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Abstract. We investigate Maker-Breaker games on graphs of size ℵ1 in which Maker’s
goal is to build a copy of the host graph. We establish a firm dependence of the outcome
of the game on the axiomatic framework. Relating to this, we prove that there is a
winning strategy for Maker in the Kω,ω1-game under ZFC+MA+¬CH and a winning
strategy for Breaker under ZFC+CH. We prove a similar result for the Kω1 -game. Here,
Maker has a winning strategy under ZF+DC+AD, while Breaker has one under ZFC+CH
again.

1. Introduction

Games on graphs are a very natural concept and so it is no wonder that this field has
emerged jointly with graph theory as a whole. For finite boards one often considers strong
games, i.e. where two players interchangeably colour edges of a finite graph G with the
aim to be the first player to have some previously agreed upon graph contained as a
subgraph in the graph induced by their respective coloured edges. Another important
kind of games is the so-called “Maker-Breaker games”. A typical setup for such games
on (potentially infinite) graphs is the following: In each turn Maker claims an edge of G
(not previously claimed by either player) after which Breaker claims an unclaimed edge.
There is either a fixed number of turns or they play until the whole edge set is distributed.
The set of winning sets of Maker is public knowledge and usually has some combinatorial
description. Classical games of this type are for example the Shannon switching game, in
which Maker’s goal is to connect two vertices by a path (see [10]), and the game where
Maker’s goal is to build a spanning tree (see [3]) or more generally a base of a matroid
(see [11]).

For recent results about Maker-Breaker games on infinite graphs we refer to [12] and
[2]. Some games (like the base-exchange game in [1]) can be phrased more naturally in
the language of infinite matroids. It is worth mentioning that Maker-Breaker games have
been investigated in an even more abstract settings as well (see [4]).

For graphs G and H, let MB(G,H) denote the Maker-Breaker game where G (more
precisely E(G)) is the board, there are turns (indexed by ordinals) each of which begins
with Maker claiming an as yet unclaimed edge, after which Breaker does likewise. The
game terminates when all the edges are claimed and Maker wins if and only if at the end
of the game the subgraph GM of G induced by the edges claimed by Maker contains a
subgraph isomorphic to H. It was shown that in the game MB(Kω, Kω) Maker has a
winning strategy (see [2]). In this note we analyse similar games on uncountable graphs.

The third author would like to thank the generous support of the Alexander von Humboldt Foundation
and NKFIH OTKA-129211.
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Note that each outcome of the game defines a 2-colouring of E(G). This suggests
a possible connection to Ramsey type problems, although in the current context the
colourings in question are not arbitrary but are produced by players with particular
goals in mind. There are colourings of the edges of a Kω1 with two colours without any
monochromatic Kω1 in ZFC (see [13]), but if instead of the axiom of choice one assumes
DC+AD, then there always is a monochromatic Kω1 because ω1 becomes measurable (see
[8, Theorem 28.2]) and hence weakly compact1.

The existence of a monochromatic Kω,ω1 when colouring the edges of a Kω,ω1 with two
colours is even more dependent on the set-theoretic framework. While there is a colouring
without a monochromatic copy in ZFC+CH, there is no such colouring in ZFC+ω1 < p.
Since we could not find these particular statements formulated anywhere in the literature
on infinite Ramsey theory, for the sake of completeness we include them here as Corollaries
2.2 and 3.3.

These Ramsey-type results compare well to the corresponding results about the existence
of a winning strategy for either player. Our main results are as follows:

Theorem 1.1. It is independent of ZFC if Breaker has a winning strategy in the game
MB(Kω,ω1 , Kω,ω1). He has one under ZFC+GCH2, while Maker has one under ZFC+ω1 <

p.

Theorem 1.2. It is independent of ZFC if every 2-colouring of the edges of Kω,ω1 admits
a monochromatic copy of Kω,ω1. It is true in ZFC+ω1 < p but fails under ZFC+CH.

Theorem 1.3. Assuming the consistency of AD, it is independent of ZF+DC if Breaker
has winning strategies in the games MB(Kωn , Kωn) for n ∈ {1, 2}. He has such winning
strategies under ZFC+GCH, while Maker has winning strategies in these games under
ZF+DC+AD.

Let MB(Kκ, Kclub) be the game in which Maker’s goal is to build a “Kclub”, i.e. a
complete graph whose vertex set is a closed unbounded subset of κ.

