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Abstract

We discuss polarized lepton-proton scattering with special emphasis on the difference be-
tween target polarization defined relative to the lepton beam or to the virtual photon direc-
tion. In particular, this difference influences azimuthal distributions in the final state. We
provide a general framework of analysis and apply it to the specific cases of semi-inclusive
deep inelastic scattering, of exclusive meson production, and of deeply virtual Compton
scattering.
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1 Introduction

Measurements of deep inelastic scattering on a polarized nucleon are an essential source of information
in spin physics. The inclusive spin dependent structure functions g1 and g2 have become textbook
material, and present-day experiments investigate selected final states that give access to a wealth
of information about the role of spin in the internal structure of the nucleon. In semi-inclusive deep
inelastic scattering (SIDIS) for instance, the Collins effect [1] provides an opportunity to access the
transversity distribution of quarks, and the Sivers effect [2] reveals the subtle role of gluon rescattering
in QCD dynamics [3]. In exclusive channels like meson electroproduction and deeply virtual Compton
scattering (DVCS), target polarization allows one to separate generalized parton distributions with
different spin dependence. In particular, the transverse target spin asymmetry for appropriate final
states [4] is sensitive to the helicity-flip distribution E, which carries information about the orbital
angular momentum of quarks in the nucleon [5].

In experiment, the target polarization usually is longitudinal or transverse with respect to the
lepton beam direction. For the strong-interaction part of the reaction, i.e., the γ∗p subprocess, longi-
tudinal and transverse polarization with respect to the virtual photon momentum is however a more
natural basis. The conversion between the two sets of polarization states is simple and well known
for a target polarized longitudinally with respect to the lepton beam, whereas for transverse polar-
ization the transformation is more involved. In the present contribution, we give a general framework
to analyze transverse and longitudinal polarization data, both for semi-inclusive and for exclusive
processes.

The outline of this paper is as follows. In Sect. 2 we give the general transformation between target
polarization longitudinal or transverse with respect to either the lepton beam or the virtual photon
direction. In Sects. 3 and 4 we derive and discuss the general expression of the polarized lepton-proton
cross section in terms of cross sections and interference terms at the γ∗p level. We apply these results
to the specific cases of SIDIS and exclusive meson production in Sects. 5 and 6. In Sect. 7 we derive
positivity bounds and show how they may help one to separate contributions from longitudinal and
transverse photons in the cross section. The special case of DVCS is discussed in Sect. 8, and we
summarize our results in Sect. 9. Some additional material is given in three appendices.

2 Transformation of the target spin

We consider lepton-proton scattering processes of the form

ℓ(l) + p(P )→ ℓ(l′) + h(Ph) +X(P ′) (1)

with four-momenta given in parentheses. ℓ denotes the lepton, p the target proton, and h a produced
hadron. X can be an inclusive system of hadrons as in SIDIS, or a single hadron as in exclusive pro-
cesses. The virtual photon radiated by the lepton has momentum q = l− l′. We use the conventional
kinematical variables for deep inelastic processes, Q2 = −q2, xB = Q2/(2P · q), y = (P · q)/(P · l),
and the azimuthal angle φ between the hadron and lepton planes as shown in Fig. 1. Our discussion
in this section also covers the case of virtual Compton scattering, where h is a real photon, as well
as processes where h is a system of several particles. In this section we do not make any kinematical
approximations, except for neglecting the lepton mass.

To transform between the different target polarization states, we find it useful to introduce two
coordinate systems C and C ′ in the target rest frame, with respective axes x, y, z and x′, y′, z′ as
shown in Figs. 1 and 2. The z axis points along q, whereas the z′ axis points along l. The x axis
and the x′ axis are chosen such that l′ lies in the x-z and the x′-z′ plane and has a positive x and
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x′ component. The y and y′ axes coincide. The two coordinate systems C and C ′ are related via a
rotation about the y axis by the angle θ between q and l. In terms of invariants we have

sin θ = γ

√
1− y − 1

4y
2γ2

1 + γ2
, γ = 2xBMp/Q, (2)

where Mp is the proton mass. In deep inelastic kinematics γ is small, and so is sin θ ≈ γ
√
1− y.

