prior values.
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A Robustness section for growth of real aggregate M2

Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Uπ 1.208∗ 1.141 1.219∗∗ 1.468∗∗∗ 1.082 1.111 1.102 1.446
Us 1.503∗∗∗ 1.470∗∗∗ 1.736∗∗∗ 1.479∗∗∗ 1.535∗∗ 1.730∗∗ 2.114∗∗ 1.592∗∗

Uv 1.429∗∗∗ 1.445∗∗∗ 1.500∗∗ 1.493∗∗∗ 1.493∗∗ 1.432∗∗ 1.623 1.520∗∗

Uf 1.400∗∗∗ 1.387∗∗ 1.427∗∗∗ 1.549∗∗∗ 1.488∗∗ 1.707∗∗ 1.636∗∗∗ 1.786∗∗∗

Ue 1.294∗ 1.223∗ 1.226∗∗ 1.251∗∗ 1.388 1.357 1.387∗∗∗ 1.218∗

Up 1.331∗∗∗ 1.331∗∗ 1.486∗∗∗ 1.664∗∗ 1.403∗∗∗ 1.504∗∗∗ 1.773∗∗∗ 2.135∗∗

B: G2S

Mod. I 0.633∗∗ 0.742∗∗ 0.881 0.859∗∗ 0.656∗∗∗ 0.739∗∗∗ 0.892 0.880∗

Uπ 0.705∗ 0.934 0.911 1.011 0.657∗∗∗ 0.898 0.940 1.099
Us 0.973 1.110 1.456∗∗ 1.282∗ 1.065 1.178 1.745∗∗ 1.461∗

Uv 0.909 1.028 0.959 1.180 1.131 1.101 1.130 1.460∗∗

Uf 1.023 1.168 1.277∗∗ 1.290∗∗∗ 1.210 1.386 1.366∗ 1.439∗∗

Ue 0.901 1.051 1.056 1.107 1.045 1.110 1.185∗ 1.215∗∗

Up 0.890 1.098 1.163 1.267 1.031 1.128 1.526∗ 1.602∗∗

C: S2G

Mod. I 0.526∗∗∗ 0.670∗∗ 0.702∗∗ 0.705∗∗ 0.536∗∗∗ 0.640∗∗∗ 0.673∗∗∗ 0.668∗∗∗

Uπ 0.615∗∗ 0.770 0.842 0.880 0.657∗∗ 0.782 0.877 0.941
Us 0.639∗∗∗ 0.865 0.843 0.898 0.573∗∗∗ 0.804 0 .810 0.850
Uv 0 .609 ∗∗ 0.753 0.701∗∗ 0.704∗∗ 0.649∗∗ 0.797 0.652∗∗∗ 0.683∗∗∗

Uf 0.700∗∗ 0.816 0 .773 0.833 0.684∗ 0.824 0.814 0.873
Ue 0.598∗∗ 0.773 0.821 0.832 0 .634 ∗∗∗ 0.735∗ 0.843 0 .839
Up 0.679∗∗ 0.795 0.788 0 .725 ∗ 0.733∗ 0.840 0.930 0.851

D: Mean Model

Mean 0.629∗∗∗ 0 .744 ∗∗ 0.773∗∗ 0.811∗∗ 0.659∗∗∗ 0 .738 ∗∗ 0.843 0.865

Note: The table reports the RMSE relative to an ARDL(12,12,12) comprising lagged values of the endogenous
money growth variable, a real income measure and an opportunity cost measure. We also report the test results on
equal predictive accuracy using the test proposed by Diebold and Mariano (1995) under a quad-quad loss function.
∗∗∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Diebold-Mariano test. The 1st, 2nd and
3rd lowest relative RMSEs are highlighted by fat, underlined and italic font, respectively. All model forecasts are
estimated by means of a rolling-window regression with width Ts = 84 observations. Based on 384 out-of-sample
forecast errors for which the �rst observation for the forecast horizon h = 1 is given for 1983m1, we compute the
statistics of interest.

