
DEUTSCHES ELEKTRONEN-SYNCHROTRON
Ein Forschungszentrum der Helmholtz-Gemeinschaft

DESY 20-211
arXiv:2011.06437
November 2020

Static Potential of the Standard Model and

Spontaneously Broken Theories

B. Assi, B. A. Kniehl

II. Institut für Theoretische Physik, Universität Hamburg

ISSN 0418-9833

NOTKESTRASSE 85 - 22607 HAMBURG



DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche 
Verwertung der in diesem Bericht enthaltenen Informationen vor. 

DESY reserves all rights for commercial use of information included in this report, especially in      
case of filing application for or grant of patents. 

To be sure that your reports and preprints are promptly included in the 
HEP literature database 

send them to (if possible by air mail): 

DESY          DESY 
Zentralbibliothek        Bibliothek     
Notkestraße 85          Platanenallee 6 
22607 Hamburg         15738 Zeuthen 
Germany                    Germany 



ar
X

iv
:2

01
1.

06
43

7v
3 

 [h
ep

-p
h]

  2
3 

N
ov

 2
02

0

Static Potential of the Standard Model and

Spontaneously Broken Theories

B. Assi,a B.A. Kniehla

aII. Institut für Theoretische Physik, Universität Hamburg, 22761 Hamburg, Germany

Abstract: We consider the static potential in theories exhibiting spontaneous symmetry

breaking. We use our findings to calculate the static potential of the Standard Model at

one-loop order. We do so in both the Wilson loop and scattering amplitude approaches

and discuss the limitations of the Wilson loop approach. As the field content of the SM is

extensive, analogous results to ours in a large set of models is now achievable by varying

the appropriate couplings and group theory factors.
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1 Introduction

The static potential is a crucial quantity for quantum field theories as it represents the

interaction energy of a pair of heavy particles. The potential allows one to study the

fundamental properties of a given theory in the non-relativistic (NR) limit. The most well-

known static potentials are the Coulomb potential in QED and the non-Abelian analogue

of QCD. The QCD static potential for a pair of heavy quarks is known to N3LO [1] and

valuable in the study of NR bound systems, such as quarkonia. It is of importance in many

areas, such as quark mass definitions and quark pair-production at threshold [2]. The static

potential has also been studied in the context of BSM theories for predicted heavy particles

such as in MSSM and N = 4 SYM [3–5].

We begin by focusing on the QCD static potential, which is of leading importance to

heavy quark theory due to the dominance of the strong coupling in the SM. The original idea

of describing a bound state of heavy coloured objects, in analogy to the hugely successful

Hydrogen atom, was proposed by Susskind in his 1970 Les Houches lecture [6]. In order

to demonstrate asymptotic freedom in Yang-Mills theory, he computed the one-loop pole

terms using a Wilson loop formula for the potential, and in the process re-derived the first

coefficient of the renormalization group Beta function. More recently, the two and three-

loop corrections were discovered and turned out to be numerically significant triggering

several investigations in further contexts [1, 7–10].

It is expected that the potential consists of two terms: a Coulomb-like short distance

term which is perturbatively calculable; and a long-distance term responsible for the phe-

nomenon of quark confinement [11]. Thus, a perturbative analysis will not provide the

full potential and may not hold the key to gaining a deeper understanding of confinement;

the short-distance part may still be employed as a starting point for constructing potential

models which have been vastly successful in the description of quarkonia [12]. Moreover, it

provides an excellent description for very heavy systems such as tt̄ to high accuracy. The

potential in perturbative calculations is comparable with results from numerical calculations

in lattice gauge theory.

The Wilson loop approach first employed by Susskind continues to be used to this day

due to its computational simplicity. In this approach the static potential in coordinate

space, V (r), is defined in terms of a Wilson loop, W (r, T ), with small but finite spatial

extension, r, and temporal extension, T → ∞ [7]. In this limit W (r, T ) ∼ exp (−iTV (r))

and the potential in momentum space, V (q), is simply its Fourier transform. However,

there has always been discussion about whether the Wilson-loop formula is well-defined due

to possible infrared divergences at higher orders [13]. On the other hand, the scattering

amplitude approach yields identical results and involves a computation of the on-shell quark

anti-quark scattering amplitude and directly yields the momentum-space static potential

in the non-relativistic, q → 0, limit.

In this paper, we consider extending the static potential to theories that exhibit spon-

taneous symmetry breaking (SSB); in particular, we take on the case of the standard model

(SM). The only case of a static potential in the context of a theory with SSB was in the

seminal result by Maldacena for heavy W-bosons in N = 4 SYM [3]. Working off of their
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result, we attempted an analogous procedure to obtain a SM potential; however, limitations

became apparent, which we discuss in detail. Whence, instead, we employed the scattering

amplitude approach, which provided us with the full SM static potential to one-loop or-

der. Furthermore, due to the richness of the SM in its field content, it becomes simple to

compute static potentials in other theories by a replacement of the appropriate couplings

and group theory factors. We then demonstrate applications of our result to beyond QCD

corrections in heavy quark effective theories and threshold mass schemes [14–16], in par-

ticular the popular 1S and potential subtracted (PS) mass definitions. We found that, as

is to be expected from previous results on EW corrections to short-distance heavy-quark

mass definitions [17], the EW regime contributes at the same order as NNLO pure QCD

contributions to the static potential. Therefore, it stands to reason that they must be

incorporated into high precision threshold calculations [18].

