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Abstra
t

The next to leading order (NLO) 
ontribution of the generalized �nite size mass

shift formula for an intera
ting two stable parti
le system in a periodi
 L

3

box is

dis
riminated with maintaining its model independent stru
ture and validity to all

orders in perturbation theory. The in
uen
e of the NLO 
ontribution is examined

for the nu
leon mass shift in the realisti
 nu
leon-pion system.
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Measurements of hadron spe
trum in unquen
hed latti
e QCD simulations al-

ways su�er the �nite volume e�e
t from the asso
iated virtual 
loud of lightest

parti
les in the spe
tra, whi
h may lap the whole latti
e on
e or several times

owing to periodi
 boundary 
onditions. Finite size mass shift formulae, in-

volving the quantum loop e�e
t of pions in �nite volume, are thus derived

in 
hiral perturbation theory (ChPT) [1,2,3,4,5,6,7,8℄ and applied to the sim-

ulation results for the purpose of 
ontrolling its volume dependen
e and of

identifying the value 
orresponding to the thermodynami
 limit (see [9℄ for a

re
ent review).

In our previous paper, we looked at this issue [10℄ from a general �eld theoret-

i
al point of view (without sti
king to ChPT) and derived the �nite size mass

shift formula for the intera
ting two stable parti
le system in a periodi
 L

3

box, as an extension of L�us
her's formula for self-intera
ting bosons [11,12℄.

Remarkable points of L�us
her's formula are that the �nite size mass shift in

a periodi
 box is related to forward elasti
 s
attering amplitudes in in�nite

volume, whi
h is model independent, and 
an be valid to all orders in pertur-

bation theory up to a 
ertain error term [12℄.

In perturbation theory the physi
al mass is de�ned from the pole position of

the full propagator. Using this fa
t, the �nite size mass shift of a (bosoni
)
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parti
le

1

�m(L) =M(L) �m in Eu
lidean spa
e 
an be de�ned as

�m(L) = �

1

2m

[�

L

(p)� �(p)℄ +O((�m)

2

) at p = (im;

~

0 ) ; (1)

where �

L

(p) and �(p) denote the self energies in the �nite and in�nite

volumes, respe
tively. We renormalize the self energy in in�nite volume as

�(p) =

�

�p

2

�(p) = 0 at p

2

= �m

2

. In perturbation theory �

L

(p) 
ontains the

number of sums over dis
rete spatial loop momenta, ~q

i

(L) = 2�~n

i

=L (~n

i

2Z

3

),

depending on the number of loops (i = 1; : : : ; N

loop

). These summations 
an

be rewritten as integrals by using the Poisson summation formula. Then the

integrand of �

L

(p) is redu
ed to the same form as that of �(p) apart from the

exponential fa
tors e

�iL~m

i

�~q

i

and summations over integer ve
tors ~m

i

2Z

3

.

Sin
e the magnitude of ~m

i

2 Z

3

a
ts as the weight of the exponential suppres-

sion fa
tor of the mass shift formula, the leading order (LO) 
ontribution to

�m(L) for an asymptoti
ally large L 
an be spe
i�ed by requiring that only

one of them has a non-zero value j~mj � j~m

i

j = 1 and the others have zero

j~m

j

j = 0 (j 6= i). In other words, the asymptoti
 formula 
an be des
ribed

by the 
olle
tion of the e�e
tive one-loop diagrams with an exponential fa
tor

e

�iL~m�~q

, where the other loop integrals without exponential fa
tors are redu
ed

to the part of the de�nition of the vertex fun
tion in in�nite volume. L�us
her

originally dis
ussed this 
ase [11,12℄ and we also did it in the previous pa-

per [10℄. The order of the error term in the formula was then 
onsistent with

that of the next to leading order (NLO) 
ontribution; j~mj = j~m

i

j =

p

2 and

j~m

j

j = 0 (j 6= i).

