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Abstract

A measurement of charm and beauty photoproduction at the electron proton collider HERA
is presented based on the simultaneous detection of aD

�� meson and a muon. The cor-
relation between theD� meson and the muon serves to separate the charm and beauty
contributions and the analysis provides comparable sensitivity to both. The total and dif-
ferential experimental cross sections are compared to LO and NLO QCD calculations. The
measured charm cross section is in good agreement with QCD predictions including higher
order effects while the beauty cross section is higher.
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1 Introduction

At the electron proton collider HERA, heavy quarks are predominantly produced via photon-
gluon fusion,
g ! 
�
 or b�b, where the photon is emitted from the incoming lepton and the
gluon from the proton. The production cross sections are largest for photoproduction, i.e. for
photons with virtualityQ2

' 0. The light quarksu, d ands are produced much more copiously
than
 andb, and beauty production is suppressed by a factor of approximately 200 compared
to charm. Charm and beauty measurements performed at HERA sofar relied on the tagging of
only one heavy quark in each event. While the charm measurements [1–11] were mostly based
on the reconstruction ofD mesons, the beauty measurements [12–17] used semi-leptonic decays
or lifetime signatures or both. Here an analysis is presented, where in a large fraction of events
both heavy quarks are tagged using aD�� meson and a muon as signatures. The correlations
between the direction of the muon with respect to theD

�� and their electric charges are used
to separate charm and beauty contributions. Total cross sections are measured separately for
the processesep ! e
�
X ! eD

�

�X

0 andep ! eb

�

bX ! eD

�

�X

0 in the visible kinematic
region, while differential cross sections are derived for combined samples of
�
 andb�b events.
The measurements, which are based on an integrated luminosity of L = 89 pb�1, are compared
to leading order (LO) and next-to-leading order (NLO) perturbative QCD (pQCD) calculations.

This measurement extends to significantly lower centre-of-mass energies of theb�b system
than previous measurements of beauty cross sections at HERA. The simultaneous detection of
theD� meson and the muon makes possible new tests of higher order QCD effects. For instance,
in the photon-gluon rest frame the angle between the heavy quarks is180Æ at leading order, but
at next-to-leading order it can differ significantly from this value due to hard gluon radiation.
Furthermore, theD�

� pair is expected to be sensitive to a possible transverse momentumk

t

of
the gluons entering the quark pair production process.

2 Separation of Charm and Beauty

The separation of charm and beauty contributions exploits the charge and azimuthal angle1

correlations of theD� meson and the muon. The azimuthal angle difference�� between the
D

� and the muon and their respective electric chargesQ(D

�

) andQ(�) are used to define four
‘correlation regions’ I–IV. ForQ(D�

) = Q(�) regions I and II cover�� < 90

Æ and�� > 90

Æ,
respectively. Regions III and IV are defined correspondingly for Q(D�

) 6= Q(�).

The four regions are populated differently by charm and beauty events as is illustrated in
figure 1. Neglecting any transverse momenta of the photon andthe gluon, the fusion process

g ! 
�
 or b�b leads to a back-to-back configuration of the two heavy quarks. Approximating the
directions of theD�� meson and the muon with those of the quark and antiquark and selecting
opposite charges,
�
 pairs populate correlation region IV. In contrast, beauty events populate
regions II, III and IV, depending on whether the muon originates from the sameb quark as the
D

� or from the opposite�b. If the muon originates from the sameb quark as theD� meson,
1The coordinate system is defined with thez-axis pointing in the proton beam direction andx (y) pointing in

the horizontal (vertical) direction. The azimuthal angle� is measured in thex-y plane and the polar angle� with
respect to thez direction.
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the events lie in region III. For muons coming from the�

b opposite to theD� meson, the direct
decay populates region II, while the cascade process�

b ! �
 ! � populates region IV. Region
IV hence receives contributions from both
�
 andb�b events and region I stays empty.

