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Axion scenarios in which the spontaneous breaking of the Peccei-Quinn symmetry takes place before or
during inflation, and in which axion dark matter arises from the misalignment mechanism, can be con-
strained by Cosmic Microwave Background isocurvature bounds. Dark matter isocurvature is thought to
be suppressed in models with axion-inflaton interactions, for which axion perturbations are assumed to
freeze at horizon crossing during inflation. However, this assumption can be an oversimplification due to
the interactions themselves. In particular, non-perturbative effects during reheating may lead to a dra-
matic growth of axion perturbations. We perform lattice calculations in two models in which the Peccei-
Quinn field participates in inflation. We find that the growth of axion perturbations is such that the Peccei-
Quinn symmetry is restored for an axion decay constantfA . 1016-1017GeV, leading to an over-abundance
of dark matter, unless fA . 2× 1011 GeV. For fA & 1016-1017GeV we still find a large growth of axion per-
turbations at low momentum, such that a naive extrapolation to CMB scales suggests a violation of the
isocurvature bounds.
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I. THE AXION AND ISOCURVATURE FLUCTUATIONS

In the Standard Model of particle physics (SM), the amount of violation of CP symmetry in the strong interactions
can be quantified by a single real number: the θQCD parameter of Quantum Chromodynamics (QCD). This quantity
is sourced by CP violating interactions between gluons and the CP violating phase of the quark mass mixing matrix.
Measurements of the electric dipole moment of the neutron have set the very stringent bound θQCD . 10−10 [1],
meaning an extremely low level of CP violation in the strong sector of the SM. Since there is a priori no reason for the
strong interactions to be CP invariant (and the level of CP violation in weak interactions is much more significant)
the origin of this bound –which has been termed the strong CP problem– is considered one of the main puzzles of
theoretical particle physics and a compelling motivation for extending the SM.1 The problem may be pushed away by
simply positing that θQCD is very small by sheer chance. However, in physics, and in quantum field theory in particular,
the appearance of unexpected zeros or nearly vanishing quantities, such as θQCD, often signals the existence of an
underlying symmetry or a dynamical mechanism at play. The most popular solution to the strong CP problem features
both, as it is based on the spontaneous (i.e. dynamical) breaking of a new U(1) global symmetry. This (Peccei-Quinn
or PQ) symmetry [3] effectively promotes θQCD to a field (often denoted as A) which dynamically settles to A = 0,
thus solving the strong CP problem. This happens because the PQ symmetry is anomalous under QCD, in such a way
that nonperturbative QCD effects generate a potential for A with a minimum at A = 0 [4]. The pseudo-Goldstone
boson arising from the spontaneous breaking of the PQ symmetry [5, 6] is called the axion and its massmA is inversely
proportional to the energy scale fA at which the PQ symmetry is broken. A calculation from chiral perturbation theory
gives [7]:

mA ' 5.691(51)

(
1012GeV

fA

)
µeV . (1)

When the expansion rate of the Universe becomes smaller than mA (we use c = ~ = 1), the axion field undergoes
classical oscillations around the minimum of its (approximately quadratic) potential, behaving as a pressureless perfect
fluid and contributing to the cold dark matter content of the Universe. This is known as “misalignment mechanism”
[8–10]. The cosmological energy density of this axion condensate depends on fA and the initial conditions for the axion
field in the radiation era. The latter depend on how the PQ symmetry breaks in the early Universe, and more concretely
during primordial inflation and the subsequent reheating process. The details of this breaking also determine whether
the decay of topological defects formed due to the breaking of the PQ symmetry contribute to the relic axion density.
If fA lies in the adequate range of values (which depends on the PQ breaking history), the axion can account for the
totality of the (cold) dark matter in the Universe. This enhances the appeal of the axion solution to the strong CP
problem.

If the PQ symmetry is broken after inflation –the so-called post-inflationary scenario– the axion field takes random
initial conditions in different patches of the Universe, with an expected average of A/fA ∼ O(1). In this scenario,
axions sourced by the decay of cosmological defects (axion strings) at the intersection of patches with different initial
values of A/fA do contribute to the dark matter abundance. Neglecting these contributions gives a lower bound on
the axion dark matter abundance that only depends on fA (see e.g. [11]),

ΩA h
2 & 0.12

(
fA

2× 1011GeV

)7/6

, (2)

where, by convention, the O(1) parameter h is defined through the value of the current Hubble constant H0 =
100h km/s/Mpc, and we have chosen to normalize the expression so that the prefactor agrees with the observational
measurements of the dark matter abundance [12]. This leads to models with fA . 2 × 1011 GeV, and axion masses
mA & 28-100µeV. While the upper bound in fA (lower bound in mA) is known precisely from the results in Ref. [11],
there remains a sizable theoretical uncertainty coming from the difficulty of estimating the contributions of decaying
strings [13–16], which can shift the preferred values ofmA and fA by up to an order of magnitude with respect to those
saturating the bound of Eq. (2) [16].

Equation (2) implies that fA � 1011GeV is incompatible with the post-inflationary scenario. Such high values of
fA are particularly motivated by grand unified theories in which the axion decay constant may be tied to the unifica-
tion scale [17–28]. Hence, for large axion decay constants one has to consider the possibility that the PQ symmetry is
spontaneously broken before or during inflation and never restored afterwards. This scenario (commonly dubbed pre-
inflationary), will be the focus of this paper, with the aim of assessing whether minimal high-scale axion models can
have consistent cosmological histories. The pre-inflationary scenario requires fA to be larger than the Hubble scale
during inflation, Hinf and that the PQ symmetry is not restored during reheating, either thermally or non-thermally.

1 The standard understanding of the strong CP problem has been recently questioned in Ref. [2].
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Any topological defects produced after the symmetry is broken are diluted away by inflation and do not contribute to
the axion energy density. In this case, since no large axion perturbations are generated during and after inflation, one
can assume that our current Hubble patch comes from a region with a common initial A/fA, which is denoted as θi
and is often called misalignment angle. In the pre-inflationary scenario the axion abundance depends on both fA and
θi as [11],

ΩA h
2 ' 0.12

(
θi

0.004

)2(
fA

1016GeV

)7/6

. (3)

For fA near the typical unification scale of 1016 GeV the axion mass of Eq. (1) is of the order of neV. A large number of
experiments (ALPS [29], CAST [30], ABRACADABRA [31], ADMX [32], CULTASK [33], SHAFT [34], CAPP [35], HAYSTAC
[36], ORGAN [37], QUAX [38]) search for axions across the range 108GeV . fA . 1018GeV and several other are
proposed to join the search in the near future (ARIADNE [39], BRASS [40], CASPEr [41], KLASH [42], MADMAX [43],
IAXO [44]). Most experimental efforts exploit the generically unavoidable coupling between axions and photons; see
[45] for a review. ABRACADABRA (and the future DM Radio Cubic Meter experiment) as well as CASPEr are of particular
interest for models in which fA is O(1016) GeV as they could probe the axion masses at (DM Radio Cubic Meter) or
near (CASPEr: mA < neV) the range of masses associated with values of fA tied to the scale of grand unification.
In general, values of fA below∼ few × 108 GeV are excluded by neutrino data from the supernova SN1987A [46, 47].
Values of fA above∼ 1018GeV have been argued to be ruled out due to the non-observation of gravitational waves from
axion induced superradiance on black holes [48]. Both limits suffer from astrophysical uncertainties. For instance, the
supernova bound has been questioned in [49].

Since the axion fluctuations generated during inflation in the pre-inflationary scenario are not erased by later pro-
cesses, they can affect the Cosmic Microwave Background (CMB) as isocurvature fluctuations in the cosmological
plasma during the radiation era. These are fluctuations in the energy densities ρi of different particle species in the
plasma satisfying:

δρi
ρi + pi

6= δρj
ρj + pj

, for i 6= j, (4)

(see Appendix A for more details). If all species enter thermal equilibrium in the radiation era before decoupling, such
isocurvature fluctuations are absent from the CMB since δρi/(ρi + pi) = (3/4)δρi/ρi = 3δT/T . In a pre-inflationary
scenario, however, the axions do not reach thermal equilibrium with the plasma. The axion interactions are suppressed
by inverse powers of fA, and for their rates to become large enough to achieve equilibration T > fA is needed, which
in general would lead to a thermal restoration of the PQ symmetry. Hence, one expects isocurvature fluctations which
are stringently constrained by the CMB data from Planck [50]. Treating the axion as massless, assuming its fluctuations
freeze at horizon crossing during inflation and allowing for the value of fA during inflation (fA,inf ) to be different from
that corresponding to the minimum of the axion potential, the CMB isocurvature constraint can be written as follows
(see the discussion in Section III)(

fA
1016 GeV

)7/6(
Hinf

109 GeV

)2(
fA,inf

1016 GeV

)−2

. 1. (5)

In general, it is assumed that fA,inf = fA, so that the isocurvature bound can be avoided if the inflationary Hubble
scale Hinf is sufficiently small. This requires Hinf < 109 GeV, for fA > 1016 GeV. Such a value of Hinf is very small. In
particular, it is at odds with simple large-field models, e.g. such as those featuring an inflaton with a flattened potential
due to a coupling to the Ricci scalar (see e.g. [51] as an example of such a non-minimal quartic chaotic inflation model),
for which typical values ofHinf are above 1013 GeV. 2

At face value, the bound of Eq. (5) implies that pre-inflationary axion dark matter scenarios, including those inspired
by grand unification, are incompatible with standard (high-scale) inflation. Possible ways to avoid this stringent isocur-
vature bound have been proposed in the literature. For example, as is clear from Eq. (5), taking fA,inf � fA can help
suppressing isocurvature fluctuations, and this can be achieved if the axion is embedded into a complex scalar whose
modulus drives inflation with fA,inf ∼MP [52–54]. In this case, the isocurvature bound can be satisfied withHinf and
fA around 1013 GeV. The SMASH model [53, 55] is a particular example of an axion embedded into the inflaton. It was
shown in [53] that CMB isocurvature fluctuations are suppressed in SMASH if fA . 1014 GeV. However, even for these
values of fA the PQ symmetry is restored in this model during preheating, and it was concluded in [53] that there was
no room for viable PQ breaking before or during inflation. In fact, in Ref. [53] it was argued that the PQ restoration
would not take place for fA & 4× 1016 GeV, although this was not confirmed with dedicated reheating simulations.

2 For single-field inflationary models with Hinf < 109 GeV the amount of B-modes from primordial gravitational waves that would be produced at
CMB scales would be unobservable with any conceivable future probe.
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Other possible mechanisms to avoid the axion isocurvature bound rely on violating some of the assumptions leading
to Eq. (5). A possibility is that the axion was not massless during inflation but heavier thanHinf . Then, its fluctuations
during inflation would become suppressed. This was considered in Ref. [56], where the extra contributions to the axion
mass arise from interactions of the complex field containing the axion with a complex inflaton.

The analysis of the fate of isocurvature fluctuations in both of the above types of scenarios can however be improved.
First, in the models of Refs. [52–55] it was not taken into account that as long as the fields are not at the minimum of
the potential the axion field is not massless (note that Goldstone’s theorem only applies at the potential minimum).
It thus remains to analyze the impact of this mass in the axion perturbations during inflation. Furthermore, the cal-
culations always assumed that the axion perturbations froze after horizon crossing and stopped evolving afterwards.
Such assumption was also made in the model of Ref. [56]. However, the freezout at horizon crossing is not guaranteed
for fields with nonzero masses, such as the axion during the oscillations of the background throughout the reheating
process. In particular, the axion modes can be tachyonic, and this can lead to an explosive growth of perturbations.

The aim of this paper is to reconsider the previous calculations in the literature concerning the predicted spectrum
of axion isocurvature fluctuations, by abandoning the assumptions of masslessness during inflation and the freezing
of perturbations at horizon crossing. We will follow the evolution of the axion perturbations both in the linear regime
during inflation –solving uncoupled differential equations for the different momentum modes– and in the nonlinear
regime of reheating –carrying out lattice simulations for the evolution of the axion and other fields like the inflaton and
the Higgs, using initial conditions obtained from the results in the linear regime. We consider as examples the scalar
sector of SMASH and a two-field model inspired by Ref. [56]. With respect to SMASH, a secondary aim of our calculation
will be to extend the reheating simulations of Ref. [53] revisiting the conclusion that the PQ restoration is expected to
be avoided for fA & 4 × 1016 GeV, which was based on extrapolations of simulations for much smaller values of
fA. Our results show that during reheating the axion perturbations in both models go through a phase of exponential
amplification, after which the isocurvature power spectrum decays with the inverse square of the scale factor of the
universe. The initial amplification can lead to a restoration of the PQ symmetry for axion decay constants smaller than
1016-1017 GeV, while for higher values we find that a naive extrapolation of the isocurvature power spectrum to CMB
scales would exceed the Planck bound.

