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Universidade de São Paulo, Brazil

and

Max-Planck-Institut für Astrophysik, Garching

ISSN 0418-9833

NOTKESTRASSE 85 - 22607 HAMBURG



DESY behält sich alle Rechte für den Fall der Schutzrechtserteilung und für die wirtschaftliche 
Verwertung der in diesem Bericht enthaltenen Informationen vor. 

DESY reserves all rights for commercial use of information included in this report, especially in      
case of filing application for or grant of patents. 

To be sure that your reports and preprints are promptly included in the 
HEP literature database 

send them to (if possible by air mail): 

DESY          DESY 
Zentralbibliothek        Bibliothek     
Notkestraße 85          Platanenallee 6 
22607 Hamburg         15738 Zeuthen 
Germany                    Germany 



Prepared for submission to JCAP

DESY 20-203

The Effective Field Theory and
Perturbative Analysis for
Log-Density Fields

Henrique Rubiraa and Rodrigo Voivodicb,c

aDeutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
bDepartamento de Física Matemática, Instituto de Física, Universidade de São Paulo,
R. do Matão 1371, 05508-090, São Paulo, SP, Brazil
cMax-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85748 Garching, Germany

E-mail: henrique.rubira@desy.de, rodrigo.voivodic@usp.br

Abstract. A logarithm transformation over the matter overdensity field δ brings information
from the bispectrum and higher-order n-point functions to the power spectrum. We calculate
the power spectrum for the log-transformed field A at one, two and three loops using per-
turbation theory (PT). We compare the results to simulated data and give evidence that the
PT series is asymptotic already on large scales, where the k modes no longer decouple. This
motivates us to build an alternative perturbative series for the log-transformed field that is
not constructed on top of perturbations of δ but directly over the equations of motion for
A itself. This new approach converges faster and better reproduces the large scales at low
z. We then show that the large-scale behaviour for the log-transformed field power spectrum
can be captured by a small number of free parameters. Finally, we add the counter-terms
expected within the effective field theory framework and show that the theoretical model, to-
gether with the IR-resummation procedure, agrees with the measured spectrum with percent
precision until k ' 0.38 Mpc−1h at z = 0. It indicates that the non-linear transformation
indeed linearizes the density field and, in principle, allows us to access information contained
on smaller scales.ar
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1 Introduction

The effective field theory of large scale structure (EFTofLSS) program [1–4] made possible
to constrain cosmology within percent precision. Recent astonishing achievements include
applying EFTofLSS to survey data [5–8] and to a blinded cosmology challenge [9]. The
EFT is constructed on top of the so-called perturbation theory (PT) [10] for the matter
overdensity δ, defined according to ρ(x, τ) = ρ̄(τ)[1 + δ(x, τ)], where ρ̄(τ) is the mean density
at the background and τ is the conformal time.

An important aspect of the overdensity evolution is that it is non-linear, making δ deviate
from an initially Gaussian random distribution. As shown by [11], the lognormal distribution
arises by considering the velocity to scale linearly in conformal time1. One can therefore
construct a Gaussian-like distribution [13, 14] by performing a non-linear transformation on
δ as

A(x, τ) = ln [1 + δR(x, τ)] , (1.1)

where δR is the overdensity field smoothed by a filter on a scale R. The Gaussianization can
be seen on the left panel of Fig. 1, where we compare the PDFs for A and δR.

A central point to compare is how physical information is distributed along the moments
and n-point functions of A and δ [15, 16]. Whilst for a random almost Gaussian field (A-like)
most of the information is encoded in its first two moments, for its exponential counterpart

1Even though the lognormal approximation might capture some information about the displacement field,
it is not strictly speaking the same as the Zel’dovich approximation [12]. Zel’dovich considers the velocity to
be proportional to the linear density and, for instance, predicts the formation of caustics that are not present
in the lognormal field [11].
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(δ-like) the information is distributed along all moments or even lost among them2. The field
Gaussianization can also bring information from higher-order n-point functions down to lower
ones (e.g. information from the bispectrum of δ will be encoded in the power spectrum of
A). We display on the right panel of Fig. 1 the bispectrum for A and δ. The Gaussianization
feature present in the non-linear transformation (1.1) becomes clear when comparing the
amplitude of the bispectrum for A and δR.
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Figure 1: On the left, the probability density function for A (red solid), δ (blue dashed) and the
linearly extrapolated initial (z = 99) density δL (orange dot-dashed) at z = 0. We smoothed δ using
a Gaussian filter with a smoothing scale of 4 Mpc h−1. On the right, the bispectrum for all triangular
configurations. The comparison between the bispectra amplitude makes evident the Gaussianization
process of the logarithm transformation. The right tail of the PDFs makes clear the linearization
property of this transformation.

In parallel to the Gaussianization effect induced by the transformation (1.1), another
central point to be analysed is the process of linearization of the field. Ultimately, non-
linearities are induced by couplings between modes. Once the equations of motion for A are
different than for δ [17], one expects both basis to describe non-linearities in a different way.
Within the perturbation theory language, the vertices that describe the couplings for the A
modes are different than those for δ. Besides that, δ assumes values much larger than 1 at
z = 0, while the typical values for A barely get larger than 1 (see Figs. 1 and 2).

Concisely, we have for the field A compared to the field δ that:

• it is more Gaussian, implying that the higher n-point functions are smaller. Conse-
quently, more information is available in the two-point function once the connected
four-point function is smaller;

• it is expected to be more linear, implying in a faster convergence for the same value of
k.

Those results were described in the series of papers [18–20] and in [17]. Analysing the
covariance matrix for the A power spectrum, they have shown that the signal extracted out of
the non-linear k modes is larger for A than for δ (see also [21, 22]). Another important result
that motivates to work with the log transformation concerns the position of the BAO peak

2The fact that information can be lost in the moments expansion is a consequence of the fact that the
projection of the logarithm field into a polynomial basis fails when the variance of the field gets larger [15].
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Figure 2: A density slice of the N-body simulation at redshift zero. In the left, the initial condition
from z = 99 rescaled by the linear growth function. In the middle the density field δR and in the right
the field A = ln [1 + δR]. For all the cases, we used R = 4 Mpc h−1 with an exponential filter.

[23]. While the BAO peak for δ shifts when Zel’dovich corrections are taken into account,
this shift is much smaller for A due to bulk flow motions.

Recently the so-called marked transformation, another kind of non-linear transformation
of δ, has gathered a lot of attention. It was shown by [24] that marked fields can improve the
constraints in the neutrino mass sum by a factor of 80. An effective field theory for marked
fields was constructed by [25, 26]. Once A is also more linear and increases the weight of cosmic
voids in the correlation functions, we also expect it to provide more stringent constraints on
neutrinos, dark energy, and gravity [27–29].

We revisit in this work the idea of constructing a perturbative prediction for the power
spectrum of the log field motivated by the idea that non-linear transformations of the over-
density field can lead to better constraints on the cosmological parameters. We first analyse
the convergence of the perturbative series for A. For this, we Taylor expand the logarithm
in Eq. (1.1) and extend the one-loop analysis of [17] up to three loops. We label this ap-
proach as Taylor-APT. Comparing it to N-body simulations, we give strong evidence that
the series constructed by that manner does not converge to the expected simulation result at
low redshift even on large scales3. It is a consequence of the lack of convergence of the PT
series for δ on intermediate scales, already pointed out by [4, 30, 31]. We then propose an
alternative perturbative approach for A directly through the equations of motion, which we
label as EoM-APT. The series constructed on that way has a better loop-hierarchy and gets
closer to the simulation result at low redshift. Afterwards, we show that the inclusion of a
few free parameters, already considered in [26], can improve the small k behaviour for both
schemes.

Next, we indicate the counter-terms needed by the effective field theory for A at one
and two-loop order. We show that the UV dependence of the loop integrals for the A field
demands us to add a new counter-term at two loops compared to the EFT for δ. This new
counter-terms comes from the bispectrum for δ and is a payback from bringing information
from the bispectrum down to the power spectrum. We also perform a IR-resummation scheme
based on [32, 33].

We compare our theoretical results to a suite of 26 N-body simulation ran with the
RAMSES code [34]. We use a box with 1024 Mpc h−1 and 5123 particles. The cosmological

3Notice that one can determine a convergence radius for δ [4], while for the A case it already fails on the
large scales. As will be shown later in the text, the k modes no longer decouple for A in the limit k → 0.
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parameters used are (Ωm, Ωb, ΩΛ, σ8, ns, H0) = (0.307, 0.048, 0.693, 0.829, 0.96, 67.8). We
calculate the density grid using a Gaussian filter

W (r/R) = e−
1
2
r2

R2 , (1.2)

with R = 4 Mpc h−1. Notice that the field excursions for δ in [18] are larger, since they
use a top hat filter and a smaller R. We picked this radius value because its reciprocal k
(kR ∼

√
2 × 0.25 Mpc−1h) is above the typical edge of the one-loop perturbative prediction

for δ and, as it will be seen in Sec. 2.3, the series for A is still perturbative. Besides that,
using a Gaussian filter leads to a smoother connection between the measurements in position
space and the theory in Fourier space.