The azimuthal angle correlations are smeared by fragmentation and semileptonic decay pro-
cesses and by higher order QCD effects such as gluon radiation and any initial transverse mo-
mentum of the gluon. Processes such as heavy quark decays via� leptons conserve the charge
correlation, which is not the case forB0- �B0 mixing and e.g. the decaysb! 
W

�

;W

�

! �
s.
According to the PYTHIA Monte Carlo simulation [18], which takes into account these smear-
ing effects, the relative population of the four regions is as given by the numbers in figure 1.
These numbers apply in the analysed kinematic region definedin section 4.1 and do not include
detector effects. Since the population of the four correlation regions is very different forb�b and

�
, it can be used for the separation of these two components.

∆Φ < 90◦ ∆Φ > 90◦

Q
(D

∗
)

=
Q

(µ
)

I II

b

c

D∗+

b̄

c̄
µ+

charm (%) 0.1 0.1

beauty (%) 3.8 20.4

Q
(D

∗
)
6=

Q
(µ

)

III

b

c

D∗+

b̄

c̄

µ−

IV

c

D∗+

c̄

µ−

b

c

D∗+

b̄
c̄

µ−

charm (%) 6.0 93.8

beauty (%) 50.0 25.9

Figure 1:Definition of the correlation regions in terms of �� and the relative charges of the

D

� meson and the muon. The sketches illustrate these correlations in 
�
 and b

�

b quark decays

to D

�

�. The numbers represent the relative distribution over the four correlation regions of

charm and beauty events that satisfy the cuts given in section 4.1, as obtained from the PYTHIA

simulation without detector effects.

5



3 QCD Calculations and Monte Carlo Simulations

The Monte Carlo simulations PYTHIA [18] and CASCADE [19] areused for the description
of the signal and background distributions in the separation of charm and beauty, for the de-
termination of efficiencies and acceptances and for systematic studies. Their predictions are
also compared with the measured cross sections. In PYTHIA and CASCADE leading order
matrix elements which take into account the mass of the heavyquark are implemented and
parton showers in the initial and final state are included to approximate higher orders (LO-
ME+PS). The parton evolution in PYTHIA uses the DGLAP equations [20]. In addition to the
direct process, a resolved photon component is generated inPYTHIA where the photon fluc-
tuates into a hadronic state acting as a source of partons, one of which participates in the hard
interaction. This component is dominated by heavy flavour excitation processes [21], where
the heavy quark is a constituent of the resolved photon. In the PYTHIA calculation of heavy
flavour excitation, in which quark masses are neglected, thecontribution of excitation to the
total charm cross section in the analysed kinematic region is found to be 41%, while it is 23%
for beauty. In comparison to this component the contribution of the resolved component due to
light quarks or gluons in the photon can be neglected in the present analysis, as can the heavy
flavour component of the proton.

CASCADE contains an implementation of the CCFM [22] evolution equation for the ini-
tial state parton shower. The
g ! 
�
 or b�b is implemented using off-shell matrix elements
convoluted withk

t

unintegrated proton parton distributions. PYTHIA and CASCADE use the
JETSET program as implemented in PYTHIA for the hadronisation (via the Peterson fragmen-
tation function [23]) and for the decay of beauty and charm quarks. In order to correct for
detector effects, the generated events are passed through adetailed simulation of the detector
response based on the GEANT program [24] and the same reconstruction software as used for
the data.

The measured cross sections are also compared with NLO pQCD calculations in the massive
scheme [25] using the program FMNR [26]. These calculationsare expected to give reliable
results in the kinematic region considered here, where the transverse momentum of the heavy
quark is of the same order of magnitude as its mass. The calculations are available for both
the direct and resolved photon processes. However, in contrast to the PYTHIA program, heavy
flavour excitation is not explicitly included in the resolved part of the FMNR program. The
contributions of the resolved light quark and gluon components are found to be small in FMNR
(< 3% for charm and< 6% for beauty in the analysed kinematic region) and are neglected.