2 Wilson Loop Appraoch

Let us consider a system with an arbitrary field, ψ(x), defined by an action, I[ψ] =
∫

ddxL[ψ] in the presence of external sources, J(x). One can express the ground state

energy of this system in QFT as follows [12],

− lim
T→∞

1

T
log

∫

D{ψ} exp
{

−
∫

ddx [L(ψ) + J(x)ψ(x)]
}

∫

D{ψ} exp
{

−
∫

ddxL
} , (2.1)

and outside the time interval (−1
2T,

1
2T ), the sources have been switched off. This formula in

perturbation theory has been proven exactly for the case of a linear local coupling between

the field and external source [19]. We generalise if we assume that in all cases the vacuum-

to-vacuum transition amplitude is given by,

〈0+|0−〉J =

∫

D{ψ} exp {−S0[ψ] + Sint[ψ, J ]}
∫

D{ψ} exp {−S0[ψ]}
, (2.2)

then inserting a complete set of energy eigen-states we may write,

〈0+|0−〉J = 〈0| e−HT |0〉 =
∑

n

〈0| e−HT |n〉 〈n|0〉 =
∑

n

|〈0|n〉|2 e−EnT , (2.3)

where the smallest energy eigenvalue, E0, corresponds to the ground state, and thus, in the

limit T → ∞ it dominates the sum. Whence taking the logarithm and dividing by (−T )
provides one with the ground state energy, (2.1), as is well known [11].

We may now be more specific in our discussion and take a gauge field theory, QED

for instance, where the energy we calculate corresponds to a system of photons interacting

with two point-like static electric charges (with identical magnitude but opposite sign),

− lim
T→∞

1

T
log

∫

D{ψ} exp
{

−
∫

ddx
[

−1
4F

2
µν +

1
2η (∂µAµ)

2 + Jµ(x)A
µ(x)

]}

∫

D{ψ} exp
{

−
∫

ddx− 1
4F

2
µν +

1
2η (∂µAµ)2

} , (2.4)

such that,

Jµ(x) = gδµ0[δ(x)− δ(x− r)]θ(T 2/4 − x20). (2.5)

– 3 –



T

rΓ

Figure 1: Rectangular Wilson loop to be integrated over.

We may then re-write the numerator of Eq. (2.4) as the following expectation value,
〈

T exp

{

g

∫

(A0(t, r)−A0(t,0))dt

}〉

, (2.6)

where T stands for time ordering. This Green’s function is manifestly gauge invari-

ant, which one can see by considering the gauge invariant operator, P exp
[∮

Γ gAµdx
µ
]

,

where P denotes path ordering and Γ is the rectangular loop of spatial and time extent,

r and T , respectively, as in figure 1. Now, in the limit, T → ∞, the spatial compo-

nents, {A(ξ, 12T ),A(ξ,−1
2T )}, reduce to pure gauge terms as the field strength tensor,

Fµν = 0 at infinity and thus is gauge equivalent to A = 0. Therefore, the operator,

T exp
{

g
∫

(A0(r, t)−A0(0, t))dt
}

, is gauge invariant and so is the ground state energy (or

static potential), which is equal to,

V (r) = − lim
T→∞

1

T
log

〈

T exp
{

g
∫

(A0(t, r)−A0(t,0))dt
}〉

〈1〉 . (2.7)

This approach has been employed in QED where only the LO term contributes to all orders

[20], and the non-Abelian case of QCD has been studied to three loop orders [1]. We begin

by re-evaluating the QCD case and then extending this approach to theories with SSB as

in the case of the SM and beyond.

2.1 QED/QCD

Let us begin by considering the potential in QCD [7], which corresponds to the interaction

energy of an infinitely massive QQ pair separated by a fixed distance, r, interacting by

exchanging virtual gluons. Using the definition,

V (r) = − lim
T→∞

1

T
log 〈W[Γ]〉 (2.8a)

= − lim
T→∞

1

T
log

〈

trP exp

(

ig

∮

Γ
d4xJµAµ

)〉

, (2.8b)

such that W[Γ] denotes the Wilson loop, P denotes path ordering, tr denotes the normalised

color trace, tr(...) ≡ tr(...)/tr(1), and the gauge potential, Aµ(x) = T a
ijA

a
µ(x). Γ is the

rectangular Wilson loop as shown in figure 1, and

〈O(A)〉 ≡
∫

DA exp (−S)O(A)
∫

DA exp (−S) . (2.9)
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(a) (b)

µ, a

µ, a p

p
: igsT

aδµ0 : −igsT
aδµ0 : i

(p0+iδ)

Figure 2: Feynman rules for (anti-)source propagator and (anti-)source-gluon vertices.

The desired properties of static colour charge is dictated by,

Jµ(x) = vµ[δ(x)− δ(x− r)]θ(T 2/4− x20), (2.10)

such that vµ ≡ δµ0. After Fourier transforming to momentum space, we get the Feynman

rules for our potential [7]. The QCD Feynman rules remain unaltered aside for those

illustrated in figure 2. To illustrate computing the Wilson loop, consider the tree amplitude

illustrated in figure 3, where |p|= |p′| and E =
√

m2 + p2. From this tree diagram one

obtains the following amplitude,

iM = i
4παs

|k − k′|2T
a
c′
1
c1
T a
c′
2
c2

≡ i
4παs

q2

(

δc1c2δc′
1
c′
2
− 1

Nc
δc1c′1δc2c′2

)

, (2.11)

where c1(2) and c′1(2) denote colours of initial and final states, respectively. The colour

singlet case, c1 = c2 and c′1(2) summed over gives Vs(q) = −CFαs

q2 , versus the colour octet

case, (c1 = c′1, c2 = c′2), with no sum, gives Vo(q) = 1
2CA

αs

q2 , where CA = Nc and CF =

(N2
c − 1)/(2Nc).

At one-loop in QCD we have amplitudes illustrated in figure 4, such that post-reduction,

in Feynman Gauge, only (a-d) are non-zero since the remaining ones are scaleless. We re-

calculate the one-loop result in the MS scheme and find the well-known quantity [12]. A

(E,p) (E,p′)

(0, |p′ − p|)

(E,−p) (E,−p′)

Figure 3: Tree diagram for the QCD static potential.
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suggestive way of writing the final result in momentum space is,

V (q2) = −CF
4παV (q

2)

q2
, (2.12a)

αV (q
2) = αs(µ

2)

∞
∑

n=0

ãn(µ
2/q2)

(

αs(µ
2)

4π

)n

= αs(q
2)

∞
∑

n=0

an

(

αs(q
2)

4π

)n

, (2.12b)

where a0 = ã0 = 1 and,

a1 =
31

9
CA − 20

9
Tfnf , ã1 = a1 + β0 log

µ2

q2
. (2.13)

The coupling, αs, denotes the strong coupling in the MS scheme and αV represents the

effective coupling constant which incorporates all radiative corrections into its definition.