The paper is organized as follows. In Section II we describe the models analyzed in the paper. Section III is devoted
to recovering the usual estimates of the axion isocurvature bounds, and to describe the improvements carried out in
the paper. The results of our calculations of the evolution of the power spectrum of axion perturbations during and
after inflation are given in Section V. We conclude in Section VI. Additional details are given in appendices. Appendix A
summarizes the definition and relevant properties of isocurvature fluctuations, while Appendix B focuses then on those
sourced by axions. The axion mass controlling this source is discussed in Appendix C. Details on the treatment of Higgs
decays are given in Appendix D, while consistency checks of the lattice computations using a mean-field approximation
are provided in Appendix E.

II. MODEL SETUP

In this section we describe the two models to be analyzed in the paper, which correspond to the two ways to relax
the axion isocurvature bound mentioned in the introduction. Aside from the Higgs scalar, Model 1 features an axion
with large fA,inf coming from a complex scalar whose modulus plays the role of the inflaton. Model 2 features two new
complex scalars, one responsible for driving inflation and one containing the phase associated with the axion, which
is rendered very massive during inflation.

A. Model 1: axion embedded into a complex inflaton

We consider a complex scalar σ, non-minimally coupled to gravity, with a global U(1)PQ symmetry and a portal
coupling to the SM Higgs H . This is the scalar field content of the SMASH model [53, 55]. The action contains the
following terms:

S ⊃
∫
d4x
√
−gJ

[
−

(
M2
p + ξ(2|σ|2 − f2

A)

2

)
RJ + |∂σ|2 − VJ(|σ|, H)

]
. (6)

Here RJ is the Ricci scalar of spacetime curvature (in the so-called Jordan frame) and ξ . O(1) is a dimensionless
coupling. We assume the usual scalar potential for the PQ field σ supplemented with a portal coupling to the Higgs,

VJ = VSM +
1

4
λσ
(
ρ2 − f2

A

)2
+λHσ

(
H†H − v2

2

)
ρ2 , (7)
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FIG. 1: (a) The evolution of the isocurvature mass squared, Eq. (14), during inflation as a function of the number of e-folds in
units of the Hubble scale H for three values of the non-minimal coupling, ξ. (b) The evolution of the isocurvature mass squared
after inflation as function of (rescaled) conformal time of Eq. (15). We evaluate the isocurvature mass on the averaged background
obtained from a lattice simulation with ξ = 0, but with initial conditions of the fields given by their evolution during inflation
with ξ = 0.1 consistent with section V. At the end of inflation the ξ corrections to the isocurvature mass are almost negligible. For
comparison we also show the linear evolution where backreaction on the background has been neglected (black, dotted) with the
same initial field amplitudes and the ξ-dependent corrections to the mass neglected.

where VSM is the Standard Model Higgs potential, and

σ =
ρ√
2
eiθ =

ρ√
2
eiA/ρ . (8)

The fieldA = ρθ corresponds to the axion, with a canonical normalization in the Jordan frame. In Eq. (7) v denotes the
usual Higgs vacuum expectation value (VEV) at the electroweak scale. In our calculations, v will be much below the
physical scales relevant for the dynamics of the axion fluctuations, and its effect can be ignored. For our considerations
the most important feature of the potential is that it has its global minimum at a nonzero value of ρ: fA = 〈ρ〉. Our
findings should, however, also apply to more general setups featuring a global U(1) symmetry. For instance, when the
minimum of the potential is set by another scale.3 Moreover, we expect that Planck-suppressed operators in VJ may
modify the inflationary dynamics, but not substantially the reheating dynamics, which is the most relevant phase for
our analysis. Focusing on inflationary backgrounds where the Higgs satisfiesH = 0, and carrying out a Weyl transfor-
mation of the metric, the corresponding Einstein frame action for σ reads

S(σ,H = 0) =

∫
d4x
√
−g

[
−
M2
p

2
R+Gij∂µφ

i∂µφ
j − V (ρ)

]
, (9)

with φ = (ρ, θ). The Weyl transformation is characterized by

Ω2 = 1 + ξ
ρ2 − f2

A

M2
p

, (10)

such that the resulting scalar potential is given by V (ρ) = VJ(ρ)/Ω4(ρ), and the nonzero components of the field
metric are

Gρρ =
1

Ω2

(
1 + 6 ξ2 ρ2

M2
p Ω2

)
, GAA =

Gθθ
ρ2

=
1

Ω2
. (11)

In this model the CMB constraints [50] are satisfied for ξ & 0.003 (or ξ & 0.007 if the Universe enters radiation
domination immediately after inflation, as in SMASH), see e.g. [55] and the more recent analysis in [57]. Perturbative
unitarity requires ξ < 1 [58, 59] and we will use ξ = 0.1 for our calculations.4

3 In particular, when the quadratic and quartic terms are related by a single scale it should be straightforward to generalize our findings.
4 The issue of unitarity in Higgs inflation is still being explored in the literatture, [60–62].
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The (first order and canonically normalized) gauge invariant perturbation corresponding to the field direction or-
thogonal to the inflationary trajectory is (see e.g. [63]),

F =
√
Gθθ δθ. (12)

The superhorizon modes ofF evolve according to the equation

∂2F
∂N2

+ (3− ε) ∂F
∂N

+
m2

iso
H2
F = 0 , (13)

whereN is the number of e-folds (dN = H dt) and ε = −d logH/dN . Gauge invariance requires the mass squaredm2
iso

of these modes to be defined including the curvature of the field manifold, described by the metric whose components
are given in (11). Its expression is (approximately)

m2
A =

1− ξf2
A/M

2
p

Ω4(Ω2 + 6ξρ2/M2
p )
λσ
(
ρ2 − f2

A

)
. (14)

It may be somewhat surprising to have a mass associated to the axion direction, given that the potentialV (ρ) is formally
independent of it. However, the usual definition of masses in terms of second-order partial derivatives of the potential
is not invariant under field redefinitions, and is not the most adequate for describing gauge invariant fluctuations.
The usual definition only agrees with the one invariant under field redefinitions if the kinetic terms are diagonal and
canonically normalized. This happens in our case if we use the basis σ = 1/

√
2(σr + iσθ), in the Jordan frame. The

details of the construction of the field-redefinition-invariant masses are given in Appendix C.
During inflation, with ρ � fA, the axion perturbation mass is not zero, and it can have an effect in their evolution

for superhorizon scales before the end of inflation, which (to the best of our knowledge) has so far not been taken into
account in the literature. After inflation, with the background ρ oscillating around the minimum of the potential and
passing through values with ρ < fA, the mass of the axion perturbations can become temporarily tachyonic. This is
expected to lead to an exponential growth of axion perturbations. As the latter can evolve to becomeO(1), the linear
treatment of the growth of breaks down and so does eventually any perturbative analysis. For this reason we will resort
to nonperturbative lattice simulations.

In Figure 1 we show the evolution of the isocurvature mass during (left figure) and after inflation (right figure). During
inflation the natural time scale is the Hubble time 1/H , so we plot the isocurvature mass as a function of the number
of e-folds and in units of the Hubble rate. We chooseN = 0 to be the end of inflation. After inflation, the natural time
scale of oscillations in a quartic potential is captured by the following dimensionless rescaled conformal time variable,

τ =

∫
Bdt

a
, with B ≡

√
λσρend, (15)

where ρend is the value of the background radial field at the end of inflation. Therefore, we plot the isocurvature mass
as a function of τ and in units of B/a. We choose τ = 0 at the end of inflation. Deep inside the epoch of inflation the
isocurvature mass is non-zero but positive and in the slow-roll approximation is given by

m2
A

H2
≈ 3

−2N

1 + 6ξ

1− 8ξN
. (16)

For small ξ � 1/|N | the mass scales like 1/N , whereas for larger ξ it is suppressed as 1/N2, though it rises faster at the
end of inflation. This results into a slightly enhanced suppression of the amplitude of isocurvature perturbations for
small values of ξ, see section IV. After inflation we neglect the ξ-dependent contributions to the isocurvature mass but
use ξ = 0.1 to set the initial field value ρend. In the figure fA = 5 × 1017 GeV, which sets τ ∼ 15 for the time at which
the radial field starts to oscillate around the true minimum. From the right figure it is clear that the isocurvature per-
turbations experience multiple periods of tachyonic instability. This suggests that lattice simulations will be required
to capture the strongly non-linear evolution of all fields.

B. Model 2: axion interacting with a complex inflaton

Inspired by Ref. [56], Model 2 includes two complex scalar fieldsσ andφwith opposite PQ charges. At late times, only
σ is assumed to develop a VEV that breaks the PQ symmetry, so that the axion is contained in the phase of σ. The field
φ is assumed to be the main driver of inflation. In order to have a pre-inflationary axion scenario with a well defined
initial misalignment angle, the inflationary trajectory should have |σ| 6= 0, which can be achieved provided that a
specific combination of quartic couplings is negative (see below). The PQ symmetry is compatible with an interaction
term∼ σ2φ2 + h.c. that yields a mass for the imaginary component of σ if φ takes a non-zero expectation value during
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inflation. This could drastically suppress the amplitude of isocurvature perturbations during inflation and relax the
axion isocurvature problem [56].

The scalar potential of the model in the Jordan frame is given by

VJ =VH + λσ

(
|σ|2 − f2

A

2

)2

+m2
φ|φ|2 + λφ|φ|4 + 2λφσ|φ|2

(
|σ|2 − f2

A

2

)
+ 2λ̂φσ

(
φ2σ2 + h.c.

)
(17)

+2λHφ

(
H†H − v2

h

2

)
φ†φ+ 2λHσ

(
H†H − v2

h

2

)(
σ†σ − v2

σ

2

)
, (18)

where an interaction term ∼ φσ is forbidden if we endow σ with an extra Z2 symmetry. As in Model 1, we consider
nonminimal gravitational couplings

L ⊃ −1

2

(
ξσ(2|σ|2 − f2

A) + 2ξφ|φ|2
)
RJ . (19)

For large field values and negative values of 2λ̂φσ + λφσ , an inflationary valley arises in the direction

|σ|2

|φ|2
≈ − (2λ̂φσ + λφσ)

λσ
≡ tanω, (20)

along which the potential can be captured by an effective quartic interaction with coupling

λinf = cos4 ω

(
λφ −

4λ̂2
φσ

λσ

)
. (21)

We will further assume that |2λ̂φσ + λφσ| � λσ , such that the inflationary trajectory is mainly aligned with φ. For
achieving a flat potential in the Einstein frame compatible with the CMB constraints we consider a non-zero non-
minimal coupling ξφ, whereas we may set ξσ = 0 for simplicity. Parametrizing

σ =
ρσ√

2
eiA/ρσ , and φ =

ρφ√
2
eib, (22)

and considering the limitω ≈ 0, λφσ � λ̂φσ one can estimate the isocurvature mass during inflation with the covariant
formalism of Appendix C. In the limit ρφ � fA this gives

m2
A,inf ∼ −

4ρ2
φλ̂φσ

Ω2
φ

−
ξρ4
φλφ

Ω4
φ

(
ξ(6ξ + 1)ρ2

φ + 1
) , (23)

where

Ω2
φ = 1 +

ξφρ
2
φ

M2
P

. (24)

In Eq. (23) we included a subscript “inf” for the axion mass to emphasize that the expression is only valid along the
inflationary valley of Eq. (20). For large field values during inflation, with ξρ2

φ/M
2
p > 1, one has m2

A ∼ −4λ̂φσM
2
P /ξφ.

On the other hand, for such field values the Hubble rate scales like

H2 ∼ VE
3M2

p

∼ λφM
2
P

12ξ2
φ

. (25)

Fitting the temperature power spectrum of the CMB requires ξφ ∼ 2× 105
√
λφ [51], which leads to

m2
A

H2
∼ −106λ̂φσ√

λφ
,

ξφρ
2
φ

M2
P

> 1. (26)

Hence, even for |λ̂φσ| ∼
√
λφ the axion becomes very massive during inflation, and its power spectrum suppressed.

As before, we will focus on ξφ = 0.1, so that the CMB constraint can be satisfied for λinf ∼ 10−11. Taking λ̂φσ =

−10−7, λ̂σ = 10−5 ensures then that the axion remains very heavy during inflation and that the angle ω stays small
(see Eq. (21)). After inflation the isocurvature perturbation may nevertheless be enhanced due to nonperturbative
effects during preheating, which were not considered in Ref. [56]. We will include such effects by performing lattice
simulations.
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III. REVISITING THE COMPUTATION OF THE ISOCURVATURE BOUND

In order to connect the primordial isocurvature perturbation to the dark matter - photon isocurvature component,
that has been constrained by the CMB [50], we assume that all species, except for the axions, reach thermodynamic
equilibrium after reheating has completed. In SMASH for example, the quantitative estimates in Ref. [53] showed that
the number densities of SM particles produced during reheating where high enough to achieve interaction rates above
the Hubble scale, which is expected to lead to the thermalization of the SM particles and of other particles with sizable
interactions with the former. In the scenarios with fA ∼ 1011 GeV that were the focus of Ref. [53], all particles including
the axion itself were expected to reach thermal equilibrium. Here we focus instead on models with larger values of fA
where the axion interactions are further suppressed, preventing equilibration.