The structure of this work is the following. We start Sec. 2 by settling the theoretical
basis for both the Taylor-APT and EoM-APT schemes. We discuss the convergence of the
series in the same section, which motivates us to introduce a set of free-parameters and
counter-terms. Sec. 3 is dedicated to compare the EFT theory and the simulated data. We
also compare the data to two other schemes: a power-law fitting function based on the work
[35] and the large-scale bias expansion model [36]. We conclude in Sec. 4. In App. A, we
compute the scaling of the PT integrals up to two loops.

2 Theoretical Models

In this section we present the theoretical structure underlying the perturbation theory frame-
work for the logarithm-transformed field. We start by presenting the Taylor expansion of
the log field in terms of δR. We show that within this scheme the PT series does not con-
verge to the N-body simulation result on the largest scales, which motivates us to consider
an alternative perturbative approach directly through the equations of motion.

Next, we comment on how the smoothing scale R affects the large scales and whether
perturbation theory can capture this effect by adding a couple of free parameters. Finally,
we comment on the effective field theory approach for A.

2.1 Taylor-APT

We now construct a perturbative series for the A field by expanding the log in Eq. (1.1) in
terms of δR. We label this expansion as Taylor-APT. This method was already described by
[17] at one-loop level and here we extend it to two loops. We also calculate the three-loop
contribution on the large scales, aiming to study the series behaviour on this limit.

We first expand the log as

A(x, τ) ≡ ln [1 + δR(x, τ)] =
∞∑
n=1

(−1)n+1 δ
n
R

n
(2.1)

= δR −
1

2
δ2
R +

1

3
δ3
R −

1

4
δ4
R +

1

5
δ5
R −

1

6
δ6
R +

1

7
δ7
R + . . .

The temporal part decouples from the spacial one in an EdS universe and we define the
perturbative expansion for A analogously to what is done for δ

A(x, τ) =
∑
n

an(τ)A(n)(x) , θ = −H(τ)
∑
n

an(τ) θ(n)(x) , (2.2)

where H is the comoving Hubble rate (H = da/dτ).
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For cosmologies different than EdS, the time evolution is well described by the approxi-
mation an(τ) → Dn(τ) [37, 38]. In Fourier space, each expansion term in Eq. (2.2) is given
by

A(1)(k) = δ
(1)
R (k) , (2.3)

A(2)(k) = δ
(2)
R (k)−

[
1

2
δ
(1)
R ∗ δ

(1)
R

]
(k) , (2.4)

A(3)(k) = δ
(3)
R (k)−

[
δ
(1)
R ∗ δ

(2)
R

]
(k) +

[
1

3
δ
(1)
R ∗ δ

(1)
R ∗ δ

(1)
R

]
(k) , (2.5)

A(4)(k) = δ
(4)
R (k)−

[
1

2
δ
(2)
R ∗ δ

(2)
R

]
(k)−

[
δ
(1)
R ∗ δ

(3)
R

]
(k) (2.6)

+
[
δ
(1)
R ∗ δ

(1)
R ∗ δ

(2)
R

]
(k)−

[
1

4
δ
(1)
R ∗ δ

(1)
R ∗ δ

(1)
R ∗ δ

(1)
R

]
(k) ,

A(5)(k) = δ
(5)
R (k)−

[
δ
(1)
R ∗ δ

(4)
R

]
(k)−

[
δ
(2)
R ∗ δ

(3)
R

]
(k) +

[
δ
(1)
R ∗ δ

(1)
R ∗ δ

(3)
R

]
(k) (2.7)

+
[
δ
(1)
R ∗ δ

(2)
R ∗ δ

(2)
R

]
(k)−

[
δ
(1)
R ∗ δ

(1)
R ∗ δ

(1)
R ∗ δ

(2)
R

]
(k)

+

[
1

5
δ
(1)
R ∗ δ

(1)
R ∗ δ

(1)
R ∗ δ

(1)
R ∗ δ

(1)
R

]
(k) ,

where ∗ stands for the convolution product. To avoid cluttering the text, we omit the sixth
and seventh order terms present at three loops.

When considering the perturbation theory for δ and θ, the nth order kernels are written
as a convolution of n linear fields with the kernels F (n) and G(n)

δ(n)(k) =

∫
q1...n

δD(q1...n − k)F (n)(q1, . . . ,qn) δ(1)(q1) . . . δ(1)(qn) , (2.8)

θ(n)(k) =

∫
q1...n

δD(q1...n − k)G(n)(q1, . . . ,qn) δ(1)(q1) . . . δ(1)(qn) , (2.9)

where F (n) and G(n) are obtained through recursive relations [10]. Analogously, we can write
for A

A(n)(k) =

∫
q1...n

δD(q1...n − k)M (n)(q1, . . . ,qn) δ(1)(q1) . . . δ(1)(qn) , (2.10)

as a function of the new kernels M . We kept the definition of the velocity field and thus the
velocity kernels are unchanged. Using the notation

∫
q1...n

=
∫ d3q1

(2π)3
· · ·
∫ d3qn

(2π)3
, one can use
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Eqs. (2.3)-(2.7) to relate M (n) to F (n)

M (1)(q1) = W (q1R)F (1)(q1) , (2.11)

M (2)(q1,q2) = W (q12R)F (2)(q1,q2)− 1

2
W (q1R)W (q2R) , (2.12)

M (3)(q1,q2,q3) = W (q123R)F (3)(q1,q2,q3) (2.13)

− 1

3

[
W (q12R)W (q3R)F (2)(q1,q2) + 2 sym

]
+

1

3
W (q1R)W (q2R)W (q3R) ,

M (4)(q1,q2,q3,q4) = W (q1234R)F (4)(q1,q2,q3,q4) (2.14)

− 1

2

1

3

[
W (q12R)W (q34R)F (2)(q1,q2)F (2)(q3,q4) + 2 sym

]
− 1

4

[
W (q123R)W (q4R)F (3)(q1,q2,q3) + 3 sym

]
+

1

6

[
W (q12R)W (q3R)W (q4R)F (2)(q1,q2) + 5 sym

]
− 1

4
W (q1R)W (q2R)W (q3R)W (q4R) ,

M (5)(q1,q2,q3,q4,q5) = W (q12345R)F (5)(q1,q2,q3,q4,q5) (2.15)

− 1

5

[
W (q1234R)W (q5R)F (4)(q1,q2,q3,q4) + 4 sym

]
− 1

10

[
W (q12R)W (q345R)F (2)(q1,q2)F (3)(q3,q4,q5) + 9 sym

]
+

1

10

[
W (q123R)W (q4R)W (q5R)F (3)(q1,q2,q3) + 9 sym

]
+

1

15

[
W (q12R)W (q34R)W (q5R)F (2)(q1,q2)F (2)(q3,q4) + 14 sym

]
− 1

10

[
W (q12R)W (q3R)W (q4R)W (q5R)F (2)(q1,q2) + 9 sym

]
+

1

5
W (q1R)W (q2R)W (q3R)W (q4R)W (q5R) .

Defining the power spectrum of A as

〈
A(k, η)A(k′, η)

〉
= (2π)3δD(k + k′)PA(k, η) , (2.16)

the one, two and three-loop predictions are given by

PPT,1LA = P 0L
A + P 1L

A = P
(11)
A + 2P

(13)
A + P

(22)
A , (2.17)

PPT,2LA = P 0L
A + P 1L

A + P 2L
A (2.18)

= PPT,1L
A + 2P

(15)
A + 2P

(24)
A + P

(33a)
A + P

(33b)
A .

PPT,3LA = P 0L
A + P 1L

A + P 2L
A + P 3L

A (2.19)

= PPT,2LA + 2P
(17)
A + 2P

(26)
A + 2P

(35a)
A + 2P

(35b)
A + P

(44a)
A + P

(44b)
A .

We use P •LA to refer to each loop contribution and PPT,•LA states for the sum of all loop terms
that contribute up to some order. Each loop diagram is calculated as the usual way for δ but
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replacing F →M :

P
(11)
A (k) =

[
M (1)(k)

]2
PL(k) , (2.20)

P
(13)
A (k) = 3M (1)(k)PL(k)

∫
q

M (3)(k,q,−q)PL(q) , (2.21)

P
(22)
A (k) = 2

∫
q

[
M (2)(k− q,q)

]2
PL(|k− q|)PL(q) , (2.22)

P
(15)
A (k) = 15M (1)(k)PL(k)

∫
q12

M (5)(k,q1,−q1,q2,−q2)PL(q1)PL(q2) , (2.23)

P
(24)
A (k) = 12

∫
q12

M (2)(k− q1,q1)M (4)(k− q1,q1,q2,−q2)PL(|k− q1|)PL(q1)PL(q2) ,(2.24)

P
(33a)
A (k) = 9PL(k)

∫
q12

M (3)(k,q1,−q1)M (3)(k,q2,−q2)PL(q1)PL(q2) , (2.25)

P
(33b)
A (k) = 6

∫
q12

[
M (3)(k− q1 − q2,q1,q2)

]2
PL(|k− q1 − q2|)PL(q1)PL(q2) , (2.26)

where PL is the linear power spectrum obtained using the CAMB code [39]. Each one of those
one and two-loop terms are shown by dashed lines on the left and right panels of Fig. 3,
respectively. Notice that, on large-scales, the terms that are not proportional to the external
leg (e.g. P (22)

A , P (24)
A and P

(33b)
A ) go to a constant, as a consequence of the F independent

term in the M kernels.
The total one and two-loop contributions for the Taylor-APT method can be seen by

dashed lines on the top panel of Fig 4. The three-loop contribution is shown in orange and
it was calculated only for the first modes measured in the simulation suite4. We compare
the full PT contribution to the simulation measurements on the bottom left panel of Fig 4.
As pointed out by [17] and [18], the measured power spectrum for A differs from the power
spectrum for δ already on the large scales. This shift is normally referred to as a large-scale
bias5 and it depends on the smoothing scale R.