For the realisti
 appli
ation of the formula to analyzing latti
e data, however,

it is desirable to redu
e the ambiguity asso
iated with the error term. In the

present paper, we thus aim to dis
riminate the NLO 
ontribution (j~mj =

p

2)

in the formula for the two parti
le (A-B) system, in parti
ular, while maintain-

ing its model independent stru
ture and validity to all orders in perturbation

theory. In this 
ase, the task is still the same as for the j~mj = 1 
ase; we eval-

uate the e�e
tive one-loop diagrams as listed in Fig. 1. We may here assume

that A parti
le 
arries a 
onserved 
harge, so that intera
tion indu
ed by the

three-point vertex AAB and four-point 
harge 
onserving verti
es are taken

into a

ount. It should be noted that what is nontrivial for su
h an extension

is not so mu
h evaluating the j~mj =

p

2 
ontribution itself as evaluating the

j~mj = 1 
ontribution with an error term at most of the order of the NNLO


ontribution (j~mj =

p

3). Otherwise the NLO 
ontribution will be obs
ured

in the error term. In fa
t, it is straightforward to 
ompute the j~mj =

p

2


ontribution on
e the pro
edure is established for j~mj = 1.

1

The fermioni
 mass shift 
an also be de�ned in a similar way by sandwi
hing the

self energies between spinors.

2



ΣL(p)− Σ(p) =
1

2
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1
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


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


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
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Fig. 1. E�e
tive one-loop self-energy diagrams whi
h 
ontribute to the mass shift

formula in the bosoni
 A-B system. Solid lines with an empty 
ir
le 
orrespond

to the propagator of A parti
le, G

A

, and dashed lines to that of B parti
le, G

B

.

Shaded blobs are vertex fun
tions, �

AAB

, �

AAAA

, �

AABB

, �

BBB

, at 
ertain orders

in perturbation theory. It is assumed that A parti
le 
arries a 
onserved 
harge.

The result turns out that for the mass ratio

� �

m

B

m

A

2 (0; �

max

℄ (2)

with �

max

� 0:418, it is possible to dis
riminate the NLO 
ontribution and

the �nal expression 
an be written as

�m

A

(L) =�

1

16�m

A

�

6

L

�

2

4

�

2

2�

B

e

�L�

+

Z

1

�1

dq

0

2�

e

�L

p

q

2

0

+m

2

B

F

AB

(iq

0

)

3

5

�

1

16�m

A

 

12

p

2L

!

2

4

�

2

2�

B

e

�

p

2L�

+

Z

1

�1

dq

0

2�

e

�

p

2L

p

q

2

0

+m

2

B

F

AB

(iq

0

)

3

5

+O(e

�

p

3L�

) ; (3)

where the �rst and se
ond lines 
orrespond to the LO and NLO 
ontributions,

respe
tively. In this expression,

� � m

B

s

1 �

�

2

4

=

q

m

2

B

� �

2

B

; �

B

=

m

2

B

2m

A

; (4)
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and F

AB

(�) denotes the forward s
attering amplitude of A(p)+B(q)! A(p)+

B(q) in in�nite volume (� = iq

0

the 
rossing variable). F

AB

(�) has poles at

� = ��

B

. The 
oupling � is then de�ned by exploiting the residue of F

AB

(�)

as

lim

�!��

B

(�

2

� �

2

B

)F

AB

(�) =

�

2

2

: (5)

The basi
 line of the derivation of Eq. (3) is the same as in our previous

paper [10℄, where the detailed notation of the propagators and the vertex

fun
tions are also given. In what follows, we shall present a derivation for the


ase that both A and B parti
les are bosons. The extension to the 
ase that

parti
le A is a fermion is straightforward, and the �nal result is exa
tly the

same as in Eq. (3), whi
h is one of the advantages of the model independen
e

of the formula. Here, we 
on
entrate on evaluating the diagram (b1) in Fig. 1,

whi
h is typi
al for the two parti
le system and provides us with a key idea

how to 
ontrol the error term. The other diagrams are then evaluated in a

similar way.

The self-energy diagram (b1) for j~mj = 1 is expressed as

I

(j~mj=1)

b1

=6

Z

d

4

q

(2�)

4

e

iLq

1

�

AAB

(�p; (1� �)p + q; �p� q)G

A

((1 � �)p+ q)

�G

B

(�p� q)�

AAB

(p;�(1 � �)p� q;��p+ q)

�

�

�

�

�

p=(im

A

;

~

0 )

; (6)

where � is a real parameter at least in the range [0; 2Æ(�)℄ for Æ(�) 2 (0; 1=2℄.

For the purposes of evaluating the integral � 
an be 
hosen appropriately

depending on the mass ratio �. Our 
on
ern is whether there exists su
h a set

of � and Æ for a given � to make the error terms smaller than the desired order

of magnitude. For our purpose this is O(e

�L
�

) with 
 =

p

3. In our previous

work [10℄, we 
hose � = Æ = �

2

=2, whi
h was suÆ
ient to 
ontrol the error

term up to O(e

�

p

2L�

). But this 
hoi
e turns out to be inappropriate in the

present 
ase (see our �nal 
hoi
e in Eq. (12)). The overall fa
tor 6 originates

from rotational invarian
e among q

1

, q

2

and q

3

.

