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Abstract

A detailed analysis of a Stueckelberg extension of the electro-weak gauge group
with an extra abelian U(1)y factor is presented for the Standard Model as well
as for the MSSM. The extra gauge boson gets massive through a Stueckelberg
type coupling to a pseudo-scalar, instead of a Higgs effect. This new massive
neutral gauge boson 7' has vector and axial vector couplings uniquely different
from those of conventional extra abelian gauge bosons, such as appear e.g. in GUT
models. The extended MSSM furthermore contains two extra neutralinos and one
extra neutral CP-even scalar, the latter with a mass larger than that of the Z’. One
interesting scenario that emerges is an LSP that is dominantly composed out of the
new neutralinos, leading to a possible new superweak candidate for dark matter.
We investigate signatures of the Stueckelberg extension at a linear collider and
discuss techniques for the detection of the expected sharp Z’ resonance. It turns out
that the substantially modified forward-backward asymmetry around the Z' pole
provides an important signal. Furthermore, we also elaborate on generalizations
of the minimal Stueckelberg extension to an arbitrary number of extra U(1) gauge

factors.
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1 Introduction

The Stueckelberg Lagrangian [I] is a gauge invariant kinetic term for a massive
abelian vector field, that utilizes a non-linear representation of the gauge trans-
formation. The mass term is made gauge invariant by coupling a massless gauge
boson to a real pseudo-scalar, which then transforms non-linearly, and in unitary
gauge is absorbed as the longitudinal mode of the massive vector. As we shall point
out below, gauge boson masses through Stueckelberg couplings are ubiquitous in
compactifications of higher-dimensional string theory, supergravity, or even pure
gauge theory. From a model building perspective, the relevance of the Stueckelberg
mechanism lies in the fact that it provides an opportunity alternative to the Higgs
mechanism [2] to achieve gauge symmetry breaking without spoiling renormaliz-
ability [3]. Since the minimal version of the Stueckelberg mechanism only needs
a single real scalar, which is absorbed by the gauge boson with no other degrees
of freedom left, it is already clear that the Stueckelberg and the Higgs mechanism
are physically distinct. The main purpose of this paper is to discuss the most
simple extensions of the electro-weak sector of the Standard Model (SM) [H], and
its supersymmetric generalizations (SSM or MSSM). The work presented here is a
more detailed exposition and extension of of two previous publications, where the
Stueckelberg extension was first achieved [B, 6, [7]. In particular, an analysis of the

possibility of observation of Stueckelberg phenomena at linear colliders is also given.

1.1 The Stueckelberg Lagrangian

The prototype Stueckelberg Lagrangian couples one abelian vector boson A, to

one pseudo-scalar ¢ in the following way,*

C- —%]—"W]-"’“’ - %(mAu 4+ 0,0)(mA" + D) | (1)
It is gauge invariant if o transforms together with A, according to
0A, =0, do=—me. (2)
Fixing the gauge by adding
Lut = —5¢ 0,47+ Emo)® 3)

1 As is well known, the Stueckelberg mechanism can actually be recovered in a rather singular
limit of the Higgs mechanism [3], and it is useful to keep the comparison in mind as we discuss the
models based on the Stueckelberg mechanism. This similarity, however, is not so easily realized
in the case of the supersymmetric Stueckelberg extension of the MSSM.



the total Lagrangian reads

1 pv m? H 1 )2
E + Eint + »Cgf - —Z./_':u,,f - TA“A - —(8uA )

28
2
—%@a@“a - 5%02 (4)

where the two fields have been decoupled, and renormalizability and unitarity are
manifest. To add interactions with fermions, one may couple the vector field to a

conserved current, adding the interaction
Line = gA,J" (5)

with 8,J* = 0.

Let us mention here that regarding the extension of this mechanism to non-
abelian gauge theories, according to [§], a non-abelian extension of the Stueckelberg
Lagrangian leads to violation of unitarity already at the tree-level, because the lon-
gitudinal components of the vector fields cannot be decoupled from the physical
Hilbert space. The renormalizability of the theory is then spoiled as well. There-
fore, the Higgs of the SM cannot be replaced by a Stueckelberg type of symmetry
breaking. Instead we will consider extensions of the SM or the MSSM which involve
extra U(1) gauge factors beyond the SU(3)c x SU(2)r x U(1)y gauge symmetry
of the SM, which will then be assumed to couple to pseudo-scalars in the way of

Stueckelberg.

1.2 Stueckelberg in string theory and compactification

One immediate way to see that Stueckelberg couplings appear in dimensional re-
duction of supergravity from higher dimensions, and in particular string theory, is
to consider the reduction of the ten-dimensional N = 1 supergravity coupled to
supersymmetric Yang-Mills gauge fields [9], in the presence of internal gauge fluxes.
The ten-dimensional kinetic term for the anti-symmetric 2-tensor Bj; involves a
coupling to the Yang-Mills Chern-Simons form, schematically 0;;B g+ A;rFyx) +
%A[IA JAK], in proper units. Dimensional reduction with a vacuum expectation

value for the internal gauge field strength, (F;;) # 0, leads to
8“32-]- + AuF’ij ~ 8“0' + mAH s (6>

after identifying the internal components B;; with the scalar ¢ and the value of

the gauge field strength with the mass parameter m. Thus, A, and o have a
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Stueckelberg coupling of the form A,0"c. These couplings play an important
role in the Green-Schwarz anomaly cancellation mechanism. In a four-dimensional
theory abelian gauge symmetries can have a triangle ABJ anomaly, if tr @ # 0 or
tr Q3 # 0. In a consistent string compactification, this ABJ anomaly is cancelled by
Green-Schwarz type contributions involving the two terms mA*9,0 +coF, qu Y in
the Lagrangian and the anomalous 3-point function is proportional to the product
of the two couplings, m - ¢, while the mass parameter in the Stueckelberg coupling
is only m. Therefore, any anomalous U(1) will always get massive through the
Stueckelberg mechanism, since m - ¢ # 0, but a non-anomalous U(1) can do so
as well, if m # 0, ¢ = 0. Since we do not want to deal with anomalous gauge
symmetries here, we shall always assume that m # 0, ¢ = 0. The mass scale that
determines m within models that derive from string theory can, at leading order,
also be derived from dimensional reduction. It turns out to be proportional to the
string or compactification scale in many cases [I0], but can in principle also be

independent [TT].

The fact that an abelian gauge symmetry, anomalous or non-anomalous, may
decouple from the low energy theory via Stueckelberg couplings was actually of
great importance in the construction of D-brane models with gauge group and
spectrum close to that of the SM [I2]. Roughly speaking, these D-brane construc-
tions start with a number of unitary gauge group factors U(N), which are then
usually broken to their subgroups SU(N) via Stueckelberg couplings,

Stueckelberg
—

U(3) x U(2) x U(1)? SU3)e x SUR2)L x U(1)y . (7)

The mass matrix for the abelian gauge bosons is then block-diagonal, and only
the SM survives. In order to ensure this pattern, one has to impose a condition
on the Stueckelberg mass parameters, namely that the hyper charge gauge boson
does not couple to any axionic scalar and remains massless [I2]. In the language
of these D-brane models, we will here relax this extra condition, and explore the
consequences of letting the hyper charge gauge boson mix with other abelian gauge
factors beyond the SM gauge group, which seems a very natural extension of the

SM in this frame work.

In a much simpler framework, in the dimensional compactification of abelian
gauge theory on a circle, one can also demonstrate that the higher Kaluza-Klein

excitations of the vector field gain their mass through a Stueckelberg mechanism.



For this purpose we consider a five-dimensional abelian gauge field A;, using co-
ordinates x; = (z,,y). The gauge kinetic energy including a gauge fixing term
is

1 17 I
Lsq = —Z}—U( 2)F — i(a AT (8)

We compactify the fifth dimension on a half circle S' of radius R and expand
the five-dimensional gauge field A;(x;) = (Au(zr),o(xr)) in harmonics on the

compactified dimension,

ZA” ZE’M fn 5 ZU lﬁ 77n ) (9)
n=0

where &,(y) and n,(y) are harmonic functions on the interval (0,27 R) with ap-
propriate periodicity conditions. The effective Lagrangian in four dimensions is
obtained by integration over the fifth dimension,

= 1 1
L = Z[ —Fn )]-"’“’(")—§n2(MAfL")+n8Ma("))2

4= w
n=0

o {(a Any? +2nM8uA(”)“a(”)+M2(a("))2H , (10)

where M = 1/R is the inverse of the compactification radius. The Stueckelberg
mechanism is now manifest in the first line of Eq.([I). Choosing the gauge £ = 1
one finds that the bilinear terms involving A(") and o™ form a total divergence
which can be discarded, and the scalar fields o™ decouple from the vector fields.
One is thus left with one massless vector field and an infinite tower of massive
vector fields all of which gain masses by the Stueckelberg mechanism. There is no

Higgs phenomenon involved in the generation of their masses.

1.3 Overview and summary

The rest of the paper is devoted to further development of the Stueckelberg ex-
tension of the SM and of the MSSM, and applications to a number of phenomena
which have the possibility of being tested in current and future experiment. The
outline is as follows: In section 2 we give a detailed discussion of the extension of
the SM electro-weak gauge group SU(2), xU(1)y to SU(2), xU(1)y xU(1)x. We
show that the Stueckelberg extension allows one to retain a massless mode which
is identified with the photon, while the remaining two vector bosons become mas-

sive and correspond to the gauge bosons Z and 7Z’. Several useful results relating
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the mass parameters and the mixing angles are deduced and general formulae for
the neutral current couplings to fermions are deduced. In section 3 we give a full
analysis of the extension of MSSM to include a Stueckelberg U(1)x gauge group,
where in addition to a gauge vector multiplet for the U(1)x one also has a chiral
multiplet that involves the Stueckelberg pseudo-scalar. The Stueckelberg extension
here reproduces the vector boson sector of the Stueckelberg extension of the SM
and in addition contains new states and interactions including an additional spin
zero state, an extra neutral gaugino and an extra neutral chiral fermion. In this
section we also discuss the implications of including Fayet-Illiopoulos D-terms in

the analysis.