Table A1: Relative RMSE and Diebold-Mariano test results for growth of aggregate M2 using a
rolling-window with width Ts = 84 observations.
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Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Uπ 1.083 1.074 1.160∗ 1.195∗∗ 1.062 1.054 1.159 1.193
Us 1.313∗∗ 1.360∗ 1.313∗∗ 1.302∗∗∗ 1.431∗ 1.502 1.345∗ 1.265
Uv 1.219∗∗∗ 1.216∗∗∗ 1.182∗∗∗ 1.170∗∗∗ 1.280∗∗∗ 1.275∗∗∗ 1.189∗∗ 1.188∗∗

Uf 1.212∗∗∗ 1.259∗∗ 1.262∗∗∗ 1.230∗∗∗ 1.275∗∗ 1.373∗∗ 1.304∗∗ 1.288∗∗∗

Ue 1.157∗ 1.129 1.222∗ 1.185 1.176∗ 1.187 1.261 1.164
Up 1.209∗∗ 1.246∗∗ 1.259∗∗ 1.276∗∗ 1.383∗∗∗ 1.434∗∗∗ 1.478∗∗∗ 1.505∗∗∗

B: G2S

Mod. I 0.937 0.932 0.999 0.998 0.898 1.036 1.147 1.109
Uπ 0.926 0 .949 1.085 1.051 0.948 1.046 1.286 1.138
Us 1.125 1.176 1.267∗ 1.199∗∗ 1.228 1.307 1.466∗∗ 1.148
Uv 1.079 1.138 1.206∗ 1.089 1.136 1.215 1.307∗∗ 1.140
Uf 1.085 1.215 1.185∗ 1.166∗ 1.074 1.289 1.241 1.255∗

Ue 1.033 1.095 1.158 1.086 1.008 1.105 1.336∗∗ 1.158
Up 1.123 1.310∗∗ 1.190 1.155 1.271∗ 1.489∗∗∗ 1.470∗∗∗ 1.371∗∗∗

C: S2G

Mod. I 0 .929 0.963 0 .989 0.977 0 .916 1 .009 1 .034 0.974
Uπ 0.969 0.987 1.145 1.078 0.945 1.022 1.314 1.236
Us 0.965 0.996 1.024 1.115 0.940 0.979 1.009 1.090
Uv 0.954 1.013 0.957 0 .982 0.982 1.106 1.031 0.980
Uf 1.009 1.088 0.993 1.039 1.006 1.203 1.036 1.058
Ue 0.970 1.015 1.115 1.106 0.905 0.984 1.264 1.125
Up 1.010 1.116 1.070 1.052 1.070 1.193 1.159 1.077

D: Mean Model

Mean 0.898 0.943 0.969 0.946 0.929 1.022 1.082 1 .001

Note: The table reports the RMSE relative to an ARDL(12,12,12) comprising lagged values of the endogenous
money growth variable, a real income measure and an opportunity cost measure. We also report the test results
on equal predictive accuracy using the test proposed by Diebold and Mariano (1995) under a quad-quad loss
function. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Diebold-Mariano test.
The 1st, 2nd and 3rd lowest relative RMSEs are highlighted by fat, underlined and italic font, respectively.
All model forecasts are estimated by means of a rolling-window regression with width Ts = 120 observations.
Based on 384 out-of-sample forecast errors for which the �rst observation for the forecast horizon h = 1 is
given for 1983m1, we compute the statistics of interest.

Table A2: Relative RMSE and Diebold-Mariano test results for growth of aggregate M2 using a
rolling-window with width Ts = 120 observations.
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Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Mod. I 0.112 0.120 0 .150 0.128 0.229∗ 0.076 0.089 0.037
Uπ 0.098 0.174∗ 0.212∗∗ 0.265∗∗∗ 0.116 0 .166 0.339∗∗∗ 0.289∗∗

Us 0.120 0 .197 ∗∗ 0.129 0.143∗ 0.155 0.129 −0.011 0.003
Uv 0.046 0.100 0.114 0.151 0.047 0.047 −0.016 0.021
Uf 0.097 0.143∗ 0.113 0.128 0.063 0.061 0.124 0 .147
Ue 0 .156 ∗∗ 0.210∗∗ 0.053 0.130∗ 0.168 0.155 −0.024 0.013
Up 0.173∗∗ 0.159∗ 0.136∗ 0.122 0.187 0.200 0.074 −0.016

B: G2S

Mod. I 0.117∗ 0.133∗ 0.089 0.178∗ 0.155 0.103 0.013 0.103
Uπ 0.074 0.037 0.158∗∗ 0.205∗∗ 0.179∗ 0.089 0.189∗ 0.239∗

Us 0.104 0.233∗∗∗ 0.023 0.164∗ 0.155 0.153 −0.174∗∗ −0.034
Uv 0.059 0.060 0.045 0.120 0.163 −0.013 −0.013 −0.053
Uf 0.082 0.075 0.098 0.090 0.013 −0.089 0.037 0.024
Ue 0.005 0.082 0.007 0.143∗ −0.021 0.016 −0.087 0.029
Up 0.007 0.142∗ 0.038 0.076 0.113 0.216 0.024 0.011