Theorem 1.4. Assuming the consistency of AD, it is independent of ZF+DC if Breaker
has a winning strategy in the game MB(Kω1 , Kclub).

Our results raise the following natural questions:

Question 1.5. Is it consistent with ZFC that neither Maker nor Breaker has a winning
strategy in the game MB(Kω,ω1 , Kω,ω1)?

Question 1.6. Does Breaker have a winning strategy in MB(Kω1 , Kω1) under ZFC?

Question 1.7. Does Maker have a winning strategy in MB(Kω1 , Kclub) under ZF+DC+AD?

Acknowledgements: The authors are grateful to Stefan Geschke, Zoltán Vidnyánszky
and Daniel Hathaway for the insightful discussions about the Axiom of determinacy.

1We write CH, GCH, DC, AD and p for the continuum hypothesis, generalised continuum hypothesis,
axiom of dependent choice, axiom of determinacy and the pseudo-intersection number respectively.

2A closer analysis shows that only CH is needed here, but we have chosen a simpler exposition over
optimality of the results, since the independence is our main concern.
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2. The winning strategies of Breaker under GCH

Proposition 2.1 (ZFC+GCH). For every infinite cardinal κ, Breaker has a winning
strategy in the game MB(Kκ+ , Kκ,κ+).

Proof. Let us assume that Kκ+ is represented as the complete graph on the vertex set κ+.
Working under GCH, we fix an enumeration {Aα : α < κ+} of [κ+]κ and for each α < κ+,
we pick a surjective function fα : κ → {Aβ : β ≤ α}). Whenever Maker plays an edge
{β, α} with β < α and there is a γ < κ such that this is the (γ + 1)st down-neighbour of
α she claims, Breaker plays the smallest δ ∈ fα(γ) for which {δ, α} is available, if such a δ
exists - otherwise he plays arbitrarily.

Suppose for a contradiction that Maker manages to build a Kκ,κ+ (despite Breaker
playing as above) and let A be its smaller and B its bigger vertex class. Then there is an
α < κ+ with Aα = A. Fix a β ∈ B with β > max{α, supA} and let γ < κ with fβ(γ) = A.
At the turn when Maker claims a down-neighbour of β for the (γ + 1)st time, there are
still κ many δ ∈ A for which {δ, β} is available, thus Breaker’s next play is {δ, β} for the
smallest such δ. This contradicts {δ, β} ∈ E(GM). �

The corresponding negative Ramsey-result can be proved in a similar manner:

Corollary 2.2 (ZFC+GCH). For every infinite cardinal κ, there exists a 2-colouring of
the edge set of Kκ,κ+ without a monochromatic copy of Kκ,κ+.

Proof. Let {vα : α < κ+} be an enumeration of the larger vertex class and let {Aα : α < κ+}
be an enumeration of [κ+]κ. For each α < κ+, we colour the edges incident with vα in
such a way that for every β ≤ α both colours appear among the edges between vα and
Aβ. This clearly ensures that no set A can be the smaller vertex class of a monochromatic
copy of Kκ,κ+ and therefore no such a monochromatic copy exists. �

Observation 2.3. If Breaker has a winning strategy in MB(G,H), then he also has one
in every game MB(G′, H ′) where G′ is a subgraph of G and H ′ is a supergraph of H.

Since Kκ,κ+ is a subgraph of Kκ+ , Observation 2.3 guarantees that Proposition 2.1 has
the following consequences:

Corollary 2.4 (ZFC+GCH). For every infinite cardinal κ, Breaker has a winning strategy
in the following games:

(1) MB(Kκ,κ+ , Kκ,κ+),
(2) MB(Kκ+ , Kκ+)
(3) MB(Kκ+ , Kclub).

3. Winning strategies for Maker

During the course of play in MB(G,H) we will refer to a vertex as fresh if no edge
incident with that vertex has been claimed yet by either player.
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3.1. A winning strategy for Maker in MB(Kω,ω1 , Kω,ω1). A set F of sets has the
strong finite intersection property if the intersection of any finitely many elements of F is
infinite. Given two sets X and Y , write X ⊆∗ Y if Y \X is finite. A pseudo-intersection
for a set F of sets is a set P with P ⊆∗ F for all F ∈ F . The cardinal p is the minimum
cardinality of a set F of subsets of ω that has the strong finite intersection property but
does not admit an infinite pseudo-intersection. Clearly ℵ0 < p ≤ 2ℵ0 and it is known that
ω1 < p is consistent relative to ZFC (see [9, Lemma III.3.22 on p. 176]).