In section 4 we discuss the implications and predictions of the Stueckelberg
extensions. We work out in detail the deviations from the SM couplings in the
neutral current sector and estimate the size of the parameters in the mixing of the
Stueckelberg sector with the SM. Consistency with current data translates into
bounds on these parameters. However, refined experiments should be able to dis-
cern deviations from the SM, such as the presence of a sharp 7’ resonance. A
careful scanning of data will be needed to discern such a resonance. An explicit
analysis of the modifications of the Z boson couplings and of the couplings of the
7' boson to SM fermions shows that the Z’' has decay signatures which are very
distinct from the Z, and the observation of such signatures should uniquely identify
the Z’ boson. In this section we also discuss the mixing of the CP-even spin zero
state from the Stueckelberg chiral multiplet with the two CP-even Higgs of the
SM producing a 3 x 3 CP-even Higgs mass matrix. In the neutralino sector there
are now two more neutral states arising from the Stueckelberg sector, which mix
with the four neutralino states from the MSSM producing a 6 x 6 neutralino mass
matrix. There exists a region of the parameter space where one of the Stueckel-
berg fermions is the LSP. This would have a drastic influence on collider signals
for supersymmetry. Similarly, the dark matter relic abundance will be affected.
Additional topics discussed in section 4 include the decay of Z’ into the hidden
sector fermions which tend to give it a significantly larger decay width than what
is allowed by the decays into the visible sector, and the modification of the correc-

tion to g, — 2 by inclusion of the Z’' boson exchange.

In section 5 a detailed investigation for testing the Stueckelberg scenario at a



linear collider is performed. We analyze the eTe™ cross section into leptons and
quarks and also the forward-backward asymmetry Ag,. It is shown that in the
vicinity of the Z' resonance it deviates significantly from the SM prediction and
hence will be a good indicator for discerning such a resonance. In section 6 we
discuss briefly the technique that may be used for the detection of an expected
sharp resonance for the 7. In section 7 we include a generalization of the minimal
Stueckelberg extension with just one extra U(1) to an arbitrary number of extra

abelian factors. Section 8 is devoted to conclusions.

2 Stueckelberg extension of the Standard Model

We now turn to the main subject of this paper, the minimal extensions of the SM
and the MSSM which involve Stueckelberg type couplings, and their experimental
signatures. We start naturally with the SM, then discuss the supersymmetrized
version for the MSSM, and afterward discuss the observable consequences. In
any case, since the Stueckelberg is only compatible with abelian gauge symme-
tries, the minimal model that carries non-trivial structure is obtained by adding
an abelian gauge group factor U(1)x to the SM gauge group, extending it to
SU(3)exSU(2), xU(1)y xU(1)x.? Then, all the abelian factors, i.e. hyper charge
and U(1)x, can couple to a real pseudo-scalar ¢ in the way of the Stueckelberg
mechanism.?> We call this model the StSM (or StMSSM for the supersymmetric
version). In greater generality, one can of course add any number of abelian factors
to the SM, and have all the abelian gauge bosons couple to any number of pseudo-
scalars. In many string theoretic models based on D-branes and orientifolds, there
is indeed a number of such gauge factors and scalars present, the maximum multi-
plicity being restricted by topological properties of the compactification space. We

will come back to this option in section [

To start with the StSM [6], let A7, a = 1,2, 3, be the vector fields in the adjoint

of SU(2)r, with field strength F},, B, the hyper charge vector with field strength

B,,, and ® be the Higgs doublet.* Then the relevant part of the SM Lagrangian

2In principle, one could also just consider a Stueckelberg coupling for only the hyper charge
gauge boson, but this would ultimately give a non-vanishing mass to the photon, which is unac-
ceptable.

3We frequently call this scalar an axionic scalar because of its pseudo-scalar nature, which
does not imply that it couples to QCD gauge fields in the way of the usual QCD axion.

4The color SU(3)¢ factor of the gauge group will be irrelevant for most of what we have to



is given by
1 1
Low = —tr F " — 2By B + g AL + gy B Jy — D, @1 D"® — V(21®) (11)

where D, ® is the gauge covariant derivative. For the minimal Stueckelberg exten-
sion of this Lagrangian, we add the degrees of freedom of one more abelian vector
field C), for the U(1)x, with field strength C),, and one pseudo-scalar o. For the
scalar field o we assume that it will have Stueckelberg couplings to all the abelian
gauge bosons, B, and C),. For the Higgs scalar ® we assume that it is neutral
under the U(1)x, which just means that ), does not appear in D,®. This is an
assumption somehow “orthogonal” to the starting point of most models with so-
called U(1)" gauge symmetries beyond the SM [I5]. There, the gauge symmetry of
the extra factor is broken by an extended Higgs effect. In our model, all non-trivial
modification of the SM results from the Stueckelberg coupling and is mediated by
the axion o. Thus, the Lagrangian of Eq.(ITl) is extended to the StSM by

Lsism = Lsm + Lst (12)
with
1 1
Ly = _ZCWCW +9xCuly — 5(@0 + M, Cy + MzB,,)* . (13)

Up to this point, we have not specified the charges of the SM fermions, which in
principle could carry charges under U(1)y. Later, we will, however, abandon this
possibility. Furthermore, there may also be a sector that is hidden with respect to
the SM gauge symmetries, i.e. neutral with respect to SU(2), xU(1)y, but charged
under U(1)x, and thus enters J%. In such a case, the Stueckelberg coupling would
be the only way to communicate to the hidden sector. The extended non-linear

gauge invariance now reads

doyB, =0, \y , Oyo=—MAy, (14)
for the hyper charge, and

0xCp =0 x , Oxo0=—MAx . (15)

for U(1)x. To decouple the two abelian gauge bosons from o, one has to add
a similar gauge fixing term as in the previous section with only one vector field.
Furthermore, one has to add the standard gauge fixing terms for the charged gauge

bosons to decouple from the Higgs.

say.



2.1 Masses for the neutral vector bosons

After spontaneous electro-weak symmetry breaking the mass terms, with mass-
squared matrix M&p (upper index [1] for spin 1) for the neutral vector bosons
Viia = (Cy, By, A3)a, take the form

3
1 1]2
— 5 2 VMV (16)
a,b=1
where
M2 M, M, 0
Mu? = | MMy M3 +1g20® —lgygn? (17)
0 —2gy gov? 1930

where g and gy are the SU(2), and U(1)y gauge coupling constants, and are
normalized so that M2, = ¢2v?/4. From det(M))%) = 0 it is easily seen that one
eigenvalue is zero, whose eigenvector we identify with the photon AZ,E’ and the
remaining two eigenvalues are the roots

1 1 1
M2 = G| gkt e (18)

1 1 2
| (M + M + Lo+ 7050%)" = (Mi (g7 + g3)v + g M v?) |’ ]
Obviously,

M} =M} + M3 +0w*), M?=0@%. (19)

We, therefore, identify the mass eigenstate with mass squared M? with the Z-
boson, and call the mass eigenstate with eigenvalue M? the Z'-boson. The diagonal

]

matrix of eigenvalues £ and the three eigenstates EE are denoted

EW = diag(My,, M3,0) = diag(M?, M2,0) , EV =(Z,2,,A)" .  (20)

Thus, we have

3 3
1] A1 1 1]2 A [1 1
Vie =Y OwEuy s > OnM0 = Ej (21)
b=1

b,c=1

5Note that we succeeded in obtaining a massless photon, while previous attempts to obtain a
Stueckelberg extension of the SM failed in this respect [I3]. The basic reason for the difficulty
in keeping the photon massless arose because there was an extra axion field which allowed the
photon to generate a tiny mass. In our analysis we have an extra axion field o and two gauge
bosons, B, and C},. Thus, after absorption of the axion we are indeed left with a strictly massless
photon field.

10



for some orthogonal transformation matrix O([llb} One can actually solve for it

explicitly. We use the parametrization

cos cos ¢ —sinfsin ¢siny —siny cosp — sinfsin ¢ cosy — cosfsin ¢
O = | cosysin g + sinfcos psing —sintsin g + sinfcos pcosy)  coscos ¢
—cosfsiny — cos f cos Y sin 6

Inverting the relation, one finds immediately

tan(¢) = % = 0, tan(f) = gg—jcos(qﬁ) = tan(fy)cos(p) . (22)

Expressing tan(v)) is a bit more tedious, and we use

B tan () tan(¢) M3,
tan(v) = G - Va1 tan (@) (23)

where My = gov/2, tan(fy) = gy/g2. One can define the two independent
parameters to describe the StSM extension,

M

Effectively, M is the overall mass scale of the new physics, and ¢ the parameter
that measures the strength of its coupling to the SM. In the limit § — 0, where
the SM and a decoupled abelian vector boson C), with mass M are recovered, one
has

tan(¢), tan(yp) — 0, tan(d) — tan(fw) , (25)

i.e. 6 becomes the weak angle, and the other angles vanish. In this limit the mass
M_ takes the standard expression for the mass of the Z-boson,

1
Mg — M?, M; — Zv2(g§+g%), (26)

the mass squared matrix being block-diagonal. Remarkably, in the limit v/M — 0,
with ¢ fixed, which corresponds to a large overall mass scale compared to the
electro-weak scale set by the Higgs expectation value, only one of the angles van-

ishes,
tan(y)) — 0. (27)

The other two parameters are independent of v?. No matter how high the scale
would be, at which the additional couplings are generated, the low energy param-

eters tan(¢) and tan(f) can deviate from SM expressions, since deviations are not

11



suppressed by the high scale.

For the purpose of obtaining a more physical parametrization, it is useful to
replace the parameters v, vgo, vgy, M, M, of the Stueckelberg extended model with
those of the SM Lagrangian, and fix them through measured quantities, up to the

mass scale M. Defining

1 L(ev)? M2
M= —giv?= 22V (28)
=S 0 Ty

where v = (v2Gr)™Y2, we can express M, and My, or § and M, in terms of
MZ7MZ'7MW7MY via
M, (M7 — M) + Mg (Mg, + My — Mj)

M= 75 ,
2 (Mg, — M — Mg )(M7 — Mg, — My))
M2 = M2 9
Y
M (M3 M - MR)(ME — MG — M) %)
M M (Mg — M) + M (M, + Mg — M)

Now the Stueckelberg Lagrangian is fixed by adjusting the parameters to fit the
experimental parameters. This requires global fits to the electro-weak data which
is outside the scope of this work. If implemented, it should determine the full
allowed range of the Stueckelberg parameter space in My, M,. To illustrate the
typical values, one convenient choice is to pick My and §. Once these are fixed,

one can compute the three angles, 6, ¢, 1. For instance, for
0 = 0.029, My = 250GeV (30)
we find
tan(¢) = 0.029 , tan(y)) = 0.002, tan(f) = 0.546 . (31)

Note that characteristically, [¢)] ~ 7-|¢| and 6 equals fy up to less than a percent.