This provides a new scheme, the V-scheme [21, 22], which defines the strong coupling in

terms of a potential. With the QCD result at hand, one expects to be able to extend this

approach to the SM and other theories exhibiting SSB.

2.2 N = 4 SYM

The only case of a static potential being calculated for a spontaneously broken theory with

a Higgs-like field in 3+1 dimensional N = 4 SYM, which has been done with the Wilson

loop approach [3]. The static potential in this theory is given by,

V (r) = − lim
T→∞

1

T
ln

〈

trP exp i

(
∮

Γ
dsAµẋµ +Φiθi|ẋ|

)〉

, (2.14)

where Aµ = Aa
µT

a is the gauge field, Φi=1,...,6 are the six scalar fields in this theory and the

rectangular Wilson loop to be integrated over is as previously shown in figure 1. We will

;

(a) (b) (c)

(d) (e) (f) (g)

Figure 4: Diagrams that contribute to the QCD static potential at one-loop. The arrowed

circle represents light quark and ghost loops.

– 6 –



summarise the derivation of this potential. Consider the theory with spontaneous breaking

of U(N+1) → U(N) × U(1) by giving some expectation value, 〈Φ〉i = vi, to a Higgs-like

field. Then the massive W -bosons of N = 4 SYM have a mass proportional to |v| and

transform in the fundamental representation of U(N). So in the limit |v|→ ∞ they provide

the very massive quarks necessary to compute Wilson loops in the U(N) theory. The physics

of interest is for energy scales much lower than |v| so that the U(N) theory is effectively

decoupled from the U(1) theory.

Consider the equation of motion for the massive W -boson, extracting the leading time

dependence as W = e−i|v|tW̃ , we get an equation of motion from the Lagrangian for W̃ ,

which to leading order in large |v| reads,

(∂0 − iA0 − iθiΦi)W̃ = 0, (2.15)

where we have defined θi ≡ vi/|v|. Notice that A0 and Φi are matrices in the adjoint

representation of U(N). This implies that if we consider this massive W -boson describing

a closed loop, Γ, its interaction with the U(N) gauge field will lead to the insertion of the

Wilson loop operator,

W(Γ) = trP exp i

(
∮

Γ
dsAµẋµ +Φiθi|ẋ|

)

. (2.16)

This operator is determined by the contour Γ (parametrised by xµ(s)) as well as a function,

θi(s), which is a unit six-vector (i.e. θiθi = 1). From this Wilson loop one obtains the static

potential by taking the expectation value and limit,

V (r) = − lim
T→∞

1

T
log 〈W[Γ]〉. (2.17)

This potential has been evaluated in detail and limits have been mapped to classical D-string

solutions [3]. More recently this same potential has been computed in the weak-coupling

limit to NLO using effective theory methods inspired by pNRQCD [23].

Following this case, we may apply the same procedure to the equation of motion of

heavy quarks in the standard model obtained from the SM Lagrangian. The leading time

dependence is exhibited analogously for the heavy quarks, Q = e−imQtQ̃, such that mQ =√
2Y v, where Y is the quark Yukawa coupling and v is the Higgs vacuum expectation value.

The analogous limit we can then consider, v ∼ mQ,mW,Z,H ≫ |q| where |q| is the transform

momentum between the static sources.

2.3 Standard Model

Since the Wislon loop approach is technically simpler, we apply it to heavy quarks in the

standard model, inspired by the N = 4 SYM derivation. For illustration purposes we will

omit couplings to the W/Z and Goldstone bosons as we will see later that they can not be

taken into account in this approach. The quark field, ψ(x), then has equation of motion,

(

i /D −mQ −
√
2Y H(x)

)

ψ(x) = 0, (2.18)
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where /D = γµ(∂
µ − iÃµ(x)) and Ãµ = gsA

µ,a
g T a

ij − eAµ
e represents the massless gauge field

couplings, H(x) corresponds to a gauge singlet scalar field that models Higgs exchange in

the SM, the quark Yukawa coupling is given by Y , and mQ =
√
2Y v where v is the Higgs

vacuum expectation value [24]. Expanding (2.18) component-wise gives,
(

iγ0∂0 − iγ · ∂ − γ0Ã0(x) + γ · Ã(x)−
√
2Y (H(x) + v)

)

ψ(x) = 0, (2.19)

which we can further reduce by solving the Schrödinger equation for the heavy quark field,

providing us with the leading time dependence,

ψ = e−imQtψ̃ = e(−i
√
2Y vt)ψ̃, (2.20)

and plugging this back into (2.19) gives,
(

(γ0 − 1)
√
2Y v − iγ · ∂ − γ0Ã0(x) + γ · Ã(x)−

√
2Y H(x)

)

ψ̃(x) = 0, (2.21)

Taking the limit v → ∞ of this expression, we attain the bi-spinor constraint, (1−γ0)ψ̃ = 0

which forces zero first component, ψ̃ = (0, χ). Therefore, all terms acted on by the matrices,

{γ, γ5}, do not contribute, restricting the naive inclusion of W/Z and Goldstone couplings

as they are chiral and flavour changing. We are left with the equation of motion,
(

i∂t − Ã0 −
√
2Y H

)

χ(x) = 0, (2.22)

which may be re-written in the following way,

i∂tχ = M̂χ⇒ χ = Û(t)χ0. (2.23)

Thus, if we consider this heavy quark describing a closed loop, Γ, its interaction with the

Higgs and gauge fields leads to the insertion of the Wilson loop operator,

W(Γ) = trP exp i

(
∮

Γ
dτÃµ(x)ẋµ +

√
2Y H(x)|ẋ|

)

, (2.24)

and the potential is then,

V (r) = − lim
T→∞

1

T
log 〈W[Γ]〉, (2.25)

in the large v limit. We may also consider the large Yukawa coupling limit. In this case

the simplification of the bi-spinor to one large component ceases to occur. Instead, spatio-

temporal mixing in spinor components happens resulting in the loss of gauge invariance.

