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Instantons in the non-linear sigma model

H. Albert

II.Institut f�ur Theoretis
he Physik, Universit�at Hamburg,

Luruper Chaussee 149, 22761 Hamburg, Germany

This is a review of the work done to 
lassify all �nite energy solutions of the two dimensional

non-linear sigma model. These solutions 
ould be important in understanding the va
uum stru
ture

of the non-linear sigma model.

I. INTRODUCTION

The non-linear sigma model in two dimensions

[1,2℄ is a �eld theoreti
al des
ription of the Heisen-

berg ferromagnet. For suÆ
iently low temperature

the intera
tion between the lo
al magnets be
ome

dominant and the lo
al magnets tend to align.

Thus we get an ordered state 
hara
terized by an

order parameter, whi
h 
an be 
hosen to be the di-

re
tion of the lo
al spin ve
tor. Thus the order pa-

rameter is a unit ve
tor, whi
h 
an be represented

by a triple of s
alar �elds ['

1

(x); '

2

(x); '

3

(x)℄,

subje
t to the 
onstraint '

b

'

b

= 1. The stati


energy fun
tional of the Heisenberg ferromagnet is

given by

H['℄ = hd'

b

jd'

b

i =

Z

�

j

'

b

�

j

'

b

p

gd

D

x

with

'

b

'

b

= 1.

Sin
e we want to 
lassify all �nite energy solutions

of the non-linear sigma model, we have to impose

H['℄ = hd'

b

jd'

b

i <1

whi
h leads to the boundary 
ondition

lim

x!1

d'

b

(x) = 0

and that '

b

must be asymptoti
ally 
onstant [11℄

lim

x!1

'

b

(x) = '

b

0

.

Whi
h 
omponents the 
onstant ve
tor at in�nity

has 
annot be said. All unit ve
tors are equally

likely. Hen
e, we follow 
onvention and 
hoose the

north pole as the asymptoti
 value

lim

x!1

'

b

= [0; 0; 1℄.

From the very beginning we 
hose the ve
tor '

b

to be a triple. But nothing prevents us from ask-

ing whether we 
an extend the model with '

b

be-

ing a N-tuple. But in the next se
tion we will see

with the help of homotopy theory that for N > 3

there are no nontrivial va
uum solutions. Finally it

should be said that the global (non spa
e-time de-

pendent) symmetry group of the non-linear sigma

model is O(N) for '

b

being a N-tuple or espe
ially

O(3) for the Heisenberg ferromagnet, i.e. ' being

a triple. As a �nal 
omment we should say that we

will not dis
uss generalized non-linear sigma mod-

els, where spa
e-time and target (�eld)-spa
e may

have arbitrary geometries [7℄.

II. INSTANTONS AND THE

NON-LINEAR SIGMA MODEL

In this se
tion I will make use of the exterior

derivative 
al
ulus, sin
e use is made of the dual-

ity operation, whi
h 
an be written best in these

terms. Due to the 
onstraint '

2

= 1, the s
alar

�eld in the non-linear sigma model (or Heisenberg

ferromagnet) de�nes a mapping

'

a

: R

2

! S

N�1

.

We 
an 
ompa
tifyR

2

by making use of the bound-

ary 
ondition (see above in the introdu
tion) on

'

a

:

lim

x!1

'

a

(x) = (1; 0; 0:::;0)

All points at in�nity onR

2


an be identi�ed, giving

a map f : R

2

! S

2

lifting the map '

a

to the map

'

a

: S

2

! S

N�1

. But that means, that '

a

is a

representative of an element of �

2

(S

N�1

), where

�

2

(S

N�1

) = 0 for N equal or larger than 4. This


an best be seen by using �ber bundle te
hniques:

De�ne a prin
ipal �ber bundle:

O(N )

�

�!

O(N )

O(N � 1)

,

with �ber O (N-1). Now O (N) is the translational

group on the sphere S

N�1

, while O (N-1) leaves

a point on the sphere �xed. Hen
e, the quotient

spa
e O(N )=O(N � 1) is isomorphi
 to S

N�1

. We

then have an exa
t sequen
e of homotopy groups:

::: �! �

i

(O(N � 1))

�

�! �

i

(O(N )) �! �

i

(S

N�1

)

�! �

i�1

(O(N � 1))

�

�! :::



2

where � is an epimorphism (surje
tive), � is an iso-

morphism for i � N � 2. Sin
e the sequen
e is ex-

a
t, it follows, that �

i

(S

N�1

) = 0 for i � N�2 (see

[5,6℄). Restri
ting ' to be a triple, and hen
e the

symmetry group of the sigma model being O(3), it

is a representative of an element of �

2

(S

2

) (�

2

else

being zero, as explained above), the spa
e of solu-

tions is divided into se
tors, labeled by n, meaning

the number, spe
ifying, how often ' maps S

2

on

S

2

, 
alled the mapping degree or winding number.

