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Abstrat

The next to leading order (NLO) ontribution of the generalized �nite size mass

shift formula for an interating two stable partile system in a periodi L

3

box is

disriminated with maintaining its model independent struture and validity to all

orders in perturbation theory. The inuene of the NLO ontribution is examined

for the nuleon mass shift in the realisti nuleon-pion system.
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PACS: 11.10.-z; 12.38.G

Measurements of hadron spetrum in unquenhed lattie QCD simulations al-

ways su�er the �nite volume e�et from the assoiated virtual loud of lightest

partiles in the spetra, whih may lap the whole lattie one or several times

owing to periodi boundary onditions. Finite size mass shift formulae, in-

volving the quantum loop e�et of pions in �nite volume, are thus derived

in hiral perturbation theory (ChPT) [1,2,3,4,5,6,7,8℄ and applied to the sim-

ulation results for the purpose of ontrolling its volume dependene and of

identifying the value orresponding to the thermodynami limit (see [9℄ for a

reent review).

In our previous paper, we looked at this issue [10℄ from a general �eld theoret-

ial point of view (without stiking to ChPT) and derived the �nite size mass

shift formula for the interating two stable partile system in a periodi L

3

box, as an extension of L�usher's formula for self-interating bosons [11,12℄.

Remarkable points of L�usher's formula are that the �nite size mass shift in

a periodi box is related to forward elasti sattering amplitudes in in�nite

volume, whih is model independent, and an be valid to all orders in pertur-

bation theory up to a ertain error term [12℄.

In perturbation theory the physial mass is de�ned from the pole position of

the full propagator. Using this fat, the �nite size mass shift of a (bosoni)
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partile

1

�m(L) =M(L) �m in Eulidean spae an be de�ned as

�m(L) = �

1

2m

[�

L

(p)� �(p)℄ +O((�m)

2

) at p = (im;

~

0 ) ; (1)

where �

L

(p) and �(p) denote the self energies in the �nite and in�nite

volumes, respetively. We renormalize the self energy in in�nite volume as

�(p) =

�

�p

2

�(p) = 0 at p

2

= �m

2

. In perturbation theory �

L

(p) ontains the

number of sums over disrete spatial loop momenta, ~q

i

(L) = 2�~n

i

=L (~n

i

2Z

3

),

depending on the number of loops (i = 1; : : : ; N

loop

). These summations an

be rewritten as integrals by using the Poisson summation formula. Then the

integrand of �

L

(p) is redued to the same form as that of �(p) apart from the

exponential fators e

�iL~m

i

�~q

i

and summations over integer vetors ~m

i

2Z

3

.

Sine the magnitude of ~m

i

2 Z

3

ats as the weight of the exponential suppres-

sion fator of the mass shift formula, the leading order (LO) ontribution to

�m(L) for an asymptotially large L an be spei�ed by requiring that only

one of them has a non-zero value j~mj � j~m

i

j = 1 and the others have zero

j~m

j

j = 0 (j 6= i). In other words, the asymptoti formula an be desribed

by the olletion of the e�etive one-loop diagrams with an exponential fator

e

�iL~m�~q

, where the other loop integrals without exponential fators are redued

to the part of the de�nition of the vertex funtion in in�nite volume. L�usher

originally disussed this ase [11,12℄ and we also did it in the previous pa-

per [10℄. The order of the error term in the formula was then onsistent with

that of the next to leading order (NLO) ontribution; j~mj = j~m

i

j =

p

2 and

j~m

j

j = 0 (j 6= i).

For the realisti appliation of the formula to analyzing lattie data, however,

it is desirable to redue the ambiguity assoiated with the error term. In the

present paper, we thus aim to disriminate the NLO ontribution (j~mj =

p

2)

in the formula for the two partile (A-B) system, in partiular, while maintain-

ing its model independent struture and validity to all orders in perturbation

theory. In this ase, the task is still the same as for the j~mj = 1 ase; we eval-

uate the e�etive one-loop diagrams as listed in Fig. 1. We may here assume

that A partile arries a onserved harge, so that interation indued by the

three-point vertex AAB and four-point harge onserving verties are taken

into aount. It should be noted that what is nontrivial for suh an extension

is not so muh evaluating the j~mj =

p

2 ontribution itself as evaluating the

j~mj = 1 ontribution with an error term at most of the order of the NNLO

ontribution (j~mj =

p

3). Otherwise the NLO ontribution will be obsured

in the error term. In fat, it is straightforward to ompute the j~mj =

p

2

ontribution one the proedure is established for j~mj = 1.