The original FMNR program is extended to include the effectsof the hadronisation of
 and
b quarks and their semileptonic decays in order to make comparisons with the measured cross
sections in the experimentally accessible kinematical region. The heavy quark is ‘hadronised’
by rescaling the three momentum of the quark using the Peterson fragmentation function. For
the decay into muons the momentum spectrum is implemented asobtained from JETSET. In
the case of beauty quarks, the direct decays ofb-flavoured hadrons into muons are taken into
account as are the decays via a charm quark,b ! 
 ! �. When theD� meson and the muon
originate from the same quark, the angular and momentum correlations are implemented as in
JETSET. The measured fragmentation fractions [27,28] for
 andb quarks given in table 1 are
used for the calculation of the cross sections. The important parameters of the pQCD programs
used in this analysis are summarised in table 2.
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Fragmentation Fractions [%]

! D

�

23:5 � 0:7 
! � 9:8 � 0:5

b! D

�

17:3 � 1:6 b! � 10:95 � 0:27

b! 
! � 10:03 � 0:64 b! D

�

� 2:75 � 0:19

Table 1:Fragmentation fractions [27, 28] used in the QCD calculations of the cross sections.

The b! 
! � fraction also contains the b! 
�
s decay and the � contributions.

PYTHIA CASCADE FMNR (NLO) FMNR (LO)

Version 6.1 1.2007
Proton PDF CTEQ5L [30] J2003 [19] CTEQ5M [30] CTEQ5L [30]
Photon PDF GRV-G LO [31] – GRV-G HO [31] GRV-G LO [31]

Renorm. scale�2
r

m

2

q

+ p

2

Tq

4m

2

q

+ p

2

Tq

m

2

q

+ p

2

Tq�q

Factor. scale�2
f

m

2

q

+ p

2

Tq

ŝ + Q

2

T

m

2

b

+ p

2

Tb

�

b

, 4(m2




+ p

2

T
�


)

m

b

[GeV℄ 4.8 4.8 4.75
m




[GeV℄ 1.5 1.5 1.5

Peterson�
b

0.008 0.008 0.0033 (0.42 forb! D

� ) 0.0069
Peterson�




0.078 0.078 0.035 0.058

Table 2:Parameters used in the Monte Carlo and NLO programs. The FMNR calculations are

performed in the MS scheme using the default values of �
QCD

for the parton density functions.

�

r

and �
f

denote the renormalisation and factorisation scales, p2
Tq�q

the average of the squares

of the transverse momenta of the two heavy quarks, m
q

the heavy quark masses, ŝ the centre-

of-mass energy squared, Q2

T

the transverse momentum squared of the heavy quark system, p
Tq

the transverse momentum of a heavy quark and �
q

the Peterson fragmentation parameters [29].

For the B0- �B0 mixing values of x
d

� �m

B

0

d

=�

B

0

d

= 0:73 and x
s

= 18 [28] are used.

4 Data Analysis

The data were collected with the H1 detector [32,33] at HERA during the years 1997 to 2000
and correspond to an integrated luminosity ofL = 89 pb�1. The largest part of the luminosity
(80%) was collected at a centre-of-mass energy of

p

s � 320GeV, the beam energies being
27.6 GeV and 920 GeV for electrons2 and protons, respectively. The remaining 20% of the
luminosity was taken at

p

s � 300GeV (proton energy 820 GeV).

4.1 Event Selection

A detailed account of this analysis can be found in [34]. Events with at least one reconstructed
D

� and at least one muon are selected; multipleD

� or muon combinations are treated as separate
events. TheD� is reconstructed via the decay channel3

D

�+

! D

0

�

+

s

! K

�

�

+

�

+

s

(branching
ratio (2:59 � 0:06)% [28]), where�

s

refers to the low momentum� in the decay. The decay
2HERA has been operated with electron and positron beams. These periods will not be distinguished in this

analysis.
3Charge conjugate states are always implicitly included.
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particles of theD� meson are reconstructed in the central tracking detector (20

Æ

� � � 160

Æ)
without particle identification. Muons are identified by reconstructing track segments in the
instrumented iron return yoke of the solenoidal magnet. These are linked to tracks in the central
tracking detector. In order to ensure good detector acceptance, cuts on the transverse momentum
p

T

with respect to the proton direction and the pseudorapidity� = � ln tan(�=2) are applied
for theD� meson and the muon in the laboratory frame (see table 3).