C: S2G

Mod. I 0.056 0.064 0.041 0.101∗ 0.068 0.055 0.018 0.008
Uπ 0.057 −0.017 0.051 0.164∗∗ 0.105 −0.061 0 .129 0.116
Us 0.088 0.051 0.013 0.035 0.029 0.039 −0.047 −0.084
Uv 0.066 0.006 0.013 0.072 0.076 0.013 −0.047 −0.045
Uf 0.171∗∗ 0.172∗ −0.009 0.013 0.229∗∗ 0.153 −0.037 −0.097
Ue 0.042 0.066 0.066 0.088 −0.008 −0.034 −0.071 0.029
Up 0.132∗ 0.095 0.035 0.034 0.258∗∗ 0.082 −0.097 −0.008

D: Mean Model

Mean 0.133∗ 0.126 0.119 0 .179 ∗∗ 0.218 0.105 0.053 0.076

Note: The table reports the Kiupers score as the di�erence between the hit-rate and the false-alarm rate. We
also report the test results on predictive failure using the test proposed by Pesaran (2015) with HAC standard
errors. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Pesaran-Timmermann test.
The 1st, 2nd and 3rd hightest Kiupers Scores are highlighted by fat, underlined and italic font, respectively.
All model forecasts are estimated by means of a rolling-window regression with width Ts = 84 observations.
Based on 384 out-of-sample forecast errors for which the �rst observation for the forecast horizon h = 1 is given
for 1983m1, we compute the statistics of interest.

Table A3: Kiupers score and Pesaran-Timmermann test results for growth of aggregate M2 using
a rolling-window with width Ts = 84 observations.
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Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Mod. I 0.141∗ 0 .134 ∗ 0.088 0.066 0.092 0 .079 −0.071 −0.058
Uπ 0.059 0.052 0.091 0.106 0.039 0.076 0 .050 −0.013
Us 0.141∗∗ 0.112 0.074 0.090 0.103 0.076 0.039
Uv 0.150 0.105 0.136 0.151∗ 0.003 0.039 −0.026 −0.026
Uf 0.082 0.044 0.090 0.120 −0.061 −0.124 −0.084 −0.021
Ue 0.097 0.090 0.053 0.039 0.042 0.055 −0.047 −0.061
Up 0.076 0.015 0.074 0.128 −0.003 −0.037 −0.047 −0.113

B: G2S

Mod. I 0.042 0.035 0.058 0.043 −0.008 −0.061 −0.097 −0.111
Uπ 0.013 0.059 0.007 0.151∗ 0.053 0.076 −0.074 0.050
Us 0.088 0.043 0.058 0 .164 ∗∗ 0.066 −0.047 −0.084 0 .089
Uv 0.037 0.059 0.014 0.021 0.003 −0.011 −0.087 −0.161∗∗

Uf 0.058 0.081 0 .112 0.211∗∗ −0.071 −0.021 −0.111 −0.147∗∗

Ue −0.025 0.103 0.046 0.061 −0.005 0.008 −0.011 −0.097
Up 0.096 −0.047 0.043 −0.031 0.066 −0.124 −0.071 −0.213∗∗

C: S2G

Mod. I 0.072 0.109 0.088 0.088 0.082 −0.005 0.045 0.008
Uπ 0.109∗∗ 0.049 0.201∗∗ 0.149∗ 0.182∗ 0.016 0.153 0.139
Us 0.193∗∗ 0.186∗∗ 0.088 0.185∗∗ 0.255∗ 0.205 0.042 0.132
Uv −0.003 0.126 0.096 0.104 −0.045 0.032 0.018 −0.018
Uf 0.057 0.042 0.110 0.074 −0.032 −0.071 0.005 −0.097
Ue 0.080 0.208∗∗∗ 0.096 0.119∗ 0 .145 0.282∗∗ 0.082 0.055
Up 0.065 0.042 0.013 0.066 0.068 0.005 −0.058 −0.032

D: Mean Model

Mean 0.064 0.124∗ 0.087 0.050 −0.032 0.045 −0.045 −0.071

Note: The table reports the Kiupers score as the di�erence between the hit-rate and the false-alarm rate. We
also report the test results on predictive failure using the test proposed by Pesaran (2015) with HAC standard
errors. ∗∗∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Pesaran-Timmermann test.
The 1st, 2nd and 3rd hightest Kiupers Scores are highlighted by fat, underlined and italic font, respectively.
All model forecasts are estimated by means of a rolling-window regression with width Ts = 120 observations.
Based on 384 out-of-sample forecast errors for which the �rst observation for the forecast horizon h = 1 is
given for 1983m1, we compute the statistics of interest.