Firstly, we perform the 
omplex q

1


ontour integration by fo
using on the

poles of the propagators G

A

and G

B

of one-parti
le states at

2

2

We are assuming that there is no bound state below the two-parti
le threshold.

4



q

(A)

1

= i

q

q

2

0

+ q

2

?

+ (2� � �

2

)m

2

A

+ i2(1� �)m

A

q

0

; (7)

q

(B)

1

= i

q

q

2

0

+ q

2

?

+m

2

B

� �

2

m

2

A

� i2�m

A

q

0

; (8)

in the 
omplex q

1

upper half plane, respe
tively,

3

where q

2

?

= q

2

2

+ q

2

3

. We

may set a 
ontour whi
h goes along the real q

1

line and the line Im q

1

= �

1

> 0


losed at �1 to pi
k up the residues at q

(A)

1

and/or q

(B)

1

. In order to relate

the mass shift to the on-shell forward s
attering amplitude like in Eq. (3), we

�nd at this point that the upper path �

1

must be 
hosen so as to satisfy the

following 
onditions;

(i) the 
ontribution from the upper path itself is smaller than the error term

O(e

�L
�

),

(ii) the 
ontour 
overs the range of Im q

(A)

1

and/or Im q

(B)

1

for q

0

and q

?

in a


ertain ball

B = f(q

0

; q

?

) 2 R

3

j q

2

0

+ q

2

?

� �

2

g ; (10)

(iii) the 
ontour pi
ks up no residue ex
ept for the poles at q

(A)

1

and/or q

(B)

1

.

Here the 
ondition (iii) must be guaranteed even if q

0

is extended to a 
omplex

variable and shifted as q

0

! q

0

� i(1� �)m

A

for q

(A)

1

and/or q

0

! q

0

+ i�m

A

for q

(B)

1

, where q satis�es the on-shell 
ondition q

2

= �m

2

A

and/or q

2

= �m

2

B

.

To examine the 
ondition (iii), we use the fa
t that the vertex fun
tion

�

AAB

(�p; (1 � �)p � q; �p � q) with � 2 [0; 2Æ℄, initially de�ned for (p; q) 2

R

4

�R

4

, is analyti
 inside the 
omplex domain

D = f(p; q) 2 C

4

� C

4

j

�

Imf(1� Æ) p�

1

2

qg

�

2

< m

2

A

;

�

ImfÆ p �

1

2

qg

�

2

< m

2

B

g : (11)

The basi
 observation for �nding this domain is that the vertex fun
tion at

any higher order in perturbation theory 
onsists of a set of A and B lines (free

propagators). The denominator of the lth A or B line is then parametrized as

(k(l)+r(l))

2

+m

2

A

or (k(l)+r(l))

2

+m

2

B

, where k(l) is the external momentum


ow given by a 
ombination of 
omplex variables p and q, and r(l) is a 
ombi-

nation of internal loop momenta to be integrated out, whi
h is a real variable

in Eu
lidean spa
e. It then follows that the vertex fun
tion has no singularity

3

For a, b 2 R,

Im (i

p

a+ ib) =

q

(

p

a

2

+ b

2

+ a)=2 : (9)

5



δp + 1

2
q

(1− δ − η)p + 1

2
q(1− δ)p− 1

2
q

p (1− η)p + q

ηp− q

(a1) (a2)

(b)

(1− δ)p + 1

2
q

(δ − η)p + 1

2
q

−ηp + 1

2
q

δp− 1

2
q

δp

−

1

2
q

p (1− η)p + q

ηp− q

(a1) (a2)

(b)

Fig. 2. The external momentum 
ow in the AAB vertex fun
tion. Arrows represent

the 
ow dire
tion.

if (Im k(l))

2

< m

2

A

and (Im k(l))