Note for instance that γ2 is the parameter controlling the size of target mass corrections in inclusive
DIS [6].

We parameterize the target spin vector S in the two coordinate systems by

S
C
=



ST cosφS
ST sinφS
−SL


 , S

C′

=



PT cosψ
PT sinψ
−PL


 , (3)

so that PL, PT specify longitudinal and transverse polarization relative to the lepton beam direction,
and SL, ST longitudinal and transverse polarization relative to the virtual photon direction. Likewise,
ψ is the azimuthal angle of the target spin around the lepton beam direction, whereas φS is the
corresponding azimuthal angle around the virtual photon direction. PL and SL are between −1
and 1, and PT and ST are between 0 and 1. The sign convention for the longitudinal case is such
that PL = +1 and SL = +1 correspond to a right-handed proton in the ℓp and γ∗p center of mass,
respectively. The values of PL and PT are determined by the experimental setup, whereas SL and ST
depend on the kinematics of an individual event. The rotation from C to C ′ readily gives

ST cosφS = cos θ PT cosψ − sin θ PL,

ST sinφS = PT sinψ,

SL = sin θ PT cosψ + cos θ PL. (4)

We remark that, although we work in the target rest frame, our results can readily be applied to a
polarized ℓp collider, whose laboratory frame is obtained from the target rest frame by a boost along
the lepton beam momentum. PL and PT then give the longitudinal and transverse polarization of the
proton beam with respect to the beam axis.

2.1 Longitudinal polarization with respect to the lepton beam

We have PT = 0, so that

SL = cos θ PL, ST cosφS = − sin θ PL, ST sinφS = 0. (5)

If we allow ST to be negative, so that (ST , φS) and (−ST , φS+π) are equivalent, the second and third
relation can be written more simply as ST = − sin θ PL and φS = 0.

2.2 Transverse polarization with respect to the lepton beam

With PL = 0 we find

ST cosφS = cos θ PT cosψ, ST sinφS = PT sinψ, SL = sin θ PT cosψ. (6)

It turns out that the expression for the cross section in the next sections are considerably simpler
when written in terms of the angle φS instead of ψ. We can use the relations (6) to obtain

sinψ =
cos θ sinφS√

1− sin2θ sin2φS

, cosψ =
cosφS√

1− sin2θ sin2φS

(7)
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Figure 1: Kinematics of the process (1) in the target rest frame. P hT and ST respectively are the
components of P h and S perpendicular to q. (The target spin vector S is not shown.) φ and φS
respectively are the azimuthal angles of P h and S in the coordinate system with axes x, y, z, in
accordance with the Trento conventions [7].
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Figure 2: The lepton plane in the target rest frame. The y and y′ axes coincide and point out of the
paper plane.
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and, inserting this into the same relations, finally have

ST =
cos θ√

1− sin2θ sin2φS

PT , SL =
sin θ cosφS√

1− sin2θ sin2φS

PT . (8)

The phase space element is however simpler in terms of ψ, which describes the azimuthal distribution
of the scattered lepton around the beam axis, with the reference direction provided by the target
spin.1 Namely, we have

d3l′

2l′0
=

y

4xB
dxB dQ

2 dψ =
y

4xB
dxB dQ

2 dφS
cos θ

1− sin2θ sin2φS
. (9)

The transformation from dψ to dφS introduces an explicit φS dependence. In deep inelastic kinemat-
ics, one has however dψ ≈ dφS up to corrections of order γ2.