Table A4: Kiupers score and Pesaran-Timmermann test results for growth of aggregate M2 using
a rolling-window with width Ts = 120 observations.
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B Growth of real aggregate M4 Divisia

Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Uπ 1.214∗∗ 1.269∗∗ 1.372∗∗ 1.415∗∗∗ 1.123 1.131 1.177 1.226
Us 1.322∗∗ 1.382∗∗∗ 1.687∗∗∗ 1.683∗∗∗ 1.337∗∗ 1.411∗∗ 1.578∗∗ 1.409∗∗∗

Uv 1.306∗∗ 1.442∗∗∗ 1.379∗∗∗ 1.273∗∗ 1.349∗∗ 1.437∗∗ 1.269 1.188
Uf 1.332∗∗∗ 1.455∗∗∗ 1.468∗∗∗ 1.440∗∗∗ 1.341∗∗ 1.547∗∗∗ 1.487∗∗∗ 1.482∗∗∗

Ue 1.052 1.042 1.079 1.215∗ 1.017 0.965 1.014 1.241
Up 1.177∗∗ 1.186∗∗ 1.265∗∗∗ 1.342∗∗∗ 1.194∗ 1.171 1.205∗∗ 1.318∗∗∗

B: G2S

Mod. I 0.956 1.042 1.059 0.945 0.958 1.031 0.957 0.895
Uπ 1.176∗ 1.211 1.359∗∗ 1.125 1.098 1.040 1.168 1.044
Us 1.240∗∗ 1.377∗∗∗ 1.647∗∗∗ 1.171 1.256∗ 1.342∗∗ 1.492∗∗ 1.096
Uv 1.148 1.371∗∗ 1.342∗∗∗ 1.190∗ 1.182 1.355∗ 1.087 1.035
Uf 1.215∗ 1.472∗∗ 1.533∗∗∗ 1.279∗∗ 1.182 1.429∗ 1.338∗∗ 1.228
Ue 1.007 1.107 1.096 1.151 0.979 1.032 0.971 1.106
Up 1.074 1.072 1.155 1.100 1.107 1.058 1.061 1.041

C: S2G

Mod. I 0.816∗∗ 0.872∗ 0.845∗∗ 0.863∗∗ 0.764∗∗ 0.788∗∗ 0 .840 ∗∗ 0.856∗

Uπ 0.875 0.933 0 .854 0.983 0.842 0 .865 0.832 0.988
Us 0.864 0.893 0.913 0.962 0 .820 0.925 0.895 0.943
Uv 0.880 0.914 0.904 0.914 0.909 0.972 0.932 0.950
Uf 0 .860 0.955 0.986 0 .855 ∗ 0.858 1.009 0.972 0 .845 ∗

Ue 0.780∗∗ 0.824 0.801∗∗ 0.845∗∗ 0.694∗∗ 0.722∗ 0.793∗∗ 0.839
Up 0.956 1.039 0.968 1.012 0.916 1.002 0.917 1.044

D: Mean Model

Mean 0.860∗∗ 0 .887 ∗∗ 0.927 0.846∗∗∗ 0.853∗∗ 0.873∗ 0.886 0.836∗∗∗

Note: The table reports the RMSE relative to an ARDL(12,12,12) comprising lagged values of the endogenous
money growth variable, a real income measure and an opportunity cost measure. We also report the test results
on equal predictive accuracy using the test proposed by Diebold and Mariano (1995) under a quad-quad loss
function. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Diebold-Mariano test.
The 1st, 2nd and 3rd lowest relative RMSEs are highlighted by fat, underlined and italic font, respectively. All
model forecasts are estimated by means of a rolling-window regression with width Ts = 96 observations. Based
on 384 out-of-sample forecast errors for which the �rst observation for the forecast horizon h = 1 is given for
1983m1, we compute the statistics of interest.