The former assumption implies that the energy densities of all species other than the axion were once determined by
a common temperature, and hence they are adiabatic with respect to each other. We recall that in a relativistic thermal
plasma, with p = ρ/3 for all species in the plasma , δρi/(ρi + pi) = 3δT/T and the adiabaticity condition is always
satisfied, see Eq. (4). As reviewed in appendix A, the observable isocurvature perturbation between axions and photons
is then given by

SAγ ≈
θ2 − 〈θ2〉
〈θ2〉

. (27)

In a pre-inflationary scenario, the misalignment angle is θ(t, x) = θi + δθ(t, x) with 〈θ〉 ≈ θi. Defining the power
spectrum ∆X(t, |k|) for an observableX(t,k) as

〈X(t,k)X(t,k′)〉 ≡ 16π5

|k|3
δ(k + k′)∆X(t, |k|). (28)

Then, under the assumptions above, the power spectrum ∆SAγ (k?) ofSAγ at a reference scale k? can be approximated
as

∆SAγ (k?) ≈
4

θ2
i

∆δθ(k?). (29)

This follows directly from Eqs. (27), (28) keeping the leading terms in δθ. This power spectrum is to be contrasted with
that of the comoving curvature perturbations, ∆R(k?), which is dominated by the contribution from adiabatic modes.
∆R(k?) is constrained by CMB and baryon acoustic oscillations (BAO) measurements giving [12]

∆R(0.05 Mpc−1) = (2.5± 0.3)× 10−9. (30)

Taking all dark matter to be of axionic origin,5 created from the misalignment mechanism, our scenario is captured by
the so-called ‘Cold Dark matter Isocurvature’ (CDI) model [65, 66], which is commonly parametrized by the fraction

βiso(k?) ≡
∆SAγ (k?)

∆SAγ (k?) + ∆R(k?)
≈ 4

θ2
i

∆δθ(k?)

∆R(k?)
. (31)

In the last step we used βiso � 1 and plugged in Eq. (29). Currently the strongest constraint on the CDI fraction is
given by [50]

βiso(0.002 Mpc−1) . 0.035, (32)

considering that in our scenario the adiabatic and CDI modes are uncorrelated. At first sight this seems to force a rather
low scale of inflation, or else the model is ruled out [64, 67, 68]. Indeed, if we assume that the axion perturbations
acquire the variance of a massless scalar field during inflation, which freezes at horizon crossing:6

∆δθ,mA=0(k?) =

(
H

2πfA,inf

)2
∣∣∣∣∣
k?=aH

≡
(
Hinf(k?)

2πfA,inf

)2

, (33)

then, substituting Eq. (33) into Eq. (31), imposing Eq. (30) and the relic abundance constraint of Eq. (3) leads to

βiso,mA=0(k?) ∼ 0.03

(
fA

1016GeV

)7/6(
fA,inf

1016GeV

)−2(
Hinf(k?)

109GeV

)2

. (34)

5 The final prediction can be easily generalized assuming a smaller energy density of axionic dark matter ΩA < Ωdm (see e.g. [64]).
6 As mentioned in the introduction, we allow for a value of fA during inflation different to the one at late times.
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As mentioned in the introduction, for models with fA,inf = fA this is in tension with observations unless the Hubble
parameter is suppressed with respect to its typical values (H & 1013 GeV) in simple viable inflationary models involving
scalar fields with non-minimal gravitational couplings. In [52] it was however argued that, if the radial part of the PQ
field drives inflation, the effective decay constant changes during inflation [69], allowing fA,inf to take Planckian values,
and opening up the range 1012GeV . fA . 1015GeV to be compatible with observations for inflation driven by PQ
field with non-minimal gravitational couplings featuring H & 1013. The upper bound in the previous window of fA
was amended in Ref. [53] to fA . 1014 GeV, with the difference arising from the fact that fA,inf is not exactly equal to
the value of the canonically normalized real inflaton field.

Eq. (34) is based on two assumptions that are not necessarily valid: first, that the axions are massless during and
after inflation, and second, that the power spectrum remains frozen after horizon crossing during inflation. As seen
in the previous section, if the axion field is dynamical during inflation, Goldstone’s theorem does not apply and the
axion can develop a mass. This invalidates both of the above assumptions. Previous calculations in the literature have
not accounted for both effects simultaneously. With respect to models analogous to our Model 1, the estimates of
Refs. [52, 53] did not account for massive axion perturbations during inflation. In Ref. [53] it was emphasized how ax-
ion perturbations grew during reheating, and that axionic perturbations were expected to be resonantly amplified in a
window of momenta including zero, even when neglecting fA, leading to the possibility of tachyonic axion masses at
the origin (see Eq. (14)). This implies a violation of the second assumption above. For small enough fA, the axion fluc-
tuations seen in Ref. [53] during reheating actually lead to a non-thermal restoration of the PQ symmetry that remains
incompatible with pre-inflationary scenarios. Indeed, it is not clear whether the late time values of the time-dependent
isocurvature perturbations at the scales probed by the CMB can remain below the Planck bound. Besides, although
the growth of fluctuations was not explored in detail for large fA, it was hypothesized that the PQ restoration could
fail for fA & 1016 GeV: the perturbations grow exponentially when the background oscillates around the origin of field
space, and it was estimated that for fA & 1016 GeV the field would settle into a potential well before many oscillations
could be completed. This hypothesis will be tested in Section V. In regards to analogues of Model 2, the analysis of
Ref. [56] accounted for a large axion mass during inflation, suppressing the primordial isocurvature perturbations, but
still assumed their freezout at horizon crossing, and did not account for the possible growth of perturbations during
reheating.

In the next sections we will perform computations for models 1 and 2 that do not rely on the assumptions spelled
above. In section IV we will study the evolution of the isocurvature power spectrum during inflation, accounting for the
nonzero axion mass. In this regime perturbations are small and one can use a linear analysis, solving for the evolution
of the Fourier modes with a proper normalization that that allows to estimate directly the power spectra of quantum
fluctuations from the mode amplitudes. Once the power spectra are obtained up until the end of inflation, we will use
the results as initial conditions for a lattice simulation, which aims to capture the nonlinear effects expected when the
background oscillates after the end of inflation. This will be done in Section V.

IV. EVOLUTION OF ISOCURVATURE PERTURBATIONS DURING INFLATION

In this section we study the evolution of the power spectrum of cosmological perturbations, including axion isocur-
vature perturbations, during inflation. The power spectra are related to 2-point correlators of observables dependent
on spatial momenta k. For an observableX(t,k), its power spectrum ∆X(t, |k|) is defined as in Eq. (28). When choos-
ingX as an operator corresponding to the fluctuation δϕ̂n of a real scalar field, then, as is familiar from the expansion
of quantum fields in terms of creation and annihilation operators multiplied by mode functions that solve the classical
equations of motion, one can recover the quantum averages for fieldsϕn in terms of the mode functions. This requires
solving the evolution equations for the coefficients, and implementing the appropriate normalization such that for
modes well inside the horizon one recovers the usual Minkowski mode functions. That is, expressing

δϕ̂n(t,k) = an,kδϕn,k(t) + a†n,kδϕ
?
n,k(t) (35)

with
[an,k, a

†
n,k′ ] = (2π)3δ(3)(k− k′) (36)

one has

∆δϕn(t, |k|) =
|k|3

2π2
|δϕn,k(t)|2. (37)

Let us consider modes δϕn,k corresponding to multi-field fluctuations in a Friedmann-Robertson Walker (FRW) back-
ground metric ds2 = dt2 − a(t)2dx2 (withH = ȧ/a). In the Einstein frame, neglecting deviations metric in field space
with respect to a flat metric (which holds for small ξ) the equations of motion for the modes ϕn,k are [70]

δϕ̈n,k(t) + 3Hδ̇ϕn,k(t) +

(
|k|2

a2
δnm + ∂m∂nV (ϕ̄p)−

1

M2
Pa

3

d

dt

(
a3

H
˙̄ϕn ˙̄ϕm

))
δϕm,k(t) = 0. (38)
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In a field basis where the mixing between fields is absent, the boundary condition that recovers the Minkowski mode
functions well inside the horizon is

ϕn,k(t)→ e
−i|k|

∫ t
t0

dt′/a(t′)

21/2 (|k|2 + ∂2
nV (ϕ̄m))1/4

for |k| � a(t)H(t). (39)

In our models the axion field is contained in the phase θ of a complex field σ, with θ = arg σ. The inflationary back-
ground is assumed to be aligned with a direction of fixed θ̄ = θi, where θi is the misalignment angle entering the
dark-matter abundance constraint of Eq. (3). As follows from the latter equation, for large fA one has θi � 1 (assum-
ing all dark matter is in the form of axions), so that the inflationary trajectory is mostly aligned with the real part of σ.
For convenience we rotate our basis to be aligned with θi. In the new basis with a zero value of arg σ, the minimum of
the axion potential will be displaced from zero, so there is no conflict with the misalignment mechanism, in which θi
should be understood as the initial deviation of θ from the minimum of the axion potential. Writing

σ ≡ 1√
2

(σr + iσθ), (40)

then the axion isocurvature perturbation of Eq. (27) can be approximated to linear order as

SAγ ≈
2δσθ
θiσ̄r

. (41)

Thus we can estimateSAγ during inflation from the background value σ̄r and the real scalar fluctuation δσθ, which can
be computed by solving Eq. (38) with the appropriate mass and the boundary condition of Eq. (39). We note that in the
literature of inflation with multiple scalar fields, it is customary to define isocurvature perturbations during inflation
–see e.g. [63, 71]), where they are defined to be orthogonal to the inflationary trajectory– which in principle are not
straightforwardly related to the definition of isocurvature fluctuations in the plasma during the radiation era (reviewed
in Appendix C and which lead to Eq. (4)). In our models the inflationary trajectory will be aligned with σr. Thus σθ
corresponds to the orthogonal direction, and our SAγ of Eq. (41) is directly related to one of the isocurvature modes
often studied in multi-field inflationary models.

A. Model 1

Model 1 admits inflationary trajectories with a constant misalignment angle arg σ = θi, which we take to be very
small so as to satisfy the axion relic abundance constraint Eq. (3) for large fA. As mentioned before, we choose a field
basis (σr, σθ) such that the inflaton background field is aligned withσr and the mass matrix is diagonal. During inflation
fA � ρ and thus the results for the power spectra are essentially independent of fA. We choose ξ = 0.1, which requires
λ ' 1.27× 10−11 in order to fit the CMB constraint Eq. (30). We further choose λHσ = 10−6, motivated by the fact that
the SMASH model favours similar values in order to guarantee stability of the Higgs potential at large fields with respect
to quantum fluctuations of the top quark [53]. The power spectra of the perturbations δσr, δσθ, SAγ can be obtained
by using Eqs. (37) and (41). In spatially flat gauge the power spectrum of φr is related to that of the dimensionless
curvature perturbationR via

∆R =
H2

( ˙̄σr)2
∆δσr . (42)

