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Instantons in the non-linear sigma model

H. Albert

II.Institut f�ur Theoretishe Physik, Universit�at Hamburg,

Luruper Chaussee 149, 22761 Hamburg, Germany

This is a review of the work done to lassify all �nite energy solutions of the two dimensional

non-linear sigma model. These solutions ould be important in understanding the vauum struture

of the non-linear sigma model.

I. INTRODUCTION

The non-linear sigma model in two dimensions

[1,2℄ is a �eld theoretial desription of the Heisen-

berg ferromagnet. For suÆiently low temperature

the interation between the loal magnets beome

dominant and the loal magnets tend to align.

Thus we get an ordered state haraterized by an

order parameter, whih an be hosen to be the di-

retion of the loal spin vetor. Thus the order pa-

rameter is a unit vetor, whih an be represented

by a triple of salar �elds ['

1

(x); '

2

(x); '

3

(x)℄,

subjet to the onstraint '

b

'

b

= 1. The stati

energy funtional of the Heisenberg ferromagnet is

given by

H['℄ = hd'

b

jd'

b

i =

Z

�

j

'

b

�

j

'

b

p

gd

D

x

with

'

b

'

b

= 1.

Sine we want to lassify all �nite energy solutions

of the non-linear sigma model, we have to impose

H['℄ = hd'

b

jd'

b

i <1

whih leads to the boundary ondition

lim

x!1

d'

b

(x) = 0

and that '

b

must be asymptotially onstant [11℄

lim

x!1

'

b

(x) = '

b

0

.

Whih omponents the onstant vetor at in�nity

has annot be said. All unit vetors are equally

likely. Hene, we follow onvention and hoose the

north pole as the asymptoti value

lim

x!1

'

b

= [0; 0; 1℄.

From the very beginning we hose the vetor '

b

to be a triple. But nothing prevents us from ask-

ing whether we an extend the model with '

b

be-

ing a N-tuple. But in the next setion we will see

with the help of homotopy theory that for N > 3

there are no nontrivial vauum solutions. Finally it

should be said that the global (non spae-time de-

pendent) symmetry group of the non-linear sigma

model is O(N) for '

b

being a N-tuple or espeially

O(3) for the Heisenberg ferromagnet, i.e. ' being

a triple. As a �nal omment we should say that we

will not disuss generalized non-linear sigma mod-

els, where spae-time and target (�eld)-spae may

have arbitrary geometries [7℄.

II. INSTANTONS AND THE

NON-LINEAR SIGMA MODEL

In this setion I will make use of the exterior

derivative alulus, sine use is made of the dual-

ity operation, whih an be written best in these

terms. Due to the onstraint '

2

= 1, the salar

�eld in the non-linear sigma model (or Heisenberg

ferromagnet) de�nes a mapping

'

a

: R

2

! S

N�1

.

We an ompatifyR

2

by making use of the bound-

ary ondition (see above in the introdution) on

'

a

:

lim

x!1

'

a

(x) = (1; 0; 0:::;0)

All points at in�nity onR

2

an be identi�ed, giving

a map f : R

2

! S

2

lifting the map '

a

to the map

'

a

: S

2

! S

N�1

. But that means, that '

a

is a

representative of an element of �

2

(S

N�1

), where

�

2

(S

N�1

) = 0 for N equal or larger than 4. This

an best be seen by using �ber bundle tehniques:

De�ne a prinipal �ber bundle:

O(N )

�

�!

O(N )

O(N � 1)

,

with �ber O (N-1). Now O (N) is the translational

group on the sphere S

N�1

, while O (N-1) leaves

a point on the sphere �xed. Hene, the quotient

spae O(N )=O(N � 1) is isomorphi to S

N�1

. We

then have an exat sequene of homotopy groups:

::: �! �

i

(O(N � 1))

�

�! �

i

(O(N )) �! �

i

(S

N�1

)

�! �

i�1

(O(N � 1))

�

�! :::
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where � is an epimorphism (surjetive), � is an iso-

morphism for i � N � 2. Sine the sequene is ex-

at, it follows, that �

i

(S

N�1

) = 0 for i � N�2 (see

[5,6℄). Restriting ' to be a triple, and hene the

symmetry group of the sigma model being O(3), it

is a representative of an element of �

2

(S

2

) (�

2

else

being zero, as explained above), the spae of solu-

tions is divided into setors, labeled by n, meaning

the number, speifying, how often ' maps S

2

on

S

2

, alled the mapping degree or winding number.