Therefore the linear theory for A already fails on the large scales and the loop diagrams
start to contribute at low k. The largest scales are improved at one loop and our result agrees
with [17]. However, one can see that even though the series terms get smaller, adding more
loop-terms does not pull the theoretical prediction in the direction of the N-body simulation
data. It somewhat resembles what is already observed for δ on intermediate scales [4, 30] and
gives evidence that the series for A is asymptotic already on the large scales. This motivates
us to build in the following section a perturbative approach for A that is not constructed on
top of δR.

4Calculating each point of the three-loop spectrum of A for both the Taylor-APT and EoM-APT schemes
is much more time consuming than for δ due to the symmetrizations needed by the new kernels. It is beyond
this project’s scope to analyse the full-shape spectrum at three loops, such that we only calculated it for the
first modes. The first modes provide an overall order of magnitude of the three-loop contribution and indicate
whether the theory is convergent on large scales.

5One could in principle use the ratio between the variance of A and δ to estimate this large-scale bias
[18, 35]

b2A ' σ2
A

σ2
δ

. (2.27)

– 7 –



2.2 EoM-APT

Motivated by constructing a perturbative series for A that is not built on top of δ and that
has a better loop-convergence structure on the large scales, we proceed to an alternative
approach. The idea is not to expand the log, but to construct a perturbative series for A
directly through the equations of motion. We label this approach as EoM-APT.

We start by writing the continuity and Euler’s equations for a collisionless fluid, together
with Poisson’s equation:

∂τδ(x, τ) +∇ · [(1 + δ(x, τ))u(x, τ)] = 0 , (2.28)
∂τu(x, τ) +Hu(x, τ) + u(x, τ) · ∇u(x, τ) = −∇Φ(x, τ) , (2.29)

∇2Φ(x, τ) =
3

2
H2δ(x, τ) , (2.30)

where u(x, τ) is the comoving velocity of the fluid and Φ(x, τ) is the comoving gravitational
potential. After defining θ = ∇u, we take the divergence of Euler’s equation, replace ∇2Φ
and convolve a filter W in each equation6

∂τδR + θR +WR ?

(
δRθR +

∇θR
∇2
· ∇δR

)
= c.t. , (2.31)

∂τθR +HθR +
3

2
ΩmH2δR = −WR ? [∇ · (u · ∇u)] + c.t. , (2.32)

where we have decomposed each field in its long and short-wavelength parts (as done in
[40]). c.t. states for terms with at least one short-wavelength component and that appear as
counter-terms after being integrated out [40]. Using Eq. (1.1), we have

∂τA+ e−AWR ?

[
eA
(
θR +

∇θR
∇2
· ∇A

)]
= c.t. , (2.33)

∂τθR +HθR +
3

2
ΩmH2(eA − 1) = −WR ? [∇ · (u · ∇u)] + c.t. . (2.34)

After dropping out the subscript R in θR, the equations of motion in Fourier space can be
written as

∂τA(k, τ) + θ(k, τ) = (2.35)

−W (kR)

∫
q12

δD (k− q12) θq1Aq2α
′(q1,q2) − T1[A, θ](k, τ)− T2[A, θ](k, τ) + c.t. ,

∂τθ(k, τ) +Hθ(k, τ) +
3

2
ΩmH2A(k, τ) = (2.36)

−W (kR)

∫
q12

δD (k− q12) θq1θq2β(q1,q2) − T3[A, θ](k, τ) + c.t. ,

where the exponential in Eq. (2.34) was expanded at all orders and

α′(q1,q2) =
(q2

1 + q2
2)(q1 · q2)

2q2
1q

2
2

= α(q1,q2)− 1 , (2.37)

6Smoothing the equations of motions is the typical procedure to construct the EFTofLSS [1]. Its smoothing
is typically done over the non-physical scale Λ and the counter-terms cancel out this dependence on Λ.
Differently, the smoothing here has been done over a physical scale R. Even though the counter-terms will
appear to parametrize the small-scale physics, they do not need to cancel out the R dependence. We discuss
more the scales of the problem in Sec. 2.4.
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with α and β being the usual PT symmetrized vertices for the δ field. Notice that the main
difference compared to the usual PT procedure for δ is that the vertex α is changed and
three new terms T1[A, θ], T2[A, θ] and T3[A, θ] appear. Also now α′(k,−k) = −1, indicating
a coupling between the modes even in the limit of k → 0. The temporal dependence of
Eqs (2.35) and (2.36) still drops out after using the EdS approximation.

We comment now on each one of the Tn terms. T1[A, θ] and T2[A, θ] represent the two
contributions in the square brackets of Eq. (2.33) and they arise because we can not cancel
out e−A and eA in Eq. (2.33) due to the filter convolution. In Fourier space, those terms are
given by

T1[A, θ](k) =

∫
q123

δD(k− q123)× (2.38)

∑
n,m,n+m>0

C[(−A)n]q1

n!
W (|k− q1|R)

C[Am]q2

m!
θq3 ,

T2[A, θ](k) =

∫
q1234

δD(k− q1234)× (2.39)

∑
n,m,n+m>0

C[(−A)n]q1

n!
W (|k− q1|R)

C[Am]q2

m!

θq3

q2
3

q3 · q4Aq4 .

C[Am]q denotes a convolution of m fields A evaluated with external momenta q. Note that
both T1 and T2 are zero in the limit W → 1. T1 already contributes at second order in
perturbation theory, while T2 starts to contribute only at third order. Finally, T3[A, θ] comes
from the non-linear terms in the exponential expansion in Eq. (2.34) and it is calculated by

T3[A, θ](k) =
3

2
ΩmH2

∑
n=2

1

n!

[∫
q1...n

δD (k− q1...n)Aq1 . . . Aqn

]
. (2.40)

Performing again the expansion (2.2), we find modified versions of the kernels F (n) and
G(n). We call them respectively F (n) and G(n), such that

A(n)(k) =

∫
q1...n

δD(q1...n − k)F (n)(q1, . . . ,qn)A
(1)
q1 . . . A

(1)
qn , (2.41)

θ(n)(k) =

∫
q1...n

δD(q1...n − k)G(n)(q1, . . . ,qn)A
(1)
q1 . . . A

(1)
qn , (2.42)

and using the shorthand notation F (n)
1,...,n and G(n)

1,...,n for F (n)(q1, . . . ,qn) and G(n)(q1, . . . ,qn),
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their recursive relations are given by

F (n)
1,...,n = W (q1...nR)

n−1∑
m=1

G(m)
1,...,m

(2n+ 3)(n− 1)
× (2.43)[

(2n+ 1)α′(q1...m,qm+1...n)F (n−m)
m+1,...,n + 2β(q1...m,qm+1...n)G(n−m)

m+1...n

]
+

(2n+ 1)[T
(n)
1 (q1, . . . ,qn) + T

(n)
2 (q1, . . . ,qn)] + 2T

(n)
3 (q1, . . . ,qn)

(2n+ 3)(n− 1)
,

G(n)
1,...,n = W (q1...nR)

n−1∑
m=1

G(m)
1,...,m

(2n+ 3)(n− 1)
× (2.44)[

3α′(q1...m,qm+1...n)F (n−m)
m+1,...,n + 2nβ(q1...m,qm+1...n)G(n−m)

m+1,...,n

]
+

3 [T
(n)
1 (q1, . . . ,qn) + T

(n)
2 (q1, . . . ,qn)] + 2nT

(n)
3 (q1, . . . ,qn)

(2n+ 3)(n− 1)
.

At linear order, A(1) must satisfy the linear version of Eq. (1.1)

A(1)(k) = W (kR) δ(1)(k) , (2.45)

such that
F (1) = G(1) = W (kR) , (2.46)

and T (n)
i states for the expansion of T1[A, θ], T2[A, θ] and T3[A, θ] at order n

Ti(k) =
∑
n

T
(n)
i (k) . (2.47)

We emphasize that when expanding each T [A, θ] term at some order, one needs to take
into account all combinations of exponents and field perturbations. E.g. when calculating
T1[A, θ] at third order through Eq. (2.38) there will be five possibilities of exponents (n,m):
(1, 0), (0, 1), (2, 0), (1, 1) and (0, 2). Each one of those cases contains several perturbations
of −An, Am and θ that are third order in perturbation theory. After that, one also needs to
consider all symmetrizations of the momenta. This severely increases the computational time
needed by the EoM-APT method if compared to the Taylor-APT.