The results for the power spectra at the end of inflation are illustrated in Fig. 2. As expected from the previous dis-
cussion, the power spectra of σi, SAγ are suppressed with respect to their values assuming masslessness, and there is
no freezing of the spectrum at horizon crossing. At the end of inflation, however, the suppression for ξ = 0.1 is mild
(just a factor of ∼ 2 for superhorizon modes). Note that the behaviour of the power spectra changes between super-
horizon (k < aendHend) and subhorizon (k > aendHend), where aend and Hend denote the scale factor and Hubble
constant at the end of inflation; we have used units with aend = 1. For subhorizon modes the power spectra approach
the Minkowski result following from Eq. (39). On the right panel of Fig. 2 we show both the curvature and isocurva-
ture perturbations, the latter for different choices of the misalignment angle θi corresponding to fA = 1014 GeV and
fA = 5× 1017 GeV (for all dark matter in axions). For the isocurvature power spectra on the right plot of Fig. 2, at each
value of fA we show not only the result obtained as detailed before (given by solid lines), but also when one neglects
the isocurvature mass (dashed lines), and when one not only neglects the isocurvature mass but further assumes that
the power spectrum freezes at horizon crossing (dotted lines). The latter case corresponds to the previous estimates in
the literature [53], according to which fA < 1014 GeV was thought to satisfy the isocurvature bounds. This can be seen
from the fact that the blue dotted line in Fig. 2, corresponding to the isocurvature power spectrum for fA = 1014 GeV in
the approximations of Ref. [53], remains safely below the extrapolation of the curvature power spectrum (solid orange
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line) to small CMB scales. However, for the improved estimation of the isocurvature power spectrum at fA = 1014 GeV
(solid blue line), one would infer a violation of the isocurvature bound if the spectra were to remain constant after
inflation. Assuming masslessness and freezout at horizon crossing underestimates the isocurvature power spectrum
by a factor that grows with decreasing k, and which is already of the order of 20 for the smallest scales in Fig. 2. Since
the better estimate of the isocurvature power spectrum flattens out at small scales, one can extrapolate the deviation
from the usual calculations to CMB scales, and again a factor around 25 is expected. Assuming masslessness but no
freezout at horizon crossing overpredicts the power spectrum by a factor of approximately 3.4 for the smaller scales in
the figure, which gives a factor around 4.5 when extrapolating to CMB scales. Note that if one assumes the fluctuation
δσ to be massless, its power spectrum freezes at horizon crossing as for any massless scalar in de Sitter. However, the
power spectrum of SAγ does not freeze out due to the additional suppression by σ̄r, as in Eq. (41).
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FIG. 2: Power spectra at the end of inflation in Model 1 for ξ = 0.1, λ = 1.27 × 10−11, λHσ = 10−6. The left plot gives the spectra
for σr (orange), σθ including mass effects (blue) or without them (dashed gray), and h (red). The right plot gives the dimensionless
power spectra for the curvature perturbation R (orange), and the axion isocurvature perturbation SAγ for fA = 5 × 1017 GeV
(red) and fA = 1014 GeV (blue). The dashed lines correspond to the result when mass effects are ignored, and the dotted lines
give the result when assuming masslessness and freezout of the power spectrum at horizon crossing, as in previous estimates in the
literature. The latter assumption underestimates the isocurvature spectrum at the end of inflation by a factor of the order of 20 for
small scales.

We can also use Eq. (13) to study the suppression of the super-horizon isocurvature spectrum for more general infla-
tionary scenarios with different values of ξ. We expect that similar results will apply for SAγ , given that due to Eq. (41),
one has SAγ ≈ F/σ̄r. We define a decay factor d(ξ, fA) that quantifies how much the isocurvature power spectrum
has decayed with respect to the massless case by the end of inflation, that is,

∆S(tend, k?) = e−d(ξ,fA)H
2
inf

4π2
. (43)

We evaluate the decay factor numerically, and find d(ξ = 0.001) ∼ 3.8, d(ξ = 0.01) ∼ 2.5, d(ξ = 0.1) ∼ 1.3 and d(ξ =
1) ∼ 0.8. Moreover, the decay factors decrease with increasing fA, but this becomes only relevant for fA & 0.1Mp. As
we will see in V, the enhancement factor after inflation is extremely large in comparison, rendering the precise value
of the decay factor irrelevant, and for practical purposes it suffices to know it isO(1).

B. Model 2

For this model we consider an inflationary background as in Eq. (20) and, similarly to Eq. (40), we define

φ =
1√
2

(φr + iφθ). (44)

Again, one can consider a small misalignment angle θi = argσ, and rotate the basis such that the background tra-
jectory is aligned with the fields σr and φr. With λφσ = 0, ξσ = 0, the effective inflationary quartic coupling along
the background trajectory is λinf = cos4 ω(λφ − 4λ̂2

φσ/λσ), and the effective nonminimal coupling is ξinf = cos2 ω ξφ,
where ω was defined in Eq. (20). A choice of parameters ensuring the same effective inflationary parameters as in the
example of Model 1, while also yielding very heavy axion fluctuations during inflation, is ξφ = 0.1, λφ = 4.01× 10−9,
λσ = 10−5, −λ̂φσ = λHφ = λHσ = 10−7. The resulting power spectra at the end of inflation for the fluctuations
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δφr/θ, δσr/θ are given in Fig. 2. Note how the fluctuations in σr/i are now heavily suppressed, yielding negligible axion
isocurvature fluctuations during inflation. We find that the power spectra for the massive fields can be recovered by
substituting in Eq. (37) the Minkowski mode functions of Eq. (39), even for superhorizon modes.
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FIG. 3: Power spectra at the end of inflation in Model 2 for ξφ = 0.1, ξσ = 0, λφ = 4.01 × 10−9, λσ = 10−5, λφσ = 0, −λ̂φσ =
λHφ = λHσ = 10−7. The spectra correspond to φr (orange), φi including mass effects (blue) or without them (dashed gray), h
(red), σr (brown), σi (black).

V. EVOLUTION OF ISOCURVATURE PERTURBATIONS AFTER INFLATION

In this section we study the impact of non-perturbative effects during reheating on the power spectrum of the isocur-
vature perturbationSAγ . For this we will take the power spectra at the end of inflation computed in the previous section,
and use them to set initial conditions for lattice simulations of the evolution of the scalar fields. Here we make use of
the fact that the quantum dynamics in high-occupancy states can be approximated by averaging over classical dynam-
ics with random initial conditions sampled from an initial quantum wave-function see [72] for a discussion in the case
of bosonic fields). The power spectra ∆δϕn(|k|) at the end of inflation are variances of the probability distribution for
the momentum modes of the fluctuations δϕn(|k|). Assuming Gaußianity we can generate a random sample of initial
fluctuations in Fourier space for each field. Once an initial condition is fixed, a classical evolution is performed. Even a
single classical simulation can capture the quantum dynamics, because within a fixed window of |k| there can be many
discrete lattice momenta whose initial conditions were sampled from the quantum probability distribution. Hence, a
single lattice simulation is in effect evolving in parallel many modes within a given momentum shell, and performing
averages over the momenta in the shell will capture the effect of quantum fluctuations. While the initial conditions and
the power spectra are then computed in Fourier space, the fields are evolved in configuration space including nonlinear
effects.

A. Model 1

1. Required suppression factor of isocurvature perturbations

Before embarking on the details of the lattice simulations, let us estimate the suppression factor κ of the power
spectrum of isocurvature perturbations compared to its value at the end of inflation, required to match the Planck
bound [50], that is

κ ≡
∆SAγ (tCMB, k?)

∆SAγ (tend, k?)
−→ βiso ≈ κ

∆SAγ (tend, k?)

∆R(k?)
< 0.035 . (45)

In the previous equation, tend and tCMB denote the time at the end of inflation and at photon decoupling, respectively.
In the second expression, we have omitted a time dependence in the curvature power spectrum assuming it freezes at
horizon crossing. We can then parametrize the isocurvature power spectrum at the end of inflation as (see Eqs. (29),
(12), (43))

∆SAγ (tend, k?) =
4e−d(ξ,fA)

Gθθθ2
in

(
Hinf(k?)

2π

)2

. (46)
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Computing Gθθ from Eq. (11), we find that at the end of inflation it takes values 0.4M2
p . Gθθ . 5M2

p as the non-
minimal coupling ranges between 1 > ξ > 10−3 . Meanwhile, the Hubble parameter varies between 1013 GeV <
Hinf < 1014 GeV [55]. Moreover, for sufficiently large fA, the misalignment angle can be determined assuming all the
DM in in the form of axions. Taking all this together we find that the maximal allowed value for the suppression factor
must be in the range

10−5 . κmax

(
fA

5 · 1017 GeV

)7/6

. 10−6 . (47)

2. Lattice simulations

In this section we focus on the evolution of the isocurvature perturbations after inflation, taking as initial conditions
the results of the previous sections for ξ = 0.1. For the post-inflationary evolution of the fields after inflation we assume
a flat FLRW background metric and neglect the effects of the nonminimal gravitational coupling whose effect is small
for small enough field values. We solve the evolution of the fields φi, φr, h and the scale factor of the metric, neglecting
metric perturbations. We describe the decay of the Higgs into SM particles through a decay term controlled by a rate
Γh (described in Appendix D). Analogous terms are not necessary for the fields φi, φr, as they only interact directly
among themselves and with the Higgs, and all these interactions are already included in the equations of motion. As
the Higgs excitations will decay into relativistic SM particles, we model the decay products in terms of a homogeneous
relativistic fluid with energy density ρSM(t) and pressure pSM(t) = ρSM(t)/3. We include the feedback of ρSM into the
evolution of the scale factor a(t), and we compute the time evolution of ρSM by imposing covariant conservation of the
total stress-energy momentum tensor up to effects from spatial gradients, as these are neglected for ρSM(t) itself. In
summary, we solve the following equations for φr(t, ~x), φi(t, ~x), h(t, ~x), a(t) and ρSM(t):

ϕ̈n + 3
ȧ

a
ϕ̇n −

1

a2
~∇2ϕn +

∂V (ϕm)

∂ϕn
+ Γnϕ̇n = 0,

ρ̇SM + 4
ȧ

a
ρSM − Γhḣ

2 = 0,

3M2
P

(
ȧ

a

)2

= ρSM + VJ +
1

2

∑
n

ϕ̇2
n +

1

2a2

∑
n

(∇φn)2 .

(48)

Where,n,m = 1, 2, 3, andϕ1 = σr,ϕ2 = σi,ϕ3 = h. We take Γ1 = Γ2 = 0, while for the decay rate Γ3 = Γh we take the
sum of the SM partial widths, collected in Appendix D, and substitute VEV insertions like 〈h2〉by averages ofh2 over the
lattice. For the Higgs mass squared we use the average of ∂2V/∂h2, and require a positive result; otherwise Γh is treated
as zero. We note that the SM decay rates into massive gauge bosons diverge for 〈h2〉 → 0, as the assumption of massive
bosons with 3 polarizations breaks down. In practice, a nonzero value of 〈h2〉 quickly develops as the fluctuations start
growing, but for numerical stability we only consider these decay channels for 〈h2〉 above a certain cutoff, see Appendix
D for more details.

The lattice calculations are implemented using a modified version of the CLUSTEREASY software [73, 74]. The modi-
fications amount to the following:

• Implementation of Higgs decay terms.

• Implementation of the evolution of the SM radiation density ρSM.

• Modification of the evolution of the scale factor to account for ρSM.

• Modification of the initial conditions in order to use as input the power spectra at the end of inflation derived in
Section IV.

With respect to the last point, we note that by default CLUSTEREASY assigns initial conditions for the fluctuations
in momentum space by sampling with a Gaußian probability distribution whose standard deviation is given by the
modulus of the Minkowski solution of Eq. (39). Comparing with the results for the power spectra at the end of in-
flation displayed in Fig. 2, CLUSTEREASY’s initial conditions are correct for subhorizon modes (k > aH), but not for
superhorizon fluctuations.

As a technical aside, we shall mention that CLUSTEREASYuses a staggered leapfrog method for solving the differential
equations, in which, if the values of the variables y and their second time derivatives are known for a time t, the values
of the first time derivatives are only known at t− dt/2, where dt is the discrete timestep of the numerical method. This
is not well adapted to equations featuring single time derivatives, as the Higgs equation with a nonzero decay rate, or
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the equation for ρSM. We opt for a simple workaround in which we estimate a first derivative ẏ(t) of a variable y as
ẏ(t) = ẏ(t− dt/2) + dt/2 ÿ(t) +O(dt2).

Once the code provides the time-dependent solutions for the fields across the lattice, we can compute isocurva-
ture power spectra by determining the angular variable θ and correspondingly the isocurvature fluctuation in Eq. (27)
at each lattice site. By performing a discrete Fourier transform and interpreting the fluctuations in Fourier space as
samples following a probability distribution corresponding to the mode functions of a quantum field, we can estimate
the power spectra at a scale |k| by using the analogous of Eq. (37) and averaging over a (spherical) momentum shell
centered on |k|:

∆SAγ (|k|) ≈ |k|
3

2π2

1

Nshell(|k|,∆k)

∑
shell(|k|,∆k)

|SAγ(k)|2, (49)

where “shell(|k|,∆k)” denotes a collection of discrete Fourier momenta fitting inside a momentum shell with radius
|k| and width ∆k, andNshell(|k|,∆k) denotes the number of discrete momenta in the shell.

The CLUSTEREASY implementation makes use of dimensionless units for the spacetime coordinates and fields as
follows:

τ =

∫
Bdt

a
, x̂ =B x, B =

√
λinf ρinf,end, λinf =


λσ, Model 1

cos2 ω

(
λφ −

4λ̂2
φσ

λσ

)
, Model 2, (50)

where ρinf is the canonically normalized field along the inflationary trajectory. The lattice simulations are performed
in finite spatial cubes with sides of length L in dimensionless units x̂. The number of discrete points per edge will
be taken as a power of 2 and denoted as N . The minimum distance between points will be denoted as ∆x̂, so that
L = (N − 1)∆x̂. Similarly, we take ∆τ to be the discrete timestep for the simulations.