Photoproduction events are selected by demanding the absence of any signals for the scat-
tered electron, restricting the accepted range of negativefour-momentum transfer squaredQ2 to
be below 1 GeV2. A cut on the inelasticity 0.05< y < 0.75 is applied, wherey = P � q=P � k

(q, k andP are the four vectors of the exchanged photon, incoming electron and proton, re-
spectively). The variabley is reconstructed from the measured hadronic final state using the
Jacquet-Blondel method [35]. The events are triggered by fast signals from the central tracking
and muon detectors. The analysed ‘visible’ kinematic region of the measurement is defined in
table 3.

Selection ofD�

! D

0

�

s

! K��

s

p

T

(K); p

T

(�) > 0:4 GeV
p

T

(�

s

) > 0:12 GeV
j m

K�

�m

D

0
j< 0:080 GeV

�M = m

K��

s

�m

K�

< 0:1685 GeV
Visible kinematic region p

T

(D

�

) > 1:5 GeV
j �(D

�

) j< 1:5

p(�) > 2 GeV
j �(�) j< 1:735

0:05 < y < 0:75

Q

2

< 1 GeV2

Table 3:The D�selection cuts and definition of the visible kinematic region.

4.2 Fit Procedure

The D� yield is measured using the�M technique [36], where�M = m

K��

s

� m

K�

is
the difference of the invariant masses of theK��

s

and theK� systems. Figure 2a shows
the �M distribution for the selectedD�

� sample separately for the ‘right’ (K�

�

+

�

+

s

) and
‘wrong’ (K�

�

�

�

+

s

) charge combinations. The wrong charge distribution is normalised to the
right charge distribution in the range0:155 � �M � 0:1685 GeV. The number of signal
events is extracted from a fit to the�M distribution using a Gaussian function for the signal
and a parameterisation of the background4. The parameters of the background function are
determined from right and normalised wrong charge combinations. The result of this fit for the
total signal is also shown in figure 2a.

The total number ofD�

� events obtained from the fit isN
D

�

�

= 151 � 22. This number
still contains a contribution from ‘fake muons’, i.e. from hadrons misidentified as muons and

4The functional form used is

1

(�M �m

�

)




2

(1� 


3

(�M )

2

) where

i

are fit parameters.
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muons from the decay of light mesons. The fake muon background contributes about 37%
in charm and 5% in beauty initiated events according to the respective PYTHIA Monte Carlo
simulations, which give an adequate description of the data.

In figure 2b–e, the�M distributions of the selectedD�

� events are shown separately for
the four correlation regions defined in section 2. Clear peaks due toD� mesons are observed in
regions II-IV, whereas region I shows little or no signal, consistent with the expectation.

The charm and beauty contributions in the data are determined by performing a simulta-
neous likelihood fit of the�M distributions in the four correlation regions. In the following,
this fit will be referred to as a ‘two-dimensional fit’, in order to distinguish the results from the
separate one-dimensional fits of�M in each correlation region.

In this two-dimensional fit, in addition to theD�

� contribution fromb�b and
�
, the fake muon
background and the combinatorial background under the�M peaks have to be considered. The
position and width of the�M peak corresponding to theD� signal as well as the parameters
describing the shape of the combinatorial background are fixed to the values obtained from the
one-dimensional�M fit to the total sample (figure 2a). The normalisation of the combinatorial
background is fitted using right and wrong charge combinations in each region separately. The
relative distributions of signal events from charm and beauty between the correlation regions as
well as the fractions of fake muon background in each region predicted by the PYTHIA Monte
Carlo simulations are used as input for the fit. In total thereare six free fit parameters, the total
numbers ofD�

� events fromb�b and
�
 quark pairs,N
b

andN



, and four parameters for the
combinatorial background, one in each correlation region.