The Hamiltonian of the �- model an be ast into a

form, exhibiting diretly the splitting of the spae

of solutions into setors, labeled by n:

H['℄ =

1

4

jj � d'

a

�#d'

a

jj

2

� 4�n('),

where the � operation means the Hodge dual of

the one form and the operation # is de�ned in the

setion \Duality ondition". The derivation of the

Hamiltonian runs as follows: For it we need two

more onepts:

� The selfduality equation, inluding onfor-

mal invariane and

� an analytial expression for the winding

number or, what is the same, the topolog-

ial harge.

III. DUALITY CONDITION

The derivatives �

i

' are tangent vetors to the

sphere S

2

in �eld spae, made up by the �elds '

a

due to the onstraint '

2

= 1. We introdue a

duality operation, whih will be alled #, by the

formula

#d'

a

= �

ab

'

b

d'



.

This orresponds to a rotation by

�

2

in the tangent

spae to the sphere S

2

in �eld spae, desribed

above.

IV. WINDING NUMBER

The winding number tells us, how often a topo-

logial spae (not neessarily S

N

) is mapped on

another topologial spae. One example is the

Cauhy formula. The ruial point is that the map-

ping from one topologial spae to another must

not be ontinuously be deformed to the onstant

mapping (singular transformations alter the wind-

ing number by hanging the topology of the target

spae). If this is possible, the winding number is

zero.

V. THE WINDING NUMBER OR THE

BROUWER THEOREM

To introdue the Brouwer index, we need the

onept of the degree of a map (smooth):

De�nition:

The degree of a smooth map f :M�!N ,M;N

being ompat, orientable manifolds of the same

dimension, at a regular value Q�N is the integer

Deg(f ;Q) =

X

P

i

�f

�1

(Q)

sgnj�y

i

=�x

j

j

P

i

,

where sgnj�y

i

=�x

j

j = �1 aording to whether f

�

preserves or reverses orientation.

Brouwer's theorem:

Let f :M�!N be be a smooth map, T a n-form

on N . Then:

Z

M

f

�

T = Deg(f)

Z

N

T .

Now lets hoose T as � = (g)

1=2

dx

1

^ :::^ dx

n

, the

volume form on N . Then we get

Z

M

f

�

� = Deg(f)

Z

N

� = Deg(f)V ol[N ℄

or

Deg(f) =

R

N

f

�

�

V ol[N ℄

The map in our � model is given by: '

a

: R

2

�!

S

N�1

, '

2

= 1 and the winding number by

Deg(') =

1

V ol(S

N�1

)

Z

R

2

�

a

0

:::a

n

'

a

0

d'

a

1

:::d'

a

n

.

We know now, that �

2

(O(N )) is zero for N larger

than 3, so we restrit to the ase N = 3.

) Deg(') = n =

1

8�

Z

S

2

�

ab

'

a

d'

b

^ d'



,

in oordinates n =

1

4�

R

�

ab

�

ij

'

a

�

i

'

b

�

j

'



dx

1

dx

2

,

or

n =

1

8�

< �d'

a

j#d'

a

> .

Finally, we observe

< d'

a

jd'

a

>=< �d'

a

j � d'

a

>=< #d'j#d'

a

> ,

sine as already said above a duality transforma-

tion in two dimensions amounts to a rotation about

�

2

, whih leaves the norm (jj jj

2

= hji) invariant.

Now we have all the ingredients, to invoke the Bo-

gomolny deomposition.