The lattice simulations capture the dynamics of the fluctuations withN3 discrete spatial comoving Fourier momenta
which in lattice units go as

k̂ =
k

B
=

2π

L
(i1, i2, i3), −N

2
≤ im ≤

N

2
− 1. (51)

The smallest nonzero comoving momentum resolved in the simulation is thus kmin = 2πB/L, while the maximum
momentum is kmax =

√
3πN/L. As eventually we want to extrapolate the isocurvature power spectrum to CMB scales,

which correspond to modes that were superhorizon at the end of inflation, we are interested in capturing modes with
associated lengths above the horizon scale at the end of inflation. Including these low energy modes is also important
to capture possible instabilities due to the axion mass acquiring negative values. At the end of inflation, where effects
due to the nonminimal gravitational couplings are subleading, Friedmann equations imply that the Hubble constant
goes as

H ≈
√
λinfρ

2
inf√

12MP

. (52)

For our choices of parameters, we have ρinf,end ≈ MP , so that the Hubble scale at the end of inflation is around B.
Then one can capture physical momenta below the Hubble scale at the end of inflation by having kmin = Bk̂min < B,
which can be achieved if L > 2π.

In principle particle production should occur at scales related to the frequency of oscillation of the background fields
at the end of inflation, which in a quartic potential also goes as the scaleB. To capture such modes one needskmax > B,
which requires L <

√
3πN . If long wavelength and short wavelength modes evolved independently, the behaviour of

fluctuations well above the horizon would not be affected by the fluctuations with frequencies around B. However,
modes of different wavelength are coupled through the non-linear evolution. Nevertheless, modes at scales separated
by many orders of magnitude might be expected to evolve separately, at least to some extent. For this reason, and
for practical computational purposes, we will mostly focus on large values of L that capture superhorizon dynamics,
without necessarily requiring that our simulations include the dynamics at the scaleB. Nevertheless, we will perform
consistency checks by computing isocurvature power spectra for different boxes capturing different intervals of |k|,
checking if the results are compatible for overlapping values of momenta.

In order to identify the comoving momentum |k| at the end of inflation that corresponds to the CMB pivot scale of
0.002Mpc−1, we have to match physical momentum scales |k|/a, accounting for differences in normalization of the
scale factor. The evolution of the latter, as well as the associated Hubble rate, can be obtained from the results of our
simulations up to their maximum reach in τ . In Model 1, reheating is efficient and takes place within the simulated
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time, so that the onset of radiation domination is captured; extrapolating to large times and matching with the observed
value of the Hubble constant at the present time leads to

log
a0

aend
≈ 63. (53)

The same value can be obtained by assuming that radiation domination starts immediately after inflation. For large
fA there can be periods of matter domination before the end of reheating; however, these periods are brief and they
do not affect the estimate of Eq. (53). For Model 2 reheating is less efficient and our simulations do not reach the time
in which the SM radiation dominates the energy density. Thus, there remains an uncertainty in the number of efolds
after inflation; nevertheless, we will still use Eq. (53) as a reasonable estimate.

In our choice of units aend = 1, the comoving momentum corresponding to the CMB pivot scale is obtained by
demanding k?/a0 ≈ k?/ exp(63) = 0.002Mpc−1, leading to

k? ≈ 1.2× 10−32MP . (54)

For the choice of inflationary quartic λinf = 1.27× 10−11 compatible with a nonminimal gravitational coupling ξinf =
0.1, giving ρinf,end = 1.7MP , one hasB ≈ 6× 10−6MP . Thus the CMB pivot scale in lattice units is

k̂? =
k?
B
≈ 2× 10−27. (55)

Capturing this scale in the simulations would require extraordinarily large boxes with L > 2π/k̂|? = O(1027). This
cannot be done while maintaining precision in the presence of other dimensionless couplings of order one in lattice
units. Hence we restrict our simulations to much smaller values of L, and show a regular pattern for the isocurvature
power spectrum at increasingly small momenta, which we use to extrapolate to the CMB pivot scale. This extrapolation
spans a huge number of orders of magnitude, and thus the extrapolated results should be taken with due care. Some
consistency checks of our lattice calculations are given in Appendix E, where we compare the lattice results against
those coming from solving linearized equations for the Fourier modes, improved by using the lattice averages and
variances of the fields to determine background quantities.

§1. fA and PQ symmetry restoration.
As a first application of our lattice simulations, we determine the values of fA for which the PQ symmetry is not

restored by nonperturbative effects, as needed for a valid pre-inflationary scenario. As mentioned before, Ref. [53] hy-
pothesized that PQ restoration should be expected for fA & 4×1016 GeV. To assess this we can simply run simulations
for different values of fA and plot the variance of the angular variable θ in configuration space, obtained by performing
averages over the lattice. We use the same choices of coupling as in Section IV: λ = 1.27 × 10−11, λHσ = 10−6. The
results for simulations withL = 14848,N = 64, a timestep ∆τ = 0.0005 and 9 different values of fA between 109 GeV
and 5 × 1017 GeV are shown in the upper plot in Fig. 4. For fA ≤ 1017 GeV the results for the variance of θ fall on
top of each other, and the variance grows quickly to order one values, implying restoration of the PQ symmetry. For
fA & 2 × 1017 GeV the growth of the variance is thwarted and is minimized for fA ∼ 5 × 1017 GeV. The slight growth
in the perturbations for fA = 4 × 1017 GeV is due to the Higgs field, which can act as a source for perturbations in σθ
before the Higgs fluctuations decay. The lower plot in Fig. 4 illustrates the growth in the relative energy density of the
SM bath, ΩSM = ρSM/ρ, at early times. For fA < 2 × 1017 GeV the production of SM particles is blocked and ρSM

remains essentially zero. The SM particle production opens up for higher values of fA and reheating becomes much
more efficient. The results can be understood in terms of the average fields setting into a minimum of the potential
at early times. Shortly after reheating, for large background field values one can neglect the quadratic terms, and the
average field can be understood as oscillating in a quartic potential (see the discussion around Eq. (53)). In this back-
ground, σr and σθ have oscillating masses, and their fluctuations follow a Lamé equation which predicts exponential
growth in wide bands of momenta [75]. For the σθ fluctuations the resonance band in the lattice units of Eq. (50) is
0 < |k̂| < 1/2, which is partly captured by our choice of L,N , which has k̂max ≈ 0.02. We have checked that these
results about PQ restoration and reheating do not change when capturing moderately larger momenta by decreasing
L or increasing N . The large growth in the perturbations in the components of σ leads to a large effective mass of the
Higgs

m2
H,eff 'λHσ(〈|σ|2〉 − f2

A), (56)

which blocks the production of Higgs perturbations and their decay into SM radiation. When the background fields
settle into a potential well, the potential can be captured by quadratic terms, and in this case when neglecting the
expansion of the universe the equations for the fluctuations can be described in terms of a Mathieu equation [76]. In
our case, assuming that a σ̄r background oscillates around fA with an amplitude xfA and a frequency equal to the
massmr =

√
2λfA of σr around the minimum,

σ̄r ≈ fA(1 + x cosmrt), (57)
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FIG. 4: Upper plot: Variance of the angular variable in Model 1 as a function of conformal time τ for 9 different values of fA, and
with λ = 1.27 × 10−11, λHσ = 10−6. The simulations were done for L = 14848, N = 64 and a timestep ∆τ = 0.0005. Lower
plot: Growth of the relative energy density in the SM bath at early times, ΩSM = ρSM/ρ, for the same choices of parameters. For
fA . 1016 GeV the values of ΩSM remain well below the range of the vertical axis of the plot.

taking a = 1 and assuming x� 1 one gets a Mathieu equation for σθ,

d2

dz2
σθ(z) +

(
4|k|2

m2
r

− 4x cos 2z

)
σθ(z) = 0, z =

mrt

2
. (58)

This equation has narrow resonance bands, the wider of which corresponds to an exponential growth σθ ∼
exp(xmrt/2). The expansion of the universe, which was ignored in the previous arguments, causes a redshifting of
the amplitude of oscillation x, and the resonance will only be effective if the growth rate xmr is above the Hubble con-
stant [76]. Hence, if the field gets trapped in the minimum early on, with a small amplitude of oscillation, there will
be no resonant growth of perturbations in σθ. This effect seems to be indeed behind the failure of the PQ restoration
for fA > 2 × 1017 GeV seen in Fig. 4. To illustrate this, in Fig. 5 we show the lattice average of σr at early times for
three values of fA. For fA = 1015 GeV the field keeps going through oscillations that cross the origin, and remains in
the quartic regime with exponential growth of perturbations. For fA = 2× 1017 GeV the field settles into a minimum
after around 10 crossings of the origin, while for fA = 5× 1017 GeV the background undergoes just 4 crossings before
quickly settling into a minimum. We have checked that xmr/H drops below 1 in the latter simulation for τ & 150,
whereas it stays much larger than 1 for fA = 1017 GeV. Finally, let us note that when the field settles into a minimum
and the perturbations decay the effective Higgs mass of Eq. (56) goes to zero, so that Higgs production and its subse-
quent decay into SM radiation become allowed. This explains the growth of ΩSM seen in the lower plot of Fig. 4 for
fA > 2 × 1017 GeV, and why the SM particle production is faster for larger fA for which the background settles faster
around the minimum.

We thus conclude that avoiding the restoration of the PQ symmetry in Model 1 requires fA & 2 × 1017 GeV. This is
one order of magnitude above the value estimated in Ref. [53].
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FIG. 5: Evolution of the spatial average of σr as a function of time, for fA = 1015 GeV (blue), fA = 2 × 1017 GeV (orange), and
fA = 5× 1017 GeV (green), for simulations with the same parameters as in Fig. 4. Note how for the latter two curves the field settles
early on around a minimum of the potential (given by±fa).

§2. Isocurvature power spectrum at superhorizon scales for fA = 5 × 1017 GeV.
After having identified fA = 5 × 1017 GeV as a value for which the restoration of the PQ symmetry is avoided and

the fluctuations in the angular variable θ are minimized, we proceed to carry out more simulations for this value of fA,
and compute the power spectrum of isocurvature fluctuations as a function of time using Eq. (49).

The results show that the isocurvature power spectrum goes over several periods of exponential amplification when
the average background crosses the origin –as expected from the tachyonic axion mass– and then settles into a phase in
which it oscillates with an amplitude decaying as 1/a2 ∼ 1/τ . We illustrate these findings in Fig. 6 for a simulation with
L = 14848, N = 64. On the left plot we show the evolution of the ratio of the power spectrum at a given time to its value
at the end of inflation, for 53 frequency bins with a rainbow hue going from red for the lowest frequencies to blue for
the highest frequencies. We also plot the evolution of |〈ϕr〉|, rescaled so as to fit in the figure. Notice how when |〈ϕr〉|
crosses zero there is a strong growth in the power spectrum, as expected from the parametric resonance in the Lamé
equation alluded to in the previous section. Once the background field stops crossing the origin the power spectrum
decays, while experiencing some oscillations. On the right plot we show the same ratio of power spectra, multiplied
by the square of the scale factor, which tends to a constant value. As is clear from the plot, the lowest frequencies (in
red) experience a larger amplification with respect to the power spectrum at the end of inflation. This fits the naive
expectation from the tachyonic mass of the axion near the origin of field space, which plays a bigger role for lower
frequencies.

4

5

4 4

FIG. 6: Left plot: Ratio of the isocurvature power spectrum with respect to its value at the end of inflation in Model 1, as a function
of τ for a simulation with fA = 5 × 1017 GeV, L = 14848, N = 64, ∆τ = 0.0005, for 53 frequency bins from the lowest frequency
(red) to the highest (blue). The spectra are overlaid over a rescaled plot of |〈ϕr〉|(τ), shown by a gray line. Right plot: Same power
spectra, multiplied by a(τ)2. In all plots, the choices of quartic couplings are as in Fig. 4.
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FIG. 7: Equation of state ω = p/ρ obtained for the same simulation as in Fig. 6 (blue). The orange line gives a rolling time average
over an interval of ten units of τ , while the horizontal green line corresponds to radiation (p = ρ/3). Notice a brief period of matter
domination (p ≈ 0) around τ ∼ 20.