1

The fermioni mass shift an also be de�ned in a similar way by sandwihing the

self energies between spinors.

2
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1
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Fig. 1. E�etive one-loop self-energy diagrams whih ontribute to the mass shift

formula in the bosoni A-B system. Solid lines with an empty irle orrespond

to the propagator of A partile, G

A

, and dashed lines to that of B partile, G

B

.

Shaded blobs are vertex funtions, �

AAB

, �

AAAA

, �

AABB

, �

BBB

, at ertain orders

in perturbation theory. It is assumed that A partile arries a onserved harge.

The result turns out that for the mass ratio

� �

m

B

m

A

2 (0; �

max

℄ (2)

with �

max

� 0:418, it is possible to disriminate the NLO ontribution and

the �nal expression an be written as

�m

A

(L) =�

1

16�m

A

�

6

L

�

2

4

�

2

2�

B

e

�L�

+

Z

1

�1

dq

0

2�

e

�L

p

q

2

0

+m

2

B

F

AB

(iq

0

)

3

5

�

1

16�m

A

 

12

p

2L

!

2

4

�

2

2�

B

e

�

p

2L�

+

Z

1

�1

dq

0

2�

e

�

p

2L

p

q

2

0

+m

2

B

F

AB

(iq

0

)

3

5

+O(e

�

p

3L�

) ; (3)

where the �rst and seond lines orrespond to the LO and NLO ontributions,

respetively. In this expression,

� � m

B

s

1 �

�

2

4

=

q

m

2

B

� �

2

B

; �

B

=

m

2

B

2m

A

; (4)
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and F

AB

(�) denotes the forward sattering amplitude of A(p)+B(q)! A(p)+

B(q) in in�nite volume (� = iq

0

the rossing variable). F

AB

(�) has poles at

� = ��

B

. The oupling � is then de�ned by exploiting the residue of F

AB

(�)

as

lim

�!��

B

(�

2

� �

2

B

)F

AB

(�) =

�

2

2

: (5)

The basi line of the derivation of Eq. (3) is the same as in our previous

paper [10℄, where the detailed notation of the propagators and the vertex

funtions are also given. In what follows, we shall present a derivation for the

ase that both A and B partiles are bosons. The extension to the ase that

partile A is a fermion is straightforward, and the �nal result is exatly the

same as in Eq. (3), whih is one of the advantages of the model independene

of the formula. Here, we onentrate on evaluating the diagram (b1) in Fig. 1,

whih is typial for the two partile system and provides us with a key idea

how to ontrol the error term. The other diagrams are then evaluated in a

similar way.

The self-energy diagram (b1) for j~mj = 1 is expressed as

I

(j~mj=1)

b1

=6

Z

d

4

q

(2�)

4

e

iLq

1

�

AAB

(�p; (1� �)p + q; �p� q)G

A

((1 � �)p+ q)

�G

B

(�p� q)�

AAB

(p;�(1 � �)p� q;��p+ q)

�

�

�

�

�

p=(im

A

;

~

0 )

; (6)

where � is a real parameter at least in the range [0; 2Æ(�)℄ for Æ(�) 2 (0; 1=2℄.

For the purposes of evaluating the integral � an be hosen appropriately

depending on the mass ratio �. Our onern is whether there exists suh a set

of � and Æ for a given � to make the error terms smaller than the desired order

of magnitude. For our purpose this is O(e

�L�

) with  =

p

3. In our previous

work [10℄, we hose � = Æ = �

2

=2, whih was suÆient to ontrol the error

term up to O(e

�

p

2L�

). But this hoie turns out to be inappropriate in the

present ase (see our �nal hoie in Eq. (12)). The overall fator 6 originates

from rotational invariane among q

1

, q

2

and q

3

.