As a matter of comparison between both methods, we provide the explicit form of the
second-order kernel

F (2)(q1,q2) = W (q12R)
G(1)

7

[
5α′F (1) + 2βG(1)

]
+

5 (T
(1)
1 + T

(2)
2 ) + 2T

(2)
3

7
. (2.48)

Since

T
(2)
1 (q1,q2) = −1

2
[W (q1) +W (q2)]W (q1R)W (q2R) +W (kR) , (2.49)

T
(2)
2 (q1,q2) = 0 , (2.50)

T
(2)
3 (q1,q2) =

3

4
W (q1R)W (q2R) . (2.51)
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the final form of F (2) is

F (2)(q1,q2) = F (2) (q1,q2)W (q12R)W (q1)W (q2) (2.52)

− 1

14
W (q1)W (q2) [ 5W (q1) + 5W (q2)− 3] .

Notice that smoothing the equations of motion leads to a different result than the perturbative
approach described in the Sec. 2.1. The differences come mainly on where to insert the filter
convolutions. In the limit W → 1 we have

F (2)(q1,q2) = F (2)(q1,q2)− 1/2 , (2.53)

recovering Eq. (2.12) on the same limit. Performing the same calculation for G(2) we find

G(2)(q1,q2) = G(2)(q1,q2) . (2.54)

It is also straightforward to show that in this limit

F (3)(q1,q2,q3) = F (3)(q1,q2,q3)− 1

3
[F (2)(q1,q2) + 2 sym] +

1

3
, (2.55)

also recovering Eq. (2.13). The equivalence between both approaches in the limit W → 1 is
linked to two facts. First, the exponentials in Eq. (2.33) cancel out at each order, leading to
T1 → 0 and T2 → 0. Second, T3 recovers the Taylor expansion of the Taylor-APT approach.
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Figure 3: Each loop term contributions for A at z = 0. On the left, the linear and one-loop terms
for the Taylor-APT scheme (dashed) described in Sec. 2.1 and for the EoM-APT scheme (continuous)
described in Sec. 2.2. On the right, the same but for the two-loop terms. The linear power spectrum
is the same for both models.

The one and two-loops terms are calculated in the same way as Eqs. (2.20) - (2.26), with
the replacement M → F . We display each one of the one and two-loops terms calculated
through the EoM-APT method by solid lines in Fig. 3. On large scales, both approaches
described here and in Sec. 2.1 only differ by a constant shift7. The shape of the curves for
the EoM-APT method and the Taylor-APT method start to differ on intermediate k.

7As will be discussed in the following sections, the low-k limit of the one-loop theory is a constant that
will be absorbed by free parameters.
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Figure 4: On the lop, the linear, one and two-loop contributions to the total PT power spectrum at
z = 0. We compare two different schemes: Taylor-APT (dashed lines) and EoM-APT method (solid
lines). The PT prediction for δ is shown in dotted lines. The three-loop contribution for the first
modes measured in the simulation are shown by orange lines. On the bottom left, we compare the
total PT result to the numerical simulations. On the bottom right panel, we show the same lines as
in the left panel but after fixing the largest scales for the A models. For that, we added the two free
parameters pointed out in Sec. 2.3: a constant term (shot noise like) and a term proportional to PL
(bias like). Notice that the solid and dashed lines are normalized by the power spectrum for A while
the dotted lines are normalized by the power spectrum of δ.

In Fig. 4, we display the one, two and three-loop results using the EoM-APT (continu-
ous), the Taylor-APT method (dashed) and the usual PT for δ (dotted). On the top panel
we show each loop contribution to the total power spectrum at z = 0, and on the bottom
left panel we compare the result to simulations. Notice that the hierarchy of the EoM-APT
method follows P 1L

A � P 2L
A ∼ P 3L

A , which indicates that the series converges better than
the Taylor-APT method. The EoM-APT method also coherently approaches the simulation
result on large scales. Moreover, the Taylor-APT contributions change sign and its total
three-loop result departs from the N-body simulation measurement. It strongly indicates
that the PT series within the Taylor-APT scheme is asymptotic even on large scales, while
using the EoM-APT scheme ameliorate the convergence at z = 0. In the next section, we
comment on how to fix the large scales. Furthermore, Fig. 4 highlights another important
point in the PT for A: it is not perturbative in k. It can be seen by the shape of the loop
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corrections: whilst the loop corrections for δ are smaller on larger scales it is not the case
for A. This makes the tree level prediction for the field A to be not accurate even for small
values of k.

2.3 Fixing the large-scales and the propagator

We now focus on understanding the low-k behaviour of the power spectrum for A and how
it can be fixed. In Fig. 5 we compare the theoretical power spectrum on large scales (k =
0.024 Mpc−1h) to simulations for different redshifts. We compare the two different schemes
presented in this work: EoM-APT (solid lines) and Taylor-APT method (dashed). At z = 3
the one-loop PT contribution is the most relevant and both methods correctly predict the
power spectrum with ∼ 5% error. The Taylor-APT method performs better at high z. At low
redshift, however, the Taylor-APT method severely departs from the N-body result. Notice
also that its loop-contributions change sign and that the three-loop prediction blows up at
z = 0. This series is organized on top of δ perturbations and carries the same convergence
issues of the usual perturbation theory for δ [30] but already on the largest scales.

The large-scale prediction using the EoM-APT method is more consistent across all
redshifts. Even though the series error is larger on high z, its loop-structure seems to resemble
what is expected from a well-behaved perturbative series: each loop contribution getting
smaller and not changing sign.

0123
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Figure 5: The ratio between the large-scale prediction for A and the simulation result as a function
of the redshift. In solid lines the theoretical prediction was calculated using EoM-APT and in dashed
lines we used the Taylor-APT scheme. The cosmic variance for this mode (k = 0.024 Mpc−1h) is of
1.3%.

Two points raised by Fig. 5 need to be clarified: first, the reason why the perturbative
approach fails at z = 0 for the Taylor-APT scheme and behaves better in the EoM-APT
scheme and second, how we can fix the large scales to achieve better precision for both
schemes.

Within the Taylor-APT scheme, the contribution of R to the large scales can be seen
already in the shape of M (2) and M (3), Eqs. (2.12) and (2.13). The last term in both cases is
an F independent term that leads to a relevant contribution in the loop-integrals and that is
suppressed when the internal momentum is larger than R−1.8 As already pointed out by [17]

8The sensitivity of the largest modes of A on small scales perturbations have been numerically shown in
[41].
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and recently by [25] for the marked transformations, the F independent term in the kernels
provides an important correction on small k. P

(22)
A contributes to the large scales with a

constant term that works as a shot-noise and P
(13)
A adds a term proportional to P (k) that

behaves as a linear bias9.
If perturbation theory works well, one would expect that summing up all loop contribu-

tions for the series would reproduce the correct large-scale bias and propagator. We see by
Eqs. (2.22) and (2.21) that the P (22)

A and P (13)
A contributions on large scales are respectively

proportional to

εshot(R) ≡
∫
q

[PL(q)]2W 4(qR) = 2 lim
k→0

P
(22)
A (k) , (2.56)

σ2(R) ≡
∫
q
PL(q)W 2(qR) = lim

k→0

P
(13)
A (k)

PL(k)
. (2.57)

We show σ2 and εshot in Fig. 6 for the Gaussian filter (solid) and for the for a top-hat in
position space filter (dashed). For R = 4 Mpc h−1 and a Gaussian filter, which were adopted
in this work, we have

εshot(R = 4) = 2230 (Mpc/h)3 , and σ2(R = 4) = 0.62 . 1 , (2.58)

which agree with the values of P (22)
A and P (13)

A shown in the left panel of Fig. 3.
At n-loop order, the F independent part of the kernels makes the terms proportional

to an external leg P
(1,2n+1)
A to scale approximately as P (k)(σ2)n and the terms with no

external leg to be roughly proportional to εshot(σ
2)n−1. Since σ2 < 1, the perturbative series

is therefore expected to be convergent for a Gaussian filter with R = 4 Mpc h−1. It is indeed
observed in the top panel of Fig. 4 that each loop term for the Taylor-APT approach is getting
smaller, even though this is not a sufficient argument to guarantee the convergence of the
series. Increasing R would speed up the convergence but suppress the signal on larger scales
and using a top-hat filter would increase εshot and σ2 and deteriorate the series’s convergence.

Notice however that even though the Taylor-APT terms get smaller, they do not seem
to be converging to the simulation result. By the bottom left panel of Fig. 4, one can see that
adding the three-loop term induced the series away from the expected N-body result. This
result is not surprising in face that the series for δ is not convergent on intermediate scales
[4, 30] and those scales (k < R−1) lead to an important contribution to the large scales of A.
The asymptotic behaviour of the δ series is transposed to the Taylor-APT series.