2.2 Couplings to fermions

Defining a vector of neutral currents J# = (gxJ%, gy J&, goJ5"), the couplings to
the fermions are easily found by inserting the mass eigenstates into the neutral

current (NC) interaction Lagrangian

3 3
Lnc = AT + gy B i + gxCully = > Vit = > WO . (32)

a=1 a,b=1

19



The three components of this interaction product are easily expressed through the

angle parameters,

B sin( 3 ) _
\/ﬁ (cos® (@) gt JY — g3 Jy" — 3 sin(2)gx gy J% )
+ cos(¢) (sin() gy Jy + cos(d)gx J%)

3
__cos(®) 2 2 0 273 1 "

ZO&EJ{f = | Vi (o) (cos (®)gyJy — 9305 5 sm(2¢)ngYJX) L (33)
! —sin(¢)(sin(@) gy Jy + cos(d)gx )

_ 929y cos(@) <J§j + 3 — = tan(qb)Jﬁ‘()

L V 95+93 cos?(¢)
The first line couples to 7/, the second to Z, and the third line is the modified

electromagnetic current.

The modification of the current that couples to the photon leads to two effects:
First the electric charges of the fields of the SM would get modified. For instance,
the charge of the up and the down quark are

Qu=1 ~Ztan(@)Qx() . Q=3 - Ttan(@)Qxld) . ()

gy SIS

However, the charge neutrality of the neutron requires that @, + 2Q4 = 0 to very
high precision. This, and similar relations for all other fields of the SM, can only be
satisfied if the U(1)x charges were proportional to their electric charges or vanish-
ing. We, therefore, make the assumption that all fields of the SM itself are neutral
under the extra U(1)x gauge symmetry, setting Qx(SM) = 0. This means that
the couplings of C, with visible matter are strictly forbidden, in order to maintain
the charge cancellation between quarks or leptons. On the other hand, there is
a priori no such restriction on the matter in the hidden sector to which C), can
couple. This implies that the masses of charged matter fields in the hidden sector

have to be safely outside the current limits of direct detection.

Second, there still is a modification of the electric charge e, the coupling that

appears in the term

eANJE = eAl (T4 + T (35)

@ em
which is now defined by

_ 929y cos(¢) '
V93 + gy cos?(9)

12
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Thus, the Stueckelberg mechanism effectively changes gy to gy cos(¢). All these
modifications, of course, go away, when one takes the SM limit 6 — 0, when

cos(¢) — 1. Similarly, the standard coupling of the Z-boson,

1
——— (K —9578) (37)

Zuchjﬁc — Z,
9 + 9%

is recovered in this limit. One can also read off that the angle 1 takes the role
of mixing the couplings of Z and Z’. An important feature of this interaction La-
grangian is that the coupling constants of the extra gauge boson are not arbitrary
parameters, but uniquely defined through 6 and M, the only new parameters of
the model (aside from gx, which we always assume to be of the same order as gy
or go). We postpone a discussion of more experimental properties and concrete sig-
natures of the StSM for later, when we treat the supersymmetric and the ordinary

Stueckelberg extension in a combined fashion.

3 The Stueckelberg extension of MSSM

In this section we give the Stueckelberg extension of the minimal supersymmet-
ric standard model (MSSM) [6] which may be labelled the StMSSM. The gauge
symmetry is again extended by a single abelian factor U(1)x, and only the neutral
interactions are affected by the Stueckelberg mechanism. As argued above, we
now assume that the fields of the MSSM are neutral under the new U(1)x. Since
supersymmetry requires the extra fields to fall into proper multiplets, we add one
chiral (or linear) and one vectorsupermultiplet to the MSSM, which combine into a
massive spin one multiplet and mix with the other massive vector multiplets after
the condensation of the Higgs boson. Beyond the Stueckelberg chiral and vector

superfields we in principle also allow for the existence of a hidden sector.

In setting up the supersymmetric extension (using standard superspace notation

[T4]) we consider the following action for the Stueckelberg chiral multiplet S =
(p + 7:0-7 X5 FS)

Lg = /d29d2§ (M,C + MyB+ S + 5)? (38)

where C' = (C,, A¢c, D¢) is the gauge vectormultiplet for U(1)x, B that for the

hyper charge. The supersymmetrized gauge transformations under the new U(1)x

14



are

SyB=Ay + Ay, 6yS=—-MAy, (39)
and for the hyper charge

0xC =Ax+Ax, 6xS=—-MAyx. (40)

Although S transforms under the abelian gauge symmetries, it is somewhat mis-
leading to think of it as a charged field in the standard sense of a charged chiral

multiplet. To be slightly more specific on our notation, we denote C' by
_ _ __ 1
C = —00"0C, +i000\c — 000\ + 59999D(; . (41)
Similarly for B with B,, A\p and Dp, and S is given by

S = %(p%—z’a)+9x+i90“9%(0up+z'0,p)

+00Fs + %eeéa—ﬂaux + %QHHH(Dp +i0o) . (42)

Its scalar component contains the scalar p and the axionic pseudo-scalar . This
leads to [16, [17]

1 1 . _
Lg = —§(MlCu + MyB, + 8u0)2 — 5(0Mp)2 — ixo" X + 2|Fg|*  (43)
+p(M1DC + MQDB) + [X(Ml)\C' + Mg)\B) + hC] .

For the gauge fields we add the standard kinetic terms

1 1 . o 1
Loan = —7CwC" = 1B B" — iXpo"d, s — iAco"dhe + 5D+ S D3

For the matter fields, chiral superfields ®; and ®y;q; are introduced. The fermions
(quarks ¢;, leptons [;, Higgsinos ﬁ,) of the MSSM will be collectively denoted as f;,
hidden sector fermions as fyiq;. The scalars (sfermions g;, sleptons l~, and the two

Higgs fields h;) are summarized as z; and zhid’i.G The Lagrangian reads

Lonate = /d28d29 [Z (I)Z.€2QYQYB+29XQXC(I)Z, + Z (i)hid,i€2gYQYB+2gXQXCq)hid,i] '
) )

5The matter chiral multiplets are defined exactly according to the conventions of [14], while
S carries some extra factors for convenience.
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where @)y = Y/2, and where Y is the hyper charge so that @ = T3 + Y/2. As
mentioned already, the SM matter fields do not carry any charge under the hidden
gauge group, i.e. QxP; = 0. Thus we have

£matt,i - _|Duzi|2 - ifiauauﬁ + |E|2 + gYBuJ}/ﬁi + chMJ;(i (44)
—V2[igyQyzifidp +igxQx 2z fide + h.c] + gy Dp(Z:Qy2) + gx Do(Z:Qx %) |

where D, = 0, +1igy Qv B, + igxQxC,, and
Ti=fiQvofi, Tk = fiQxo"fi. (45)

The above uses standard notation with Weyl spinors. It is convenient before passing

to mass eigenstates to define now Majorana spinors in the form

g = (i—ég) , Ax = (é\%a) . Ay = (?\%a) : (46)

Thus the Stueckelberg extension introduces two new Majorana spinors in the sys-
tem, i.e. Yg and Ay. We also rewrite the matter fermions in terms of Majorana
fields, but still use the same symbols f; here, as before for the Weyl fermions. One

has for instance the following identities
XAc+XAe = UsAx
XA —XAe = YssAx
X' X — (Oux)o"'X = sy Ouibs - (47)

We may then write the total Lagrangian (by substituting back in the values for
Dg and D¢) in the form

»CSt + Egkin + »Cmatt,i =

1 1 1 7 -
—§(M10u + My B, + 0,0)* — 5(@& )2 — §(M12 + M3)p* — SV Outis
1 1 - - 7 -
_EB;WBMV - EC;WCMV - 5)\3/’)/”8“)\3/ - 5)\){’}/#8#)\)( - |Duzi‘2 - §f2f7ua,ufz
1 - 1 _ _ _
+§9YBufﬂ”QYfi + §chufi7uQXfi + MipsAx + Maps Ay

—V2gx[iz:Qx fidx + h.c.] — P(gyM2(5iQYZz’) + QXMl(Z'QXZi)>

(X 5[ amen] )

3 K3

Of course, one has to add the hidden sector fields and sum over ¢ when appropriate.

We have already pointed out that the MSSM itself is neutral under the new gauge
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symmetry U(1)x, but the hidden sector fields may well be charged under it. In
order to get a model that represents the pure Stueckelberg effect, we further let the
hidden sector be neutral under the gauge group of the SM, i.e. we really demand

it to be hidden with respect to the SM gauge interactions.

The modifications that are introduced by the Stueckelberg extension are now
completely evident: We have added the degrees of freedom of one abelian gauge
vector multiplet, the vector field C), and its gaugino Ax, as well as the chiral mul-
tiplet with the complex scalar p+ia and the fermion ¢g. There are three channels
for the new sector to communicate to the SM fields: i) the mixing of neutral gauge
bosons through the non-diagonal vector boson mass matrix, just as in the Stueck-
elberg extension of the SM, #i) the mixing of neutralinos through the fermion mass
matrix with the off-diagonal terms involving the gauginos and g, #ii) the cubic

couplings of p with the scalar partners of SM fermions and the Higgs bosons.

Through the Stueckelberg coupling, a combination of the vector fields B, and
(), gets a mass, and absorbs the axionic component o as its longitudinal mode.
The real part p gets a mass M. We shall see that mass eigenstates that combine
out of the two gauginos and g will just form a massive fermion of identical mass
as the vector and the scalar. Thus, out of the massless two vector and one chiral
multiplet, one massive spin one (out of a vector, a Dirac fermion and a scalar)
and one massless vector multiplet are combined. When the Higgs condensate is
introduced, the massless vector multiplet will mix with the 3-component of the

adjoint SU(2);, gauge boson multiplet.

3.1 Adding soft supersymmetry breaking terms

Including soft supersymmetry breaking terms will finally break up the mass degen-

eracy of the spectrum. The soft breaking terms relevant for the further discussion

are
1 1. < T
Looy = _imip2 - §mY>\Y>\Y - imXAX)\X
—mi|hf* = mlho|* = mg(hy - hy + hee) (49)

with m? = mj + |u>, m3 = mj,, + |p|*, m3 = |uB|, where p is the Higgs mixing
parameter (which is not really soft but part of the superpotential) and B is the

soft bilinear coupling. Note that there is no soft mass for the chiral fermion vg.
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3.2 Adding Fayet-Illiopoulos terms

The above analysis was so far without the Fayet-Illiopoulos (FI) terms. In the
present case it means that one has the freedom to introduce two terms in the

Lagrangian of the form
Ly1 = &EDp+&cDe - (50)

For the contribution of £z we make the usual assumption that it is subdominant and
can be neglected in the Higgs potential that drives spontaneous gauge symmetry

breaking. This remains true for the modified field
— Dp =&+ Map + gy Z ZiQyzi (51)

as it will turn out that the modification Msp will be very small. For the Fl-term

with £c one finds on eliminating the auxiliary field Do
— Do =éc+ Mip+gx Y HQxz . (52)

The modification of Eq.([#X) in the presence of FI terms is implemented by the
replacement
> ZgyQva — s+ ZgyQva,

Z ZigxQxz — o+ Z Zigx Qxzi (53)
in Eq.@Y). Since we assume that the charges Qx of the MSSM fields are all
vanishing, this will not have any impact on the visible sector mass or quartic
couplings. Depending on the charges of the hidden sector field, such a FI-term
may be able to drive a spontaneous breaking of the U(1)x gauge symmetry, which
would result in a mass term for the photon mass eigenstate, and thus has to be

excluded.