The 1/a(τ)2 behaviour of the isocurvature power spectrum for large τ can be understood as follows. As seen in Fig. 5,
at late times the background fields get trapped in a potential well with small oscillations whose amplitude decreases
with time. Eventually, when the amplitude of oscillations can be neglected and σr sits at fA, the perturbations in σθ
have zero mass and their Fourier components δσθ,k satisfy the equation

δ̈σθ,k + 3
ȧ

a
δσ̇θ,k +

k2

a2
δσθ,k = 0 (59)

The simulations confirm that the scale factor behaves as in radiation domination, with only a very brief period of matter
domination for large fA (see Fig. 7). This happens because, even if the background scalar field oscillating around the
minimum would behave as a matter component, the Higgs production and decay into the radiation field ρSM are fast
enough such that ρSM quickly dominates the total energy density. In this case one has a(t) = b

√
t for some constant b,

and
√
tδσθ,k(t) = c1(k)e2ik

√
t/b+c2(k)e−2ik

√
t/b with c1(k), c2(k) additional constants. Therefore the power spectrum

is ∆δσθ ∝ |δσθ,k(t)|2 ∝ 1/a(t)2. From Eq. (41) with σ̄r = fA, one concludes that ∆SAγ ∝ 1/a(t)2 as observed in our
results. Moreover, given that during radiation domination the dimensionless conformal time of Eq. (15) goes as τ ∝

√
t,

the power spectrum oscillates in τ with a frequency proportional to k, as shown in Fig. 6. Though we can understand
analytically the 1/a2 behaviour of the isocurvature power spectrum , we need to resort to the lattice simulations in
order to estimate the momentum-dependent normalization amplitude, which is sensitive to the initial nonperturbative
amplification. For each momentum |k|, we may look at the amplification factor times a(t)2 –which, as follows from
the above arguments, should become an oscillating function with a constant momentum-dependent amplitude at late
times– and estimate the maximum value reached during the oscillations. In this way one can define an approximate
upper bound for subsequent times,

∆Aγ(|k|, τ) .
∆Aγ(|k|, 0)

a(τ)2
κ̂max(|k|), κ̂max(|k|) ≡ Max

(
∆Aγ(|k|, τ)a(τ)2

∆Aγ(|k|, 0)

)
, (60)

where again τ = 0 corresponds to the end of inflation. The quantity κ̂ can be estimated directly from the lattice sim-
ulations. Alternatively, rather than an upper bound we can carry out a direct estimate by performing time averages of
the amplification factor times a(t)2 in the oscillating phase:

∆Aγ(|k|, τ) ≈ ∆Aγ(|k|, 0)

a(τ)2
κ̂mean(|k|), κ̂mean(|k|) ≡

(
∆Aγ(|k|, τ)a(τ)2

∆Aγ(|k|, 0)

)
, (61)

where x denotes a time average of the quantity x over several oscillations. Note that estimating κ̂mean requires simulat-
ing for long enough times such that the power spectrum for the lowest nonzero frequencykmin goes over at least one full
oscillation. This requires very long computing times, and we have prioritized longer intervals in τ over simulations with
more lattice points. We fixedN = 64 and, in order to cover a wider range of frequencies and avoid systematic effects for
frequencies near the infrared or ultraviolet cutoff, we run 11 different simulations with L = 29 × 2k, k = 1, 2, . . . , 11.
From the different simulations we extracted estimates of κ̂max/mean for the whole range of frequencies by proceeding
as follows. First, we checked that the simulations of different boxes give compatible results for the mid and low fre-
quencies, while the high frequencies seem to be affected by systematic cutoff effects. This can be seen for example in
the upper plot in Fig. 8, which shows results for κ̂max as a function of the physical momentum |k|/a0 in Mpc−1 units
for the different simulations. The range of frequencies of each simulation is indicated with horizontal arrows between
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FIG. 8: Upper plot: Estimate of the amplification factor κ̂max in Model 1 for 11 different lattice simulationswithN = 64, ∆τ = 0.0005
andL = 29× 2k with k = 1, 2, . . . 11, fA = 5× 1017 GeV and the rest of the model parameters fixed as mentioned in the main text.
The dotted orange vertical lines give the minimum nonzero frequencies covered by each simulation, while the dashed purple lines
give the maximum frequencies. The horizontal arrows denote the frequency range of the different simulations. The faint gray dots
show the full data of the simulations, while the colored blue dots give the results when dropping the lowest and highest frequencies
of each simulation, and averaging the spectra for frequencies covered by more than one simulation. The diagonal blue line is the
power-law fit of Eq. (63) for low frequencies. Lower plot: Estimates for both κ̂max (gray and blue dots, blue line) and κ̂mean (faint
pink and red dots) focusing on the lower frequencies. The pink and red dots correspond to the results before/after dropping high
frequencies and averaging over simulations. The red line is the power-law fit of Eq. (64).

values of kmin (vertical dotted, orange lines) and kmax (vertical dashed, purple lines). The faint dots give the results for
all the simulations superimposed together, and it can be seen that the values of κ̂max for the highest frequencies of each
simulation deviate systematically from the results for the same frequencies of a simulation with a smaller box. To avoid
these discretization effects, we drop the highest frequencies in each simulation. We also drop the lowest frequency
in each simulation, as it has poor statistics and is more susceptible to fluctuations (only 3 modes in the lattice have
|k| = kmin). The result of this procedure, supplemented by averaging the results of κ̂max from different simulations
in overlapping windows of |k|, give the blue points in the upper plot of Fig. 8. One can clearly see a resonant peak for
|k| ∼ 4 × 1023 Mpc−1, which is of the order of the frequency of oscillation of the background at the end of inflation.
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Actually, this value of the peak frequency corresponds to

|k|peak ≈ 0.6B = 0.6
√
λinf ρinf,end, (62)

which in lattice units corresponds to |k̂|peak ≈ 0.6. This is of the order of the upper limit of the resonant frequency
band |k̂| ≤ 1/2 expected from the Lamé equation obeyed by the σθ perturbations in the linear regime obtained when
the quadratic interactions of the fields are ignored, as discussed earlier. For lower frequencies the value of κ̂max reaches
a simple power law behaviour, illustrated by the solid blue lines in Fig. 8, and given by

κ̂max(|k|) ≈ 7.57× 1047

(
Mpc−1

|k|

)2.01

. (63)

A similar procedure can be applied to estimate κ̂mean, for which we centered on the three simulations with larger
boxes/lower frequencies. The results are illustrated in the lower plot in Fig. 8, where the estimates of κ̂mean before/after
dropping the high frequencies and averaging over simulations are shown by pink and red dots, respectively. Again, for
low frequencies one gets a simple power law behaviour, illustrated by the red line in Fig. 8 and given by

κ̂mean(|k|) ≈ 7.12× 1044

(
Mpc−1

|k|

)1.87

. (64)

From the previous estimates of κ̂max/mean, taking a leap of faith and extrapolating over 24 orders of magnitude to the
CMB pivot scale |k|? = 0.002 Mpc−1, we can use Eqs. (60) and (61) to obtain the following upper bound and direct
estimate for the amplification factor κ of the isocurvature power spectrum at CMB scales (see Eq. (45)):

κ =
∆SAγ (τCMB, k?)

∆SAγ (0, k?)
. O(104), κ ≈ O(10). (65)

In the equations above, we used the fact that the CMB is generated at redshift zCMB = a0/a(τCMB)−1 ≈ 1100, with a0

in our units given by Eq. (53) with aend = 1. The above estimates of κ give a net amplification of the isocurvature power
spectrum between the end of inflation and the CMB time, and are incompatible with the suppression needed to satisfy
the CMB isocurvature bound, given by Eq. (47). We see that the latter equation is violated by 6-7 orders of magnitude.
Even when the large extrapolation to CMB scales can be questioned, the fact that we find a very sizable violation of the
isocurvature bound suggests a potentially significant overabundance of isocurvature fluctuations. As we saw before,
pre-inflationary axion dark matter requires fA & 1017 GeV, yet the viability of these scenarios is threatened by this
apparent overproduction of isocurvature fluctuations. This conclusion diminishes the likeliness of the validity of the
naive isocurvature expectation derived from the linear analysis of inflationary perturbations of Model 1 in the context
of a pre-inflationary dark matter scenario.

B. Model 2

For Model 2 we use the initial conditions associated with the power spectra computed in Section IV B, and follow
an analogous implementation in CLUSTEREASY as the one detailed in Section V A 2 for Model 1, adding two additional
equations for the new real scalar fields contained in the complex field φ. For the parameter choices we fix the quartic
couplings as λφ = 4.01 × 10−9, λσ = 10−5, λφσ = 0, −λ̂φσ = λHφ = λHσ = 10−7. The above values give the same
effective inflationary quartic coupling as was chosen for Model 1. We further choose m2

φ = m2
φr,vac − 2λ̂φσf

2
A where

m2
φr,vac = (6.31× 107 GeV)2 corresponds, up to subleading effects that depend on the Higgs VEV, to the square of the

mass of the φr excitation at the vacuum σr = fA, φr = φθ = σθ = 0.
As was done for Model 1, we start by investigating the potential restoration of the PQ symmetry. Surprisingly, despite

the suppression of the power spectra at the end of inflation, we do find a restoration of the PQ symmetry for fA . 1016

GeV, as shown in the upper plot of Fig. 9. As shown further in the lower plot, in this case we do not find a large production
of SM radiation.

For large values of fA, in which the PQ restoration is avoided, we find as in the previous section an initial exponential
amplification of the isocurvature power spectrum, followed by a decay going as 1/a(t)2. This is illustrated for fA =
5×1017 GeV in Fig. 11. As is clear when comparing with Fig. 6, the amplification is in fact much larger than in Model 1.
As will be seen below, such large amplification can overcome the suppression of the power spectrum during inflation
and again puts into question the compatibility of the model with current isocurvature bounds.

As in the previous section, the results can be understood qualitatively from the early-time parametric resonance
effects in a background oscillating in a quartic potential, as well as the late time oscillations around a quadratic potential
well. The enhanced parametric amplification in Model 2 with respect to Model 1 can be attributed to the fact that the
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FIG. 9: Upper plot: Variance of the angular variable in Model 2 as a function of conformal time τ for 6 different values of fA, and
with the parameters fixed as mentioned in the main text. The simulations were done for L = 14848, N = 64 and a timestep
∆τ = 0.0005. Lower plot: Growth of the relative energy density in the SM bath at early times, ΩSM = ρSM/ρ, for the same choices
of parameters.

average background is approximately confined to a potential energy valley which, in contrast to Model 1, has much
smaller quadratic terms (which are positive, and not set by fA), so that one naturally expects more oscillations in the
quartic regime in which perturbations are generated efficiently. Assuming λφσ = 0, σθ, φθ ≈ 0 and keeping the terms
involving fA that were ignored in Eq. (20), the potential energy valley is approximately given by

σ2
r ≈ f2

A − 2
λ̂φσ
λσ

φ2
r, (66)

and the potential along the valley, as a function of φr, is

Vvalley ≈
1

2
m2
φr,vacφ

2
r +

1

4

(
λφ − 4

λ̂2
φσ

λσ

)
φ4
r. (67)

As advertised before, the previous potential has a positive quadratic term fixed by the effective mass m2
φr,vac, rather

than fA. In Fig. 10 we show how the trajectories of the lattice averages of the fields remain indeed close to the above
valley. The value of 〈φr〉 as a function of time can also be seen in the gray curves of Fig. 11. One can see that φr remains
oscillating with a large amplitude (and thus in the quartic regime) for longer time than the field σr did in Model 1
(see Figs. 5 and 6). The large oscillations of the background and the enhanced fluctuations are expected to lead to a
larger effective Higgs mass and block the production of SM radiation, which is confirmed by the lower plot in Fig. 9.
Another reason for the larger amplification than observed in Model 1 is that we empirically find that the final amplitude
is not very sensitive to the initial amplitude of perturbations. By rerunning lattice codes with anO(10) rescaled initial
amplitude we see no relevant effect on the final spectra. Therefore, by starting with a more suppressed spectrum, the
enhancement factor will be expected to be larger on these grounds as well.
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FIG. 10: Trajectory of the lattice averages of the fields φr ,σr in Model 2 with fA = 5× 1017 GeV during the simulation (red), versus
the valley trajectory of Eq. (66) (dashed blue). The simulation parameters are as in Fig. 9, and the couplings were fixed as mentioned
in the main text.
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FIG. 11: Left plot: Ratio of the isocurvature power spectrum with respect to its value at the end of inflation in Model 2, as a function of
τ for a simulation with fA = 5×1017 GeV,L = 14848, N = 64, for 55 frequency bins from the lowest frequency (red) to the highest
(blue). The spectra are overlaid over a rescaled plot of |〈φr〉|(τ), shown by a gray line. Right plot: Same power spectra, multiplied by
a(τ)2. In both plots, the rest of the model parameters where fixed as specified in the main text.