The convergence results for the EoM-APT method are indeed better at low z. It is
possible to see by the bottom left panel of Fig. 4 that the EoM-APT scheme converges faster.
It is a consequence of the fact that all internal momenta are suppressed by a filter (see the
linear spectrum for A in Eq. (2.45)). Moreover, the extra convolution in the velocity source
in Eq. (2.33) generates the T1[A, θ] and T2[A, θ] terms that lead to relevant corrections on the
scaling of the loops. Even though it seems that smoothing directly through the equations of
motion is in better agreement with the simulation data at low z, there is no guarantee that
adding infinite loop terms would lead to the correct amplitude on large scales. Moreover, the
fact that the Taylor-APT works better than EoM-APT for high z suggests that the extra
smoothing of the EoM-APT in that redshift is too aggressive. It motivates us to look for

9See Appendix A for an explicit calculation.
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Figure 6: Parameters that control the size of the loop integrals for the log field on large scales (see
Eqs. (2.56) and (2.57)). The parameters were calculated using a Gaussian filter (solid lines) and a
top-hat in position space filter (dashed). The black vertical line shows R = 4 Mpc h−1, value adopted
in this work.

a systematic method to fix both Taylor-APT and EoM-APT schemes on large scales at all
redshifts.

On the bottom right panel of Fig. 4 we compare the theory with simulated data after
adding two free parameters

{k0, PL(k)} . (2.59)

One, a constant term Pshot (proportional to k0) that fixes diagrams like P (22)
A ; other, a term

like b21PL(k) that fixes diagrams as P (13)
A , which are corrections to the propagator. After

adding those terms, both theories for A reach similar non-linear scales as the perturbation
theory for δ (dotted lines). We explicitly checked that this result is also reproduced at high
z.

Notice that both the EoM-APT and the Taylor-APT models work equally good at all
loop-orders after adding those free terms. As pointed out by [26] for the marked field, the
inclusion of those terms can embrace a resummation of all loop-order terms10. Here we can
see that those terms are not only doing this resummation job but they also parametrize the
correct scaling and fix an inherent problem of the perturbative theory for A, namely that it
is asymptotic and fails already on the largest scales for A.

We now investigate the loop corrections to the linear propagator akin it was done for
δ in [42, 43] and in [17], where they calculated the resummed propagator contributions for
A at one loop. Their scheme constructs a non-linear propagator by resumming all diagrams
proportional to one external leg. The non-linear propagator G is defined according to〈

∂φnl(k)

∂φlin(k′)

〉
= (2π)3δD(k− k′)G(k) , (2.60)

in which φ = A, δ. This propagator can be numerically calculated as a correlation between
the initial conditions φlin and the late time field φnl [43]. Theoretically, the corrections to the

10For the marked field the series is expected to converge faster due to the expansion coefficients. But there
is no indication whether it converges to the value measured by N-body simulations and a more in-depth
investigation is required.
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propagator are given by the PT terms coming from a contraction with an external leg. At
one, two and three loops it is given by

G1L(k) =
PL(k) + P (13)(k)

PL(k)
, (2.61)

G2L(k) =
PL(k) + P (13)(k) + P (15)(k)

PL(k)
, (2.62)

G3L(k) =
PL(k) + P (13)(k) + P (15)(k) + P (17)(k)

PL(k)
. (2.63)

On the left panel of Fig 7 we show the ratio between the theoretical prediction and the
simulated results for G calculated according to [43] at z = 0. Notice that the propagator
resembles the non-convergent behaviour of the Taylor-APT perturbative series: adding more
loop terms is not leading the series to converge to the measured propagator. The EoM-APT
scheme reproduces the propagator corrections with better precision at low redshift and each
loop-correction monotonically improves the propagator prediction. We explicitly checked that
at higher z, in contrast, the Taylor method performs better, resembling to what is seen for
the full spectrum in Fig. 5.
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Figure 7: On the left, the ratio between the theoretical prediction for the propagator and the
propagator measured in N-body simulations at z = 0. We show the result for three theories: EoM-
APT (solid), Taylor-APT (dashed) and for δ (dotted). On the right, the same but the predictions for
the A’s power spectrum are corrected by a bias and a shot noise term fitted on large scales (k < 0.1
Mpc−1h). Notice that the solid and dashed lines are normalized by the power spectrum for A while
the dotted lines are normalized by the power spectrum of δ.

On the right panel of Fig 7 we display the one and two-loop calculations when fitting the
two free-parameters in Eq. (2.59) on scales k < 0.1 Mpc−1h. We can see that the inclusion
of those terms leads to an equally good result on large scales both for the EoM-APT and the
Taylor-APT schemes. The addition of those free parameters led to the same precision of the
prediction for δ (dotted line) at one and two loops and it also reaches comparable scales.

Another relevant term that gives a sub-leading correction on large scales is a second-order
shot noise contribution that scales as k2. This term comes from a large-scale contribution of
P

(22)
A (see Appendix A) and we explicitly checked that its inclusion substantially improves

the A spectrum on intermediate k. We therefore include this free-parameter in the theory.

– 16 –



There is an important difference between the terms

{k0, k2, PL} , (2.64)

and the EFT counter-terms that fix the UV dependence. The former parametrize the depen-
dence on scales < R−1 and fix the offset of the theory and the N-body simulation result on
large scales. They do not add a cutoff dependence since those are suppressed at R−1 (see
Appendix A). In contrast, the counter-terms absorb the UV physics and cancel out the Λ
dependence. They are the topic of the following section.

2.4 Effective field theory

We now proceed to calculate the effective field theory corrections for the logarithm field A.
Through a set of counter-terms, the effective field theory set up parametrizes how the small-
scale physics affect other scales and at the same time it fixes the cutoff dependence of the PT
integrals. Before calculating the UV dependence of each term, we discuss the four different
scales that appear in the EFT framework and the hierarchy between them. The four scales
are

1. k∗, the scales we want the EFT to be predictive for;

2. R−1, the physical smoothing scale that defines A in Eq (1.1);

3. kNL, the scale where the perturbative approach breaks down;

4. Λ, the non-physical cutoff used in the theory that appears as the upper limit of the
integrals in Eqs. (2.20)-(2.26).

When calculating the EFT for δ, the contribution of the smoothing scale R used for the
density grid in the N-body simulation is exponentially suppressed on scales k∗, such that it
has in practice no effect on the problem. The only demand is therefore that

k∗ < kNL and k∗ < Λ . (2.65)

The most natural choice for Λ would be Λ ∼ kNL [40]. However, since we do not know kNL

a priori, what is typically done is to take a very high value for Λ and checking whether this
arbitrary choice is canceled out by the counter-terms.

When considering the log fields, the scale R will affect all the scales of the problem.
Different of Λ, R is physical and should not be integrated out. Taking kNL to be roughly
estimated by the scale on which the variance of δ gets larger than unit (see Fig. 6), we need
to have

kNL > R−1 , (2.66)

in order to guarantee that the Taylor series does not diverge [26]. In case the condition (2.66)
is not satisfied, the free parameters that parametrize scales < R−1 and the counter-terms that
parametrize UV scales > kNL will contain mixed information and some extra degeneracies
might arise. Moreover, one might also require the condition

k∗ < R−1 (2.67)

aiming to guarantee that the filtering does not entirely wash out relevant information.
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We now discuss how to parametrize the UV contributions in the effective field theory
framework. The most general set of counter-terms is the one allowed by the equations of
motion symmetries (contracted derivatives of the gravitational and velocity potential that
still preserve Lorentz invariance). A reduced set of counter-terms can be constructed by
checking the UV dependence of each one of the loop integrals and identifying which counter-
terms are necessary to absorb the cutoff contribution [44]. In Appendix A we carry out a
careful discussion concerning the scaling of the kernels for the effective field theory for A. We
find that at one-loop level, the counter-term that cancels out the UV dependence is the same
as for δ:

P c.t,1LA (k) = −c2
s (kR)2 PL(k) , (2.68)

which when fitted together with the large scales corrections (2.64)

P large scales
A = {k0, k2, PL} , (2.69)

leads to a set of four free parameters. It is vital to notice that the inclusion of those free
parameters is already needed in order to connect the theory to observations in the form of
a linear bias and a shot noise term. In that sense the inclusion of those terms does not add
any new degrees of freedom. Therefore, the final expression for the one-loop power spectrum
both for the EoM-APT and the Taylor-APT schemes is

PEFT,1LA = P 0L
A + P 1L

A + P c.t,1LA + P large scales
A , (2.70)

=
[
b21 − c2

s (kR)2
]
P 0L
A + P 1L

A + c0 k
0 − c1 (kR)2 . (2.71)

At two-loops, the number of free parameters needed to fix the large scales grows to six
due to the new terms that appear coming from the F independent terms in the M kernels
(see Appendix A). They are:

{k0, k2, k4, PL, P
1L
δ , Pquad} . (2.72)

with Pquad defined in Eq. (A.14). The counter-terms needed for A are

{k2PL, k
2P 1L

δ , k4, k4PL, k
2Pquad, Pbispec} . (2.73)

They are the same as the counter-terms considered for δ (see Appendix A) with one extra
term

Pbispec(k) = PL(k)

∫
q
PL(q)F (2)(k,q) q2 . (2.74)

This counter-term comes from the bispectrum contribution and it is a drawback for the
information gained from the three-point function11. Therefore, the full set of operators needed
at two-loops for A is

two-loop operators : { k0 , k2, PL, (2.75)
k2PL , P

1L, k2P 1L, k4, k4PL, Pquad, k
2Pquad, Pbispec} .