2.3 Cross section and asymmetries

The dependence of the ℓp cross section on the target polarization is at most linear in the spin vector S.
This follows from the superposition principle and becomes for instance explicit in the spin density
matrix formalism used in the next section. For an unpolarized lepton beam we can therefore write
dσ/(dxB dQ

2 dφ dψ) = a0 + S · a, where a0 and a only depend on the four-momenta of the reaction
(1) but not on the target spin. Expressing the vectors in our coordinate system C we have

dσ

dxB dQ2 dφ dψ
= a0 + ST cosφS a1 + ST sinφS a2 − SLa3, (10)

where the ai depend on xB, y, Q
2 and φ but not on φS or ψ. With (5) and (8) we have

1

2π

dσ

dxB dQ2 dφ

∣∣∣∣∣
PT=0

= a0 − PL sin θ a1 − PL cos θ a3,

dσ

dxB dQ2 dφ dφS

∣∣∣∣∣
PL=0

=
cos θ

1− sin2θ sin2φS

×
[
a0 + PT

cos θ cosφS a1 + cos θ sinφS a2 − sin θ cosφS a3√
1− sin2θ sin2φS

]
, (11)

where in the first relation we have integrated over ψ and in the second one we have used (9) to trade
dψ for dφS .

It is often useful to express the spin dependence of a process through asymmetries. We define
asymmetries for longitudinal and transverse target polarization with respect to the lepton beam

Aℓ
UL =

dσ(PL = +1)− dσ(PL = −1)
dσ(PL = +1) + dσ(PL = −1)

∣∣∣∣∣
PT=0

,

Aℓ
UT (φS) =

dσ(φS)− dσ(φS + π)

dσ(φS) + dσ(φS + π)

∣∣∣∣∣
PT=1,PL=0

(12)

in accordance with the Trento conventions [7]. The subscript U indicates an unpolarized lepton beam,
and for better legibility we have not displayed the dependence of the cross sections and asymmetries on

1In the case where PT = 0 one can define ψ as the azimuthal angle of l′ with respect to an arbitrary direction fixed
in space. The cross section is then of course independent of this angle.
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other kinematical variables φ, xB, Q
2, etc. These asymmetries can be directly measured in experiment,

whereas their counterparts for longitudinal and transverse target polarization with respect to the
virtual photon direction

Aγ∗

UL =
dσ(SL = +1)− dσ(SL = −1)
dσ(SL = +1) + dσ(SL = −1)

∣∣∣∣∣
ST=0

,

Aγ∗

UT (φS) =
dσ(φS)− dσ(φS + π)

dσ(φS) + dσ(φS + π)

∣∣∣∣∣
ST=1,SL=0

(13)

are more natural to describe the physics of the γ∗p subprocess. From (10) and (11) we readily obtain
the transformation between the two types of asymmetries,

Aℓ
UL = cos θ Aγ∗

UL − sin θ Aγ∗

UT (0) ,

Aℓ
UT (φS) =

cos θ Aγ∗

UT (φS) + sin θ cosφS A
γ∗

UL√
1− sin2θ sin2φS

(14)

and its inverse

Aγ∗

UL = cos θ Aℓ
UL + sin θ Aℓ

UT (0) ,

Aγ∗

UT (φS) =

√
1− sin2θ sin2φS A

ℓ
UT (φS)

cos θ
− sin θ cosφS

(
Aℓ

UL + tan θ Aℓ
UT (0)

)

= cosφS
(
cos θ Aℓ

UT (0)− sin θ Aℓ
UL

)
+ sinφS A

ℓ
UT (

1
2π) . (15)

An experiment having both longitudinal and transverse target polarization can hence uniquely recon-
struct the asymmetries Aγ∗

UL and Aγ∗

UT (φS). To determine Aℓ
UT (φS) at φS = 0 or φS = 1

2π one can of
course use data for all φS , given that

Aℓ
UT (φS) =

cosφS A
ℓ
UT (0) + cos θ sinφS A

ℓ
UT (

1
2π)√

1− sin2θ sin2φS

(16)

according to (11). Notice that the transformations (14) and (15) require θ to be fixed, which implies
that the cross sections in (12) and (13) have to be differential in both xB and Q2 (which also fixes y
for a given c.m. energy of the ℓp collision). If the measured cross sections are integrated over wider
bins in xB and Q2, the transformations can only be done approximately, with an average value of θ.