2

< m

2

B

for all A and B lines. In order to �nd

the possible 
hoi
es of k(l), we may label the three bare verti
es where the

external momenta, p, (1� �)p+ q and �p� q, are plugged in (and out) as a

1

,

a

2

and b, respe
tively (e.g. a

1

= a

2

= b at the tree level). Note that whenever

A parti
le 
arries a 
onserved 
harge, there always exists a set of A lines 
on-

ne
ting a

1

and a

2

. In Fig. 2, we show the possible external momentum 
ow

inside the AAB vertex fun
tion; they are basi
ally 
lassi�ed into two 
ases,

the 
onne
ted A lines 
ow through b (left) and the 
onne
ted A lines do not


ow through b (right). One 
an add any internal lines depending on the order

in perturbation theory, whi
h however 
arry no external momentum and do

not a�e
t the singularity of the vertex fun
tion. Inserting the largest exter-

nal momenta for A and B lines into (Im k(l))

2

< m

2

A

and (Im k(l))

2

< m

2

B

,

respe
tively, one 
an spe
ify the domain D as in (11).

We then realize that there is no integration path �

1

at any value of � whi
h

satis�es all 
onditions (i)�(iii) for both poles q

(A)

1

and q

(B)

1

simultaneously.

However, we �nd that it is possible to 
hoose �

1

=

q




2

�

2

+ �

2

m

2

A

with the

upper bound of the ball �

2

= 


2

�

2

�m

2

B

+ �

2

m

2

A

in Eq (10), whi
h satis�es

the 
onditions only for q

(B)

1

within a limited range of �. The 
hoi
e of � and

Æ is quite subtle, but by 
hoosing

� = 
 Æ ; Æ = �

v

u

u

t

4 � 


2

(1 �

�

2

4

)

2(


2

+ 2
+ 2)

: (12)

with 
 = 0:95, the allowed range of � is maximized as � 2 (0; �

max

℄, where

�

max

� 0:418.

4

Thus we obtain

4

In this region the 
ontribution from q

(A)

1


an be negle
ted sin
e it is of O(e

�L
�

).

To show this expli
itly, we need to 
arry out the q

0


ontour integration by performing

the momentum shift q

0

! q

0

+ i�

0

m

A

for q

(A)

1

. Here, the domain D 
onstrains �

0

to be �

0

< ((4 � 
)Æ � 2(1 � 


2

=4)Æ

2

)=(1 � (2 � 
)Æ), �

0

> �((4 � 
)Æ � 2(1 �




2

=4)Æ

2

)=(3� (2 + 
)Æ), �

0

> �(2�

2

� 
Æ � 2(1� 


2

=4)Æ

2

)=(1 + (2� 
)Æ), and �

0

>

6



A

D C

B
q′
0

Re q0
−

√

ν2
− q2

⊥

√

ν2
− q2

⊥

Im q0

iηmA

Fig. 3. q

0

integration 
ontour.

I

(j~mj=1)

b1

=6i

Z

B

dq

0

d

2

q

?

(2�)

3

e

iLq

1

2q

1

�

AAB

(�p; (1� �)p+ q; �p� q)

�G

A

((1� �)p + q)�

AAB

(p;�(1� �)p � q;��p+ q)j

q

1

=q

(B)

1

+O(e

�L
�

) : (13)

We remark that if we set 
 = 2, where O(e

�2L�

) 
orresponds to the NNNLO


ontribution, there is no parameter set (�

1

; �; Æ; �) whi
h ful�lls the above


onditions at any value of �, indi
ating that one 
annot dis
riminate the

NNLO 
ontributions along this line.

Se
ondly, we perform the 
omplex q

0


ontour integration along the path in

Fig. 3. The path CD is parametrized by shifting the momentum q

0

! q

0

+

i�m

A

. On this path the argument of G

A

be
omes p + q, where q satis�es the

on-shell 
ondition q

2

= �m

2

B

, sin
e q

(B)

1

= i

q

q

2

0

+ q

2

?

+m

2

B

. Inside the 
ontour

the integrand has no pole ex
ept at

q

0

= q

0

0

= im

A

 

� �

�

2

2

!

; (14)

whi
h is guaranteed by the above 
ondition (iii). Note that 0 < Im q

0

0

< �m

A

for the value of � spe
i�ed by Eq. (12). The 
ontributions from the paths BC

and DA are at most O(e

�L
�

) sin
e Im q

(B)

1

� 
�, whi
h is due to the 
hoi
e

of the ball B with �

2

= 


2

�

2

�m

2

B

+ �

2

m

2

A

in (10). Thus the integral (13) is

repla
ed by one along the path CD with the residue 
ontribution at q

0

0

�(2�

2

�
Æ�2(1�


2

=4)Æ

2

)=(1�(2+
)Æ). On the other hand, we �nd Im q

(A)

1

� 
�,

if �

0

< � � 1 +

p

1� 


2

�

2

(1� �

2

=4). Solving these inequalities (numeri
ally) with

Eq. (12), we �nd that 
 = 0:95 yields the maximal value of �.