5 Results

The result of the two-dimensional fit is shown together with the data in figures 2b–e. The data
are described well and the quality of the fit is good (�

2

= 145:5 for 154 d:o:f:). In figure 3,
the numbers ofD� signal events from the two-dimensional fit in the four correlation regions
are compared to the results of one-dimensional fits of the�M distributions performed in each
correlation region separately. The agreement is very good.The distribution of the contributing
processes as obtained from the two-dimensional fit is also shown in figure 3. The following
event numbers and errors are obtained for the charm and beauty contributions from the two-
dimensional fit:

N




= 53 � 12 N

b

= 66 � 17:

5.1 Total Cross Section

The number ofb and 
 events are used to compute the total cross sections in the kinematic
region defined in table 3. The efficiencies and acceptances are derived from the Monte Carlo
simulations. Values of

9



Charm Cross section [pb] Data/Theory

Data 250 � 57 � 40

PYTHIA (direct) 242 (142) 1:0

CASCADE 253 1:0

FMNR 286

+159

�59

0:9

Beauty

Data 206 � 53 � 35

PYTHIA (direct) 57 (44) 3:6

CASCADE 56 3:7

FMNR 52

+14

�9

4:0

Table 4: Measured D

�

� cross sections for charm and beauty production in the kinematic re-

gion defined in table 3. For the data the statistical and the systematic errors are given. The

LO-ME+PS predictions (PYTHIA, CASCADE) and NLO calculations (FMNR) are also shown.

The uncertainties of the FMNR results are obtained by varying the renormalisation and the

factorisation scales simultaneously by factors of 0.5 and 2. The uncertainty due to a variation

of the quark masses m



by �0:2 GeV and m

b

by �0:25 GeV is added quadratically. The last

column shows the ratios of the measurement to the prediction.

�




vis

(ep! eD

�

�X) = 250 � 57 (stat:)� 40 (syst:) pb

and of
�

b

vis

(ep! eD

�

�X) = 206 � 53 (stat:)� 35 (syst:) pb

are obtained for charm and beauty production, respectively. The measured cross sections are
similar due to the definition of the visible kinematic region, which requires in particular a high
momentum muon, suppressing central charm production. The results are compared with the
pQCD predictions in table 4, where error estimates due to theuncertainty of the quark masses
and the scales are given for the NLO calculations. In order toassess the influence of mass
effects in the extraction of gluon densities used in the calculations, the default CTEQ5M sets
have been replaced by the CTEQ5F sets [30]. The results are found to be compatible. The
uncertainties for PYTHIA and CASCADE are found to be of similar size as those of the NLO
calculations. The measured cross section for charm production agrees well with the LO-ME+PS
models (PYTHIA and CASCADE) and the NLO prediction (FMNR). The measured beauty
cross section exceeds the calculated cross sections. In other recent measurements of the beauty
cross section in photoproduction at HERA [12, 15], based on the selection of high transverse
momentum jets, ratios of measurement and FMNR based calculations between1 and 3 are
found. Note that the present analysis extends down to the production threshold forb�b, while the
jet measurements have a threshold which is approximately5 GeV higher in theb�b centre-of-
mass system.

The systematic uncertainties of the cross section measurement are evaluated by varying the
Monte Carlo simulations. The dominant experimental errorscome from the uncertainties in the
track reconstruction efficiency (13%), the trigger efficiency (5%) and the width of the�M sig-
nal (3%). Smaller contributions are due to uncertainties inthe determination of the background
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due to misidentified muons5 (1%;1.5%) and in the fragmentation fractions (1%;1.5%). Model
uncertainties are estimated using the CASCADE Monte Carlo generator instead of PYTHIA
(3.5%) and either taking into account or omitting the resolved component in PYTHIA (3%;5%).
Taking into account the uncertainties due to the contribution ofD� reflections (5%), the muon
identification, the luminosity measurement and theD

� decay branching ratios, the total system-
atic errors for the charm and beauty cross sections are estimated to be 16% and 17%, respec-
tively.

5.2 Differential Cross Sections for Charm and Beauty

Differential cross sections forD�

� production in the visible kinematic region are evaluated as
functions of variables characterising theD� meson, the muon and theD�

� system. In this
section results are presented for the complete data set, which contains the contributions from
charm and beauty (figures 4 and 5).