Firstly, we perform the omplex q

1

ontour integration by fousing on the

poles of the propagators G

A

and G

B

of one-partile states at

2

2

We are assuming that there is no bound state below the two-partile threshold.

4



q

(A)

1

= i

q

q

2

0

+ q

2

?

+ (2� � �

2

)m

2

A

+ i2(1� �)m

A

q

0

; (7)

q

(B)

1

= i

q

q

2

0

+ q

2

?

+m

2

B

� �

2

m

2

A

� i2�m

A

q

0

; (8)

in the omplex q

1

upper half plane, respetively,

3

where q

2

?

= q

2

2

+ q

2

3

. We

may set a ontour whih goes along the real q

1

line and the line Im q

1

= �

1

> 0

losed at �1 to pik up the residues at q

(A)

1

and/or q

(B)

1

. In order to relate

the mass shift to the on-shell forward sattering amplitude like in Eq. (3), we

�nd at this point that the upper path �

1

must be hosen so as to satisfy the

following onditions;

(i) the ontribution from the upper path itself is smaller than the error term

O(e

�L�

),

(ii) the ontour overs the range of Im q

(A)

1

and/or Im q

(B)

1

for q

0

and q

?

in a

ertain ball

B = f(q

0

; q

?

) 2 R

3

j q

2

0

+ q

2

?

� �

2

g ; (10)

(iii) the ontour piks up no residue exept for the poles at q

(A)

1

and/or q

(B)

1

.

Here the ondition (iii) must be guaranteed even if q

0

is extended to a omplex

variable and shifted as q

0

! q

0

� i(1� �)m

A

for q

(A)

1

and/or q

0

! q

0

+ i�m

A

for q

(B)

1

, where q satis�es the on-shell ondition q

2

= �m

2

A

and/or q

2

= �m

2

B

.

To examine the ondition (iii), we use the fat that the vertex funtion

�

AAB

(�p; (1 � �)p � q; �p � q) with � 2 [0; 2Æ℄, initially de�ned for (p; q) 2

R

4

�R

4

, is analyti inside the omplex domain

D = f(p; q) 2 C

4

� C

4

j

�

Imf(1� Æ) p�

1

2

qg

�

2

< m

2

A

;

�

ImfÆ p �

1

2

qg

�

2

< m

2

B

g : (11)

The basi observation for �nding this domain is that the vertex funtion at

any higher order in perturbation theory onsists of a set of A and B lines (free

propagators). The denominator of the lth A or B line is then parametrized as

(k(l)+r(l))

2

+m

2

A

or (k(l)+r(l))

2

+m

2

B

, where k(l) is the external momentum

ow given by a ombination of omplex variables p and q, and r(l) is a ombi-

nation of internal loop momenta to be integrated out, whih is a real variable

in Eulidean spae. It then follows that the vertex funtion has no singularity

3

For a, b 2 R,

Im (i

p

a+ ib) =

q

(

p

a

2

+ b

2

+ a)=2 : (9)
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δp + 1

2
q

(1− δ − η)p + 1

2
q(1− δ)p− 1

2
q

p (1− η)p + q

ηp− q

(a1) (a2)

(b)

(1− δ)p + 1

2
q

(δ − η)p + 1

2
q

−ηp + 1

2
q

δp− 1

2
q

δp

−

1

2
q

p (1− η)p + q

ηp− q

(a1) (a2)

(b)

Fig. 2. The external momentum ow in the AAB vertex funtion. Arrows represent

the ow diretion.

if (Im k(l))

2

< m

2

A

and (Im k(l))

2

< m

2

B

for all A and B lines. In order to �nd

the possible hoies of k(l), we may label the three bare verties where the

external momenta, p, (1� �)p+ q and �p� q, are plugged in (and out) as a

1

,

a

2

and b, respetively (e.g. a

1

= a

2

= b at the tree level). Note that whenever

A partile arries a onserved harge, there always exists a set of A lines on-

neting a

1

and a

2

. In Fig. 2, we show the possible external momentum ow

inside the AAB vertex funtion; they are basially lassi�ed into two ases,

the onneted A lines ow through b (left) and the onneted A lines do not

ow through b (right). One an add any internal lines depending on the order

in perturbation theory, whih however arry no external momentum and do

not a�et the singularity of the vertex funtion. Inserting the largest exter-

nal momenta for A and B lines into (Im k(l))

2

< m

2

A

and (Im k(l))

2

< m

2

B

,

respetively, one an speify the domain D as in (11).