Finally, we can attempt a quantitative estimate of the power spectrum at the CMB pivot scale using fits of the amplifi-
cation factors κ̂max, κ̂mean of Eqs. (60) and (61). Proceeding as in the previous section leads to the results of Fig. 12. For
late times, the self-consistency checks of LATTICEEASY indicate a loss of numerical precision, which are not surprising
given the large amplification factors at late times in the right plot of Fig. 11. For this reason, when performing numer-
ical fits of the amplification factors we drop the lowest frequencies, which only achieve the first peak and subsequent
oscillating regime at late times. Doing so we find

κ̂max(|k|) ≈ 1.93× 10121

(
Mpc−1

|k|

)5.25

, κ̂mean(|k|) ≈ 9.53× 10117

(
Mpc−1

|k|

)5.1

. (68)

To extrapolate to CMB frequencies using Eqs. (60) and (61) we need an estimate of ∆Aγ(τ, k?). In Section IV B we saw
that the power spectra for the massive canonical fields is accurately captured by using the Minkowski modes of Eq. (39).
Using this in Eqs. (41) and (37) gives

∆Aγ(0, k?) ≈
k3
?

θ2
i π

2σ̄r(0)2mA(0)
. (69)

Upon substitution into Eqs. (60) and (61), using the fits of Eq. (68) and the value of θi corresponding to Eq. (3) with
fA = 5 × 1017 GeV, one gets values of ∆Aγ(τCMB, k?) which are more than a hundred orders of magnitude above the
maximum value of ∆Aγ(0, k?) that would be compatible with the CMB bound.
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FIG. 12: Estimate of the amplification factor κ̂max in Model 2 for fA = 5×1017 GeV and 3 different lattice simulations withN = 64,
∆τ = 0.0005 and L = 29× 2k with k = 7, 8, 9. The colour coding, vertical lines and arrows follow the conventions of Fig. (8). See
the main text for the choice of model parameters.

VI. DISCUSSION

In this paper we have shown that the common expectation that axion perturbations freeze at horizon crossing during
inflation is violated in pre-inflationary axion models featuring axion-inflaton interactions, which have been motivated
in previous works [52, 55, 56] as a way to suppress isocurvature fluctuations. This expectation, however, can be far
from the truth, as the axion-inflaton interactions can give rise to a large nonperturbative growth of axion perturba-
tions during reheating. The latter can lead to a complete restoration of the PQ symmetry (invalidating the premise of
pre-inflationary scenario and, leading to an overabundance of dark matter) or give rise to a large isocurvature power
spectrum at CMB scales, in conflict with current bounds from Planck.

To illustrate these effects we have considered two models. In the first one, the axion arises from a complex scalar
which also contains the inflaton. This implies a large effective axion decay constant during inflation, which has been
argued to suppress (linear) axion perturbations during inflation [52, 55]. The second model involves 2 scalar fields in
which axion-inflaton interactions make the axion field very massive during inflation, suppressing its fluctuations [56].
For both models we have followed the evolution of axion perturbations during inflation and reheating. We solved the
differential equations in the linear regime during inflation (fully accounting for the fact that the axion is also massive
in the first model) while for reheating we performed lattice simulations accounting for couplings to the Higgs and its
decays into relativistic SM degrees of freedom. Our results show that the PQ symmetry is restored for values of fA
below 1017 GeV, while for larger values of fA the growth of low momentum axion perturbations is substantial, and a
naive extrapolation to CMB scales suggests a violation of current isocurvature bounds by several orders of magnitude.
Though we cannot claim that such extrapolation is under control due to huge range of scales involved, the results sow
doubts about the viability of these models as pre-inflationary axion dark matter scenarios. As a consequence, axion
dark matter in both of the models that we have studied can only be compatible with the post-inflationary scenario,
which in turn implies that fA is bounded from above by 2 × 1011 GeV (see Eq. (2)) and that, correspondingly, mA

is bounded from below by 30 µeV (see Eq. (1)). With SMASH being a variant of Model 1, our findings support the
focus on post-inflationary scenarios in Refs. [53, 55], with the present work providing an improved justification on
the following grounds. First, the above references assumed the freezing of perturbations after horizon crossing during
inflation. Second, we have now obtained a direct estimate of the value offA beyond which the PQ symmetry stops being
restored by nonperturbative effects during reheating. The latter was estimated in Ref. [53] to lie around fA ≈ 1016 GeV,
one order of magnitude below the value found in this paper.

In our lattice simulations we have not included perturbations of the spacetime metric. This is usually the case in stud-
ies of preheating, where subhorizon scales are commonly considered and for which metric fluctuations of wavenumber
k are expected to be suppressed by ∼ (k/H)2 (or higher powers) with respect to density ones. However, for super-
horizon perturbations such as the ones we have considered in this paper metric fluctuations should, in principle, be
included. Without a full analysis which takes them into account we do not know to which extent they can affect our
results. For an incomplete list of references on the topic see [77–83].
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Appendix A: Adiabatic and isocurvature fluctuations

The simplest way to understand isocurvature fluctuations is by defining first the concept of adiabatic fluctuations.
Let us consider n cosmological species living in an approximately homogeneous and isotropic universe, each of which
has an equation of state wj (j = 1, . . . , n) which defines the relation between the background (i.e. homogeneous)
energy density ρ̄j(t) and pressure p̄j(t) for each species: p̄j = wj ρ̄i. The energy density (and the pressure) of each
species feature small, space dependent, fluctuations around their background values: ρj(t,x) = ρ̄j(t) + δρj(t,x). It is
customary to write this as ρj(t,x) = ρ̄j(t)(1 + δj(t,x)), defining δj(t,x) as the ratio between the density perturbation
and its background value. Let us now assume that, for each species, we can write the energy density as ρj(t,x) =
ρ̄j(t+ δt(t,x)), where δt(t,x) can be interpreted as a coordinate dependent shift in time that is, crucially, the same for
all species. An analogous expression can be assumed for the pressures, with the same δt(t,x). Obviously, this is a very
specific restriction on the properties of the energy densities and pressure perturbations. Expanding at linear order in
δt(t,x), we can write δρj(t,x) = ˙̄ρj(t) δt(t,x) = −3(1 + wj)H(t)ρ̄j(t) δt(t,x), where we use a dot to indicate a time
derivative and, in the second equality we have assumed that the energy densities of each species evolve independently
at the background level. From the last expression we obtain

δ1(t,x)

1 + w1
= . . . =

δn(t,x)

1 + wn
, (A1)

so that the relative energy density fluctuations of the species are related among them through weight factors that de-
pend on their equations of state. An excellent fit to the CMB is obtained assuming the relation (A1) holds among all
cosmological species (photons, cold dark matter, baryons, neutrinos) as an initial condition deep in the radiation era,
i.e. for the superhorizon Fourier modes that satisfy kτ � 1, where τ is conformal time and k is a comoving wavelength.
If the condition (A1) holds for all species but one, say cold dark matter, then we talk about isocurvature initial con-
ditions for that particular species. The initial conditions in the radiation era are set by inflation and the subsequent
reheating process. The CMB sets stringent bounds on the maximum amount of isocurvature initial conditions –i.e. on
the deviation from eq. (A1)– for all cosmological species [50]. These can therefore be used to constrain the physics of
inflation and reheating. Scalar fields that are light during inflation (meaning that their mass is much smaller than H)
can generate large isocurvature fluctuations that get imprinted in the initial conditions for radiation after reheating.
This is a powerful way of setting bounds on axion models in which the PQ symmetry breaks before or during inflation.

The observant reader may be wondering whether the above definition of adiabatic initial conditions (and, by ex-
tension, of isocurvature) depends on the choice of coordinates (t,x), and more specifically on the gauge choice for
the metric. It can be checked that at linear order in fluctuations this is not a concern, due to the way in which δj
transforms from one gauge to another. Under a general coordinate transformation of the form t̃ = t + T (t,x) and
x̃ = x + L(t,x) the energy density of any species, being a scalar (i.e. bearing no spatial indexes), transforms at linear
order as δ̃ρj = δρj − ˙̄ρj(t)T (t,x). Dividing this expression by ρ̄j(t) and using the (energy density evolution) equa-
tion ˙̄ρj(t) + 3(1 + wj)H(t)ρ̄j(t) = 0, we obtain δ̃j = δj + 3(1 + wj)H(t)T (t,x), so that if the condition (A1) holds
for the variables δj , it is also true for the variables δ̃j . Alternatively, we can work directly with the (gauge invariant)
quantities that in any gauge read ζj = −ψ − H δρj/ ˙̄ρj , where ψ(t, x) is the spatial part of the (FLRW) metric fluctu-
ation ds2 3 a2(1 − 2ψ)dx2 and a(t) denotes the (time-dependent) scale factor of the Universe. If the condition (A1)
is satisfied for the variables δj , then ζ1 = . . . = ζn. Notice that in reality the condition that each species satisfies
˙̄ρj(t) + 3(1 +wj)H(t)ρ̄j(t) = 0 is accessory. We can completely forgo this assumption and define adiabaticity directly
from δρj(t,x) = ˙̄ρj(t) δt(t,x), which leads to a more general condition than (A1):

δρ1(t,x)
˙̄ρ1

= . . . =
δρn(t,x)

˙̄ρn
. (A2)

However, the condition (A1) is commonly used to define adiabatic initial conditions, because photons, baryons, neu-
trinos and cold dark matter are assumed to have no interactions (other than gravity) during radiation domination and
therefore they are thought to evolve independently.
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Another objection that can be made is whether there actually exists a solution of the equations of motion for the
metric and matter fluctuations satisfying δρj(t,x) = ˙̄ρj(t) δt(t,x). This was solved by S. Weinberg, who proved that
in the limit of large wavelength (that is, for superhorizon modes) there are two different such solutions, finding the
coordinate dependence of δt(t,x) for both of them [84]. One of these solutions decays with the expansion of the Uni-
verse as δt(t,x) ∝ 1/a(t) and the other is δt(t,x) = −(ζ/a(t))

∫ t
t̃
a(t′)dt′, where t̃ is an arbitrary reference time. ζ is a

constant that corresponds to the long wavelength limit of the curvature perturbation on uniform total density hyper-
surfaces [85], defined as ζ = −ψ −H δρ/ ˙̄ρ, where δρ and ˙̄ρ refer to the total energy-momentum tensor, in analogy to
the quantities ζj introduced above. The name adiabatic for these modes is not related to the absence of changes in
the entropy of the cosmological fluid, but is rather associated to the fact that perturbations can be captured by time-
shifts: any scalar quantity s(t,x) in such a mode satisfies δs/ ˙̄s = δt(t,x), where δt(t,x) is of any of the two forms
above. In particular, for any energy-momentum tensor the fluctuations in the energy density and pressure are related
by δρ/ ˙̄ρ = δp/ ˙̄p, hence the name.

If the only mode produced during inflation is the adiabatic one related to ζ̇ = 0 (with ζ 6= 0), the fluctuations
continue in this mode also after inflation, provided that they remain superhorizon. This applies in particular during
reheating.

The amount of isocurvature is conventionally defined with respect to photons through the relation [86]

Sj = 3(ζj − ζγ) , (A3)

where the factor 3 is included so that in the gaugeψ = 0Sbaryons equals the relative fluctuation in the baryon to photon
number density ratio, δ(nB/nγ)/(nB/nγ), see e.g. [87].

Appendix B: Axion isocurvature fluctuations

Next we consider the isocurvature perturbation related to the axion field, SAγ . As we are interested in how they
impact the CMB, we want to estimate the perturbation at the time of matter-radiation decoupling. This happens after
the QCD phase transition, during which the axion acquires a mass. Thus the axion component of the plasma behaves as
a pressureless fluid with energy densityρA = mAnA –wherenA is the axion number density– whose average ρ̄A satisfies
˙̄ρA = −3Hρ̄A. Then one has 3ζA = −3ψ−3HδρA/ ˙̄ρA = −3ψ+δρA/ρ̄A = −3ψ+δnA/n̄A. On the other hand, for the
photon radiation field with ργ ∝ T 4, ˙̄ργ = −4Hρ̄γ , and nγ ∝ T 3, one has 3ζγ = −3ψ + 3/4δργ/ρ̄γ = −3ψ + δnγ/n̄γ .
Hence one can write

SAγ =
δnA
n̄A
− δnγ

n̄γ
=
δnA
n̄A
− 3

δT

T
. (B1)

With the axion perturbations beeing seeded during inflation while the axion was massless, their corresponding ini-
tial density perturbation is only due to subleading gradient effects; thus, we might assume that the axion isocurature
perturbations have an initial value of δρ = 0. It is usually assumed that under cosmological evolution δρ stays sup-
pressed [67]. With δρ = mAδnA +

∑
i6=amiδni + δρr ≈ 0 and δρr = 4ρrδT/T , then if the energy density in axions

is subdominant, mAnA � ρr, one concludes that δT/T � δnA/nA. The same conclusion can be arrived without
imposing δρ = 0, but rather as a consequence of the fact that for the axion isocurvature perturbation one initially has
δnγ/nγ = 3δT/T = 0, and this quantity is expected to remain small during the subsequent evolution, again leading
to δT/T � δnA/nA [64]. Either way one can then approximate SAγ as

SAγ ≈
δnA
nA

. (B2)

Using that in the misalignment mechanism the amount of dark matter scales as nA ∼ θ2, this gives us

SAγ =
θ2 − 〈θ2〉
〈θ2〉

. (B3)

The fractional isocurvature component is defined as

βiso ≡
∆SAγ (k?)