Our results generalize straightforwardly to the case of a longitudinally polarized lepton beam.
The relations (10) and (11) then hold separately for right- and left-handed beam polarization with
coefficients a→i and a←i . (Since we neglect the lepton mass, the lepton helicity is a good quantum
number and frame independent.) Writing dσ→ and dσ← for the respective cross section with a
right-handed and left-handed lepton beam, we introduce double spin asymmetries

Aℓ
LL =

dσ→(PL = +1)− dσ→(PL = −1)− dσ←(PL = +1) + dσ←(PL = −1)
dσ→(PL = +1) + dσ→(PL = −1) + dσ←(PL = +1) + dσ←(PL = −1)

∣∣∣∣∣
PT=0

,

Aℓ
LT (φS) =

dσ→(φS)− dσ→(φS + π)− dσ←(φS) + dσ←(φS + π)

dσ→(φS) + dσ→(φS + π) + dσ←(φS) + dσ←(φS + π)

∣∣∣∣∣
PT=1,PL=0

(17)

and their analogs Aγ∗

LL and Aγ∗

LT (φS), with (PL, PT ) replaced by (SL, ST ). One then has relations like
(14), (15) and (16) with the subscript U replaced by L.

7



3 From ℓp to γ∗p cross sections

In the previous section we have given the transformation between target polarization defined with
respect to either the direction of l or the direction of q = l − l′. We have not actually used that q is
the momentum of a virtual photon which is radiated off the lepton beam and absorbed by the target
proton. We now use this, which will in particular allow us to make explicit the interplay between
the azimuthal angles φ and φS . The discussion in this chapter holds for processes like SIDIS and
exclusive meson production, but not for DVCS (see Sect. 8).

Our evaluation of the ℓp cross section closely follows the steps detailed in Sect. 3 of [8] for an
unpolarized target. A reader not interested in the derivation may directly go to the result (29). To
describe the γ∗p subprocess we use a coordinate system C ′′ with axes x′′, y′′, z′′ as shown in Fig. 1.
The z′′ axis points opposite to q and the x′′ axis is chosen such that P h lies in the x′′-z′′ plane and
has a positive x′′ component.2 In this coordinate system the proton spin vector reads

S
C′′

=



ST cos(φ− φS)
ST sin(φ− φS)

SL


 (18)

and the spin density matrix of the target [9] can be written as

ρji =
1

2

[
δji + S · σji

]
C′′

=
1

2

(
1 + SL ST exp[−i(φ− φS)]

ST exp[i(φ− φS)] 1− SL

)
(19)

in a basis of polarization states specified by two-component spinors

χ+ 1
2
=

(
1
0

)
, χ− 1

2
=

(
0
1

)
. (20)

These states respectively correspond to definite spin projection +1
2 and −1

2 along the z′′ axis, and to
right- and left-handed proton helicity in the γ∗p center of mass. The components of σ in (19) are the
Pauli matrices. As is well known, the cross section can be written as

dσ(ℓp→ ℓhX) ∝ LνµWµν
d3l′

2l′0
d3Ph

2P 0
h

, (21)

with a proportionality factor depending on xB , y and Q2. The leptonic tensor reads

Lνµ = l′ν lµ + lν l′µ − (l′ · l) gνµ + iPℓ ǫ
νµαβqαlβ (22)

with the convention ǫ0123 = 1 and the lepton beam polarization Pℓ defined such that Pℓ = +1
corresponds to a purely right-handed and Pℓ = −1 to a purely left-handed beam. The hadronic
tensor is given by