Proposition 3.1. Maker has a winning strategy in MB(Kω,ω1 , Kω,ω1) if ω1 < p.

Proof. Let U and V be the two sides of the bipartite graph Kω,ω1 , where |U | = ω and
|V | = ω1. We denote the subgraph of G induced by the edges Maker claimed before turn
α by Gα

M and we write NGαM
(v) for the set of the neighbours of v in this graph.

During the game Maker will choose a sequence 〈vα : α < κ〉 of distinct vertices from V

and a sequence 〈Nα : α < κ〉 of subsets of U in such a way as to ensure that for any α < κ

(1) Nα ⊆ N
ω·(α+1)
GM

(vα).
(2) the set {Nβ : β ≤ α} has the strong finite intersection property.

Assume that turn α · ω has just begun for some α < ω1 and that Maker has constructed
suitable vβ and Nβ for all β < α. She picks vα to be any fresh vertex in V . Using (2) for
all β < α, we know that the set {Nβ : β < α} has the strong finite intersection property.
Let Pα be an infinite pseudo-intersection of this family. In each of the next ω turns, Maker
claims an edge {u, vα} with u ∈ Pα. Let Nα be the set of all the endpoints u ∈ U of these
edges. It is easy to check that this construction satisfies (1) and (2) for α.

At the end of the game {Nα : α < ω1} has the strong finite intersection property
and hence (by the assumption ω1 < p) admits an infinite pseudo-intersection P . By
the definition of P , for each α < ω1, the set P \ Nα is finite. Then there exists an
uncountable O ⊆ ω1 and a finite F ⊆ P such that P \Nα = F for every α ∈ O. Finally,
(P \ F ) ∪ {vα : α ∈ O} induces a copy of Kω,ω1 , all of whose edges have been claimed by
Maker. �

Remark 3.2. The same proof shows that Maker has a winning strategy inMB(Kω,κ, Kω,κ)
for every κ < p with cf(κ) > ℵ0.

The proof of Proposition 3.1 leads to the following positive Ramsey result:

Corollary 3.3. If ω1 < p, then any 2-colouring of the edges of Kω,ω1 admits a monochro-
matic copy of Kω,ω1.

Proof. Call the colours red and blue, and call the countable and uncountable side of the
original graph U and V respectively. We pick a free ultrafilter U on U . Then for each
v ∈ V either the set Nr(v) of the red neighbours of v is in U or the set Nb(v) of the blue
neighbours. We may assume that there is an uncountable V ′ ⊆ V such that Nr(v) ∈ U for
each v ∈ V ′. Since U is a free ultrafilter, the family {Nr(v) : v ∈ V ′} has the strong finite
intersection property and therefore (by ω1 < p) admits an infinite pseudo-intersection
P . This means that for every v ∈ V ′ the set P \ Nr(v) is finite. Then there exists an
uncountable V ′′ ⊆ V ′ and finite F ⊆ P such that P \ Nr(v) = F for each v ∈ V ′′ and
hence (P \ F ) ∪ V ′′ induces a red copy of Kω,ω1 . �
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Question 3.4. Is it consistent with ZFC+ℵω < 2ℵ0 that Maker has a winning strategy in
the game MB(Kω,ωω , Kω,ωω)?

Theorem 1.1 is implied by the case κ = ω of Corollary 2.4/ (1) together with Proposition
3.1. Similarly, Theorem 1.2 follows from Corollaries 2.2 and 3.3.

3.2. A winning strategy for Maker in MB(Kω1 , Kω1) and MB(Kω2 , Kω2).

Proposition 3.5 (ZF). If either κ is measurable or κ = ω, then Maker has a winning
strategy in the game MB(Kκ, Kκ).

Proof. A sub-binary Hausdorff tree is a set theoretic tree T in which each vertex has at
most two children and no two vertices at any limit level have the same set of predecessors.

During the game Maker builds a sequence 〈Tα : α ≤ κ〉 of sub-binary Hausdorff trees
with root 0 and Tα ⊆ κ such that

(a) (i) T0 = {0},
(ii) Tα+1 is obtained from Tα by inserting a new maximal element,
(iii) Tα = ⋃

β<α Tβ if α is a limit ordinal,
(b) for every distinct <Tα-comparable u, v ∈ Tα, the edge {u, v} is claimed by Maker

in the game.
Suppose that α = β + 1 and Tβ is already defined. Maker picks the smallest ordinal v

such that no edge incident with v is claimed and claims edge {0, v}. Then, for as long as
she can, on each following turn she connects v to vertices in Tβ in such a way that:

(1) she maintains that the current neighbourhood of v in her graph is a downward
closed chain in Tβ,

(2) whenever she claims some {u, v}, then Breaker has no edge between v and the
subtree Tβ,u of Tβ rooted at u .