The Hamiltonian of the �- model 
an be 
ast into a

form, exhibiting dire
tly the splitting of the spa
e

of solutions into se
tors, labeled by n:

H['℄ =

1

4

jj � d'

a

�#d'

a

jj

2

� 4�n('),

where the � operation means the Hodge dual of

the one form and the operation # is de�ned in the

se
tion \Duality 
ondition". The derivation of the

Hamiltonian runs as follows: For it we need two

more 
on
epts:

� The selfduality equation, in
luding 
onfor-

mal invarian
e and

� an analyti
al expression for the winding

number or, what is the same, the topolog-

i
al 
harge.

III. DUALITY CONDITION

The derivatives �

i

' are tangent ve
tors to the

sphere S

2

in �eld spa
e, made up by the �elds '

a

due to the 
onstraint '

2

= 1. We introdu
e a

duality operation, whi
h will be 
alled #, by the

formula

#d'

a

= �

ab


'

b

d'




.

This 
orresponds to a rotation by

�

2

in the tangent

spa
e to the sphere S

2

in �eld spa
e, des
ribed

above.

IV. WINDING NUMBER

The winding number tells us, how often a topo-

logi
al spa
e (not ne
essarily S

N

) is mapped on

another topologi
al spa
e. One example is the

Cau
hy formula. The 
ru
ial point is that the map-

ping from one topologi
al spa
e to another must

not be 
ontinuously be deformed to the 
onstant

mapping (singular transformations alter the wind-

ing number by 
hanging the topology of the target

spa
e). If this is possible, the winding number is

zero.

V. THE WINDING NUMBER OR THE

BROUWER THEOREM

To introdu
e the Brouwer index, we need the


on
ept of the degree of a map (smooth):

De�nition:

The degree of a smooth map f :M�!N ,M;N

being 
ompa
t, orientable manifolds of the same

dimension, at a regular value Q�N is the integer

Deg(f ;Q) =

X

P

i

�f

�1

(Q)

sgnj�y

i

=�x

j

j

P

i

,

where sgnj�y

i

=�x

j

j = �1 a

ording to whether f

�

preserves or reverses orientation.

Brouwer's theorem:

Let f :M�!N be be a smooth map, T a n-form

on N . Then:

Z

M

f

�

T = Deg(f)

Z

N

T .

Now lets 
hoose T as � = (g)

1=2

dx

1

^ :::^ dx

n

, the

volume form on N . Then we get

Z

M

f

�

� = Deg(f)

Z

N

� = Deg(f)V ol[N ℄

or

Deg(f) =

R

N

f

�

�

V ol[N ℄

The map in our � model is given by: '

a

: R

2

�!

S

N�1

, '

2

= 1 and the winding number by

Deg(') =

1

V ol(S

N�1

)

Z

R

2

�

a

0

:::a

n

'

a

0

d'

a

1

:::d'

a

n

.

We know now, that �

2

(O(N )) is zero for N larger

than 3, so we restri
t to the 
ase N = 3.

) Deg(') = n =

1

8�

Z

S

2

�

ab


'

a

d'

b

^ d'




,

in 
oordinates n =

1

4�

R

�

ab


�

ij

'

a

�

i

'

b

�

j

'




dx

1

dx

2

,

or

n =

1

8�

< �d'

a

j#d'

a

> .

Finally, we observe

< d'

a

jd'

a

>=< �d'

a

j � d'

a

>=< #d'j#d'

a

> ,

sin
e as already said above a duality transforma-

tion in two dimensions amounts to a rotation about

�

2

, whi
h leaves the norm (jj jj

2

= hji) invariant.

Now we have all the ingredients, to invoke the Bo-

gomolny de
omposition.

H =

1

2

< d'

a

jd'

a

>



3

=

1

4

< �d'

a

j � d'

a

> +

1

4

< #d'

a

j#d'

a

> +

1

2

< �d'

a

j#d'

a

> �

1

2

< �d'

a

j#d'

a

>

=

1

2

< �d'

a

�#d'

a

j � d'

a

�#d'

a

> +4�n(')

=

1

2

jj � d'

a

�#d'

a

jj

2

+ 4�n(')

This form of the Hamiltonian is 
alled the Bogo-

molny de
omposition. From this formula follows

� The energy is bounded below by 4�n(')

� A 
on�guration with winding number n is a

ground state if and only if it satis�es the �rst

order di�erential equation

�d'

a

= #d'

a

if n is positive and

�d' = �#d'

a

if n is negative.

Ground state solutions in the sigma model are


alled spin waves. Pi
torially the winding num-

ber (or topologi
al 
harge) des
ribes, how often the

spins, aligned along the, say, x-axis, twist around

this axis, the whole 
hain of spins being held �xed

at both "ends" by boundary 
onditions. These

equations are so 
alled double self-dual equations

and play a de
isive role in 
lassifying the solutions.