4 Implications and Predictions

Here we now discuss the consequences of the extensions of the SM or MSSM with
an extra U(1)x that couples to a pseudo-scalar o, together with the hyper charge
gauge boson multiplet, in the way of the Stueckelberg mechanism. First, we shall

go through the modifications of the SM. They all refer to the non-diagonal mass
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squared matrix of the neutral gauge bosons, and the effects of their mixing. These
effects will also be reproduced in the MSSM without any modification, which then
contains further signatures through the modified neutral scalar and neutral fermion

sectors.

4.1 Comparison to the Standard Model

Some of the implications of the extended model have already been explained above.
Roughly speaking, diagonalizing the mass squared matrix of the neutral gauge
bosons introduces a mixing of all three vector fields, and of the currents they couple
to. For the photon this implies that the coupling constant to the electromagnetic
current is modified, and that it may couple to hidden sector matter charged under
U(1l)x. The latter is a very interesting phenomenon, since it may give indirect
evidence of hidden sector matter, which is otherwise invisible to gauge interactions.
However, the couplings to the hidden sector are highly model dependent and could
even be completely suppressed as discussed at the end of section 7. For the neutral
current interactions, the mixing also implies a change of coupling constants and
currents, and a coupling to hidden matter. The latter may not be so dramatic

here, since the interactions are only short-ranged.

4.1.1 Neutral current interactions: p parameters

A useful parameter to study the neutral current interactions is the conventional p
parameter which is defined as the ratio in the effective low energy Lagrangian of
the neutral and the charged current interactions.” For the SM at the tree level this
ratio is
M
psm = cos(HVr/)Mz ’ (54)
and there are small deviation from unity due to radiative corrections. For the
model at hand this issue is more complicated, and the neutral and charged current
interactions can no longer be compared with just one ratio, because there are now
two neutral massive gauge bosons. To see this, we can eliminate Z- and Z'-bosons
at low energy to obtain an effective neutral current interaction, which we can write
as follows
4G R

ENC—CH = W

"The p parameters discussed here should not be confused with the scalar field p that appears
in the Stueckelberg extension of the MSSM.

2| pz(J§ — sin®(02) J5) (S — sin®(02) Jeuw,a)
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—|—pZ/(J§L — Sin2(9Z/)Jéum)(J3“ - Siﬂ2(9Z’)Jemu> ) (55>

while the charged effective current-current Lagrangian is unchanged

4G
Loc—ei = TQFJ,TJ_“ : (56)
Above, we have defined pz and pyz by
Mg f7 Mg, 17

Pz = M2 cos(0) ’ Pz = M?Z, cos(0) (57)

and the effective decay constants fz and fz by

fz = cos(v)) + sin(0) tan(¢) sin(v)) ,  fz = sin(¢)) + sin(f) tan(¢) cos(¢p) . (58)
Finally 87 and 6y are defined by

sin?(6) — sin(f) tan(¢) tan(y)
1 + sin(0) tan(¢) tan(v))

sin?(6) tan(y) + sin(6) tan(e)
tan(v)) + sin(0) tan(¢)

sin®(fy) =

Sin2(ezl)

(59)

Further we can also define a parameter p analogous to the conventional parameter
in the SM so that p = My /(Mzcos(0)). Even at the tree-level pz, pz, and p are
all different. Further, Eq.(B3) shows that in the present model different combina-
tions of pz and pz appear for the operators Jy - J3, Jom - Jom, and Jy - Jo. Thus
the relevant ratio of charged and neutral interaction strength will depend on the

process. In the limit that My = 0 one has py = 0 and pz = p = psur-

Currently, there are stringent constraints on the neutral current processes and
the data is consistent with the SM. However, the error corridor in the experimental
measurements allow the possibility of new physics including the possibility of new
7' bosons and this topic has been investigated extensively in the literature. This
possibility also applies to the current model if the contribution of the new sector
is sufficiently small to be consistent with the experimental error corridor. Thus,
for example, for 1) ~ 1° ¢ ~ 1°, and setting sin?(f) = sin®(fy) = 0.23 one finds,
sin?(fz) = 0.2298, and 1 — pz/psy = 0.0001, while pz /psy = 0.025 x MZ/M2,,
which gives pz /psm ~ 0.0025 for Mz /My = 3. These are consistent with the

current error corridors on p, of the order of 0.005.
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4.1.2 Visible width and branching ratios of Z’

In greater detail, one can write the couplings of the first generation as follows

1 2 _ 2 2 ' ' )
Ly = 5 [ — \?295 :225(225)];2, cos ) — sin(¢) sm(qp)gy] eryerZ,
cos’(¢) gy o i
. [\/ g3 + cos? (25)9% cos(y) = sin(g) sin(v)gv | ém el
_% [\/g% + Cos2(¢)g% cos(1)) — sin(¢) Sin(qp)gy} DN VoL,
11 95— cos’(9)gy . ) /
_5 [ B \/Z% + COS2(¢);)2/ Sln(¢) + Sln(¢) COS(Qﬂ)gy} eL’VueLZu

B [ cos(¢)gy
Vg5 + cos?(9)gi

_% [\/gg + cos?(4) g% sin(¢) + sin(¢) cos(w)gy] DeVMVeZL ‘ (60)

sin(t) + sin(¢) cos(zﬂ)gy} erY"erZ,

And the couplings of Z and 7’ with quarks are given by

Ly = —\/g§ + cos?(p) g3 (61)

2 (J — sin®(0) J,) sin(y) — Z,,(J%, — JI) sin(0) tan(g) Cos(z/))] .

In addition to the new couplings of the quarks to the Z:L boson the couplings of Z,
with quarks are also affected. Below we give a comparison of the decay branching
ratios for the decay of the Z’ into quarks and leptons versus the branching ratios
for the decay of the Z into quarks and leptons. We display the results for || < |¢|
in Table 1.

Ratio of branching ratios 7, decay 7' decay
/v 0.5 5
bb/T7 (3—48%,V+§s%v)/(1 — 452, + 8sh) %
wii/dd (3 —8s, + Lsth) /(3 —4s3, + Ss3y) %7

Table 1: A comparison of the ratio of branching ratios into quarks and leptons 7’
versus Z (sy = sin(Oy)).

In the same approximation the total decay width of Z’ into the visible sector
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quarks and leptons is given by

_ ) 103 for My < 2m
D(Z =Y fifi) ~ Mygi sin®(¢) x { 2887 for My > th
7 ! t

127

(62)

The decay signatures of the Z' boson are very different from those of the Z boson
of the SM. The reason for this difference arises from the fact that the 7’ domi-
nantly decays via the couplings proportional to gy as can be seen by making the
approximation || < |¢| < 1 in Eq.(@0) and Eq.(&2).

4.2 The bosonic sector of the extended MSSM

The bosonic sector of the StMSSM consists of the neutral vector bosons, the Stueck-
elberg scalar p, the Higgs fields and the sfermions of the MSSM. The Stueckelberg
axion ¢ is decoupled after gauge fixing, and is absorbed by the gauge bosons. The
analysis of the mass matrix of the vector bosons remains unchanged from that of

the SM as discussed in section 2 and we do not have to repeat it here.

We have already mentioned the assumptions that go into the definitions of the
model. We take all the matter fields of the MSSM and the two Higgs multiplets
to be neutral under the U(1)x, and we also demand that there is no charged
scalar condensate formed in the hidden sector, e.g. no vacuum expectation value
(ziQxz) # 0. This would add another term to the mass matrix () and finally
give a mass to the photon eigenstate. We, therefore, impose (z;) = 0 for all hidden

scalars z; that carry charge under U(1)y, which are the only ones relevant for us.

Under these assumptions, the subsector of the SSMSSM which contains the neu-
tral vector bosons, and their couplings to the conserved currents is just identical
to the StSM. We are left in the bosonic sector with the extra neutral scalar p, that

mixes with the neutral components of the Higgs doublets.

4.2.1 The scalar Higgs fields and the Stueckelberg scalar p

The scalar potential for the two Higgs-doublets of the MSSM plus the Stueckel-
berg scalar p involves a non-diagonal mass squared matrix, similar to the mixing
of neutral gauge bosons. As explained in the previous section, the Higgs fields

are neutral under U(1)y, hidden sector fields are neutral under hyper charge, and
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there are no condensates charged under U(1)x. Then we get

1 1
V(hi,ha,p) = (mi — =pgy Mo)|ha|* + (m3 + = pgy M) ha|* + m3(hy - ha + hec.)

2 2
2, 2 2 2 2 _ 2 2
+ + —
+92 9Y|h1|4+92 9Y|h2|4+92 9Y|h1|2|h2|2_@|h1.h2|2
8 8 4 2
1
+§(M12 + M; +m3)p* . (63)

The Higgs doublets are defined hy = (R, h])T, hy = (hi,h9)T, and hy - hy =
hhS — hi k3. For the Higgs scalars hY, hS, and for p we make replacements
1 1
h) — — (v +h)), hY—= —=(wa+hd), p—=uv,+p, (64)

V2 V2

where v; and v, are the vacuum expectation values, and assumed to be real. As

usual, they are parameterized by

vy =wvcos(f), vy =wsin(f) . (65)
For p one has
QQyM?;VMQ
— _Zs W = 2
Up Q%Mg COS( B) ’ (66)

where M? = M?+m? = M} + M3 +m?. To give a rough estimate for large tan(/3),
one has |gy Mav,| ~ 107°Mg,.

Substituting v, back into the potential adds an extra contribution to the Higgs
potential. The minimization of the effective potential with respect to the h{ and
h§ gives two conditions and one combination of these is affected by p, and one has

L, _ miondtl(9)  gvMav,
20 tan?(8) — 1 2cos(28)

(67)

where Mg = (g5 + g¥)v?/4, so that My coincides with the Standard Model tree
level prediction in the limit when the Stueckelberg effects vanish. In the absence
of the Stueckelberg effect on has v, = 0 and one recovers the well known result of
radiative breaking of the electro-weak symmetry in SUGRA models [I§]. We see
now that the Stueckelberg effect modifies the equation that determines Mg ~ M2,

but only by a tiny correction.