Otherwise, in the large v limit we have a potential allowing for interactions between the

static source and {g, γ,H} bosons. Evaluating this potential in momentum space to one-

loop order in the MS scheme gives the following extension to the pure QCD result,

V (q) = V QCD(q)− 4πα

q2

[

4

9
+
αs

4π
b1 +

α

4π
b2

]

(2.26)

such that,

b1 =
Ỹ CF

sin θW
2 log

m2
H

µ2
(2.27a)

b2 =
80

243
nf log

µ2

q2
− 400

729
nf +

32

243
ng log

µ2

q2
− 160

729
ng +

4

9

Ỹ

sin θW
2 log

m2
H

µ2
. (2.27b)
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The factor, nf defines the number of light quark flavours, ng is the number of lepton

generations, Ỹ ≡ Y/α and θW is the weak mixing angle. The leading O(αsα) correction

has a colour factor which is correct in the colour singlet configuration, for the colour octet

result one replaces each factor of CF with minus 1
2CA

.

We note that taking the large vacuum expectation value limit as is done here can

be further applied to BSM theories with Higgs-like fields and higher symmetry breaking

scales. On the other hand, if we choose to include all interactions of the SM consistently

in the static limit, |q|≪ mQ,mW,Z,H , then the more computationally intensive scattering

amplitude approach seems to be the safest path; we look at this next.

3 Scattering Amplitude Approach

Although we have derived the static potential in the Wilson loop approach, it is also worth

cross-checking this with the original, scattering amplitude approach [25]. In this way, one

can compute the potential directly in momentum space from the on-shell quark-anti-quark

scattering amplitude in the static or small momentum transfer limit. Although this is a

textbook result in QED [26], we calculate here in QCD to verify that it matches the Wilson

loop result. The idea of the calculation is to study the QCD scattering amplitude of the

process:

Q(p) + Q̄′(p′) → Q(p − q) + Q̄′(p′ + q), (3.1)

where q = (0, |q|), in the limit of non-relativistic scattering, mQ ≫ |q|. There are various

ways to parametrise the momenta, we choose to minimise the algebra by employing light-

cone coordinates. Taking the initial particles to be moving along the z-axis, and introducing

two light-cone vectors, nµ± = (1, 0, 0,∓1)µ , then any momentum is expressible as,

kµ =
1

2

(

nµ−k+ + nµ+k−
)

+ kµT , (3.2)

where kµT represents the remaining transverse components. This choice of coordinates leads

to useful identities,

n++ · n− = 2, n2± = 0, n± · kT = 0, k± = k± · n± = k0 ± k3, (3.3)

and the scalar product can be re-written as,

k · q = 1

2
(k+ · q− + k− · q+)− kT · qT ⇒ k2 = k+ · k− − k2

T . (3.4)

In our case we have four-vectors, p and p′, which satisfy,

p+p− = m2
Q, p′± = p∓, p± =

√

m2
Q + p2 ± |p|. (3.5)

Assuming we know the transverse part of the transfer momentum, qT , we may fix q+ and

q− in such a way that final particle momenta are on-shell,
{

(p− q)2 = m2
Q

(p′ + q)2 = m2
Q

⇒
{

(p+ − q+)(p− − q−)− q2
T = m2

Q

(p− + q+)(p+ + q−)− q2
T = m2

Q

(3.6)
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Solving this system of equations and substituting the explicit expressions for p±, we obtain,

q+ = −q− = P − P̄ , (3.7)

such that,

P = |p|, P̄ =
√

p2 − q2T , (3.8)

and therefore, q2
T = P2 −P̄2, meaning we may express everything in terms of P and P̄. As

these parameters are independent of mQ, we infer that P, P̄ ≪ mQ, allowing a safe taking

of the leading power dependence of the amplitude at mQ → ∞. To proceed we need to

express all scalar products in terms of our new parameters,

q2 = q+ · q− − q2
T = 2P(P̄ − P),

p · q =
1

2
(p+ · q− + p− · q+) = P(P̄ − P),

p′ · q =
1

2
(p− · q− + p+ · q+) = −P(P̄ − P),

p · p′ = 1

2
(p2+ + p2−) = m2

Q + 2P2.

With this set of coordinate re-definitions we may now proceed and calculate the static

potential in QCD.

3.1 QCD

In the pure QCD case, the one-loop bare amplitude will be proportional to the Born ampli-

tude and will be UV and IR finite. The expression for scattering amplitude in perturbation

theory up to NLO in the Fourier-transformed potential, U(q), reads [26],

f(k,k′) = − m∗
2πh̄2

[

U(k − k′) +
2m∗
h̄2

∫

d3l

(2π)3
U(k′ − l)U(l − k)

k2 − l2 + i0
+O(U3)

]

, (3.9)

where k = p, k′ = p−q andm∗ = mQ/2 is the effective mass of the scattering particles. For

the Coulomb potential, the integral is IR-divergent but we can calculate this in dimensional

regularization. The terms we obtain from this procedure should match the corresponding

terms in the Wilson loop approach. The UV-divergences will be removed by renormalization

of coupling and mass in the MS scheme, while IR divergence in the NR limit is known to

come exclusively from the long-range Coulomb interaction and will be removed by on-shell

wave-function renormalisation (WFR).