11As pointed out by [25] for the marked field and analogously for the log-density field, we expect all the
terms in the M (n) kernels that are not proportional to F (n) to be exponentially suppressed by filters on the
scale R. Consequently, A and δ would have the same UV dependence and the same counter-terms. We
however point out in Appendix A (see Eq. (A.27)) that one term inside the M (5) kernel is not suppressed by
the filtering process and leads to the new counter-term in Eq. (2.74).
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Therefore, there are eleven free parameters needed at two loops. Using the power spec-
trum for A to fit those parameters demands a lot of attention regarding degeneracy between
those terms. Also the number of modes available to fit the theoretical model for A is smaller
if compared to δ,12 since the signal is suppressed for k > R−1. We thus restrict our analysis
in this work to the one-loop EFT corrections.

3 Comparison to N-body simulations

In this section we present comparisons between the models described in the last section
(Taylor-APT and EoM-APT) and simulation measurements. We also show results using the
large-scale bias expansion [36, 45] and the power-law fitting function proposed in [35], which
we explain later in this section.

We focus more in the applicability of each model to data analysis. Therefore, we only
consider the one-loop predictions for the three types of perturbative expansions once this is
the order used until now in cosmological analysis [6–8]. We also compute the IR-resummed
version for each model.

In this work, we do not investigate the constraints of each model in the cosmological
parameters. This study must take into account biased tracers and redshift space distortions
and it will be the subject of future investigations.

3.1 The large-scale bias expansion

In addition to the methods previously developed in this paper, we also consider the widely used
large scale bias expansion to compute the auto power spectrum of A [36, 45]. This approach
consists of writing down all relevant operators at some order in perturbation theory. The
main advantage of this approach is the broad discussion in the literature on how to apply and
compute the theoretical predictions [9, 46]. The idea is to compare the effective field theory
model constructed for A on previous sections to an alternative model that considers A as a
tracer of δ. Ultimately, testing the bias expansion for A means treating it as a tracer and
considering a basis of operator constructed on top of δ.

In this work we use the public available CLASS-PT [46] code in order to compute the auto
power spectrum at one loop. This code implements the following expansion for the biased
tracer

A = b1δ +
b2
2
δ2 +

b3
6
δ3 + bG2 G2 + bδG2 δG2 + bG3 G3 + bΓ3 Γ3 +R2

? ∂
2δ + ε , (3.1)

where

G2(Φg) ≡ (∂i∂jΦg)
2 −

(
∂2
i Φg

)2
, (3.2)

Γ3 ≡ G2(Φg)− G2(Φv) , (3.3)

with Φg and Φv being respectively the gravitational and velocity potentials. The operators
δ3, δG2 and G3 are absorbed by renormalization [45]. We consider the stochastic term up to
second order in derivatives ε = c0 + c1k

2, which together with b1 resemble the free parame-
ters (2.64) considered to fix the large-scale problems of perturbation theory in Sec. 2.3. The
final expression for the auto power spectrum of the A field is described by Eq. (2.10) of [46],
which accounts for seven free parameters.

12The fact that the number of modes is in principle smaller does not mean that we have less information for
A: we expect the four-point function for A to be smaller and as a consequence more information is available
in each one of the power spectrum modes of A compared to δ [20].
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3.2 The power-law fit

In addition to all theoretical models described in the previous sections, we also consider a
simple power-law fitting function strongly inspired by the one present in [35]

PA(k) = b2A P
(11)
A (k)C(k) , (3.4)

where

C(k) =

{(
k
kp

)α
, if k ≥ kp

1 , otherwise .
(3.5)

bA, kp, and α are free parameters that describe respectively the large-scale bias of PA, the
scale on which the spectrum is enhanced and the enhancement exponent.

Although simplified, this expression intends to capture the main differences between the
A and δ power spectra. Notice that, aiming for simplicity, we neglected stochastic terms in
this power-law fitting function.

3.3 Effect of the IR resummation

Before showing the complete result after fitting each model’s free parameters, we comment
now on the effect of the IR resummation in the final predictions. For both the Taylor-APT
and EoM-APT models, we implemented the resummation scheme presented in [32, 33]

PEFT,1L+IR
A (k) =

∑
j=0,1

∑
Xj

PXj (k)||1−j , (3.6)

in which PXj (k)||1−j states for each one of the loop terms of order j that appear in the
final EFT calculation Eq. (2.70) and are resummed at order 1 − j. This resummation is
done through a convolution of each term with a kernel (see [32] for a complete expression
of the resummation kernel). Moreover, we consider the IR-resummation scheme for A to be
calculated the same way as for δ, which should be valid at linear order since both tree-level
power spectra are the same but for a filter. Since at non-linear order the BAO wiggles may
affect A in a different manner than δ [23], a broader study of the BAO resummation effects
on A is still necessary.

For the IR-resummation of the large-scale galaxy expansion described in Sec. 3.1, we
used the CLASS-PT implementation13. The IR-resummed version of the power-law fitting
function (Sec 3.2) was computed replacing the linear power spectrum P

(11)
A by its resummed

version at linear order.
Fig. 8 presents a comparison between the Taylor-APT and the EoM-APT theoretical

models for PA, with and without the IR-resummation. We display the residues, defined as
the ratio between the theoretical prediction and the mean spectrum measured in the N-body
simulation set. The results are for the snapshot at z = 0 and using kmax ≈ 0.35 Mpc−1h for
the fits. We see that the IR-resummation is more critical for the Taylor-APT model. The
reason for that, which we explicitly checked in the fits, is that the one-loop term gives a
substantial contribution to this model. The one-loop term is the one that is mostly modified
by the resummation scheme at this order in perturbation. We explicitly checked for the

13The resummation in that case is a simplified version of the one considered by [32] and it is broadly
discussed in [46].
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Figure 8: Effect of the IR resummation in the residues for both the Taylor-APT and the EoM-APT
methods. We show the result before performing the IR resummation by dashed lines and after the
IR resummation by solid lines. The black vertical line indicates the smoothing scale kR =

√
2× 0.25

Mpc−1h, which in that case is also the value of kmax used for the fit.

EoM-APT model that the resummation is indeed suppressing the BAO wiggles at each term
separately. Still, since other terms in the full one-loop expression (2.70) are dominant (e.g.,
the stochastic terms), the suppression in that case does not significantly change the final
result.

3.4 EFT comparison to data

In order to fit the free parameters of each model, we used the mean PA(k) measured in the 26
N-body simulation realizations and analysed the redshifts z = 3, 1, 0.5 and 0. We performed
a χ2 minimization with

χ2 =

∑Ndata
i (Oi − Ti)2/σ2

i

Ndata −Nd.o.f. − 1
, (3.7)

where O and T are, respectively, the measured power spectrum and the theoretical model.
σ2 is the standard deviation calculated over the 26 realizations.

Model # of free param. Equation
Taylor-APT 4(3) (2.70)
EoM-APT 4(3) (2.70)
Bias exp. 7(6) (3.1)
Power-law. 3(2) (3.4)

Table 1: Description of each model used in the comparison to N-body simulation data. The second
column is the number of free parameters when b1 is free (or fixed by Pδ), and the third column
indicates the main equation for each model.

The number of free parameters Nfree of each model is shown in Table 1. The two different
numbers of free parameters correspond to the fits by fixing or not the value of b1 through
the information of Pδ. The fixing of b1 was performed using the ratio between PA and Pδ on
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k ≤ 0.06 Mpc h−1. Note that this procedure does not remove the fitting function’s sensitivity
on the spectral amplitude As, once this parameter also affects the shape of the power spectrum
through the loop corrections.

The left panels of Fig. 9 show the residues of each model (different colors), for different
redshifts (different rows), and fixing or not b1 using Pδ (different line styles). We used for the
fits kmax(z) ≈ 0.2/D(z) Mpc−1h, where D(z) is the growth function. kmax is also indicated
in the figure by the point where the lines are truncated. The right panels show the χ2 defined
according to Eq. (3.7) as a function of kmax. We can see that a 2% accuracy in the residues
is achieved by almost all the models at different redshifts, with some offset at small k, where
the error bars jeopardize the fits. The worst performance model is the bias expansion. It fails
to describe A’s power spectrum even at high z despite its large number of free parameters
because none of its terms in Eq. (3.1) incorporate information about smoothing scale R. It
indicates that the most general set of physical operators constructed for δ is not able to
reproduce the new functional dependence of A. Notice that Eq. (3.1) does not know about
the filtering procedure and, as explained along the text, the filtering affects all the k modes
of A. All other models work almost equally well at high z until very high kmax, since their
linear spectrum with the filter describe the theory pretty well.

Notice by the difference between solid and dashed lines that fixing the bias on the
largest scales through Pδ (dashed lines) does not lead to large deviations from the N-body
data, suggesting that this procedure can be used to reduce the number of free parameters. It
indicates that using δ can improve the predictions for the A spectrum. It brings an exciting
avenue to study: how combining both probes can improve the cosmological constraints.

The model with the best residues at all z is the Taylor-APT, followed by the EoM-APT.
The Taylor-APT scheme leads to considerably better predictions than the bias expansion, even
though the last has more free parameters. The EoM-APT performs equally well at z = 0
for kmax < 0.2 Mpc−1h, but since the theory described in Sec. 2.2 manifestly has a cutoff at
R−1 (black vertical line) it starts to diverge when approaching that scale, as it is expected
from effective field theories14. As shown in Sec. 2, the EoM-APT theory performs better on
the largest scales, but the addition of the free-parameters (2.69) make both EoM-APT and
Taylor-APT to perform equally well on those scales.