Inserting the vacuum expectation values back into the potential, we compute

now the mass matrix for the neutral Higgs fields. The CP-odd neutral Higgs is
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not affected by the Stueckelberg extension. However, in the CP-even sector one
has three states, i.e. ¢ = R(h?), ¢y = R(AY), and p, which mix. The coupling
of the h? to p adds off-diagonal bilinear interactions h;p. In terms of the basis

S, = (¢1, P2, p)T for the CP-even neutral scalars, the mass term reads

3
1
—5 2 SaMy'S, (68)

a,b=1

with the following mass matrix (using the upper index [0] for spin 0)

. Mg +m3sy  —(M§+m3)sscs  —59vy Maveg
My® = | (M3 +m%)sscs  Mgsh+mick Loy Msusg , (69)
_%gYszUCﬁ %gYMQUSB Mp2 ab

where (sg, ¢g) = (sin(8), cos(5)). The eigenstates we denote by

Ey) = (HY, Hy, Hy), . (70)
and arrange them so that

EY) — (H° 1% p); (71)

when 6 — 0. Then h° is the light neutral Higgs of the MSSM and H? is the heavy
one. Instead of two, we now have three neutral Higgs states, all of which are CP-
even states in resonant production in the ¢q channel. In CP-violating channels the
number of states will increase to four, since the above three CP-even states will
mix with the CP-odd state A°. The effect of the mixing on the mass eigenvalues
of h? and H° is governed roughly by the ratios gy Mav/m7, for m; = My, M,, m 4,
and is model-dependent. The correction on the lightest Higgs boson mass could
be either positive or negative. For example, it turns out negative when tan(f) is
large and M, > M,. The size of correction could be as large as a few GeV but
significantly smaller than the loop corrections. A quantitative analysis requires a

global fit to the electro-weak data and is beyond the scope of the present work.

The new state that appears above is HY which has the quantum numbers
JCP = 0*. This state is mostly the p state and its decay into visible sector will
be dominantly into ¢, provided mpg > 2my, or otherwise into bb. We expect the
size of the relevant mixing parameter to be O(My/M;) ~ 0.01 and thus the decay
width will be in the range of MeV or less. The production of such a resonance

in eTe™ colliders will be difficult since the couplings of this state to fermions is
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proportional to the mass and in addition there are suppression factors. A possible
production mechanism is at hadron colliders via the Drell-Yan process using the

qqHj3 vertex, where the largest contributions will arise when ¢ = (b, t).

4.2.2 Stueckelberg corrections to sfermion masses

The Stueckelberg effect modifies the D-term correction to squark and slepton
masses. This can be seen by examining the effective lagrangian after elimination

of Dp and D¢. The effective potential then is
2

- 1 _gyY _gvY
Viahn) = | [z 220 oy (2 @)

The D-term correction to the mass of the sfermion z; is

- Y; Yi .
Am? = gvpgyMg + B sin? (O ) cos(28) MZ (73)

Of course, to the above we must add the D-term correction from SU(2), sector.
Finally, we note that an interesting sum rule results in the case when Msy/M; < 1
relating the p mass and the Z’ mass. In this limit one finds from Eq.([[d) and
Eq.([®9) the following approximate sum rule

M? ~ Mj +m (74)

Clearly, M, > My, the additional spin zero state is heavier than the Z’ boson.

4.3 The fermionic sector of the extended MSSM

We discuss now the fermionic sector of the theory. For the neutral fermions instead
of four neutral Majorana fields in the MSSM, we have a set of six fields. These
consist of the three gauginos, the two Higgsinos h;, and the extra Stueckelberg

fermions ¥g. We order the six neutral fields into a vector
wa - (w57 )\Xu )\Y7 )\37 iz'17 EZ)Z‘ (75>
and write the mass term as (upper index [1/2] for spin 1/2)
1 o= -
=5 > daM (76)
a,b=1

From the Stueckelberg correction to the MSSM Lagrangian, the only correction

is due to the coupling of s to gauginos, because the triliniear coupling with
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the scalars z; does not induce bilinear fermion interactions, as (z;) = 0. After
spontaneous breaking of the electro-weak symmetry the neutralino mass matrix in

the above basis is given by

0 M M, 0 0 0
M; mg 0 0 0 0
2 | Mz O my 0 —cgswMy  sgsw My
Mab o 0 0 0 Mo CBCWM() —SﬁcWMO ’ (77)
0 0  —cgswMy cgew My 0 —
| 0 0 SQSWMO —SgCWMO — K 0 1w

We note that the zero entry in the upper left hand corner arises due to the Weyl
fermions not acquiring soft masses. The above gives rise to six Majorana mass

eigenstates which we label as follows

BV = (xS, %3 xS X3, x )T (78)

The two additional Majorana eigenstates x2, x2 are due to the Stueckelberg ex-
tension. To get an idea of the effect of the Stueckelberg sector, we exhibit the
eigenvalues in the limit when My is negligible relative to all other mass parameters

in the mass matrix. In this case the spectrum consists of

/ 1 1 / 1 1

where m,o (1t = 1 —4) are the four eigenvalues that arise from diagonalization
of the 4 x 4 mass matrix in the lower right hand corner. These are the usual
eigenvalues that one has in the MSSM. The eigenvalues Mo and My correspond
to the heavy and light additional states which we christen as Stueckelberginos.
For the case when My, > My NOt much will change, and the analysis of dark
matter will essentially remain unchanged. However, for the case when the light
Stueckelbergino is lighter than the lightest of m, o (1 = 1—4), then the situation is
drastically changed. In this case the lightest supersymmetric particle (LSP) is no

longer a neutralino, i.e. of the set m,o (i =1 —4), but rather the Stueckelbergino

X(S]t = Xg-

We illustrate the above phenomena in Figure [l In the left part of this figure
the masses of the six neutralinos are plotted as a function of M for the inputs
given there. For values of M above around 500 GeV the LSP is the usual MSSM

neutralino and its mass is essentially unaffected by M. However, as we move to
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Figure 1: Plot of the neutralino mass spectrum as a function of M (left), for values
tan(8) = 3, p = 500, my = 400, m; = 300, mg = 500, § = 0.029 and of the
(squared) components of the LSP also as a function of M (right).

values of M below 500 GeV, one finds that there is a sudden transition and the
LSP becomes mostly a Stueckelberg fermion and its mass then varies rapidly with
M. The same phenomenon is illustrated in the figure to the right where the square
of the magnitudes of the components of the LSP in spectral decomposition are

plotted, i.e. one writes the LSP (x°) as follows
X" = Csths + CxAx + Cy Ay 4+ Cshs + Cihy + Cshy (80)

Thus, on the right hand side Figure [l below M = 500 GeV the upper curve is
|Cs|? and the lower curve is |Cx|* while the other components are too small to
be visible. Above M = 500 GeV, the upper curve is |Cy|* while the next lower
curve is |C3]? etc. Again in this figure we see a rather sudden transition from the
LSP being an almost pure MSSM particle above M = 500 GeV to being an almost
Stueckelberg fermion below M = 500 GeV. Another view of the same phenomenon
is given in Figure @in a plot showing the LSP mass along the vertical axis versus
values of M and ¢ along the horizontal axes. It displays the very weak dependence
of the mass of the lightest neutralino eigenstate on § over basically the whole range
of allowed parameters, while there is a significant bending at around M = 500 GeV

in the dependence on M.

If indeed x§, is the LSP then aside from the issue of a re-analysis of dark mat-
ter, the supersymmetric signals would be drastically modified. The usual missing
energy signals where the lightest neutralino x? is the LSP do not apply. Indeed if

X3, lies lower than x?, then x? will be unstable and will decay into x&, by a variety
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Figure 2: The mass of the LSP as function of M and ¢. Plot of the lowest eigen-
values of the neutralino mass matrix for values tan(8) = 3, p = 500, my = 400,
my = 300, mg = 500 as a function of M and 6.

of decays channels such as

X = a@ixg , LS, 7, - (81)

0719%2 gec. Thus I

We estimate the lifetime for this decay to lie in the range 1
will decay in the detection chamber. In this case the detection signals will change
drastically. Thus, for example, the decay of the chargino x7 — I~ + {x? + v}
will be changed into x; — Il I + {x% + v;}. Similarly the decay of the slepton
will lead also to a possible three lepton final state, i.e. 1= — 7171 + {x% + v}
while the well known decay of the off-shell W, i.e. W* — x7 x5, which in SUGRA
models gives a trileptonic signal [19], in the present context can give rise to final
states with three, five and seven leptons. Thus, we see that in this case there will
be quite a significant change in the analysis of the phenomenology in search for
supersymmetry. However, if the mass difference between x{ and xg, is not sub-
stantial, then the ¢;¢; and ]; produced in the decay of the x! may be too soft to be

detected. In this case there would be no substantial change in the SUSY signatures.

Also of interest is the status of dark matter in the Stueckelberg extension. As
noted above there are now six neutral fermionic states compared with four for the
case of the MSSM. The parameter space of the model is now also larger involving in
addition to the MSSM parameters also the parameters of the Stueckelberg sector.

It is known that in mSUGRA model over a significant part of the parameter space
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the lightest MSSM neutralino is also the LSP and thus a candidate for cold dark
matter (CDM). This is also the case in the Stueckelberg extension. There exists
a significant part of the parameters space where the lightest MSSM neutralino
is the LSP. In this case the lightest MSSM neutralino will still be the cold dark
matter candidate and essentially all of the analysis on dark matter in supergravity
models will go through. However, there exists a part of the parameter space of the
Stueckelberg extension, where the Stueckelberg fermion can become the LSP as
discussed above. In this case, the analysis of dark matter will change drastically.
A detailed analysis of the relic density is outside the scope of the present work and

requires a separate analysis.

4.4 Coupling of gauge bosons to the hidden sector

While the couplings of the Z' boson to the visible sector quarks and leptons are
suppressed because of small mixing angles, this is not the case for the couplings of
the Z' boson to the hidden sector fields. Thus, for example, the couplings of Z’ to

the hidden sector current J¥ is given by

Ly nia = [cos(t) cos(¢) — sin(f) sin(¢) sin(4)] Z,,9x Jx (82)

which we can rewrite into chiral components, using

gxJy = Z [gifhidﬂ“(l — 5) fridi + 9rfhiaiy™ (1 + 75)fhid,i] : (83)

(2

Using the above the decay width of Z’ into hidden sector fermions is given by

D(Z — fuiafuia) = (84)
M cos(u) cos(6) — sin(6) sin(9) sim() 3 (61)? + (61)?)

o -

To get an estimate of the Z' decay width into the hidden sector matter, we set
(g0)2 /41 = (9%)% /41 ~ 1072 and My = 250 GeV, which gives I'(Z' — fuiafnid) <
3GeV. This is to be compared with the decay width of the Z’ into visible sector
quarks which lies in the MeV range. Thus we see that the decay of the Z’ into
hidden sector matter is much larger compared to the decay width of the Z’ into
visible sector matter. This is to be expected due to the fact that Z’ is dominantly

composed of €}, which couples with normal strength to the hidden sector matter.
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Another implication of the Stueckelberg extension is that it implies the pho-
ton couples with the hidden sector, if such a sector exists, with a small typically

irrational charge. Thus one may write this coupling in the form
EA”/-hid = €/AZJ§ (85)

where ¢/ = —gy cos(f)sin(¢). We note that similar mini-charges arise in models
with kinetic energy mixings [20], where there are stringent limits on the size of
these charges. These limits depend critically on the masses of the mini-charged
particles [211, 22]. Although the mechanism by which the mini-charges arise in the
Stueckelberg model discussed here is very different, one expects similar constraints
on the charges of such particles. However, as discussed at the end of section 7,
the size of the mini-charge with which the photon couples with the hidden sector
is highly model-dependent. Of course, having a hidden sector is optional and one

may eliminate it altogether by setting J§ = 0.