The next step will be the proof of the following

Proposition:

A spin 
on�guration '

a

: R

2

�! S

2

is a spin wave

if and only if it is a 
onformal map from the plane

to the sphere.

Proof:

Let e

1

; e

2

be a 
anoni
al basis of R

2

. These are

lifted to the tangent ve
tors �

1

'

a

; �

2

'

a

. If '

a

is

a 
onformal map, this for
es �

1

'

a

; �

2

'

a

to be or-

thogonal and of the same length. Now we know,

that a solution '

a

with winding number n is a so-

lution of the following equations:

�

1

' = #�

2

'; �

2

' = �#�

1

'

But this shows, that the ve
tors �

i

'

a

are orthog-

onal, sin
e the operator # amounts to a rotation

of

�

2

, as already said above. They are also of the

same length, sin
e # does not alter the length. We

now have to show the 
onverse, i.e., that any 
on-

formal map solves the two di�erential equations

above: Let '

a

: R

2

�! S

2

be a smooth map and

introdu
e the following ve
tors:

P

a

= �d'

a

�#d'

a

i:e:P

i

= �

ij

�

j

' � '� �

i

'

Q

a

= �d'

a

+#d'

a

i:e:Q

i

= �

ij

�

j

'+ '� �

i

'

Then we get

P

1

Q

1

= P

2

Q

2

= j�

1

'j

2

� j�

2

'j

2

P

1

P

2

= Q

1

Q

2

= 0

and

P

1

Q

2

= P

2

Q

1

= �2�

1

'�

2

'.

But for a 
onformal map ' : R

2

�! S

2

, �

1

'; �

2

'

are orthogonal tangent ve
tors of the same length

and hen
e the right hand sides of the equations

above vanish. This shows that the P

1

; P

2

; Q

1

; Q

2

are mutually orthogonal. The next and �nal step

is to show that

Proposition

If ' is a 
onformal map the either

P

1

= P

2

= 0

or

Q

1

= Q

2

= 0.

For this we need the following remark: If �

1

' (or

�

2

') vanishes, then all four ve
tors P

1

; P

2

; Q

1

; Q

2

vanish. To see this, let �

1

' vanish. Then we get

P

2

= �' � �

2

'

and

Q

2

= '� �

2

'

But sin
e they are orthogonal ve
tors, �

2

' has

also to vanish. Clearly P

1

; P

2

; Q

1

; Q

2

all have to

vanish. To prove the proposition we observe, that

P

1

; P

2

; Q

1

; Q

2

all are tangent ve
tors in the same

two-dimensional plane. Sin
e they are all mutu-

ally orthogonal, two of them have to vanish. But

we have to ex
lude the possibilities, that either

two P

i

; Q

j

vanish, leaving the other two nonzero.

Suppose now, that P

1

; Q

1

is equal to zero. Then

�

2

' =

1

2

(P

1

+ Q

1

) vanishes and hen
e all P

i

; Q

j

vanish. The same amounts for P

2

; Q

2

. Suppose

now that Q

2

= P

1

= 0. From Q

2

= 0 we get

�

1

' = '� �

2

' . Inserting this into the expression

for P

1

, we obtain

0 = P

1

= �

2

'� '� ('� �

2

') = 2�

2

'.

So 2�

2

' vanishes as well and so P

1

; P

2

; Q

1

; Q

2

. The

same is for Q

1

= P

2

= 0 
ases and we are left with

P

1

= P

2

= 0

or

Q

1

= Q

2

= 0
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for ' : R

2

�! S

2

being 
onformal. This proves

the proposition. In the �nal step, we introdu
e


omplex analysis. Orientation preserving 
onfor-

mal maps '

b

: S

2

�! S

2

are ne
essarily algebrai
,

that means:

' =

P (z)

Q(z)

,

with P, Q arbitrary polynomials [8℄. These 
orre-

spond to solutions with positive winding number.

Negative winding number solutions are represented

by antiholomorphi
 (orientation reversing) maps.

The winding number is given by the degree of the

polynomial P(z). This 
an be explained as follows:

Let w

0

be a regular value, i.e. j

�

i

y

�

j

x

j 6= 0. It follows,

that

P (z)� w

0

Q(z) = 0

has n di�erent solutions (n being the degree of

P(z)). But this is by de�nition the winding num-

ber. Finally, we have to 
larify, whether there


ould be other �nite energy solutions than the spin

waves. The answer is negative as shown by G. Woo

[2℄. As a �nal remark, lets have a look at the stere-

ographi
 proje
tion �

w =

'

1

1� '

3

+ i

'

2

1� '

3

from two dimensional sphere down to the 
omplex

plane. In the same way the tangent ve
tors �

i

'

a

are on the unit sphere are proje
ted down into �

i

w

in the 
omplex plane, i.e.,

�

�

: d'

a

�! dw.