With our scattering amplitudes, represented in figure 5 with strong interactions alone,

we take the NR limit of the calculated amplitudes. More specifically, we expand the Dirac

spinor chains in terms of Pauli matrices and Pauli spinors, taking the q2 → 0 limit. Next, we

pick out the terms of O(1/q2) and sandwiched by Pauli spinors alone, dropping terms with

insertions of Pauli matrices, i.e. spin-dependent terms, as these contribute at O(q2/m2
Q).

This leads us to to the following renormalised colour singlet potential in the MS scheme,

V (q) = −4παs

q2

{

1 +
αs

4π

[

(−2πi)
mCF

P ln
µ2

q2
+ β0 ln

µ2

q2
+

31

9
CA − 20

9
nf

]}

, (3.10)
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where β0 = 11−2nf/3 is the first coefficient of the QCD β-function and the imaginary term

proportional to (−2πi) is the so-called Coulomb contribution which is known to appear [25].

The real part is exactly the QCD static potential at one-loop order which is identical to

the result one obtains with the Wilson loop approach, as required.

3.2 Standard Model

We may now extend this approach in QED/QCD to the standard model, expanding the

scattering amplitudes illustrated in figure 5 in the non-relativistic limit, and taking the real

part of the expression to be the static potential. We will present analytical expressions in

reasonable limits and leave a numerical comparison of the full expressions to section 6. As

in the QCD case, we investigate the following process at one-loop,

Q1(p) + Q̄2(p
′) → Q1(p− q) + Q̄2(p

′ + q), (3.11)

where q = (0, |q|) is the transfer momentum. The limit of NR scattering in the SM is given

by, |q|≪ m1,2,mW,Z,H , where the subindices 1,2 denotes the possibility of working with

different particles (different masses). Therefore, we have three cases to consider,

V SM
ij = V QCD + V QED + δV SM

ij (3.12)

where δV SM
(i,j) is the one-loop correction from contributions outside of pure QCD, the leading

of which will be of O(ααs). We note that flavour changing is permitted in the SM, so we

take the internal quark masses to be non-zero and maintain consistency. To present our

large expression for δV SM
ij concisely, we consider the limit, m1 ≫ mW,Z,H ≫ m2 ≫ q2,

which is valid for top/bottom quarks, i.e. m1,2 ↔ mt,b; other limits including the more

;

(a) (b) (c)

(d) (e) (f) (g)

Figure 5: Diagrams that contribute to the static potential to one-loop order where the

dotted lines represent possible bosonic propagators. The shaded and hollow circles represent

light fermion/ghost and bosonic self-energies, respectively.
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physical limit, m1 ∼ mW,Z,H ≫ m2 ≫ q2, can be considered from the full expressions

attached in an ancillary file. In the regime examined we have the following leading terms,

δV SM
(1,1) =

CFααs

4πq2

{

5c2w
16s2w

+
467c2w
144

− 5

16s2w
− 32

9
+

[

3c2w
16s2w

− 137c2w
48

− 3

16s2w
+

8

3

]

log
m2

1

m2
Z

−
[

3c2w
16s2w

− 155c2w
144

− 3

16s2w
+

8

9

]

log
µ2

m2
Z

}

+
α2

4πq2

{

400nf
729

+
5c2w
36s2w

+
467c2w
324

+
80ng
81

− 5

36s2w
− 152

81

+

[

c2w
12s2w

− 137s2w
108

− 1

12s2w
+

32

27

]

log
m2

1

m2
Z

−
[

c2w
12s2w

− 155c2w
324

− 1

12s2w
+

32

81

]

log
µ2

m2
Z

−
[

−2c2w
3s2w

+
16c2w
9

+
2

3s2w
+

2

3

]

log
µ2

m2
W

+

[

80nf
243

+
16ng
27

]

log
µ2

q2

}

(3.13)

≡ ααs

4πq2
c(1,1) +

α2

4πq2

{

d(1,1) + e(1,1) log
µ2

q2

}

, (3.14)

such that cw ≡ cos θW = mW /mZ and sW ≡ sin θW where θW is the weak mixing angle.

In the unequal mass case, δV SM
(1,2) = δV SM

(2,1), we have the following result,

δV SM
(1,2) =

CFααs

4πq2

{

10

9
− 21

16s2w
+

27

16c2w
− 3πyw1

8s2w
+

1

3
log

m2
2

µ2
+

13

9
log

m2
1

m2
Z

+

[

1

4
log

m2
1

m2
W

− 1

16
log

m2
2

m2
Z

]

1

s2w
−
[

4

3
log

m2
1

m2
Z

+
10

18
log

m2
2

µ2
+

13

72
log

m2
2

m2
Z

]

1

c2w

}

+
α2

4πq2

{

52

81
− 40

81
ng +

8

27
ng log

µ2

q2
− 200

729
nf +

40

243
nf log

µ2

q2
+

14

9
log

µ2

m2
W

+
14

81
log

µ2

m2
2

+
4

81
log

m2
Z

m2
2

+
22

81
log

m2
Z

m2
1

+

[

7

24
− πyw1

12
+

1

72
log

m2
2

m2
Z

+
1

18
log

m2
1

m2
W

]

1

s2w

−
[

3

8
+

10

81
log

µ2

m2
2

+
13

648
log

m2
Z

m2
2

+
8

27
log

m2
Z

m2
1

]

1

c2w

}

(3.15)

≡ ααs

4πq2
c(1,2) +

α2

4πq2

{

d(1,2) + e(1,2) log
µ2

q2

}

, (3.16)

such that ywi
≡ mi

mW
. Lastly, for δV SM

22 , we take the further approximation of mW,Z,H ∼
Mew, reducing the expression size further,

δV SM
(2,2) =

CFααs

4πq2

{

8

6
log

m2
2

M2
ew

+
1

72
log

M2
ew

µ2
− 83

36

}

α2

4πq2

{

100

729
nf +

20

81
ng −

67

324

+

[

20

243
nf +

4

27
ng

]

log
µ2

q2
+

151

324
log

M2
ew

µ2
+

4

54
log

m2
2

µ2

}

(3.17)

≡ ααs

4πq2
c(2,2) +

α2

4πq2

{

d(2,2) + e(2,2) log
µ2

q2

}

. (3.18)

Note that the above are color singlet results, again the simple replacement CF 7→ −1/(2CA)

produces the colour octet results for the O(ααs) contributions. Thus, we have now fully

expressed the SM static potential to one-loop order, which was not possible in the Wilson

loop approach.
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4 Applications

The potential on its own represents a fundamental concept, which provides not only po-

tential models that have been astonishingly successful in the description of quarkonia, but

also a deeper understanding of confinement. From a more phenomenological standpoint

however, the primary interest lies in heavy quark pair production at threshold [18, 27]. The

static potential appears in heavy quark effective theories, for instance in pNRQCD [27, 28],

where both the singlet and octet potential appears as Wilson coefficients of the theory.