4.5 Corrections to g, — 2

Since the 7Z interactions are modified in the Stueckelberg extension, there is a
modification of the Z exchange contribution to g,—2. Further, there is an additional
contribution to g, — 2 from the Z" exchange. We now compute these corrections.
For the Z exchange contribution we find

7 mﬁGF

o = gz 53— Aeos’ 0w}~ 567] (86)

where

T2 2 2 | 2

VEFE [~g2+3

B, = g2 g’; { 9y T 3¢08” o9y cos 1) — 3gy sin ¢ sin w] :
—92 + 39y L /g5 + cos dg}

B, = [Mflcosw — i 4 singbsinw} , (87)

9 +9v V93 + cos® dgy
where G = (g2 + ¢2)/(4v/2M?%). For the 7' exchange contribution we find

1272y/2 M2,

Z/

Ag, [(3 = 4 cos® Ow)*vy — 573] (88)

where

V95 + gy l—gi + 3 cos® gy
—95 +30% | /g3 + cos ¢g3
2 2 . 91
4+ cos .
[—92 5 fgy]z[81n¢+
95 + 9y

Yo sin 1) + 3gy sin ¢ cos 14 ,

gy

Vg3 + cos? g3

sin ¢ cos 14 : (89)
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The SM limit is ¢ = 0 = ¢, or 5, = 1 = B4, 7 = 0 = ~,, and Eq.([8d) gives
the well known result of the Z exchange contribution in the SM. Numerically, the
deviations from the SM are significantly smaller than the SM Z contribution and
thus not discernible at the current level of hadronic error [23, 24] and experimental

accuracy [25] in the determination of g, — 2.

5 Stueckelberg at a Linear Collider

There is a general consensus that the high energy collider to be built after the Large
Hadron Collider (LHC) should be a Linear Collider [26] and may most likely be
an International Linear Collider (ILC) [27]. The design energies of such a machine
could be /s = 500 GeV (NLC500) with a luminosity of as much as 50 fb=tyr—*
or even larger. In addition to being an ideal machine for detailed studies of the
properties of low lying supersymmetric particles such as light chargino and and
light sfermions, a linear collider is also an ideal machine for testing some features
of the type of extension of the SM and of MSSM discussed here.

5.1 Cross-sections including the Z’ pole

In the following we investigate such phenomena, the possibility of discovering the
extra Z' boson arising in the Stueckelberg extension. We begin by computing the

scattering cross section of the process

e (p1) + e (p2) = () + 17 (g2) - (90)

This process can proceed via the direct channel exchange of the photon, of the

Z and of the Z' boson. Using the Lagrangian for the Stueckelberg extension, an

analysis for the spin averaged differential cross section gives®

do _ _
qlete = ute) = (91)
Ta? a GrMZ(s — M32)
S () + oA ;4%)22 - 32F2ZZMZ‘2) (vev (1 + 22) + 2aca,2)
G%LM%s

2 2 2 2 9
"6 ((s — M2 + STL ) ((ve + ae) (v, + a,) (1 + 27) + Bveacv,a,2)

_l_ (0] GFM%(S_M%)
2V2 ((s — M2,)2 + s2T'2, M%)

8As is conventional we have used the Breit-Wigner parametrization of the amplitudes near
the Z and Z’ poles in the form used in the fits of the LEP and the Tevatron data.

(vov, (1 + 22) + 2a,a,2)
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G%M}s
167r((s—M§,) + 5212, M%)
N GiM7s(s — M2Z)(s — M2)
8m((s — M2)2 + s2I'% M, ?)((s — M2)? + s21'2, M%)
X (v, + apal,)(vevy, + aca)(1 + 2 3+ 2(vua;, + ayv),)(veay, + acvy)z)

(v +al) (w2 +al)(1+ 2%) + 8vlalv,al,z)

where z = cos(¥) with ¢ the scattering angle in the center of mass, and v, v, etc

are defined as follows

ve = v = (Bt Br)sin’(Bw) — 36
1

Qe = Ay = (BL — Br) Sin2(9w) - §5L )
v, = v, = (v +7gr)sin’(0w) — %% ;
a, = a, = (Yo~ Yr) sin?(Oy) — %'VL , (92)
where
1 + tan®(Oy) 3 1+ tan®*(Oy) | ,
Pr {1 + tan?(fy) cosQ(qb)} cos” (@) cos(y) - tan(fy) sin(g) sin(y)
1+ tan?(Oy) [ 1 — tan?(Oyw ) cos?(¢) . :
b 1 — tan?(Oy) [\/1 + tan?(fy) cos?(¢) 0s(y) + tan(fh ) sin(¢) sm(w)} 7
1 0 : 1+ tan®(0
= [t O ] cost@)sin(e) + LSO ) con()
2 2 _ 2 2 2
VL f_t;in éWW) [\}1 ;il;n( (Z/VZ)CZZSS?;) sin(¢)) — tan(6y ) sin(¢) Cos(@b)} :

Eq.([@2) contains six different type of terms. These consist of three direct channel
poles corresponding to the direct s channel exchange of the photon, the Z boson
and the Z’' boson, and three interference terms which consist of the interference be-
tween the photon and the Z boson exchanges, the interference between the photon
and the 7’ boson exchanges, and the interference between the Z boson and the 7/
boson exchanges. The entire effect of the Stueckelberg extension are contained in
the parameters (1, Br, 71, and vg. Here [ and g give the modification of the
7 exchange interactions due to the Stueckelberg extension, and of course the Z’
interactions arise exclusively from the Stueckelberg extension. Thus the SM limit
corresponds to B = 1 = P, and 7, = 0 = yg. We note that the 'y, can also get

contributions from the decay into the hidden sector.
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Also of interest is the scattering cross section of the process

et(pr) + e (p2) = alar) + q@qa) - (93)

Again this process can proceed via the direct channel exchange of the photon, of
the Z and of the Z’ boson. Using the Lagrangian for the Stueckelberg extension,

an analysis for the spin averaged differential cross section gives

do, .
= (eTe 7 = 4
Do — a0 (94)
3ra’Q? (1+2) — 30Q, GpMZ(s— M3)
% 22 (s = M2)* + ST% M)
N 3G%Mys
167((s — M2)2 + s2I'3, M ,?)
30, GrMZ(s — M2)
22 ((s — M2)? + s2T2,M,*)
N 3G%M}s
167 ((s — M2)? + 212, M,,*)
N 3GEMjs(s — M2)(s — M2)
87((s — M2)2 + 2T M ;%) ((s — M2)? + s2T'2, M%)

X (('qut,] + aqa;)(vevé + acay) (1 + 22) + 2(“«1“; + aqvg)(vea; + acv,)z) |

(Vv (1 + 2%) + 2aca,2)

v2 4+ a?)(v? + a®) (1 + 2?) + 8v.a.v,a,z
e e q q q-"q

(vivp (14 2%) + 2alal z)

(v2 +a2) (v + al) (1 + 2%) + 8vLalv,al2)

where 3 is the color factor, @), = %, Qq = —%. In the above vy, a, are defined as

follows
1 .
Vg = 5[5L73 — 28in*(Ow)Qq (o1 + 0r)]
1 .
ay = 5[5L73 -2 81n2(9W)Qq(5L —0r)] (95)

where 73 = (1, —1) for ¢ = (u,d) and

B B V14 tan?(Ow) cos2(9) , . e .
Or = Oem = o) /1 thaDQ(QW)(SIH (0w ) cos(p) — sin(f) tan(e) sin(1))) ,
(537'3 — 250qu sin2 (ew)
T3 — 20, sin2(6’W)

= \/1+tan2(9W)cos2(¢) cos — sin an(¢) sin
03 = () (cos(¥) (0) tan(e) sin(1))) . (96)

T

Y

Similarly, in the above v, a;, are defined as follows

v, = %[6[,7’3 — 2sin® (0w ) Qq (€1, + €r)],
d = %[em — 25in2(0w)Qy (€1 — )], (97)
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where

V/1+ tan?(Oy) cos?(¢)
€ER = €em —
sin® (0w )4/1 + tan?(y)
€3T3 — 2€6qu Siﬂ2(ew>
73— 2Qqsin’(Ow)
(- \/1 + tan2(9m;) cos(¢) (sin(e) + cos(v) sin(6) tan()) . (98)
1 + tan?(0y)

The SM limit is ¢ =0=1, 0 =0y, or 03 = 1,0em = 1,63 =0, €er, = 0, and

v, = 1(7‘3 —40Q), sin?(0w)) |

(sin?(0) sin(¢)) + cos(¢) sin(#) tan(¢)) ,

€L

2
1
a, = =T
q 9 3
v, = a;, = 0, (99)

which is correctly the SM result.