Table A5: Relative RMSE and Diebold-Mariano test results for growth of M4 divisia using a
rolling-window with width Ts = 96 observations.
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Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Mod. I 0.144 0.121 0.080 0.198∗∗∗ 0.117 0.083 0.002 0.144
Uπ 0.141∗∗ 0.064 0.206∗∗∗ 0.138∗∗ 0.127 0.012 0.215∗∗ 0.151
Us 0.129 0.124 0.132∗ 0.158∗∗ 0.131 0.080 0.080 0.036
Uv 0.099 0.114 0.072 0 .206 ∗∗ 0.117 0.080 0.053 0.229∗

Uf 0.078 0.127∗ 0.037 0.140∗ 0.043 0.070 0.057 0.199∗

Ue 0.195∗∗ 0.144 0 .228 ∗∗∗ 0.130∗ 0.205∗ 0.134 0.154 0.114
Up 0.166∗ 0.158∗ 0.176∗∗ 0.184∗∗ 0.110 0.070 0.056 0.144

B: G2S

Mod. I 0.179∗∗ 0.152∗ 0.125∗ 0.185∗∗ 0.175 0.114 0.120 0.080
Uπ 0.114 0.133 0.075 0.154∗∗ 0.100 0.077 0.066 0.107
Us 0.122 0.132∗ 0.194∗∗∗ 0.220∗∗∗ 0.164 0.097 0.127 0.168
Uv 0.108 0.111 0.091 0.100 0.148 0.097 0.090 0.114
Uf 0.135 0.063 0.019 0.170∗∗ 0.161 0.053 0.047 0.236∗∗

Ue 0.195∗∗ 0.125 0.246∗∗∗ 0.204∗∗ 0.127 0.117 0 .191 ∗ 0 .222 ∗

Up 0.182∗∗ 0.217∗∗ 0.195∗∗ 0.133 0.097 0.158 0.137 0.087

C: S2G

Mod. I 0.133 0.110 0.155∗∗ 0.037 0.090 0.107 0.100 −0.079
Uπ 0.107 0.091 0.096 0.058 0.124 0.097 0.026 0.013
Us 0.121 0.232∗∗∗ 0.231∗∗∗ 0.217∗∗∗ 0.151 0.222∗∗ 0.208∗ 0.154
Uv 0.099 0.075 0.044 0.143∗ 0.131 0.114 0.060 0.097
Uf 0.225∗∗∗ 0.099 0.107 0.133∗∗ 0.273∗∗∗ 0.053 0.114 0.050
Ue 0.256∗∗∗ 0.185∗∗ 0.155∗∗ 0.152∗∗ 0.313∗∗∗ 0.195∗ 0.168 0.121
Up 0.184∗∗ 0 .226 ∗∗∗ 0.151∗∗ 0.124∗∗ 0 .225 ∗∗ 0 .181 0.144 0.029

D: Mean Model

Mean 0.116 0.234∗∗∗ 0.124∗ 0.204∗∗∗ 0.073 0.161 0.097 0.168∗

Note: The table reports the Kuipers score as the di�erence between the hit-rate and the false-alarm rate. We
also report the test results on predictive failure using the test proposed by Pesaran (2015) with HAC standard
errors. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Pesaran-Timmermann test.
The 1st, 2nd and 3rd hightest Kuipers Scores are highlighted by fat, underlined and italic font, respectively. All
model forecasts are estimated by means of a rolling-window regression with width Ts = 96 observations. Based on
384 out-of-sample forecast errors for which the �rst observation for the forecast horizon h = 1 is given for 1983m1,
we compute the statistics of interest.

Table A6: Kuipers score and Pesaran-Timmermann test results for growth of M4 divisia using
a rolling-window with width Ts = 96 observations.
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C Robustness section for growth of real household-sector M2

Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Uπ 1.290∗∗∗ 1.415∗∗∗ 1.177 1.158 1.246∗∗ 1.410∗∗∗ 1.077 1.047
Us 1.213∗ 1.331∗∗ 1.882∗∗ 2.011∗∗∗ 1.160 1.330∗ 2.015∗∗ 2.244∗∗∗

Uv 1.510∗∗ 1.653∗∗ 1.840∗∗∗ 2.129∗∗ 1.667∗∗ 1.809∗∗∗ 1.946∗∗∗ 2.291∗∗

Uf 1.358∗∗∗ 1.420∗∗ 1.526∗ 1.699∗∗ 1.426∗∗∗ 1.507∗∗ 1.532 1.786∗∗

Ue 1.351∗ 1.461∗ 1.177 1.293∗ 1.343 1.513 1.165 1.286
Up 1.194∗ 1.155 1.295∗∗ 1.271∗ 1.179 1.174 1.350∗∗ 1.298∗

B: G2S

Mod. I 0.512∗∗ 0 .640 0.952 0.928 0.470∗ 0.539∗ 0.980 0.948
Uπ 0.604∗ 0.827 1.023 0.982 0.524∗ 0.747 0.989 0.922
Us 0.672 0.942 1.646∗ 1.551∗∗ 0.639 0.895 1.774∗ 1.714∗∗