We then realize that there is no integration path �

1

at any value of � whih

satis�es all onditions (i)�(iii) for both poles q

(A)

1

and q

(B)

1

simultaneously.

However, we �nd that it is possible to hoose �

1

=

q



2

�

2

+ �

2

m

2

A

with the

upper bound of the ball �

2

= 

2

�

2

�m

2

B

+ �

2

m

2

A

in Eq (10), whih satis�es

the onditions only for q

(B)

1

within a limited range of �. The hoie of � and

Æ is quite subtle, but by hoosing

� =  Æ ; Æ = �

v

u

u

t

4 � 

2

(1 �

�

2

4

)

2(

2

+ 2+ 2)

: (12)

with  = 0:95, the allowed range of � is maximized as � 2 (0; �

max

℄, where

�

max

� 0:418.

4

Thus we obtain

4

In this region the ontribution from q

(A)

1

an be negleted sine it is of O(e

�L�

).

To show this expliitly, we need to arry out the q

0

ontour integration by performing

the momentum shift q

0

! q

0

+ i�

0

m

A

for q

(A)

1

. Here, the domain D onstrains �

0

to be �

0

< ((4 � )Æ � 2(1 � 

2

=4)Æ

2

)=(1 � (2 � )Æ), �

0

> �((4 � )Æ � 2(1 �



2

=4)Æ

2

)=(3� (2 + )Æ), �

0

> �(2�

2

� Æ � 2(1� 

2

=4)Æ

2

)=(1 + (2� )Æ), and �

0

>

6



A

D C

B
q′
0

Re q0
−

√

ν2
− q2

⊥

√

ν2
− q2

⊥

Im q0

iηmA

Fig. 3. q

0

integration ontour.

I

(j~mj=1)

b1

=6i

Z

B

dq

0

d

2

q

?

(2�)

3

e

iLq

1

2q

1

�

AAB

(�p; (1� �)p+ q; �p� q)

�G

A

((1� �)p + q)�

AAB

(p;�(1� �)p � q;��p+ q)j

q

1

=q

(B)

1

+O(e

�L�

) : (13)

We remark that if we set  = 2, where O(e

�2L�

) orresponds to the NNNLO

ontribution, there is no parameter set (�

1

; �; Æ; �) whih ful�lls the above

onditions at any value of �, indiating that one annot disriminate the

NNLO ontributions along this line.

Seondly, we perform the omplex q

0

ontour integration along the path in

Fig. 3. The path CD is parametrized by shifting the momentum q

0

! q

0

+

i�m

A

. On this path the argument of G

A

beomes p + q, where q satis�es the

on-shell ondition q

2

= �m

2

B

, sine q

(B)

1

= i

q

q

2

0

+ q

2

?

+m

2

B

. Inside the ontour

the integrand has no pole exept at

q

0

= q

0

0

= im

A

 

� �

�

2

2

!

; (14)

whih is guaranteed by the above ondition (iii). Note that 0 < Im q

0

0

< �m

A

for the value of � spei�ed by Eq. (12). The ontributions from the paths BC

and DA are at most O(e

�L�

) sine Im q

(B)

1

� �, whih is due to the hoie

of the ball B with �

2

= 

2

�

2

�m

2

B

+ �

2

m

2

A

in (10). Thus the integral (13) is

replaed by one along the path CD with the residue ontribution at q

0

0

�(2�

2

�Æ�2(1�

2

=4)Æ

2

)=(1�(2+)Æ). On the other hand, we �nd Im q

(A)

1

� �,

if �

0

< � � 1 +

p

1� 

2

�

2

(1� �

2

=4). Solving these inequalities (numerially) with

Eq. (12), we �nd that  = 0:95 yields the maximal value of �.

7



A(p)

B(q)

A(p)

B(q)

= (a2)

+ + (b1-1, b1-2)

+ (c2)

Fig. 4. Ingredients of F

AB

(�) in the A-B system. The labels represent the orre-

spondene with the self-energy diagrams in Fig. 1.