5.2 Forward - backward asymmetry near the Z’ pole

The forward-backward asymmetry is a useful tool in identifying the nature of the

underlying interaction. One defines it as
1 do 0 do
Jo A2 — [ d=
1 do ’
f -1 dz dz

Consider the case of ete™ — p*u~ scattering. Here 0+, = f_ll dz9 is given by

Afb =

(100)

dma®  2v/2a  GpMZ(s — M2)v.v, GEMys(v? + a2)(vh + a’)
35 3 ((s— M2+ <TM) | 6m((s — M2 + T30 Y)
220 GpMj(s — Mg )vlv], G2M3s(v? + ag)(vf + af)

3 ((s— M2)2+ 822 M,*)  6m((s — M2)%+ 5212, M,?)
GEMys(s — Mz)(s — M7) (v, + aual,)(vevy + acay)
3m((s — M2)? + 2T M) ((s — M2)% + 2T, M,.*)

Using the above we can write the forward-backward asymmetry for this case so

that

Oyt

(101)

oot 7A,u2u’ _ o GFMﬁ(s - M%)ae&u i G%M%sveaevuau
S V2((s = M3)? + s2T5 M%) - 2n((s — Mp)? + s2T5 M)
o GrMj(s — M7 )a,a), G Mysv.alv,al,

_|_

V(s — MR+ 2130, * an((s — M3+ 213 0L,7)
GEMzs(s — M) (s — M7)(vua), + a,v),)(veal, + acvy)
4r((s — M2)2 + s2TZ M, *)((s — M2)? + 82F2,M52)

. (102)
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We now start to discuss the numerical results for the total cross section at the Z’
pole, including or excluding the possibility of hidden sector matter fields it cou-
ples to. At the same time, we display the modifications of the forward-backward

asymmetry near the pole.
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Figure 3: Plot of the total cross-section o(ete™ — ptp~) (left) and the forward-
backward asymmetry Ag, in ete” — ptp~ (right) in the vicinity of the Z' reso-
nance for My = 250 GeV, ¢ = 0.029. The values of 'y, are 3 GeV (black line),
0.5 GeV (blue line), 0.2 GeV (green line), 0.08 GeV (red line).
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Figure 4: Plot of the total cross-section o(ete™ — ptu™) (left) and the forward-
backward asymmetry Ay in ete” — ptp~ (right) in the vicinity of the Z' reso-
nance for My = 250 GeV. The values of § are 0.1 (black line), 0.05 (blue line),
0.01 (green line), 0.001 (red line).

In Figure Bl we give a plot of the cross-section and Ay, for ete™ — ptp~. First
the largeness of the Ay, for the SM in this region comes from the y—Z7 interfer-
ence term which is large because of the the axial-vector coupling of the Z boson
to fermions. When the 7’ contribution is included one finds a vary rapid variation

in the vicinity of the Z’ pole, arising from two sources: the Z’ pole contribution to
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the asymmetry and the v — 7’ contribution to the asymmetry. These contributions
become large in the vicinity of the Z’' pole and compete in size with the SM con-
tribution from y—7 and Z. In Figure B the largest peak corresponds to the case
when there is no hidden sector. The width 'z, is determined for the decay of Z’
only into the fields of the visible sector, and approximating it by inclusion of only
the quark and lepton final states excluding the top quark contribution. In this
case we find that Ay, changes rapidly as we move across the Z’ pole. Thus, an ac-

curate dedicated measurement of Ay, should give a signal for this type of resonance.

One may also include a hidden sector in the analysis. This is easily done by
using Eq.(83). As indicated in the analysis following Eq.([8H), Z' couples with
normal strength with the fields in the hidden sector and thus the decay width of
the 7' into the hidden sector fields need not be small, and indeed estimates show
it to be of size O(GeV). In Figure Bl we simulate the effects of the hidden sector by
assuming a set of values for I'y lying in the range 0.08 GeV to 3 GeV. One finds, as
expected, that the effect of including the hidden sector is to make the peak in Ay,
near the Z' resonance less sharp. Thus the characteristics of Ay, in the vicinity of
the Z’ resonance do indeed carry information regarding the presence or absence of
a hidden sector. In Figure B we also give a plot of o(ete™ — ptp™) in the vicinity
of the Z' pole. One finds that the cross-section can be much larger relative to the
SM result near the Z' pole. In Figure ] an analysis of A, and of o(ete™ — ptp™)
for various values of § but without a hidden sector is given. As expected one finds
that the shape of the curves is a very sensitive function of § with the resonance
becoming broader as ¢ increases. One interesting feature of Figure Hl is that the
peak value of o(ete”™ — pTp~) is independent of 0. This is so because the peak
value is essentially geometrical in nature and independent of § as long as ¢ is small.
This can be easily seen from Eq.([I8) by setting £ = My,. In this limit one finds
that ratios I'(Z" — eTe ™ (utp™))/T(Z — all) appear. For small values of § these
ratios are independent of ¢ and take on the value

Oyt (Mzr) =~

127 {(103) o {48nb for MZ’ <2mt (103)

M%, (%)2 3.6nb for My > 2my

One finds that the analysis of Figure |l is consistent with the analytic results on
the peak value corresponding to the case My < 2m;. We further note that the
drop-off in 0,+,- away from the peak is very sharply dependent on ¢. Further,

Ayp deviates significantly from the SM prediction over a reasonable domain of the
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energy interval and provides another signature for the discovery of the Z’ resonance.

A similar analysis can be carried out for ete™ — ¢g. Here we have for the

forward-backward asymmetry

oog9l _3aQ, GrMj(s — M3)aca, 3GEMsv.a.0,a,
WAl = T8 (= MR T TRM,Y) T an((s — MR)R + TR
300, GrMz(s — M)a,al, 3GEMysv,a,va,
V2 (5= M)+ 25007 2n((s — MG + 213, 00,7)
3GEMys(s — M3)(s — Mg, )(vgar, + aqv})(vea, + acv,) (104)
4r((s — M2)2 + s2TZM ;%) ((s — M2)2 + s21'2, M)
where
LA o MY M, | GRMBSGE i+
"= (o~ MZP 1 T3L,7) T 2n((s — ME 4 S2TI0L, )
GrMZ2(s — M2)vlv! GLMLs(v2 +a?)(v? + a?
_2\/§OKQq F Z( Z)eq F Z(e e)(q q)

_l’_
((s — M2)2 + s2T2,M,*)  27m((s — M2)? + s2T'2, M,?)
GLMAs(s — M2)(s — M) {ogt) + agal)(uev] + a.a)
w((s — M + TR (s — M2 + 5215 M)

(105)

A numerical analysis of Ay, for the case when the final states are uw is given in
Figure [, and again one finds that the characteristics of Ay, in the vicinity of the
Z' resonance are different for the cases: i) the SM, i) the model with a Z' res-
onance but without hidden sector matter, i) models including decays of Z into
the hidden sector.

An analysis of o(eTe™ — wa) is also given in Figure [l Here, again one finds
that the cross section near the vicinity of the pole is significantly higher than the
SM result and the deviation depends on the presence or absence of the possibility
of decays into the hidden sector. Finally, we discuss the ete~ — dd. In Figure
we give a plot of Ay, and one finds once again very significant deviations from
the SM. As in previous cases the size of the deviation depends on the presence or

absence of Z' decays into the hidden sector.

The number of events for the various channels can be estimated by noting that
at the projected design characteristics of 500 GeV collider one expects an integrated

1

luminosity of 500fb~'yr—', and the number of events using the cross sections of

Figures B, Bl, and @ are clearly sizable. Finally, we note that an indication of the
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Figure 5: Plot of the total cross-section o(ete” — wu) (left) and the forward-
backward asymmetry Ay, in ete™ — ua (right) in the vicinity of the Z’ resonance
for M7 = 250 GeV, ¢ = 0.029. The values of 'z are 3 GeV (black line), 0.5 GeV
(blue line), 0.2 GeV (green line), 0.08 GeV (red line).
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Figure 6: Plot of the total cross-section o(ete™ — dd) (left) and the forward-
backward asymmetry A, in ete™ — dd (right) in the vicinity of the Z’ resonance
for M7 = 250 GeV, ¢ = 0.029. The values of 'z are 3 GeV (black line), 0.5 GeV
(blue line), 0.2 GeV (green line), 0.08 GeV (red line).

presence of a hidden sector to which the Z’ can decay will be provided by the visible
width versus the total width of the Z'.

6 Detection of a sharp 7' resonance

As mentioned already the Z’ is expected to be a sharp resonance, and determination
of the I'(Z' — ete™) is a difficult problem as is well known from the analysis of
the J/W resonance [28]. A technique which was useful in the determination of the
width of the J/W¥ should also be valid here, and this is the technique of integrating
the cross section over the resonance [28]. Thus, for example, consider the cross-

section for the process ete~™ — ff in the vicinity of the resonance. In this region
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one can write the cross-section so that?

A om D(Z —=eten)IN(Z — ff)

teo = 106
olete >IN =3 (E — Myp)? + I2(Z — all)) ’ (106)
where E = 4/s. Integration over the resonance gives
_ 672 0(Z' — ff)
dE o(ete” = rz' te )t 1
/ olete™ = ff) i) (Z' — eTe )F(Z’—>all) (107)
For a given final state we define
672 ['(Z' — fin)
= E o(efe” — fin) = —-T'(Z )——= 1
Afin /d o(eTe” — fin) i) (Z' — eTe )F(Z’—>all) : (108)

and A, for the sum over all visible final states. Now for the case of Stueckelberg 7’

we have

[(Z — ete”) ~ %MZ/ tan(¢) | (109)

where a; = g# /4w, and we have used the relation g} ~ gy = \/g g1. Further, under
the assumption there is no hidden sector one has!'®

(110)

['(Z' — vis) {% for My < 2my

Dz —all) |1 for My > 2m,

Let us now focus on the final state u*p~. Using Egs.([I07) and ([I09) we find

4572 ap tan? ()

St .
Aty = 412 My

(111)

For My = 250 GeV, and 0 = 0.02 one finds Aff = Llx 102 nb-GeV. Further,
we note that the integral of Eq.([T]) falls as 1/My as My gets large. Discovery of
the Z' depends on the signal versus the background. In this case the background
is the SM contribution. Using the analysis of Eq.([01]) and excluding the Z’ con-
tribution one finds that at /s = My, o,+,- = 1.8 X 10~3nb. If data is collected
in bins of size A (in GeV) then the Standard Model p™p~ cross-section integrated
over A around My gives AiMM,(A) = 1.8 x 1073Anb-GeV. Now for larger values

9Here we use the simplified form of the Breit-Wigner parametrization. Use of the more
sophisticated form as in Eq.(@) will give corrections to Eq.([[[[d) only of size O(T'2, /M2,) which
are very small.

0Tn the computation of the ratio in Eq.([I) we have included only quark and lepton final
states. Inclusion of additional states, specifically the sparticle final states if they are allowed, will
modify these ratios.
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of My the SM cross section falls as 1/M2,. Putting these factors together the ratio
of the Stueckelberg contribution to the SM is given by

A N 6 [ ) rMZ/(GeV)

A _(A) T A(GeV) L0.02 250 (112)

The above implies that for Mz = 250 GeV, and § = 0.02, the Stueckelberg effects
will give significant enhancement over the SM result with bin sizes ranging from
1 —20 GeV. Further, the signal to background ratio will increase as My increases.
For example, for My = 1TeV, there will be a further enhancement of roughly a
factor of 4. The above characteristics are encouraging. Of course, the detection of
such an effect will depend on the design characteristics of the machine such as the

beam spread, and the design luminosity.