Uv 0.690 0.876 1.351 1.175 0.698 0.896 1.461 1.239
Uf 0.722 0.970 1.338 1.325∗ 0.709 0.944 1.398 1.349∗

Ue 0.692 0.929 1.147 1.154 0.629 0.902 1.164 1.155
Up 0.625 0.794 1.620 1.336 0.591 0.774 1.791 1.458

C: S2G

Mod. I 0.425∗∗ 0.607∗ 0.756 0.700 0.378∗∗ 0 .567 ∗ 0.752 0.712
Uπ 0.468∗∗ 0.680 0 .809 0.764 0.390∗∗ 0.610 0.729 0 .748
Us 0.526∗ 0.877 1.049 0.998 0.495∗ 0.889 1.131 1.085
Uv 0 .456 ∗∗ 0.698 0.823 0 .758 0.423∗∗ 0.684 0.872 0.796
Uf 0.510∗∗ 0.797 1.009 0.996 0.477∗∗ 0.758 1.036 1.013
Ue 0.508∗∗ 0.755 0.916 0.735 0.443∗∗ 0.716 0.943 0.735
Up 0.476∗∗ 0.682 0.826 0.789 0.437∗∗ 0.674 0.824 0.775

D: Mean Model

Mean 0.454∗∗ 0.582∗ 0.806 0.794 0 .419 ∗∗ 0.540∗ 0 .818 0.812

Note: The table reports the RMSE relative to an ARDL(12,12,12) comprising lagged values of the endogenous
money growth variable, a real income measure and an opportunity cost measure. We also report the test results
on equal predictive accuracy using the test proposed by Diebold and Mariano (1995) under a quad-quad loss
function. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Diebold-Mariano test.
The 1st, 2nd and 3rd lowest relative RMSEs are highlighted by fat, underlined and italic font, respectively.
All model forecasts are estimated by means of a rolling-window regression with width Ts = 84 observations.
Based on 384 out-of-sample forecast errors for which the �rst observation for the forecast horizon h = 1 is
given for 1983m1, we compute the statistics of interest.

Table A7: Relative RMSE and Diebold-Mariano test results for growth of household-sector M2
using a rolling-window with width Ts = 84 observations.
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Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Uπ 1.115 1.051 0.836 0.789 1.127 1.058 0.779 0.717
Us 1.170 1.289 1.541 1.584∗ 1.233 1.360 1.647 1.715∗∗

Uv 1.245∗ 1.328∗∗ 1.528∗ 1.602 1.314∗ 1.397∗∗ 1.625∗∗ 1.733∗

Uf 1.128 1.074 0.901 0.849 1.142 1.062 0.864 0.810
Ue 1.137 1.111 1.033 0.984 1.052 1.049 0.980 0.938
Up 1.108 1.161∗ 1.331 1.298 1.127 1.191 1.386 1.370

B: G2S

Mod. I 0.436∗∗ 0.590∗∗ 0.958 0.973 0.378∗∗ 0.565∗ 1.001 1.008
Uπ 0.447∗∗ 0.537∗∗ 0.760 0.644∗ 0.381∗∗ 0.508∗∗ 0.749 0.621∗

Us 0.533∗∗ 0.724 1.244 1.100 0.498∗ 0.730 1.338 1.184
Uv 0.545∗ 0.754 1.126 1.276 0.506∗ 0.765 1.199 1.374
Uf 0.462∗∗ 0.612∗ 0.920 0.773 0.416∗∗ 0.594∗ 0.960 0.781
Ue 0.534∗∗ 0.725 0.941 0.873 0.438∗∗ 0.678 0.949 0.847
Up 0.473∗∗ 0.674 1.198 1.174 0.414∗∗ 0.659 1.277 1.234

C: S2G

Mod. I 0.400∗∗ 0.586∗ 0.685 0 .675 0.343∗∗ 0.548∗ 0.676 0.641
Uπ 0.424∗∗ 0.595∗ 0.670 0.719 0 .359 ∗∗ 0.543∗∗ 0.643 0.694
Us 0.447∗∗ 0.689 0.803 0.801 0.402∗∗ 0.688 0.819 0.816
Uv 0 .419 ∗∗ 0.615∗ 0.779 0.776 0.372∗∗ 0.588∗ 0.791 0.782
Uf 0.454∗∗ 0.648 0.815 0.726 0.412∗∗ 0.626 0.808 0.722
Ue 0.450∗∗ 0.672 0.780 0.746 0.388∗∗ 0.651 0.782 0.724
Up 0.460∗∗ 0 .562 ∗∗ 0.755 0.667 0.410∗∗ 0 .541 ∗ 0.767 0 .648