Sin
e � is 
onformal, it preserves right angles, but

it reverses orientation:

�

ab


'

b

�

i

'




�! �i�

i

w,

i.e.,

#d'

a

�! �idw.

From linearity, it follows:

�

ij

�

j

'

a

�! �

ij

�

j

w,

i.e.,

�d'

a

�! �dw.

Putting all this together, we see that the double

self duality equation is proje
ted down to the self

dual equation

�dw = �idw.

This equation is 
onformal invariant in two di-

mensions (and 4). Complex analysis tells us, that

any solution dw gives automati
ally a holomorphi


fun
tionw and vi
e verse. There seems to be a 
on-

tradi
tion to Derri
k's s
aling argument [9℄ in that

we have stable �nite energy solutions. But this is

only apparent, sin
e the sigma model represents a

loophole in Derri
k's argumentation in not having

a potential term in the Lagrangian. Generally pure

s
alar �eld theories have only soliton solutions in

dim = 1. Derri
k's argumentation runs as follows:

Consider a pure s
alar �eld theory in D dimensions

with Lagrange density

L = �1=2�

�

'

a

�

�

'

a

� U ('

a

).

The 
orresponding stati
 energy fun
tional is given

by

H('

a

) = 1=2

Z

R

d

�

i

'

a

�

i

'

a

+

Z

R

D

U ('

a

)

= H

1

(') +H

2

(').

Suppose '

a

(x) is a stati
 solution and 
onsider the

s
aled 
on�guration

'

a

�

(x) = '

a

(�x).

The s
aled 
on�guration has stati
 energy

H('

a

�

= 1=2

Z

�

2

�

i

'

a

(�x)�

i

'

a

(�x)d

D

x

+

Z

U ('

a

(�x)d

D

x

= 1=2

Z

�

2�D

�

i

'

a

(y)�

i

'

a

(y)d

D

y

+�

�D

Z

U ('

a

(y))d

D

y

= �

2�D

H

1

+ �

�D

H

2

.

If '

a

is to be stable, H must be stationary against

variations of �:

0 = �

�

H

�=1

= (2�D)H

1

�DH

2

This implies: A nontrivial stati
 solution in a pure

s
alar �eld theory is unstable, if the spa
e di-

mension ex
eeds 2. For dimension two we have

H

2

('

a

) = 0, whi
h 
an be ful�lled, if the potential

energy term is simply absent. This is the 
ase in

the two dimensional non-linear sigma model.
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VI. VACUUM STRUCTURE

A �eld theory whi
h satis�es the 
onditions of

Lorentz (Eu
lidean) invarian
e, spe
trum and lo-


ality, the va
uum is unique if and only if the

n-point fun
tions have the 
luster de
omposition

property [10℄. Y. Iwasaki shows [4℄ that the 
or-

relation fun
tions have the 
luster property for in-

stanton or anti-instanton 
ontributions but not for

instanton - anti-instanton 
ontributions. Similar

ideas 
on
erning the 
luster property and topolog-

i
al non-trivial solutions [12℄, instantons, apply to

Yang-Mills theory [13℄.

[1℄ A. M. Polyakov and A. A. Belavin, \Metastable

States Of Two-Dimensional Isotropi
 Ferromag-

nets," JETP Lett. 22, 245 (1975) [Pisma Zh.

Eksp. Teor. Fiz. 22, 503 (1975)℄.

[2℄ G. Woo, \Pseudoparti
le Con�gurations In Two-

Dimensional Ferromagnets," HUTP-76/A174

[13℄ Y. Iwasaki \The stru
ture of the Va
uum. I,"

Progress of Theoreti
al Physi
s 68, 448 (1982)

[4℄ Y. Iwasaki \Low Temperature Behavior of Clas-

si
al O(3) Heisenberg Model in Two dimensions"

Prog.Theor.Phys. 66, 1089, (1981)

[5℄ N. Steenrod \Fiber bundles"

[6℄ D. Husemoller \Fibre bundles, p.105, 
hapter

12.4."

[7℄ S.V. Ketov \Quantum Non-linear Sigma-Models"

[8℄ P. Mathieu \Conformal Field Theory, p.114"

[9℄ R. Rajaraman \Instantons and Solitons"

[10℄ R. Haag Nuovo Cim. 25, 287,(1962)

[11℄ A. Ja�e \Vorti
es and Monopoles, pp.101"

[12℄ C. Callan \The stru
ture of the Gauge Theory

Va
uum" Phys.Lett. B63, 334, (1976)

[13℄ Y. Iwasaki \The stru
ture of the Va
uum II" Prog.

in Theor. Physi
s 68, 898, (1982)