I

(j~mj=1)

b1

=3

Z

B

0

d

2

q

?

(2�)

2

e

�L

p

q

2

?

+�

2

2

q

q

2

?

+ �

2

�

2

2�

B

+ 6

Z

B

dq

0

d

2

q

?

(2�)

3

e

�L

p

q

2

0

+q

2

?

+m

2

B

2

q

q

2

0

+ q

2

?

+m

2

B

F

(b1�1)

AB

(iq

0

) +O(e

�L�

) ; (15)

where

F

(b1�1)

AB

(iq

0

)=�

AAB

(�p; p + q;�q)G

A

(p+ q)

��

AAB

(p;�p� q; q)j

p

2

=�m

2

A

; q

2

=�m

2

B

(16)

orresponds to a one-partile-irreduible (1PI) part of the forward sattering

amplitudes of F

AB

(� = iq

0

), graphially represented as (b1-1) in Fig. 4. By

using the rossing relation F

(b1�1)

AB

(��) = F

(b1�2)

AB

(�), one an replae F

(b1�1)

AB

(�)

in Eq. (15) by (F

(b1�1)

AB

(�) + F

(b1�2)

AB

(�))=2. In the �rst term in Eq. (15), the

e�etive renormalized oupling � is de�ned by Eq. (5), where F

(b1�1)

AB

(�) or

F

(b1�2)

AB

(�) has the pole at � = ��

B

, and the integral region is spei�ed by

inserting q

0

= q

0

0

to B :

B

0

= fq

?

2 R

2

j q

2

?

� (

2

� 1)�

2

+ 2�m

2

A

(� �

�

2

2

)g : (17)

We then arry out the q

?

integration in Eq. (15) by using the integral formula
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Z

1

�1

d

2

q

?

(2�)

2

e

�L

p

q

2

?

+�

2

2

q

q

2

?

+ �

2

=

1

4�L

e

�L�

; (18)

where the integral region an be extended from B or B

0

to in�nity, beause

the boundary ontributions of B and B

0

are already smaller than the order of

the error term. Hene, we end up with

I

(j~mj=1)

b1

=

1

8�

�

6

L

�

2

4

�

2

2�

B

e

�L�

+

Z

1

�1

dq

0

2�

e

�L

p

q

2

0

+m

2

B

fF

(b1�1)

AB

(iq

0

) + F

(b1�2)

AB

(iq

0

)g

3

5

+O(e

�

p

3L�

) : (19)

Other self-energy diagrams in Fig. 1 an be evaluated in a similar way up

to O(e

�

p

3L�

), yielding the orresponding 1PI part of the forward sattering

amplitude. Note that the ontributions from the self-energy diagrams (a1) and

(1) are already smaller than O(e

�

p

3L�

) for � 2 (0; �

max

℄. By ombining all

ontributions we an disriminate the j~mj = 1 ontribution up to O(e

�

p

3L�

).

The j~mj =

p

2 ontribution is given by the integral

I

(j~mj=

p

2)

b1

=12

Z

d

4

q

(2�)

4

e

iL(q

1

+q

2

)

�

AAB

(�p; (1� �)p+ q; �p� q)G

A

((1 � �)p + q)

�G

B

(�p � q)�

AAB

(p;�(1� �)p� q;��p+ q)

�

�

�

�

�

p=(im

A

;

~

0 )

: (20)

Rotating the q

1

-q

2

axis by �=4, we de�ne ~q

1

= (q

1

+ q

2

)=

p

2 and ~q

2

= (�q

1

+

q

2

)=

p

2. Then, apart from the new exponential fator e

i

p

2L~q

1

and an overall

fator 12, the integrand beomes exatly the same as in Eq. (6). Thus the

evaluation is straightforward and the result is

I

(j~mj=

p

2)

b1

=

1

8�

 

12

p

2L

!

2

4

�

2

2�

B

e

�

p

2L�

+

Z

1

�1

dq

0

2�

e

�

p

2L

p

q

2

0

+m

2

B

fF

(b1�1)

AB

(iq

0

) + F

(b1�2)

AB

(iq

0

)g

3

5

+O(e

�

p

6L�

) ; (21)

where the error term beomes automatially smaller than the j~mj = 1 ase.