D: Mean Model

Mean 0.387∗∗ 0.506∗∗ 0 .714 0.701 0.335∗∗ 0.477∗∗ 0 .720 0.696

Note: The table reports the RMSE relative to an ARDL(12,12,12) comprising lagged values of the
endogenous money growth variable, a real income measure and an opportunity cost measure. We also
report the test results on equal predictive accuracy using the test proposed by Diebold and Mariano
(1995) under a quad-quad loss function. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent
level for the Diebold-Mariano test. The 1st, 2nd and 3rd lowest relative RMSEs are highlighted by fat,
underlined and italic font, respectively. All model forecasts are estimated by means of a rolling-window
regression with width Ts = 120 observations. Based on 384 out-of-sample forecast errors for which the
�rst observation for the forecast horizon h = 1 is given for 1983m1, we compute the statistics of interest.

Table A8: Relative RMSE and Diebold-Mariano test results for growth of household-sector M2
using a rolling-window with width Ts = 120 observations.
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Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Mod. I 0 .229 ∗∗∗ 0.094 −0.071 −0.066 0.234∗∗∗ 0.109 −0.228∗ −0.165
Uπ 0.081 0.136∗ 0 .066 0.022 0.151 0.172∗ −0.037 −0.145
Us 0.208∗∗∗ 0.053 0.006 −0.003 0.231∗∗ 0.043 −0.083 −0.102
Uv 0.244∗∗∗ 0.062 −0.025 −0.034 0.272∗∗∗ −0.040 −0.184∗ −0.226∗∗

Uf 0.152∗∗ 0.084 −0.027 −0.031 0.207∗∗ 0.082 −0.084 −0.124
Ue 0.066 0.048 −0.146∗ −0.065 0.088 0.086 −0.203∗ −0.118
Up 0.217∗∗∗ 0.165∗∗∗ 0.070 0.070 0.276∗∗∗ 0.215∗∗ 0.070 0.070

B: G2S

Mod. I 0.247∗∗∗ 0.084 −0.109 −0.131∗ 0.340∗∗∗ 0.111 −0.268∗∗ −0.185
Uπ 0.099 0.084 −0.068 −0.025 0.193∗ 0.091 −0.182 −0.040
Us 0.199∗∗∗ 0 .138 ∗ 0.003 −0.130∗ 0.232∗∗ 0.063 −0.146 −0.224∗∗

Uv 0.148∗∗ 0.090 −0.009 0 .026 0.146 0.025 −0.162 −0.120
Uf 0.070 −0.016 −0.143∗∗ −0.190∗∗ 0.168 −0.041 −0.245∗∗ −0.327∗∗∗

Ue 0.114 0.017 −0.143∗ 0.015 0.233∗∗ 0.090 −0.139 −0.056
Up 0.202∗∗∗ 0.108 −0.104 0.015 0.277∗∗∗ 0.195∗∗ −0.117 0 .028

C: S2G

Mod. I 0.148∗ 0.103 −0.053 −0.047 0 .337 ∗∗∗ 0.107 −0.146 −0.125
Uπ 0.198∗∗ 0.122∗ −0.040 0.010 0.398∗∗∗ 0.167 −0.040 −0.020
Us 0.154∗ 0.166∗∗ 0.045 −0.094 0.274∗∗∗ 0 .190 −0.084 −0.274∗∗

Uv 0.117 −0.058 −0.071 0.002 0.168 −0.063 −0.104 −0.082
Uf 0.053 −0.049 −0.272∗∗∗ −0.051 0.144 0.021 −0.292∗∗ −0.101
Ue 0.090 0.003 −0.047 −0.037 0.174∗∗ −0.033 −0.073 −0.012
Up 0.159∗∗ 0.107 0.116 0.156∗∗ 0.235∗∗ 0.067 0.127 0.108

D: Mean Model

Mean 0.194∗∗∗ 0.107 −0.075 −0.083 0.276∗∗∗ 0.109 −0.205∗ −0.142

Note: The table reports the Kiupers score as the di�erence between the hit-rate and the false-alarm rate. We also
report the test results on predictive failure using the test proposed by Pesaran (2015) with HAC standard errors.
∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Pesaran-Timmermann test. The 1st, 2nd
and 3rd hightest Kiupers Scores are highlighted by fat, underlined and italic font, respectively. All model forecasts
are estimated by means of a rolling-window regression with width Ts = 84 observations. Based on 384 out-of-sample
forecast errors for which the �rst observation for the forecast horizon h = 1 is given for 1983m1, we compute the
statistics of interest.