Moreover, there has been significant interest in producing high precision quark mass defini-

tions appropriate for processes occurring at threshold, the most popular of which are the 1S

and potential subtracted (PS) masses [14, 15]. We will summarise these two applications

and comment on the effect of incorporating the SM potential, or EW corrections to the

QCD potential, to these results.

4.1 Potential NRQCD

The effective theory, pNRQCD, is an often employed extension of NRQCD; the difference

between these two theories is that pNRQCD takes further advantage of the hierarchy of

scales that appear in a particular process. The hierarchy under consideration is taken to

be, mQ ≫ |p|∼ mQv ≫ E ∼ mQv
2, where pNRQCD takes into account the ultrasoft (US)

scale, E ∼ mQv
2, which is neglected in NRQCD [29]. For one to take into account the US

scale, one is implored to alter the Lagrangian of NRQCD by including the following terms,

LpNRQCD = LUS
NRQCD + Lpot, (4.1)

where LUS
NRQCD is identical to LNRQCD with all gluons taken to be in the US regime. The

second term, Lpot, is of particular interest to us and it arises from the Schrodinger equation,

Lpot = −
∫

d3x1d
3x2ψ

†(t,x1)χ(t,x2)V (r)χ†(t,x2)ψ(t,x1), (4.2)

such that pj = −i∇j and Sj = σj/2, where j = 1, 2 act on the fermion and antifermion,

respectively. Moreover, the fermion and antifermion spin indices are contracted with the

indices of V (r), which are not explicitly displayed. The potential in this expression, V (r),

is precisely the QCD static potential. There are implicitly two terms in this Lagrangian,

depending on if the wave functions are color singlet or octet with corresponding singlet

and octet potentials, respectively. By inspection, the potential Vs,o(r) contains both the

expansion parameter and Wilson coefficients of this effective theory. Conversely, this effec-

tive can be seen as defining the static potential, i.e. any term matching to the EFT is the

static potential. Whence, when employing this effective theory one should include the EW

corrections to the QCD static potential at NLO as they are comparative to NNLO QCD

corrections.

4.2 Threshold Masses

It is well known that contrary to intuition, the notion of a quark pole mass, is, in fact,

inadequate for accurate calculations of heavy quark cross-sections near threshold. The loss
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of accuracy is due to the existence of IR renormalons that have been studied in various

contexts [30]. The PS and 1S masses are by far the most used threshold mass definitions

that evade the renormalon problem by employing the static potential. The PS mass is

slightly more involved phenomenologically as it introduces a new factorisation scale, µF , in

it’s definition. Before introducing these mass definitions, we must first examine the Fourier

transform of our potential.

4.2.1 Fourier Transform

We are now able to compute the standard model analogue of the well-known Coulomb

potential, i.e. the SM potential in position space. From this, we may obtain the corrections

to the PS mass and compare to the pure QCD result. In order to simplify our expressions,

it is convenient to introduce the notation [9],

F(r, µ, u) = µ2u
∫

/d
3
q

eiq·r

(q2)1+u
, (4.3)

for the Fourier transform of a general power of 1/q2. We then employ a Schwinger param-

eter,
1

(q2)1+u
=

1

Γ[1 + u]

∫ ∞

0
dxxue−xq2

. (4.4)

There are various representations of F , the ones which are useful to us are,

F(|r|, µ, u) = (µ|r|)2u
4π2|r|

Γ[12 + u]Γ[12 − u]

Γ[1 + 2u]
(4.5)

=
(µ|r|eγE )2u

4π|r| exp

( ∞
∑

n=2

ζ(n)un

n
(2n − 1− (−1)n)

)

, (4.6)

where the first and second formulas are applicable if −1 < u < 1/2 and |u|< 1/2, respec-

tively. By inspection of the static potential, we need the Fourier transform of logm (µ2/q2),

which is easily attainable from F since,

logm
µ2

q2
=

[

∂m

∂um

(

µ2

q2

)]
∣

∣

∣

∣

u=0

, (4.7)

and therefore,
∫

/d
3
q logm

(

µ2

q2

)

eiq·r

q2
=

(

∂m

∂um
F(r, µ, u)

)∣

∣

∣

∣

u=0

. (4.8)

Whence the color singlet potential (in the MS scheme) in position space is,

V SM
(i,j) (r) = −CF

αs

|r|
{

1 +
αs

4π
(2β0 log µr

′ + a1)
}

− α

|r|
{

ZiZj +
αs

4π
c(i,j) +

α

4π

(

d(i,j) + 2e(i,j) log µr
′)
}

, (4.9)

where Zi is the fractional charge of the incoming and outgoing heavy quarks, in our calcu-

lation we take Z1 = +2/3, Z2 = −1/3 and r′ = |r|eγE . The result may be considered in
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several ways because employing it as it stands is not reasonable due to the the possibly large

logarithms. Therefore, selecting a renormalisation scale, µ, that reduces the higher order

corrections would be ideal. The first choice and the one most often employed is µ1 = 1/|r|
or µ1 = 1/r′; other choices include selecting µ in such a way the first order pure QCD

coefficient is removed entirely or solely removing all nf -dependency from the coefficients

[31]. With the Fourier transformed potential at hand, we may now consider the PS mass.