H =

1

2

< d'

a

jd'

a

>



3

=

1

4

< �d'

a

j � d'

a

> +

1

4

< #d'

a

j#d'

a

> +

1

2

< �d'

a

j#d'

a

> �

1

2

< �d'

a

j#d'

a

>

=

1

2

< �d'

a

�#d'

a

j � d'

a

�#d'

a

> +4�n(')

=

1

2

jj � d'

a

�#d'

a

jj

2

+ 4�n(')

This form of the Hamiltonian is alled the Bogo-

molny deomposition. From this formula follows

� The energy is bounded below by 4�n(')

� A on�guration with winding number n is a

ground state if and only if it satis�es the �rst

order di�erential equation

�d'

a

= #d'

a

if n is positive and

�d' = �#d'

a

if n is negative.

Ground state solutions in the sigma model are

alled spin waves. Pitorially the winding num-

ber (or topologial harge) desribes, how often the

spins, aligned along the, say, x-axis, twist around

this axis, the whole hain of spins being held �xed

at both "ends" by boundary onditions. These

equations are so alled double self-dual equations

and play a deisive role in lassifying the solutions.

The next step will be the proof of the following

Proposition:

A spin on�guration '

a

: R

2

�! S

2

is a spin wave

if and only if it is a onformal map from the plane

to the sphere.

Proof:

Let e

1

; e

2

be a anonial basis of R

2

. These are

lifted to the tangent vetors �

1

'

a

; �

2

'

a

. If '

a

is

a onformal map, this fores �

1

'

a

; �

2

'

a

to be or-

thogonal and of the same length. Now we know,

that a solution '

a

with winding number n is a so-

lution of the following equations:

�

1

' = #�

2

'; �

2

' = �#�

1

'

But this shows, that the vetors �

i

'

a

are orthog-

onal, sine the operator # amounts to a rotation

of

�

2

, as already said above. They are also of the

same length, sine # does not alter the length. We

now have to show the onverse, i.e., that any on-

formal map solves the two di�erential equations

above: Let '

a

: R

2

�! S

2

be a smooth map and

introdue the following vetors:

P

a

= �d'

a

�#d'

a

i:e:P

i

= �

ij

�

j

' � '� �

i

'

Q

a

= �d'

a

+#d'

a

i:e:Q

i

= �

ij

�

j

'+ '� �

i

'

Then we get

P

1

Q

1

= P

2

Q

2

= j�

1

'j

2

� j�

2

'j

2

P

1

P

2

= Q

1

Q

2

= 0

and

P

1

Q

2

= P

2

Q

1

= �2�

1

'�

2

'.

But for a onformal map ' : R

2

�! S

2

, �

1

'; �

2

'

are orthogonal tangent vetors of the same length

and hene the right hand sides of the equations

above vanish. This shows that the P

1

; P

2

; Q

1

; Q

2

are mutually orthogonal. The next and �nal step

is to show that

Proposition

If ' is a onformal map the either

P

1

= P

2

= 0

or

Q

1

= Q

2

= 0.

For this we need the following remark: If �

1

' (or

�

2

') vanishes, then all four vetors P

1

; P

2

; Q

1

; Q

2

vanish. To see this, let �

1

' vanish. Then we get

P

2

= �' � �

2

'

and

Q

2

= '� �

2

'

But sine they are orthogonal vetors, �

2

' has

also to vanish. Clearly P

1

; P

2

; Q

1

; Q

2

all have to

vanish. To prove the proposition we observe, that

P

1

; P

2

; Q

1

; Q

2

all are tangent vetors in the same

two-dimensional plane. Sine they are all mutu-

ally orthogonal, two of them have to vanish. But

we have to exlude the possibilities, that either

two P

i

; Q

j

vanish, leaving the other two nonzero.

Suppose now, that P

1

; Q

1

is equal to zero. Then

�

2

' =

1

2

(P

1

+ Q

1

) vanishes and hene all P

i

; Q

j

vanish. The same amounts for P

2

; Q

2

. Suppose

now that Q

2

= P

1

= 0. From Q

2

= 0 we get

�

1

' = '� �

2

' . Inserting this into the expression

for P

1

, we obtain

0 = P

1

= �

2

'� '� ('� �

2

') = 2�

2

'.