In order to compute the differential cross sections for the data, the numbers of events in bins
of the chosen variable are determined by a fit to the�M distribution in each bin, as described in
section 4.2. Here, no attempt is made to separate charm and beauty contributions. A correction
for ‘fake muons’ is applied according to the Monte Carlo simulation. Since the fake muon
fraction is different for charm and beauty, it is computed using theb fraction of 45% given by
the measured cross sections (table 4).

The data are shown with the results of the PYTHIA and CASCADE Monte Carlo models
and the LO and NLO FMNR calculations. In the theoretical models, the beauty and charm
contributions are combined according to the measured totalvisible cross sections (table 4) and
normalised to the sum of these cross sections, in order to facilitate a shape comparison. The
error bands for the FMNR prediction are computed as for the total cross section (see caption
of table 4). The measured differential cross sections are similarly normalised, which has the
advantage that the systematic errors largely cancel and arenegligible compared to the statistical
errors.

Figure 4 shows the differential cross sections as a functionof the transverse momentum and
pseudorapidity of theD� meson and the muon separately. Overall the QCD models describe
the shapes of the measured distributions quite well, although there is a tendency for the mea-
suredp

T

(D

�

) andp
T

(�) distributions to be softer than the calculations. A slight discrepancy
is also present in the differential cross section as a function of the pseudorapidity of the muon
(figure 4c) which shows a central dip due to the large muon momentum required.

Quantities derived from a combined measurement of theD

� and muon are shown in figure 5.
In figures 5a and c, the differential cross sections as a function of p

T

(D

�

�), which is defined as
p

T

(D

�

�) = j~p

T

(D

�

)+~p

T

(�)j, and�� are compared with the LO and NLO FMNR predictions.
The data show the expected deviations from the LO calculations due to higher order effects: the
observedp

T

(D

�

�) distribution is flatter and the�� peak around180Æ is broader than the LO
computation. The data are in good agreement with the NLO calculation. In figures 5b and d, the
same differential cross sections forp

T

(D

�

�) and�� are compared with PYTHIA and CAS-
CADE which also give a good description of the data. Althoughdifferent approaches are used

5Where two numbers are given the first applies to charm and the second to beauty.
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in PYTHIA and CASCADE to compute the evolution of the partonsfrom the proton and the
hard interaction, the differences between the two simulations are smaller than the experimental
errors.

Figures 5e and f show the invariant mass,M(D

�

�), and the rapidity6, ŷ(D�

�), of theD�

meson and the muon together with NLO FMNR, PYTHIA and CASCADEpredictions. The
invariant massM(D

�

�) reflects the centre-of-mass energy of the quark pair andŷ(D

�

�) is
related to the ratio of the energies of the partons entering the hard interaction from the proton and
the photon. Both differential cross sections are adequately described by all model calculations.

5.3 Results for a Charm Dominated ‘Quark Antiquark Tag’ Sample

The cross sections in the previous section refer to the complete data set including events from
region III in which bothD� and muon originate from the sameb quark. Since this leads to a
dilution of the correlation of quantities characterising the quark pair and the measuredD�

� pair,
results for a smaller sample are given here, where both the heavy quark and the antiquark are
tagged by either aD� or a muon (‘quark antiquark tag’). This is possible in correlation region
IV (�� > 90

Æ andQ(D�

) 6= Q(�)). This region (see figure 1) is dominated by
�
 pairs: theb�b
contribution is 18% according to the two-dimensional fit. Due to migrations from correlation
region III, approximately half of theb�b contribution is due tob ! D

�

� events in which the
D

�

� pair comes from the sameb quark (according to the PYTHIA simulation). A visible cross
section of�

2q

= 263� 48� 36 pb is measured7 after subtracting this fraction, while264+148
�50

pb
is expected from the FMNR calculations.