7



A(p)

B(q)

A(p)

B(q)

= (a2)

+ + (b1-1, b1-2)

+ (c2)

Fig. 4. Ingredients of F

AB

(�) in the A-B system. The labels represent the 
orre-

sponden
e with the self-energy diagrams in Fig. 1.

I

(j~mj=1)

b1

=3

Z

B

0

d

2

q

?

(2�)

2

e

�L

p

q

2

?

+�

2

2

q

q

2

?

+ �

2

�

2

2�

B

+ 6

Z

B

dq

0

d

2

q

?

(2�)

3

e

�L

p

q

2

0

+q

2

?

+m

2

B

2

q

q

2

0

+ q

2

?

+m

2

B

F

(b1�1)

AB

(iq

0

) +O(e

�L
�

) ; (15)

where

F

(b1�1)

AB

(iq

0

)=�

AAB

(�p; p + q;�q)G

A

(p+ q)

��

AAB

(p;�p� q; q)j

p

2

=�m

2

A

; q

2

=�m

2

B

(16)


orresponds to a one-parti
le-irredu
ible (1PI) part of the forward s
attering

amplitudes of F

AB

(� = iq

0

), graphi
ally represented as (b1-1) in Fig. 4. By

using the 
rossing relation F

(b1�1)

AB

(��) = F

(b1�2)

AB

(�), one 
an repla
e F

(b1�1)

AB

(�)

in Eq. (15) by (F

(b1�1)

AB

(�) + F

(b1�2)

AB

(�))=2. In the �rst term in Eq. (15), the

e�e
tive renormalized 
oupling � is de�ned by Eq. (5), where F

(b1�1)

AB

(�) or

F

(b1�2)

AB

(�) has the pole at � = ��

B

, and the integral region is spe
i�ed by

inserting q

0

= q

0

0

to B :

B

0

= fq

?

2 R

2

j q

2

?

� (


2

� 1)�

2

+ 2�m

2

A

(� �

�

2

2

)g : (17)

We then 
arry out the q

?

integration in Eq. (15) by using the integral formula
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Z

1

�1

d

2

q

?

(2�)

2

e

�L

p

q

2

?

+�

2

2

q

q

2

?

+ �

2

=

1

4�L

e

�L�

; (18)

where the integral region 
an be extended from B or B

0

to in�nity, be
ause

the boundary 
ontributions of B and B

0

are already smaller than the order of

the error term. Hen
e, we end up with

I

(j~mj=1)

b1

=

1

8�

�

6

L

�

2

4

�

2

2�

B

e

�L�

+

Z

1

�1

dq

0

2�

e

�L

p

q

2

0

+m

2

B

fF

(b1�1)

AB

(iq

0

) + F

(b1�2)

AB

(iq

0

)g

3

5

+O(e

�

p

3L�

) : (19)

Other self-energy diagrams in Fig. 1 
an be evaluated in a similar way up

to O(e

�

p

3L�

), yielding the 
orresponding 1PI part of the forward s
attering

amplitude. Note that the 
ontributions from the self-energy diagrams (a1) and

(
1) are already smaller than O(e

�

p

3L�

) for � 2 (0; �

max

℄. By 
ombining all


ontributions we 
an dis
riminate the j~mj = 1 
ontribution up to O(e

�

p

3L�

).

The j~mj =

p

2 
ontribution is given by the integral

I

(j~mj=

p

2)

b1

=12

Z

d

4

q

(2�)

4

e

iL(q

1

+q

2

)

�

AAB

(�p; (1� �)p+ q; �p� q)G

A

((1 � �)p + q)

�G

B

(�p � q)�

AAB

(p;�(1� �)p� q;��p+ q)

�

�

�

�

�

p=(im

A

;

~

0 )

: (20)

Rotating the q

1

-q

2

axis by �=4, we de�ne ~q

1

= (q

1

+ q

2

)=

p

2 and ~q

2

= (�q

1

+

q

2

)=

p

2. Then, apart from the new exponential fa
tor e

i

p

2L~q

1

and an overall

fa
tor 12, the integrand be
omes exa
tly the same as in Eq. (6). Thus the

evaluation is straightforward and the result is

I

(j~mj=

p

2)

b1

=

1

8�

 

12

p

2L

!