Table A9: Kiupers score and Pesaran-Timmermann test results for growth of household-sector
M2 using a rolling-window with width Ts = 84 observations.
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Model h=1 h=2 h=6 h=9 h=1 h=2 h=6 h=9

2000m1�2014m12 2007m1�2014m12

A: Full Model

Mod. I 0.218∗∗∗ 0 .181 ∗∗ −0.037 −0.045 0.293∗∗∗ 0 .212 ∗∗ −0.102 −0.123
Uπ 0.250∗∗∗ 0.164∗∗ 0.058 0.019 0.317∗∗∗ 0.068 0.025 0.001
Us 0.277∗∗∗ 0.147 0.025 −0.047 0.250∗∗ 0.082 −0.064 −0.251∗∗

Uv 0.209∗∗ 0.052 0.011 0.024 0.334∗∗∗ 0.000 −0.108 −0.129
Uf 0.196∗∗∗ 0.117 0.043 0.017 0.251∗∗∗ 0.146 0.063 0.000
Ue 0.181∗∗ 0.056 −0.093 −0.026 0.274∗∗∗ 0.087 −0.140 −0.056
Up 0.233∗∗∗ 0.137∗ 0.049 0.097 0.317∗∗∗ 0.215∗∗ 0.049 0.090

B: G2S

Mod. I 0.175∗∗ 0.171∗∗ −0.029 −0.073 0.337∗∗∗ 0.171∗ −0.099 −0.146
Uπ 0.193∗∗∗ 0.210∗∗∗ −0.009 0 .072 0.359∗∗∗ 0.150 −0.078 0.000
Us 0.178∗∗ 0.128 −0.039 −0.012 0.169 0.065 −0.144 −0.209∗

Uv 0.218∗∗ 0.098 −0.022 −0.024 0.333∗∗∗ 0.124 −0.109 −0.169
Uf 0.288∗∗∗ 0.103 −0.077 0.017 0.334∗∗∗ 0.146 −0.143 −0.083
Ue 0.074 −0.049 −0.039 −0.075 0.171∗ 0.003 −0.100 −0.077
Up 0.238∗∗∗ 0.185∗∗ 0 .054 0.131∗ 0.274∗∗∗ 0.232∗∗ 0 .047 0.131

C: S2G

Mod. I 0.231∗∗∗ 0.135∗ 0.021 −0.067 0.274∗∗∗ 0.087 −0.080 −0.145
Uπ 0.230∗∗∗ 0.111 0.065 −0.047 0 .357 ∗∗∗ 0.149 −0.040 −0.143
Us 0.203∗∗ 0.141∗∗ 0.013 −0.004 0.232∗∗ 0.006 −0.125 −0.272∗∗

Uv 0.174∗∗ 0.024 −0.099 −0.086 0.232∗∗∗ −0.020 −0.185 −0.228∗

Uf 0.264∗∗∗ 0.082 0.003 0.013 0.313∗∗∗ 0.063 −0.062 −0.018
Ue 0.187∗∗∗ 0.086 −0.090 0.012 0.257∗∗∗ 0.052 −0.095 0.010
Up 0.196∗∗∗ 0.144∗∗ 0.010 0.057 0.274∗∗∗ 0.150 −0.082 0 .043

D: Mean Model

Mean 0 .276 ∗∗∗ 0.156∗∗ −0.037 −0.008 0.359∗∗∗ 0.192∗ −0.144 −0.104

Note: The table reports the Kiupers score as the di�erence between the hit-rate and the false-alarm rate. We
also report the test results on predictive failure using the test proposed by Pesaran (2015) with HAC standard
errors. ∗ ∗ ∗, ∗∗ and ∗ indicates signi�cance at the 1, 5 and 10 percent level for the Pesaran-Timmermann test.
The 1st, 2nd and 3rd hightest Kiupers Scores are highlighted by fat, underlined and italic font, respectively.
All model forecasts are estimated by means of a rolling-window regression with width Ts = 120 observations.
Based on 384 out-of-sample forecast errors for which the �rst observation for the forecast horizon h = 1 is
given for 1983m1, we compute the statistics of interest.

Table A10: Kiupers score and Pesaran-Timmermann test results for growth of household-sector
M2 using a rolling-window with width Ts = 120 observations.
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