In Fig. 10 we show the running of the free-parameters as a function of kmax for z = 0.
Notice that while the EoM-APT model presents a strong running of the parameters for
kmax > 0.3 Mpc−1h, which corroborates with the argument given above, the Taylor-APT
model is stable over all kmax. This stability indicates that the Taylor-APT model at one-loop
can absorb the correct scaling of the power spectrum of A without any evidence of over-
fitting. Besides that, when comparing c2

s for the Taylor-APT when fixing the linear bias
(blue-dashed), we can see that it follows the c2

s obtained by using the usual EFT for δ (red
solid) up to kmax ∼ 0.3 Mpc−1h. From that scale on, the counter-term value for the δ theory
starts to deviate, while the c2

s obtained for A is almost constant. It indicates that the two-
loop contribution for δ is much more relevant on those scales than for A, which resembles
the expectation that A is more linear. In the case of δ, there are evidences that the two-loop
contribution starts to kick in for k > 0.2 Mpc−1h [9]. Moreover, the crosses at kmax = 0.1
Mpc−1h on the top panels indicate the values obtained for the fit of the propagator in Fig. 7,
which are within 2σ from the values obtained for the fit to the power spectrum.

14The R−1 cutoff does not appear at high z because the linear theory succeeds in describing the measured
spectrum. For the Taylor-APT scheme the scale R is not a cutoff but only a scale where some of its terms
are suppressed.
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Figure 9: On the left, the residues for the four models described in Table 1 after fitting the free
parameters in simulation data. Each row corresponds to a different redshift, z = {3, 1, 0.5, 0}. The
kmax used at each z is indicated by the point where the lines were truncated. On the right, the χ2 as
a function of the kmax used for the fit. The solid lines describe the fits of the full set of parameters.
The dashed lines correspond to fixing the bias b1 in the larges scales using Pδ. The black solid line
indicates the smoothing scale kR =

√
2× 0.25 Mpc−1h in which the spectrum is suppressed.
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Figure 10: Running of the free parameters with kmax at z = 0 for the two models proposed in
this work for A and the usual EFT for δ (where cs is the only free parameter). The blue lines are
for the Taylor-APT model, the purple lines for the EoM-APT model, and the red line for the EFT
for δ. Solid lines indicate fits with the four free parameters of Eq. (2.70) and dashed lines are the fits
keeping b1 fixed through the information in the δ power spectrum. The crosses in the top panels are
the best-fit parameters coming from the propagator (as shown in Fig. 7).

When including the free-parameters (2.69) together with the EFT counter-term (2.68)
the Taylor-APT expansion is enough to push the theoretical limits until high values of kmax,
namely kmax ' 0.38 Mpc−1h at z = 0. We show in Fig. 11 the comparison between the
residues for the one-loop effective field theory for δ and for A using the Taylor expansion
at z = 0 and taking kmax ' 0.38 Mpc−1h. The higher number of free parameters for A
and specially the k2 term make the EFT for A slightly better for k ' 0.35 Mpc−1h. Notice
that those new terms are already present in the large-scale bias expansion and they will not
introduce any new free parameter in a realistic cosmological analysis where biased tracer and
redshift space distortions are taken into account. As long as no new degeneracies are induced
between the nuisance parameters and the cosmological ones it will not jeopardize the physical
constraints. Further investigation is still needed to quantify how much information about
cosmological parameters can be extracted from the EFT for A if compared to δ and how to
consistently use both fields in a jointly analysis.
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Figure 11: Same as the left panels of Fig. 9, but now using kmax ' 0.38 Mpc−1h at z = 0. The
Taylor-APT model can reach very non-linear scales with precision of 1% and fixing the bias parameter
(dashed) does not jeopardize the theory.

4 Conclusions

In this work we calculated the perturbative series and its effective field theory corrections for
the logarithm-transformed density field. We have shown that the series is asymptotic already
on the large scales when the perturbative approach is constructed on top of a Taylor expansion
of the log function. Adding more loop corrections jeopardizes the theoretical prediction for
small k instead of improving it. Different than for δ, the large scale prediction for the log
density spectrum receives relevant contributions from intermediate scales k < R−1 [41] where
the perturbation theory for δ has evidence to be asymptotic [4, 30]. We have constructed
an alternative perturbative approach for A directly through the equations of motion and this
scheme has reproduced the large-scales with better accuracy at z = 0. This new approach
also has a better hierarchical structure between each loop correction.

Afterwards, we have shown that the large scales are fixed by adding two free param-
eters (2.59) in both the Taylor-APT and the EoM-APT schemes at tree level. Those free
parameters were already considered in the case of the marked fields in [26]. We have shown
that the inclusion of those parameters – at least in the log transformation case – not only
takes into account the resummation of higher-order terms but also fixes the series’ conver-
gence issues described above in the text. We have also calculated the counter-terms that
parametrize the UV in the effective field theory formulation by analysing the UV scaling of
each loop diagram. An additional counter-term appears at two-loops if compared to the EFT
for δ. This new term comes from the δ’s bispectrum and is somewhat a price to pay for the
information brought from the three-point function of δ down to the two-point function of A.

Finally, we compared the effective field theory prediction for A to an N-body simulation
suite. We also considered two other theories for A in addition to the models described in
Sec. 2: a power-law fitting function based on [35] and the large-scale bias expansion [36]. We
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also implemented the IR-resummation based on [32] showing that it improves the Taylor-APT
by removing the wiggles.

Furthermore, when comparing the models to data, we found that the Taylor-APT scheme
outperforms the others and can extend the theoretical predictions until k ' 0.38 Mpc−1h.
The EoM-APT scheme performed well on scales k < 0.2 Mpc−1h and fails when getting closer
to R−1. It agrees with the behaviour expected from an effective field theory since this scale
is a manifest cutoff of that scheme. Besides that, the running of c2

s within the Taylor-APT
model agrees with the value obtained by the EFT formulation for δ up to k ∼ 0.3 Mpc−1h.
The value of c2

s obtained by δ changes for higher k, while it remains constant for the Taylor-
APT. It indicates that the two-loop contribution for A might only kick in on smaller scales,
which resembles the expectation that the log-transformed field is more linear.

We have shown that the effective field theory formulation for A, together with a couple
of extra free parameters that fix the large scales, enable us to extend the theoretical prediction
for that field until non-linear scales. It is vital to notice that the goal of extracting information
out of A is not orthogonal to use the standard EFT prediction for δ. For instance, we have
shown that using information from δ can reduce the number of free-parameters for A. An
exciting goal in the short horizon is to study how combining both probes can improve the
cosmological parameters constraints.
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A Scaling of the the PT terms

In this appendix we calculate the UV scaling of the PT terms for δ and A. We consider the
single-hard and double-hard limits of the one and two loops PT integrals in order to check
the cutoff (Λ) dependence. We assume a universe scaling in the UV as PL(k) ∝ kn.

A.1 For δ

We start by calculating the leading order contribution of the loop integrals for δ in the same
way as done in [44]. We use the limit of the kernels when you have a hard mode but the total
sum k =

∑
qn is kept constant (see [10, 47])

F (n)(q1, . . . ,qn−2,p,−p)
p→∞∝

(
k

p

)2

,

(
k

p

)4

, . . . (A.1)

At one loop, the leading order contributions of each term in the limit q � k is given by

P
(13)
δ (k)

q→∞∝ PL(k)

∫
q
PL(q)

(
k

q

)2

∝ k2PL(k)Λn+1 , (A.2)

P
(22)
δ (k)

q→∞∝
∫
q

(
k

q

)4

[PL(q)]2 ∝ k4Λ2n−1 . (A.3)
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Analysing the divergence structure, we can conclude that, at one loop, the counter-term
needed to cancel out the Λ dependence is

Pc.t.(k) = c2
sk

2PL(k) . (A.4)

We start the two-loop analysis by calculating the single-hard limit, in which one of the
two momenta is larger than the other

P
(15)
δ (k)

q1→∞∝ PL(k)

∫
q1

(
k

q1

)2

PL(q1) ∝ k2PL(k)Λn+1 , (A.5)

P
(24)
δ (k)

q1→∞∝
∫
q1

(
k

q1

)4

[PL(q1)]2 ∝ k4Λ2n−1 , (A.6)

P
(24)
δ (k)

q2→∞∝
∫
q12

F (2)(k− q1,q1)PL(q1)

(
k

q2

)2

PL(q2) (A.7)

∝ k2Λn+1

∫
q1

F (2)(k− q1,q1)PL(q1) ,

P
(33a)
δ (k)

q1→∞∝ PL(k)

∫
q12

F (3)(k,q2,−q2)PL(q2)

(
k

q1

)2

PL(q1) (A.8)

∝ k2PL(k)P
(13)
δ (k)Λn+1 ,

P
(33b)
δ (k)

q1→∞∝
∫
q1

(
k

q1

)4

[PL(q1)]2 ∝ k4Λ2n−1 . (A.9)

Now the double-hard limit (q1, q2 � k)

P
(15)
δ (k)

q1,q2→∞∝ PL(k)