Note that, at any step at which v has a largest Maker-neighbour in Tβ and this neighbour
has two children in Tβ, she can proceed. Moreover, she can also proceed even if there is no
such largest Maker-neighbour as long as there is some element of Tβ whose predecessors
are precisely the Maker-neighbours of v in Tβ. Thus if Maker is unable to continue this
process with v, then either v has a largest Maker-neighbour in Tβ which has at most
one child or else there is no vertex in Tβ with precisely the Maker-neighbours of u as its
predecessors. In either case we can define Tβ+1 by adding v to Tβ with its current set of
Maker-neighbours as its predecessors, and Maker starts a new phase with a new fresh
vertex.

It is enough to show that there is a κ-branch B in Tκ, because then GM [B] is a copy of
Kκ by (b). Since |Tκ| = κ by (a), we can fix a κ-complete free ultrafilter U on Tκ.

By transfinite recursion we build a κ-branch. Let v0 := 0. Suppose that there is an
α < κ such that the <Tκ-increasing sequence 〈vβ : β < α〉 is already defined and for each
β < α, Tκ,vβ ∈ U . If α is a limit ordinal, then since ⋂

β<α Tvβ ∈ U by the κ-completeness
of U , there is at least one vertex of T with all vβ as predecessors. We define vα to be the
unique minimal such vertex, so that Tvα = ⋂

β<α Tvβ ∈ U . If α = β + 1, then Tκ,vβ ∈ U by
assumption. Since Tκ is sub-binary, vβ has a unique child v satisfying Tκ,v ∈ U and we let
vβ+1 := v. The recursion is done and {vα : α < κ} is clearly a κ-branch. �
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We remark that this strategy is quite flexible and deals also with a number of variants
of the Maker-Breaker game. For example, if Breaker is allowed k < ω moves for every
move that Maker picks, simply take a sub-(k + 1)-regular Hausdorff tree, in which every
node has at most k + 1 children. Further, if in addition Breaker is allowed to go first in
every turn, simply weaken the Hausdorff assumption to the requirement that at most k+ 1
vertices at a limit level have the same set of predecessors.

Since ω1 and ω2 are measurable cardinals under ZF+DC+AD ([8, Theorems 28.2 and
28.6]), the cases κ ∈ {ω, ω1} of Corollary 2.4/(2) and the cases κ ∈ {ω1, ω2} of Proposition
3.5 together imply Theorem 1.3.

3.3. Breaker may lose the MB(Kω1 , Kclub)-game.

Proposition 3.6. Under ZF+DC+AD, Breaker does not have a winning strategy in the
game MB(Kω1 , Kclub).

Proof. First of all, the club filter on ω1 is a countably complete free ultrafilter under
ZF+DC+AD (this is explicit in the proof of [8, Theorem 28.2]). Furthermore, it is
normal [5, Proposition 4.1]. Thus for any 2-colouring of [ω1]2 there exists a colour with a
monochromatic Kclub (the standard proof of this for arbitrary normal ultrafilters uses only
ZF, see [7, Theorem 10.22]). It follows that if Breaker successfully prevents Maker from
building a Kclub, then he necessarily builds a Kclub himself.

Suppose for a contradiction that Breaker has a winning strategy. We shall show that
Maker can “steal” this winning strategy. Indeed, Maker picks an arbitrary edge in turn
0 as well as in each limit turn while in successor turns she pretends to be Breaker and
claims edges according to his winning strategy. This is a winning strategy for Maker, a
contradiction. �

Theorem 1.4 follows from the case κ = ω of Corollary 2.4/(3) and Proposition 3.6.

Remark 3.7. The same strategy stealing argument shows that if κ is a weakly compact
cardinal, then Breaker does not have a winning strategy in the game MB(Kκ, Kκ).

Remark 3.8. We did not really use the full power of AD, just some consequences that are
weaker in the sense of consistency strength than AD itself. The axiom-system ZF+DC+“ω1

is measurable” is equiconsistent with ZFC+“there exists a measurable cardinal” (see [6]).
The club filter being an ultrafilter is a strictly stronger assumption, for more details see p.
3 in [5].
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