4.2.2 Potential Subtracted Mass

It is well-known that the coordinate space potential is more sensitive to long distances than

the potential in momentum space and its leading power correction is linear in ΛQCD|r| [14].

The implication is that the expansion of the QCD coordinate-space potential in αs(e
−γE |r|)

diverges as,
∑

n

rnαs(e
−γE |r|)n+1 ∼

∑

n

(−2β0)
nn!nbαs(e

−γE/|r|)n+1, (4.10)

which is much faster than the expansion of the potential in momentum space. This di-

vergent behaviour has been studied in previous works [32, 33]. It is clear that the rapid

divergence originates only from the Fourier transform to coordinate space and is not present

in momentum space. Knowing this, one can subtract the leading long-distance contribution

and the LO divergent behaviour completely by restricting the Fourier integral |q|> µf with

µf a new factorisation scale, which is viewed as an IR regulator. The result is called the

‘subtracted potential’, V (r, µf ). The subtraction terms can be evaluated order by order in

the coupling given V (q) to that order. More precisely,

V (r, µf ) = V (r) + 2δm(µf ), (4.11)

where,

δm(µf ) = −1

2

∫

|q|<µf

/d
3
qV (q). (4.12)

To subtract the leading long-distance contribution of order ΛQCD, it is reasonable to replace

the factor, eiq·r, by unity in the Fourier transform and this is used as the definition for the

subtraction term in the mass definition,

mPS(µ, µf ) = mpole − δm(µ, µf ). (4.13)

Of course, in this procedure one has only swept the large loop corrections from δm(µf ) to

mPS(µf ). However, when mpole is expressed in terms of a short-distance mass parameter

such as the MS mass through a perturbative series, this series will also contain large loop

corrections [34]. Conveniently, these perturbative corrections cancel with large perturbative

corrections to the pole mass in δm(µf ). In this way, one may determine the MS mass from

threshold cross-sections with better accuracy than the pole mass, the use of which implicitly

contains the non-subtracted potential. Let us now compute δm(µf ) from the definition in
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Eq. (4.12), one obtains,

δmSM
(i,i)(µf ) = CF

αs

π
µf

{

1 +
αs

4π

(

a1 + 2β0

(

log
µ

µf
+ 1

))}

+
α

π
µf

{

Z2
i +

αs

4π
c(i,i) +

α

4π

(

d(i,i) + 2e(i,i)

(

log
µ

µf
+ 1

))}

, (4.14)

where in the case i = 1, in the context of the previous limits, one may take this to be the case

of the top quark mass, conversely if i = 2, the bottom quark. For completeness, we avoid

taking limits and employ the complete result to get a numerical estimate of the one-loop

standard model PS mass. One usually picks µf = 3 GeV, a typical scale for heavy quarks,

and µ = mZ to avoid large logarithms in the coefficients, {c(i,j), d(i,j)}. Moreover, we

choose m1 → mt(mZ), m2 → mb(mZ), the number of light quarks and lepton generations,

nf ≡ 2nu − nd = 2 and ng = 3, respectively (the rest of the parameters are taken from the

latest PDG review [35]). From this we obtain,

δmSM
(1,1)(µf ) = CF

αs

π
µf

{

1 + 79.5
αs

4π

}

+
α

π
µf

{

0.44 − 24.1
αs

4π
+ 17.7

α

4π

}

, (4.15)

δmSM
(2,2)(µf ) = CF

αs

π
µf

{

1 + 79.5
αs

4π

}

+
α

π
µf

{

0.11 − 0.45
αs

4π
+ 5.1

α

4π

}

. (4.16)

One can clearly note that although, at NLO, the contributions outside of pure QCD/QED

are significantly smaller, they still have an impact in high precision calculations and are

comparative to NNLO higher order QCD corrections and thus must be taken into account

in this mass definition.

4.2.3 1S Mass

The PS mass along with other threshold mass definitions, such as the kinetic and MSR

masses [36, 37], are defined by introducing a new explicit IR factorization scale, µf , to

remove the IR ambiguity of the pole mass. In contrast, the 1S mass [15], denoted by m1S ,

achieves a similar goal without introducing a new factorization scale. The 1S mass is defined

as one-half of the perturbative energy of the 1S heavy qq̄ bound state,

m1S(µ) =
1

2
(mqq̄

1S)pert ≡ mpole − δm(µ). (4.17)

The ground state energy calculated from the Schrödinger equation from elementary quan-

tum mechanics is exactly (mqq̄
1S)pert. At leading order in the small quark velocity expansion

(threshold region), the dynamics of a heavy qq̄ pair is governed by the Hamiltonian [38],

H = −∇
2

mQ
+ V (r) + U(q, r), (4.18)

where mQ is the quark pole mass, V (r) is the static potential, the analogue to the Coulomb

potential, and U(q, r) encodes higher order corrections in the small velocity expansion and

is the SM analogue of the Breit potential [39]. The leading contributions at threshold come

from the static potential and thus we omit U(q, r) from our calculation. Solving for the

S-wave Green function, we have,

G(E) = 〈0| Ĝ(E) |0〉 = 〈0| 1

H − E − iδ
|0〉 , (4.19)
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where 〈0| denotes a position eigenstate with eigenvalue, |r|= 0, and the Green function has

single poles at the exact S-wave energy levels, E = En,

G(E)
E→En=

|ψn(0)|2
En − E − iδ

. (4.20)

From this expression, one gets (mqq̄
1S)pert = E1 and expanding one half E1 in small standard

model couplings gives the 1S mass, which is the SM analogue of the well-known Bohr

potential from quantum mechanics. We may then find the leading EW corrections at one-

loop to the 1S mass with our SM potential, as only the QCD corrections are known, and

they have been found to N3LO [40]. At one-loop up to third order in SM couplings, {α,αs},
we have,