So 2�

2

' vanishes as well and so P

1

; P

2

; Q

1

; Q

2

. The

same is for Q

1

= P

2

= 0 ases and we are left with

P

1

= P

2

= 0

or

Q

1

= Q

2

= 0
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for ' : R

2

�! S

2

being onformal. This proves

the proposition. In the �nal step, we introdue

omplex analysis. Orientation preserving onfor-

mal maps '

b

: S

2

�! S

2

are neessarily algebrai,

that means:

' =

P (z)

Q(z)

,

with P, Q arbitrary polynomials [8℄. These orre-

spond to solutions with positive winding number.

Negative winding number solutions are represented

by antiholomorphi (orientation reversing) maps.

The winding number is given by the degree of the

polynomial P(z). This an be explained as follows:

Let w

0

be a regular value, i.e. j

�

i

y

�

j

x

j 6= 0. It follows,

that

P (z)� w

0

Q(z) = 0

has n di�erent solutions (n being the degree of

P(z)). But this is by de�nition the winding num-

ber. Finally, we have to larify, whether there

ould be other �nite energy solutions than the spin

waves. The answer is negative as shown by G. Woo

[2℄. As a �nal remark, lets have a look at the stere-

ographi projetion �

w =

'

1

1� '

3

+ i

'

2

1� '

3

from two dimensional sphere down to the omplex

plane. In the same way the tangent vetors �

i

'

a

are on the unit sphere are projeted down into �

i

w

in the omplex plane, i.e.,

�

�

: d'

a

�! dw.

Sine � is onformal, it preserves right angles, but

it reverses orientation:

�

ab

'

b

�

i

'



�! �i�

i

w,

i.e.,

#d'

a

�! �idw.

From linearity, it follows:

�

ij

�

j

'

a

�! �

ij

�

j

w,

i.e.,

�d'

a

�! �dw.

Putting all this together, we see that the double

self duality equation is projeted down to the self

dual equation

�dw = �idw.

This equation is onformal invariant in two di-

mensions (and 4). Complex analysis tells us, that

any solution dw gives automatially a holomorphi

funtionw and vie verse. There seems to be a on-

tradition to Derrik's saling argument [9℄ in that

we have stable �nite energy solutions. But this is

only apparent, sine the sigma model represents a

loophole in Derrik's argumentation in not having

a potential term in the Lagrangian. Generally pure

salar �eld theories have only soliton solutions in

dim = 1. Derrik's argumentation runs as follows:

Consider a pure salar �eld theory in D dimensions

with Lagrange density

L = �1=2�

�

'

a

�

�

'

a

� U ('

a

).

The orresponding stati energy funtional is given

by

H('

a

) = 1=2

Z

R

d

�

i

'

a

�

i

'

a

+

Z

R

D

U ('

a

)

= H

1

(') +H

2

(').

Suppose '

a

(x) is a stati solution and onsider the

saled on�guration

'

a

�

(x) = '

a

(�x).

The saled on�guration has stati energy

H('

a

�

= 1=2

Z

�

2

�

i

'

a

(�x)�

i

'

a

(�x)d

D

x

+

Z

U ('

a

(�x)d

D

x

= 1=2

Z

�

2�D

�

i

'

a

(y)�

i

'

a

(y)d

D

y

+�

�D

Z

U ('

a

(y))d

D

y

= �

2�D

H

1

+ �

�D

H

2

.

If '

a

is to be stable, H must be stationary against

variations of �:

0 = �

�

H

�=1

= (2�D)H

1

�DH

2

This implies: A nontrivial stati solution in a pure

salar �eld theory is unstable, if the spae di-

mension exeeds 2. For dimension two we have

H

2

('

a

) = 0, whih an be ful�lled, if the potential

energy term is simply absent. This is the ase in

the two dimensional non-linear sigma model.
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VI. VACUUM STRUCTURE

A �eld theory whih satis�es the onditions of

Lorentz (Eulidean) invariane, spetrum and lo-

ality, the vauum is unique if and only if the

n-point funtions have the luster deomposition

property [10℄. Y. Iwasaki shows [4℄ that the or-

relation funtions have the luster property for in-

stanton or anti-instanton ontributions but not for

instanton - anti-instanton ontributions. Similar

ideas onerning the luster property and topolog-

ial non-trivial solutions [12℄, instantons, apply to

Yang-Mills theory [13℄.
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