In this data sample, the correlation of kinematic quantities reconstructed using theD� me-
son and the muon to those of the quark pairs is good forx

g

andŷ(D�

�), while it is weaker for
p

T

(D

�

�). Herex
g

is the fraction of the proton energy carried by the gluon in the hard inter-
action, which is approximated byxobs

g

= (M(D

�

�))

2

=y s. The normalised differential cross
section forxobs

g

(D

�

�) is shown in figure 6a. All QCD calculations (FMNR to LO and NLO,
PYTHIA and CASCADE) give a reasonable description of the data. Figure 6b and c show
thep

T

(D

�

�) andŷ(D�

�) distributions of theD�

� pair, respectively, with the same model cal-
culations. The LO FMNR prediction forp

T

(D

�

�) is again too soft, as observed for the total
sample (figure 5a), while the NLO FMNR prediction fits the datawell. Although this sample
should be sensitive to any transverse momentum of the incoming gluon, the differences between
PYTHIA (collinear factorisation) and CASCADE (k

t

factorisation) are small in the kinematic
region studied.

Conclusion

A measurement of
�
 andb�b photoproduction cross sections using the H1 detector at HERA has
been presented. For the majority of events both heavy quarksare tagged using aD� meson and a

6
ŷ = 1=2 ln (E + p

z

)=(E � p

z

), whereE andp
z

are the energy and thez-component of the momentum of
theD�

� pair.
7The index ‘2q’ is used for the cross sections in this section to distinguish them from those in the previous

section.
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muon as signatures. The separation of the charm and beauty contributions is possible due to the
different correlations between the charges and angles between theD� meson and the muon. The
measured total cross section for charm in the visible kinematic region is in agreement with the
NLO QCD prediction, while the beauty cross section is higherthan predicted. The kinematic
region of the latter is characterised by lowerb

�

b centre-of-mass energies than in most previous
analyses, which require high momentum jets. Comparisons ofthe shapes of the measured
differential distributions with QCD calculations including higher order effects show general
agreement. Effects beyond the LO approximation are directly observed. In the kinematic region
studied, effects due tok

t

factorisation, as implemented in CASCADE, are found to be small
compared to the experimental errors.
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Figure 2:a) Distribution of the mass difference �M = m

K��

s

�m

K�

for the total data sample.

In b)-e) �M is shown in the four correlation regions, given by the relative charges of the D�

and the muon and the azimuthal angle �� between them. The points represent the data (right

charge combinations, RCC), the histogram indicates the observed wrong charge combinations

(WCC) which are also used to fit the background. The solid lines in a) are the result of a one-

dimensional fit, which gives the peak position � and the peak width �

�M

. The solid lines in

b)-e) are results of a two-dimensional fit (see text).
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Figure 4: Normalised differential D�

� cross sections as functions of the transverse momenta

and the pseudorapidities of muons (a,c) and D� mesons (b,d). The data (points) are compared

with the prediction of the NLO calculation FMNR and the LO-ME+PS QCD models PYTHIA

and CASCADE. A beauty fraction of 45% as obtained from the measured cross sections is

used in the calculations. The error bands for FMNR are obtained as described in table 4. The

PYTHIA b quark contribution is indicated separately. The experimental systematic uncertainties

for the normalised distributions are negligible compared to the statistical errors.
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Figure 5:Normalised differential D�

� cross sections for a,b) the transverse momenta p
T

(D

�

�),

c,d) the azimuthal angle difference ��, e) the invariant mass M(D

�

�) and f) the rapidity

ŷ(D

�

�) of the D

�

�-pairs. The data are compared to the prediction of the LO and NLO cal-

culations FMNR (a,c,e,f) and to the Monte Carlo models PYTHIA and CASCADE (b,d,e,f).

The error bands for FMNR are obtained as described in table 4. A beauty fraction of 45% as

obtained from the measured cross sections is used in the calculations. The FMNR (a,c) and

PYTHIA (b,d,e,f) b quark contributions are indicated separately. The experimental systematic

uncertainties for the normalised distributions are negligible compared to the statistical errors.
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Figure 6:Normalised differential D�

� cross sections for a ‘quark antiquark tag’, charm domi-

nated sample (approximately 10% b

�

b quark contamination), where the D� and the � originate

from different quarks. The data and predictions of the LO and NLO calculation FMNR and of

the Monte Carlo generators PYTHIA and CASCADE are shown. The error bands for FMNR

are obtained as described in table 4. In c) the resolved excitation component of PYTHIA is in-

dicated separately. The experimental systematic uncertainties for the normalised distributions

are negligible compared to the statistical errors.
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