Evaluating other diagrams similarly and ombining the result of j~mj = 1, we

arrive at the mass shift formula in Eq. (3).

Finally, let us examine the inuene of the j~mj =

p

2 ontribution by looking

9
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Fig. 5. The nuleon mass shift as a funtion of � = Lm

�

.

at the nuleon mass shift in the realisti N -� system with m

N

= 938 MeV

and m

�

= 140 MeV. As the mass ratio is � = m

�

=m

N

= 0:149, Eq. (3) is

appliable. Moreover, sine the formula is valid to all orders in perturbation

theory and is expeted to hold nonperturbatively, we may insert the empirial

N -� sattering amplitude into Eq. (3). The subthreshold expansion of the N -�

forward sattering amplitude around � = 0 is parametrized as [13℄

F

N�

(�) = 6m

N

D

+

(�) ; (22)

where

D

+

(�) =

g

2

m

N

�

2

B

�

2

B

� �

2

+ d

+

00

m

�1

�

+ d

+

10

m

�3

�

�

2

+ d

+

20

m

�5

�

�

4

+O(�

6

) : (23)

The isospin sum is taken in Eq. (22), negleting the e�et of isospin symmetry

breaking. The oupling onstant is g

2

=4� = 14:3. The �rst term in Eq. (23)

is identi�ed with the pseudovetor nuleon Born term with �

B

= m

2

�

=2m

N

�

0:07m

�

. The e�etive oupling is then easily omputed by using Eq. (5) as �

2

=

�12g

2

�

2

B

. The oeÆients of the other terms are given by d

+

00

= �1:46(10),

d

+

10

= 1:12(2) and d

+

20

= 0:200(5) [13℄. Hereafter we only take into aount the

mean of these values.

In Fig. 5, we plot �(� = Lm

�

) � �m

N

=m

N

for the j~mj = 1 and j~mj =

p

2

ontributions (dotted and dashed lines, respetively) and the sum of these

10



ontributions as j~mj �

p

2 (solid line), where � = 1 orresponds to L = 1:4 fm.

It reveals that the j~mj =

p

2 ontribution is quite large for the plotted region

of �. For instane at � = 2 the mass shift is expeted to our more than

1.2 (j~mj = 1) + 0.8 (j~mj =

p

2) = 2.0 % (& 20 MeV). If one estimates the

j~mj =

p

3 ontribution itself at � = 2,

5

this merely ontributes the mass shift

by 0.2 %. This is due to the smaller geometrial fator (e.g. 6 for j~mj = 1,

12=

p

2 � 8:49 for j~mj =

p

2, and 8=

p

3 � 4:62 for j~mj =

p

3) as well as the

larger exponential deay fator. In this sense the nuleon mass shift formula

is signi�antly modi�ed by disriminating the NLO ontribution. Note that

the negative mass shift for � . 1 is due to the ontribution from the term

involving the N -� forward sattering amplitude (ingredients of the j~mj = 1

urve an be found in Ref. [10℄).

To summarize, we have investigated the �nite size mass shift formula for the

two stable partile system in a periodi L

3

box. We have found that it is pos-

sible for the mass ratio � 2 (0; �

max

℄ with �

max

� 0:418 to disriminate the

NLO ontribution with maintaining its model independent struture and va-

lidity to all orders in perturbation theory. The �nal expression is then written

as in Eq. (3). Along the way we have also realized that it is impossible to

disriminate the NNLO ontribution along the line disussed above one the

error term is set by  = 2. In fat, in order to disriminate more higher order

ontributions, one should go bak to the de�nition of the mass shift in Eq. (1).

We are grateful to the members of lattie forum in DESY theory group in

Hamburg, in partiular, H. Wittig and I. Montvay for valuable disussions

and omments. We appreiate fruitful omments from P. Weisz. Y.K. thanks

T.R. Hemmert for useful disussions at the meeting of the DFG Forsher-

gruppe `Lattie Hadron Phenomenology' at DESY-Zeuthen in February.
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