The result of Eq.(IT2) is also encouraging for the search for a Stueckelberg 7’
boson at the Tevatron and at the LHC. Here one would look for dilepton events in
the final state via the Drell-Yan process and at the Tevatron it is the ete™ channel
which would be the most efficient for detection.!'* The cross-sections for the pro-
cesses uti — 111~ and dd — [T1~ given here can be utilized for the computation
of the Drell-Yan production of ete™ via the Stueckelberg Z’. Our analysis for the
linear colliders hints that the detection of a sharp Z’ should also be possible at
the hadron colliders. For example, at the Tevatron the energy resolution is given
roughly by [29] (15%/+/E(GeV) + 1%) where E for our case would effectively be
the di-muon invariant mass. Thus, for example, for £ = 250 GeV one has a res-
olution of about 5 GeV. This resolution should allow for a search for a resonance
with characteristics of the type of Eq.([12).

The radiative return technique might be a useful device to look for the Stueck-
elberg 7' resonance. This is a useful procedure when the colliding beam energies
have been fixed to a preassigned value and not continuously adjustable. In this
case one uses initial state radiation (ISR) to reduce the effective center-of-mass
energy [30]. Thus consider the process ete™ — ~ + hadrons, where the v is a
hard photon which is emitted by one of the initial particles, and is responsible
for reducing the center-of-mass energy. The method allows one to investigate the

entire energy region below the highest energy down to the threshold. However,

1'We thank Darien Wood for pointing this out to us and also for bringing Ref. [29] to our
attention.
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appropriate corrections must be made to account for the possibility that the pho-
ton may be emitted by the final state, i.e. one must take into account the final
state radiation (FSR). One advantage of this technique is that the systematics of
measurements remain unchanged in the scan as one changes the energy while in

conventional energy scans systematics must be fixed at each step.

7 Stueckelberg extension with many extra U(1)

The Stueckelberg technique is, of course, extendable to more than one extra U(1)
gauge symmetry. In orientifold string compactifications with D-branes the num-
ber of axions in the model is derived from the dimensional reduction of the ten-
dimensional RR forms in the spectrum of the theory, and given by some topological
quantity, the number of relevant homological cycles of the internal space. In princi-
ple it is an arbitrary number.'? For example, in the so-called intersecting D-brane
models on toroidal backgrounds, it was found that four such scalars participate in
the generalized Green-Schwarz mechanism, and may thus also couple to the abelian
gauge fields of the model in form of the Stueckelberg Lagrangian. In general, one

may write the extended Lagrangian with Ny abelian gauge fields and Ng axions

1 Ny 1 Ns Ny 9
Lop = - Z (Cuuiciwj 4 giCsz'“) -3 Z ((%Uj + Z Mqu) . (113)
i— j= i=1

We have now summarized the hyper charge gauge boson as one among the abelian
gauge fields, say for ¢ = 1 we let B, = C,;. The generalized U(1)" gauge

invariance is given by
52'CM' = 8MA, s 52'O'j = —MZ])\Z . (114)

In a very similar vein one can extend the supersymmetric minimal model by many

axions and many abelian gauge bosons, as in

Ng Ny 2
Lo = /d29d29 > <Sj +5; + ZMZ-]-CZ-) : (115)
=1

J=1

where S; and C; are the chiral and vector multiplets that include the axions and
gauge fields. One can now easily see that the effect of each axion is to give mass to

exactly one gauge boson, at least generically. The mass term induced after gauge

12This is actually similar for the heterotic string, which was recently demonstrated in [31].
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fixing is a sum of squares, and each linear combination of masses M;;, reading the
Ng x Ny matrix as a set of vectors in the Ny -dimensional space of abelian gauge
fields, defines one massive direction. In other words, the kernel of M;; defines
the set of the surviving massless abelian vectors. So, generically, all axions will
be eaten by vectors, and only if there are more vectors than axions (Ny > Ng),
or linear relations among their couplings will there be abelian gauge symmetries
surviving.!? If we further add the spontaneous electro-weak symmetry breaking
through the Higgs mechanism, there is one more degree of freedom to be absorbed,
and one more abelian vector receives a mass. Thus, if we intend to maintain an
exactly massless photon in the very end, we have to make sure that the number of
gauge bosons is at least two larger than the number of axions, which is exactly the
situation of the minimal extensions in the StSM or StMSSM, which we introduced

earlier.

In the supersymmetric extension the other degrees of freedom behave analo-
gously. In the fermionic sector we gain a Stueckelberg chiral fermion for each .S;
and a Stueckelberg gaugino for each C;. These mix with the neutral fermions
of the MSSM sector producing a neutralino mass matrix which is 4 + Ng + Ny
dimensional. Model building with more than one Stueckelberg U(1) reduces the
constraints on the mixing angles and thus provides a greater range of the parame-

ter space for the discovery of new physics.

To illustrate this, let us briefly discuss the next simplest case, with two extra
abelian factors, and two axions. The mass matrix for the neutral gauge fields
VMT = (Cug, Cug, BM = CM1> Ai) looks then

M322 + M??l Mso Moy + Mz My Msa Mg + Msy My 0
M3y Moo + Mzy Moy M3, + M3, Moy My + Moy My 0
Mgy Mg + Mgy Myy Moo Myg + My My M7y + M7, + igxzfvz — gy gor?

0 0 — 19y g2v° 1g50*

where M;; is the Stueckelberg coupling of C,; to the axion o;, ¢ = 1,2,3 and
j =1,2, and C,; = B,. The matrix can be written as the sum of two contribu-
tions for the Stueckelberg terms and one for the Higgs effect, each one of which

has only one non-vanishing eigenvalue, i.e. giving mass to one linear combination

13This is an important constraint in the construction of string theoretic brane world models,
where one has to impose extra constraints on the brane configurations to achieve this.
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of gauge fields.

We can diagnonalize this matrix by an orthogonal transformation O and
the eigenstates EL = OV, are arranged so that EY = (20,2, 2,,, A})". The
existence of two extra U(1) factors now, for instance, relaxes the constraints on
photonic couplings to the hidden sector matter fields. As another application we
demonstrate that the correction to the mass of the Z boson can now stay rather
small even with comparatively large off-diagonal terms in the mass matrix. In
Figure [ we have plotted the mass of the Z boson, the lightest non-vanishing

eigenvalue of the mass matrix above as a function of My; and My,.

90. 73

10 20

Figure 7: Plot of the mass of the Z, as a function of M;; and Mis, varying from 0
to 100 GeV in the left plot, and plotted along the variable M;; = 0.6 M, varying
from 0 to 25 GeV in the right one. The other mass parameters are chosen Mz, =
250 A GeV, M3, = 550 A GeV, Moy = 350 XA GeV, My, = 250 A GeV. The value for A
is 1 in the left plot, and 1 (black line), 1.3 (red line), 1.6 (green line), and 2 (blue
line) in the right plot.

The left plot shows clearly that there is a range of parameters, where the effect
of turning on the two off-diagonal elements partly cancels out, and My falls off
slower than along the axes. This happens roughly along the line M;; = 0.6 M.
In the right plot, the mass of Z is being plotted along this line, and for various
overall mass scales (measured by A) of the other parameters, differing by up to a
factor of two. It is evident that up to values of 25 GeV the effect on the Z mass is
still within some 10 — 30 MeV. The mass eigenvalues of the matrix for A = 1 are
actually {719.4,180.8,90.7,0} in GeV, given the values used in Figure[d Together,

this shows how Stueckelberg extensions with multiple U(1) factors have an even
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richer parameter space, which involves many more options to escape experimental

bounds.

8 Conclusion

In this paper we have given a detailed analysis of the Stueckelberg extension of the
electro-weak sector of the SM and of the MSSM with an extra U(1) gauge group.
This results in a new heavy gauge boson 7Z’ whose couplings to leptons and quarks
have vector and axial-vector couplings, which are different from those for the Z
boson and of the Z’ bosons in conventional U(1)" extensions [I5]. Additional new
features arise for the Stueckelberg U(1) extension of MSSM, where the extension
involves an abelian gauge superfield and a Stueckelberg chiral superfield consisting.
The imaginary part of the complex scalar is absorbed in making the U(1) gauge
vector massive, leaving a spin zero scalar. It is shown that this state is heavier
than the 7Z’. Further, the neutral fermionic sector of the MSSM extension is also
significantly extended. In addition to the four neutralino states of MSSM one has
the Stueckelberg chiral fermion and the extra gaugino, which combine with the four
MSSM neutral states to produce a 6 x 6 neutralino mass matrix. One interesting
new possibility that arises here is the case where the LSP is mostly composed of
the new fermions. In this case the lightest neutralino of the MSSM itself will be
unstable leading to a possible new superweak candidate for dark matter. In the
MSSM extension we also considered inclusion of the Fayet-Illiopoulos D-terms and

discussed their implications.

A number of phenomenological implications were discussed in section 4. It
was shown that the decay branching ratios of the 7’ into quarks and leptons are
significantly different from the Z boson, which could provide a signature for the
Stueckelberg origin of the Z’. We also discussed the Higgs sector of the extended
MSSM model, where the mass matrix becomes a 3 x 3 matrix which mixes the
residual spin zero field of the Stueckelberg chiral multiplet with the two CP-even
neutral Higgs of MSSM. The mixings between the MSSM Higgs and the residual
Stueckelberg spin state will produce a couplings of the latter with visible sector
fermions and its main decay mode into visible fields is into the third generation
quarks. We also discussed in section 4 the corrections to g, — 2 and to sfermion

masses.
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In section 5 we gave an analysis of some of the signatures of the Z’ boson at
a linear collider, such as the cross-sections o(ete™ — pu*u~), o(ete” — wa), and
o(efe” — dd). In the vicinity of the resonance they differ significantly from the
SM prediction. Further, the forward-backward asymmetry for the three cases dis-
cussed above deviates sharply from the SM, again providing an interesting signal.
An interesting phenomenon is the effect of a hidden sector on the analysis. Thus,
if a hidden sector with sufficiently light matter exists, so that the Z’ boson can
decay into it, then the total width of the Z’ will be broadened. This has drastic

effect on o(ete™ — ff), and on the forward-backward asymmetry.

In section 6 we discussed the technique for the detection of a sharp resonance
that is characteristic of the Stueckelberg extension. Finally, we have elaborated
on the Stueckelberg extension of the electro-weak sector by an arbitrary number
of extra U(1) factors. An interesting property of such models is the possibility
that constraints on the parameters which mix the SM gauge bosons and the extra

gauge bosons can be relaxed, allowing for the possibility of a richer phenomenology.

It should be interesting to carry out global fits to the electro-weak data and
to explore further the testability of the Stueckelberg extension at colliders and in

non-accelerator experiments.
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