∆SAγ (k?) + ∆R(k?)
. (B4)

In the above equation, ∆X(k?) denotes the power spectrum of the fluctuations of the quantityX evaluated at the pivot
scale k? of CMB measurements. The power spectrum is related to correlators of fluctuations as in Eq. (28). In the limit
of small angle fluctuations, writing θ = θi + δθ,with θi the initial misalignment angle and δθi � 1, one has

〈SAγ(k)SAγ(k′)〉 ≈ 4

θ2
i

〈δθ(k)δθ(k′)〉, (B5)
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so that we may write

∆SAγ (k?) ≈
4

θ2
i

∆δθ(k?). (B6)

Further assuming that the isocurvature power spectrum is subdominant with respect to ∆R(k?), one arrives at

βiso ≈
4

θ2
i

∆δθ(k?)

∆R(k?)
. (B7)

Appendix C: Mass of the axion fluctuations during and after inflation

1. Model 1

To study the evolution of cosmological perturbations in two-field inflationary models it is convenient to define the
fluctuations along the directions parallel and orthogonal to the trajectory of the fields. In the case of Model 1, assuming
an inflationary trajectory aligned with the radial direction (as can always be enforced by an appropriate redefinition of
the phase ofσ), the axion fluctuationFA can be identified with a canonically normalized gauge invariant (isocurvature)
perturbation associated to the direction orthogonal to the inflationary trajectory.7 In general, the latter variable obeys
the equation (13) of Section II A:

∂2F
∂N2

+ (3− ε) ∂F
∂N

+
m2

iso
H2
F = 0 , (C1)

modified with the addition of a source term (not shown here) which depends on the time derivative of the comoving
curvature perturbation and which vanishes if the trajectory does not have turns. The full expression for the mass is
given by

m2
iso = N iN j∇i∇jV + εRH2 + 3ω2 . (C2)

In this expression

m2
A = N i

AN
j
A∇i∇jV, (C3)

can be identified in our case with the ’static’ axion perturbation mass, whereN i
A are the components of the unit-norm

vector in the direction of the axion field and ∇i denotes the the field covariant derivative. Both of them are defined
with respect to the field metricGij in the Einstein frame (see Eq. (9)), which is also used to raise and lower the indices
(i, j, . . .). The last term in (C2) is related to the angular velocity of the background trajectory in field space; being ω the
‘turn rate’ of the trajectory, which measures the deviation from a geodesic in the (curved) field space. Thanks to theU(1)
symmetry of Model 1, we can assume that the background solution proceeds only in a radial direction8 (any deviations
from it will be quickly damped during inflation), and hence this term evaluates to zero. Finally, the second term of (C2)
contains the Ricci scalar of field space, R, and is proportional to the first slow-roll parameter, which suppresses the
contribution of this term during inflation.

For concreteness, let us consider now the field basis of Eq. (8) and assume ξ = 0, so thatN i = {0, 1/
√
GAA} = {0, 1},

andFA = A. Then the static axion fluctuation mass is

m2
A =

(
∂2
A − ΓρAA∂ρ

)
V =

∂ρV

ρ
= λ(ρ2 − f2

A) . (C4)

As discussed in Section II A, it differs from zero if the inflaton is displaced away from the minimum of the potential. For
non-zero ξ the isocurvature mass evaluates to

m2
A =

ρ∂ρGθθ
2GθθGρρ

∂ρV

ρ
=

1− ξf2
A/M

2
p

Ω2(Ω2 + 6ξρ2/M2
p )

(
∂ρVJ
ρ
− 4ξ

Ω2
VJ

)
=

1− ξf2
A/M

2
p

Ω4(Ω2 + 6ξρ2/M2
p )
λ
(
ρ2 − f2

A

)
, (C5)

7 In the literature, such orthogonal fluctuations are also referred to as isocurvature perturbations, as they vanish when Eq. (A2) holds for the two
scalars. However, they should not be confused with the late time isocurvature perturbations Si of Eq. (A3).

8 In the scenario of [88] this term might constitute an important correction.
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which is the same expression as Eq. (C4) times a multiplicative correction which becomes unity for ξ = 0. For ξ = 0.1
–which we use in this paper– this correction is small during inflation. In addition,

m2
A

H2
.

3Mp

ρ

√
2ε� 1, (C6)

assuming slow-roll and regardless of possible higher dimension (Planck suppressed) operators that may appear in the
scalar potential. In the first inequality we used that the correction factor is smaller than unity.

In our lattice simulations of reheating, described in Section V, we take ξ = 0. There are two possibly relevant ξ-
dependent corrections to the isocurvature mass in this period, both of which we can ignore. The first is the correction
proportional to the Ricci scalar of field space, cf. Eq. (C3). After inflation this term redshifts as H2 and for 1 & ξ &
0.005 it might substantially reduce the first tachyonic spike. However, in our simulations we saw that the tachyonic
growth dominates the dynamics until it hits a saturation point where non-linear effects become important. We expect
to reach this saturation point regardless of whether the first tachyonic burst can effectively be suppressed. To confirm
this intuition we rerun a simulation with an O(0.1) smaller initial amplitude of perturbations and find that the final
isocurvature amplitude is unaffected. The second possible correction may in principle arise if the condition ξρ2/M2

p �
1 is violated. However, tachyonic amplification of the isocurvature perturbations happens when ρ ∈ [0, fA], hence in
this regime we can safely neglect it. Similarly, the background solution will also be affected by a non-zero ξ. But again,
for the same reason as above, this effect is small in the region where tachyonic enhancement takes place. Hence we
do not expect the ξ-dependent corrections to the isocurvature mass and the background evolution to affect the final
isocurvature fraction substantially and hence we can safely use Eq. (C4).

2. Model 2

We can proceed similarly for Model 2, for which the axion is now defined as in Eq. (22). The static contribution to the
axion perturbation mass can be obtained from Eq. (C3); evaluating the result in the inflationary background of Eq. (20)
one gets the result of Eq. (23).

Appendix D: Higgs decays

Here we collect the relevant formulae for the Higgs decay rate in Eqs. (48).
Γh = Γh→tt̄ + Γh→bb̄ + Γh→W+W− + Γh→ZZ ,

Γh→tt̄ =
3y2
t

16π
mh

(
1− 4m2

t

m2
h

)3/2

,

Γh→bb̄ =
3y2
b

16π
mh

(
1− 4m2

b

m2
h

)3/2

,

Γh→ZZ =
g2

128π

m3
h

m2
W

√
1− xZ

(
1− xZ +

3

4
x2
Z

)
,

Γh→W+W− =
g2

64π

m3
h

m2
W

√
1− xW

(
1− xW +

3

4
x2
W

)
,

(D1)

where

xZ/W =
4m2

Z/W

m2
h

, m2
W =

g2〈h2〉
4

, m2
Z =

(g2 + g′
2
)〈h2〉

4
. (D2)

For the lattice implementation, we interpret 〈h2〉 as an average of h2 over the lattice, while we determinem2
h from the

second derivative of the potential with respect to the Higgs field, again averaged over the lattice. For the decay to be
allowed we demand a positive value ofm2

h. We implement this by using the following value ofmh in Eqs. (D1) and (D2):

mh = Θ

(
∂2V (ϕn)

∂2h

) ∣∣∣∣∂2V (φn)

∂2h

∣∣∣∣1/2 (D3)

Note that the decay rates intoW,Z diverge for 〈h2〉 → 0. This follows from the fact that in this case there is no sponta-
neous symmetry breaking and the computation of the decay rates assuming three massive gauge boson polarizations
is no longer valid. During the lattice evolution one quickly gets 〈h2〉 6= 0 when the fluctuations grow at early times;
nevertheless, for numerical stability we only consider these decay channels for 〈h2〉 above a certain cutoff which we
implement by requiring xW > 10−3.
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FIG. 13: Comparison between the power spectra computed in the lattice (red points) and the results obtained from solving the
linearized mean-field equations using the means and averages of the lattice simulation (blue curves). The dashed blue lines cor-
responds to using a simplified version of Eqs. (E1) in which one makes the following two approximations: first, one ignores the
variances σ2

n in the the relations (E3), and second, in the equation for every perturbation δϕn one ignores the terms sourced by
δϕm, m 6= n. The solid blue curves correspond to solving the full coupled Eqs. (E1). Note how the mean field approximation cap-
tures with excellent accuracy the full non-linear evolution of the perturbation of φ2, which is tied to the axion perturbation, up to
τ ≈ 50.

Appendix E: Mean field approximation

As a cross check of our lattice simulations for Model 1 we compare the power spectra obtained on the lattice with
the result of applying the mean field approximation to the non-linear equation for the field fluctuations, which cor-
rects various terms in the linearized equations of motion for the modes in Fourier space with the spatial means and
variances of the fields. Considering the real fields ϕn = {σr, σθ, h} with perturbations δϕn,k in momentum space
(where we assume rotational invariance and a dependence on k ≡ |k|), the mean field approximation of the linearized
equations of motion on top of a homogeneous time-dependent background for ξ = 0 can be obtained as follows:
starting from Eqs. (48), the fields are expanded around a homogeneous background that satisfies the equations; then
only the terms in the fluctuations are kept, and a Fourier transform of the spatial coordinates is performed. Next, the
time-dependent background fields or their products/powers are reinterpreted as spatial averages over the lattice. The
resulting equations are:(

d2

dt2
+ 3H

d

dt
+ k2

)
δσr,k +

[
λ(3〈σ2

r〉+ 〈σ2
θ〉 − f2

A) + λHσ(〈h2〉 − v2)
]
δσr,k

+ 2λ〈σrσθ〉δσθ,k + 2λHσ〈σrh〉δhk = 0,(
d2

dt2
+ 3H

d

dt
+ k2

)
δσθ,k +

[
λ(3〈σ2

θ〉+ 〈σ2
r〉 − f2

A) + λHσ(〈h2〉 − v2)
]
δσθ,k

+ 2λ〈σrσθ〉δσr,k + 2λHσ〈σθh〉δhk = 0,

(E1)
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d2

dt2
+ (3H + Γh)

d

dt
+ k2

)
δhk +

[
λH(3〈h2〉 − v2) + λHσ(〈σ2

r〉+ 〈σ2
θ〉 − f2

A)
]
δhk

+ 2λHσ〈σrh〉δσr,k + 2λHσ〈σθh〉δσθ,k = 0 ,

(E2)

where 〈 〉 denotes a spatial (time-dependent) average on the lattice. In practice, we compute spatial means ϕ̄n(t) =
〈ϕn(t)〉 and spatial variances δ2

n(t) ≡ 〈ϕn(t)2〉 − 〈ϕn(t)〉2 on the lattice. Then in Eqs. (E1) we substitute

〈ϕ2
n〉 → ϕ̄n(t)2 + δ2

n(t), and 〈ϕmϕn〉 → φ̄m(t)φ̄n(t), for m 6= n, (E3)

neglecting cross-correlations among different fields for simplicity. For the value of the Hubble constantH we also use
the result of lattice simulations, in which the evolution of the scale factor is computed self-consistently.

We expect the mean field approximation above to capture the evolution of the fluctuations initially, until the pertur-
bations grow large enough such that the non-linear interactions between the δϕn cannot be ignored. This provides us
with a consistency check of our numerics. In Figure 13 we show the results for Model 1 with lattice size L̂ = 14848, num-
ber of grid points per dimensionN = 128, σr = 1.7MP at the end of inflation, λ = 1.27×10−11 andλHσ = 9.3×10−7.
The time evolution of the power spectra of the modes with comoving momentum kmid ≡

√
λφ0(126π/L̂) (correspond-

ing to roughly half of the largest momentum resolved by the lattice simulation) is shown. The first few oscillations in
δh and δσr are captured, while the solution for δσθ (which is directly related to the axion isocurvature perturbation
(δθ ∼ δσθ/〈σr〉) agrees with remarkable accuracy with the full lattice results all the way up to τ ∼ 50. We also show the
result of solving a simplified version of Eqs. (E1) setting to zero variances and cross-interactions. This shows that the
variances (which capture averages of non-linear effects in the lattice) are responsible for curbing the initial exponential
growth of perturbations. The fact that the mean field approximation captures the evolution of the σθ power spectrum
better than that of σr, δh can be understood from the less explosive growth of δσθ at early times, and the fact that the
source terms in the equation for δσθ proportional to δhk, δσr remain suppressed as one has 〈σθ〉 ≈ 0 as long as the
perturbations in σθ remain small. This protects the evolution of δσθ from the influence of the large values of δh, δσr at
early timems.
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