2

4

�

2

2�

B

e

�

p

2L�

+

Z

1

�1

dq

0

2�

e

�

p

2L

p

q

2

0

+m

2

B

fF

(b1�1)

AB

(iq

0

) + F

(b1�2)

AB

(iq

0

)g

3

5

+O(e

�

p

6L�

) ; (21)

where the error term be
omes automati
ally smaller than the j~mj = 1 
ase.

Evaluating other diagrams similarly and 
ombining the result of j~mj = 1, we

arrive at the mass shift formula in Eq. (3).

Finally, let us examine the in
uen
e of the j~mj =

p

2 
ontribution by looking

9



1 1.5 2 2.5 3 3.5
Ξ

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

DHΞL
Èm® È£�!!!2

Èm® È=�!!!2

Èm® È=1

Fig. 5. The nu
leon mass shift as a fun
tion of � = Lm

�

.

at the nu
leon mass shift in the realisti
 N -� system with m

N

= 938 MeV

and m

�

= 140 MeV. As the mass ratio is � = m

�

=m

N

= 0:149, Eq. (3) is

appli
able. Moreover, sin
e the formula is valid to all orders in perturbation

theory and is expe
ted to hold nonperturbatively, we may insert the empiri
al

N -� s
attering amplitude into Eq. (3). The subthreshold expansion of the N -�

forward s
attering amplitude around � = 0 is parametrized as [13℄

F

N�

(�) = 6m

N

D

+

(�) ; (22)

where

D

+

(�) =

g

2

m

N

�

2

B

�

2

B

� �

2

+ d

+

00

m

�1

�

+ d

+

10

m

�3

�

�

2

+ d

+

20

m

�5

�

�

4

+O(�

6

) : (23)

The isospin sum is taken in Eq. (22), negle
ting the e�e
t of isospin symmetry

breaking. The 
oupling 
onstant is g

2

=4� = 14:3. The �rst term in Eq. (23)

is identi�ed with the pseudove
tor nu
leon Born term with �

B

= m

2

�

=2m

N

�

0:07m

�

. The e�e
tive 
oupling is then easily 
omputed by using Eq. (5) as �

2

=

�12g

2

�

2

B

. The 
oeÆ
ients of the other terms are given by d

+

00

= �1:46(10),

d

+

10

= 1:12(2) and d

+

20

= 0:200(5) [13℄. Hereafter we only take into a

ount the

mean of these values.

In Fig. 5, we plot �(� = Lm

�

) � �m

N

=m

N

for the j~mj = 1 and j~mj =

p

2


ontributions (dotted and dashed lines, respe
tively) and the sum of these

10




ontributions as j~mj �

p

2 (solid line), where � = 1 
orresponds to L = 1:4 fm.

It reveals that the j~mj =

p

2 
ontribution is quite large for the plotted region

of �. For instan
e at � = 2 the mass shift is expe
ted to o

ur more than

1.2 (j~mj = 1) + 0.8 (j~mj =

p

2) = 2.0 % (& 20 MeV). If one estimates the

j~mj =

p

3 
ontribution itself at � = 2,

5

this merely 
ontributes the mass shift

by 0.2 %. This is due to the smaller geometri
al fa
tor (e.g. 6 for j~mj = 1,

12=

p

2 � 8:49 for j~mj =

p

2, and 8=

p

3 � 4:62 for j~mj =

p

3) as well as the

larger exponential de
ay fa
tor. In this sense the nu
leon mass shift formula

is signi�
antly modi�ed by dis
riminating the NLO 
ontribution. Note that

the negative mass shift for � . 1 is due to the 
ontribution from the term

involving the N -� forward s
attering amplitude (ingredients of the j~mj = 1


urve 
an be found in Ref. [10℄).

To summarize, we have investigated the �nite size mass shift formula for the

two stable parti
le system in a periodi
 L

3

box. We have found that it is pos-

sible for the mass ratio � 2 (0; �

max

℄ with �

max

� 0:418 to dis
riminate the

NLO 
ontribution with maintaining its model independent stru
ture and va-

lidity to all orders in perturbation theory. The �nal expression is then written

as in Eq. (3). Along the way we have also realized that it is impossible to

dis
riminate the NNLO 
ontribution along the line dis
ussed above on
e the

error term is set by 
 = 2. In fa
t, in order to dis
riminate more higher order


ontributions, one should go ba
k to the de�nition of the mass shift in Eq. (1).
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