∫
q12

(
k

q12

)2

PL(q1)PL(q2) ∝ k2PL(k)Λ2n+4 , (A.10)

P
(24)
δ (k)

q1,q2→∞∝
∫
q12

(
k

q1

)2( k
q2

)2

[PL(q1)]2 PL(q2) ∝ k4Λ3n+2 , (A.11)

P
(33a)
δ (k)

q1,q2→∞∝ PL(k)

∫
q12

(
k

q1

)2( k
q2

)2

PL(q1)PL(q2) ∝ k4PL(k)Λ2n+2 , (A.12)

P
(33b)
δ (k)

q1,q2→∞∝
∫
q12

(
k

q12

)4

PL(q12)PL(q1)PL(q2) ∝ k4Λ3n+2 . (A.13)

As a consequence, the counter-terms that cancel out the two-loop divergences are k2PL, k4 and
k4PL. Notice that the single-hard limit for P (33a)

δ demands us to include a term proportional
to k2P

(13)
δ , in that case k2P 1L. The single-hard limit of P (24)

δ (k) also introduces a divergence
that comes from the bispectrum and is canceled by a counter-term like

k2Pquad = k2

∫
q
PL(|k− q|)PL(q)F (2)(k− q,q) . (A.14)

Therefore, the full set of counter-terms at two loops is

{k2PL, k
2P 1L, k4, k4PL, k

2Pquad} . (A.15)
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A.2 For A

We now consider the hard limit for A. We focus on the Taylor-APT framework described in
Sec. 2.1 because its kernel structure is manifestly evident. As explained in the main text, the
EoM-APT case resembles the Taylor-APT in the limit W → 1, such that all counter-term
structures are similar but for a filter.

Before calculating the limits, one comment is in order. Notice that the limit of F
described by Eq. (A.1) is only valid when the total sum of the arguments is kept constant.
For the M kernels, this is not always the case. For instance

M (3)(k,q,−q) ⊃ F (2)(k,q)
q→∞∝ q

k
. (A.16)

This limit can be seen by the F (2) explicit form [10] and it was numerically tested for higher-
order kernels. In practice, those non-local divergences are odd in q and always vanish when
integrated. Therefore, the only terms that contribute for each M (n)(q1, . . . ,qn) kernel in the
hard limit are those ones whose the total sum k =

∑
qn is kept fixed.

Moving on to the calculation of the single-hard modes for each one of the kernels M ,
defined in Eqs. (2.11)-(2.15), we find

M (2)(k− q,q)
q→∞∝

{
W (kR)

k2

q2
, W 2(qR)

}
, (A.17)

M (3)(k,q,−q)
q→∞∝

{
W (kR)

k2

q2
, W 2(qR),W 2(qR)W (kR)

}
. (A.18)

Replacing in the spectra we have

P
(13)
A (k)

q→∞∝ W (kR)PL(k)

∫
q
PL(q)

[
W (kR)

(
k

q

)2

, W 2(qR), W 2(qR)W (kR)

]
∝ k2W 2(kR)PL(k)Λn+1, W (kR)PL(k)e−RΛ, W 2(kR)PL(k) e−RΛ , (A.19)

P
(22)
A (k)

q→∞∝
∫
q

[
W (kR)

k2

q2
, W 2(qR)

]2

[PL(q)]2 ,

∝ k4W 2(kR)Λ2n−1, k2W (kR) e−RΛ, e−RΛ , (A.20)

where we used e−RΛ to refer to terms that are exponentially suppressed (not necessarily with
this strict exponential dependence). We highlight some important points regarding the hard
limit of those diagrams:

• We spot two kinds of UV contributions. First, those that depend on Λ to some power
which are already present in the calculation for δ (see Eqs. (A.2) and (A.3)) and will be
canceled out by a counter-term as Eq. (A.4). Second, those terms that are suppressed
by R. The terms suppressed by R come from the F independent part of the M kernels.
Those terms also add a finite contribution before suppression. There is therefore a
dependence on R that is physical, affects all the scales and is parametrized by εshot and
σ2 defined in Eqs. (2.56) and (2.57). As can be seen by Eqs. (A.20) and (A.19), the
physical contribution of those terms are proportional to

{k0, k2, PL} . (A.21)

Since the constant k0 works as a shot noise term, we label it as Pshot.
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• As argued in Sec. 2.3, even though the contributions in Eq. (A.21) are physical they
fail to reproduce the low-k behaviour of the PT series (mainly for the Taylor-APT
scheme). As shown in the same section, it is not only a matter of including higher-loop
contributions or fixing the propagator, but the series is not convergent even on small-
k. Consequently, we need to add three free parameters proportional to the terms in
Eq. (A.21) in order to fix the large scales. We make a language distinction and call
them free-parameters and not counter-terms since they do not fix the UV scaling.

• Notice that the exponential suppression only happens when using a Gaussian filter. For
other kinds of filter, as for instance a top hat in position space considered in other works
[18], the suppression is only polynomial in RΛ. It leads to non-negligible contributions
for modes q > R−1 or even modes already in the non-linear regime. In that case, the
free-parameters in Eq. (A.21) would also start to play a role of counter-terms and will
absorb important UV contributions.

• Different powers of W (kR) might appear in the UV analysis, e.g. W (kR)PL together
with W 2(kR)PL. Since we are typically interested on scales k < R−1, it is a good
approximation to absorb them into the W 2(kR) term (e.g. W 2(kR)PL).

Therefore, the set of free parameters and counter-terms needed to cancel out the diver-
gences at one-loop are

{k0, k2, PL, k
2PL} . (A.22)

Continuing to the two-loop calculation, we find for the single-hard limits15

M (3)(k− q1 − q2,q1,q2)
q1→∞∝ (A.23){

W (kR)k
2

q21
,W (kR)k

4

q41
, W (|k− q2|R)W (q2) |k−q2|2

q21
, W 2(q1R)W (q2R)

}
,

M (4)(k− q1,q1,q2,−q2)
q1→∞∝

{
W (kR)k

2

q21
,W (kR)k

4

q41
, (A.24)

W (|k + q2|R)W (q2R) |k+q2|2
q21

,W (kR)W 2(q2R)k
2

q21
,W 2(q1R)W 2(q2R)

}
,

M (4)(k− q1,q1,q2,−q2)
q2→∞∝

{
W (kR)k

2

q22
,W (kR)k

4

q42
, (A.25)

W (q1R)W (|k− q1|R) |k−q1|2
q22

, W (q1R)W (|k− q1|R)
q21
q22
,

W (kR)W 2(q2R)F (2)(k− q1,q1) ,W (|k− q1|R)W (q1R)W 2(q2R)

}
,

15As seen for δ, the double-hard limit does not bring any new counter-term, but only leads to different
scaling with the cutoff. We therefore restrict our analysis here to the single-hard limit.
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M (5)(k,q1,−q1,q2,−q2)
q1→∞∝

{
W (kR)k

2

q21
,W (kR)k

4

q41
, (A.26)

W (|k + q2|R)W (q2R) |k+q2|2
q21

,W (|k + q2|R)W (q2R)F (2)(q2,k)
q22
q21
,

W 2(q1R)W (kR)F (3)(k,q2,−q2),W 2(q2R)W (kR)
q22
q21
,W 2(q2R)W (kR)k

2

q21
,

W (|k + q2|R)W (q2R)W 2(q1R)F (2)(q2,k) ,W 2(q1R)W 2(q2R)W (kR)

}
.

We can see that the kernels will contain very intricate dependence coming from the filtering.
Many of those terms are exponentially suppressed by filters when integrated. However, one
of those terms in the M (5) kernel will remain in the single-hard limit:

M (5)(k,q1,−q1,q2,−q2) ⊃ W (|k + q2|R)W (q2R)F (2)(q2,k)F (3)(q2,q1,−q1)

q1→∞∝ W (|k + q2|R)W (q2R)F (2)(q2,k)
q2

2

q2
1

. (A.27)

This term comes from the bispectrum of δ and it is a drawback for bringing information from
the three-point function down to the two-point function. Therefore, in order to cancel out
the P (15)

A cutoff dependence one needs to introduce at two loops a term like

Pbispec(k) = PL(k)

∫
q
PL(q)F (2)(k,q) q2 . (A.28)

Also the set of free parameters needed to fix the large-scale limit at two loops is larger
than at one loop. Due to the F independent terms in the M kernels, one needs to include
those six terms:

{k0, k2, k4, PL, P
1L, Pquad} . (A.29)

Therefore, the two-loop full set of free parameters is

{k0, k2, PL, P
1L, Pquad, k

2PL, k
2P 1L, k4, k4PL, k

2Pquad, Pbispec} , (A.30)

which sums up to a total of eleven free terms. It more than doubles the number of free
parameters of the two-loop calculation for δ and approaches the number of free-parameters
of the three-loop calculation for δ [4].

Here it is important to point out that, although there are many new free parameters to
describe the power spectrum of A in comparison to the one of δ, several of these new param-
eters are degenerated with the ones present in the bias expansion Eq. (3.1) (e.g., stochastic
parameters). For instance, the number of free parameters is not increased when biased tracers
are considered at one loop, as is the case in the analysis of galaxy surveys.
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