δmSM
(i,i)(r) =

mi(αZ
2
i + αsCF )

16π

{

α2Bi + α(αsc(i,i) + 2πZ2
i ) + αsCF (αsAi + 2π)

}

(4.21)

such that,

Ai = 2β0(li + 1) + a1, (4.22)

Bi = 2

(

80

243
nf +

16

27
ng

)

(li + 1) + d(i,i), (4.23)

where li ≡ log µ
CFαs(µ)mi

and mi is the pole mass. We further note that the IR renormalon

cancellation is more subtle in the 1S mass definition, as it is a well-behaved parameter only

if the orders of terms in perturbation theory are re-interpreted [15]. To see how the leading

EW corrections at one-loop alter the 1S mass, we obtain a numerical estimate in a similar

fashion to the PS mass and compare the O(ααs, α
2) to the O(α2

s) terms. We employ the

same parameter choices and renormalisation scale as in the PS mass case to obtain the

following result,

δmSM
(1,1) = 40.2α2

s + 270.1α3
s + 4.5α2 + 17.3α3 + 26.8αsα− 25.7α2

sα+ 13.3αsα
2, (4.24)

δmSM
(2,2) = 0.63α2

s + 11.23α3
s + 0.07α2 + 0.16α3 + 0.42αsα+ 3.7α2

sα+ 0.48αsα
2. (4.25)

It is apparent that at NLO, the contributions outside of pure QCD/QED are significantly

smaller, in particular for the case of mb. However, again for high precision calculations it

is necessary to include them since, as in the PS mass case, they are comparative to NNLO

terms in higher order QCD corrections.

4.3 Further Applications

As we discussed in the previous section, the number of viable dark matter candidates is

rapidly being constrained by precise collider and cosmological experiments, for example,

self-interacting theories have been practically ruled out recently by galactic observations

[41]. We may thus focus on computing the static potential of the most viable DM candidates,

the lightest Kaluza-Klein particle (LKP) and right-handed neutrinos. As is well understood,

Supersymmetry and Extra-Dimensional theories are two strong proponents to an array of

issues that belie the standard model [42, 43]. Dark matter is known to exist but is missing
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from the SM, both SUSY and Kaluza-Klein theory posit viable dark matter candidates, the

properties of which can be understood better in the non-relativistic regime due to their large

predicted masses. A recent static potential calculation for higgsino-wino dark matter found

the SU(2) × U(1) electro-weak static potential between a fermionic triplet in the broken

phase of the SM at one-loop order. The NLO terms provided the leading non-relativistic

correction to the large resonances (or Sommerfeld effect) in the annihilation cross-section of

wino or wino-like dark matter particles. The authors found sizeable modifications from LO

of the χ0χ0 annihilation cross-section and determined the shifts of the resonance locations

due to the loop correction to the wino potential. Although these results seem promising

for future detections, such resonances would also occur in KK theory for the LKP coupling

[44] to the second excitation of the Higgs as shown in figure 6.

B(1)

B(1)

H(2)

t

t̄

+g(1)
t(1)

T̄ (1)

t(2)

g(1)

t(1)

t

t̄ t̄

t

Figure 6: Resonant annihilation process of LKP dark matter, B(1), through s-channel h(2)

This will inevitably also be true for right-handed (or sterile) neutrinos due to their

possible large mass [45–47], and thus their potential for producing heavy tt̄ pairs through

the Higgs mechanism in the standard model. Neutrinos are the only matter particles in the

Standard Model of particle physics that have been observed with solely left-handed chirality

to date. If right-handed neutrinos exist, they could be responsible for several phenomena

that have no explanation within the Standard Model, including neutrino oscillations, the

baryon asymmetry of the universe, dark matter and dark radiation [48]. These particles

provide us with a test-bed case of our ability to deal with static potentials in theories with

spontaneous symmetry breaking as these massive neutrinos solely couple to gravity and the

SM Higgs field.

5 Technical Details

Our calculations of the one-loop correction to the SM potential employed standard tools.

The calculation was performed in general covariant gauge. The diagrams of the type in

figure 5 were reduced to a few master integrals, which are found analytically since one-

loop results are known for all master integrals. For the scattering amplitude approach,

we achieved this with the help of Mathematica accompanied by the package, FeynCalc

[49], to compute the necessary amplitudes and deal with the algebra. We employed further

sub-packages of FeynCalc, such as, FeynHelpers [50], which reduces and provides explicit

expressions for one-loop scalar integrals by connecting the reduction package, fire [51], with

the analytic scalar integrals program, Package-X [52]. Lastly, we employed the FeynOnium
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sub-package, which comes equipped with functions for dealing with amplitudes in the NR

limit [53]. For the Wilson loop approach, we employed QGRAFS [54] to generate the diagrams

and FORM [55] to deal with the algebra. We also used a Mathematica sub-package, LiteRed

[56] to reduce our integrals and again Package-X for the analytic one-loop scalar integrals.

6 Discussion

In this paper, we proposed a novel way of studying the static potential for theories that

exhibit SSB. We discussed the limitations of the Wilson loop approach for the SM and the

need to derive the potential directly from the scattering amplitude. We also mentioned how

these techniques could be extended to BSM theories and shed light on which ones would

satisfy the criteria to be treated in the Wilson loop fashion. The static potential for the

full SM was then presented, and the regimes of applicability considered. In particular, we

showed how our EW corrections to the potential modifies two oft-employed short-distance

mass definitions. Moreover, we rounded off each discussion by comparing the size of terms

with the SM static potential taken into account versus the QCD potential alone. In doing

so, we found the contributions from the EW regime to be significant and comparable to

NNLO pure QCD contributions. Therefore, we recommend that the SM potential be em-

ployed in future heavy quark high precision studies. Given the framework we now have to

build upon, it would be interesting to investigate the static potential of further models, in

particular BSM theories with higher symmetry breaking scales, to better understand the

non-relativistic regime and explore implications on measurable observables.
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