Wµν =
∑

ij

ρji
∑

X

δ(4)(P ′ + Ph − P − q)
∑

spins

〈p(i)|Jµ(0)|hX〉 〈hX|Jν (0)|p(j)〉, (23)

where Jµ is the electromagnetic current.
∑

X denotes the integral over the momenta of all hadrons
in X, and also the sum over their number if X is an inclusive system. There are further sums

∑
ij

2We take the z′′ axis opposite to the z axis of coordinate system C, so that in the γ∗p center of mass the proton
moves into the positive z′′ direction, a choice favored in many theoretical calculations.
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over target spin states i, j = ±1
2 and

∑
spins over all polarizations in the hadronic final state hX. We

now introduce polarization vectors ǫm for definite helicity m of the virtual photon,

ǫµ0 =
1

Q
√
1 + γ2

(
qµ +

Q2

P · q P
µ
)
,

ǫ+1 =
1√
2
(0,−1, i, 0), ǫ−1 =

1√
2
(0, 1, i, 0), (24)

with γ defined in (2) and the components of ǫ±1 given in coordinate system C ′′. As shown in [8], the
leptonic tensor Lνµ can be expressed as a linear combination of terms ǫνnǫ

µ∗
m . Up to a global factor

the expansion coefficients form the spin density matrix of the virtual photon. They depend on Pℓ, on
Q2, on the usual ratio of longitudinal and transverse photon flux

ε =
1− y − 1

4y
2γ2

1− y + 1
2y

2 + 1
4y

2γ2
, (25)

and on the azimuthal angle φ.3 The contraction LνµWµν can then be written in terms of quantities

σmn =
∑

ij

ρji σ
ij
mn ∝

∫
dt dM2

X (ǫµ∗mWµν ǫ
ν
n), (26)

where the xB and Q2 dependent proportionality factor is chosen such that σmm is the γ∗p cross
section for photon helicity m with Hand’s convention for the virtual photon flux. In (26) we have
integrated over the invariant momentum transfer t = (P−P ′)2 = (Ph−q)2 and over the invariant mass
M2

X = P ′2 of the system X.4 The σijmn are polarized photoabsorption cross sections or interference
terms, given by

σijmn(xB , Q
2) ∝

∫
dt dM2

X

∑

X

δ(4)(P ′ + Ph − P − q)
∑

spins

(
Ai

m

)∗
Aj

n (27)

in terms of the amplitudes Ai
m for the subprocess γ∗p → hX with proton polarization i and photon

polarization m. Changing the basis of spin states one can rewrite interference terms as linear combi-
nations of cross sections, as shown in App. A. We have defined our polarization states for protons and
photons in the coordinate system C ′′, whose axes are specified with reference only to the momenta of
the γ∗p process, but not to the lepton momenta or to the proton polarization. Therefore σijmn depends
on the kinematical variables xB and Q2, whereas the dependence on ε and φ is contained in Lνµ and
the dependence on ST , SL and φS in ρji. From hermiticity and parity invariance we have relations
σnm = σ∗mn and

σjinm = (σijmn)
∗, σ−i−j−m−n = (−1)m−n−i+j σijmn (28)

with m,n = 0,+1,−1 and i, j = +1
2 ,−1

2 . They imply that σ+−00 , σ+−+− and σ−++− are purely imaginary,
whereas other interference terms have both real and imaginary parts. Using these relations and closely

3The polarization vectors in (24) are identical to those in Eq. (3.16) of [8], where they are however given in a different
coordinate system. We also note that the angle ϕ in [8] is equal to −φ used here.

4The integration over M2
X is trivial if X is a single hadron, because then

∑
X

= (2π)−3
∫
d3P ′/(2P ′0). Together

with δ(4)(P ′ + Ph − P − q) this leaves one delta function constraint in the hadronic tensor (23).
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following the steps of the derivation in [8] we obtain our master formula
[
αem

8π3
y2

1− ε
1− xB
xB

1

Q2

]−1
dσ

dxB dQ2 dφ dψ

=
1

2

(
σ++
++ + σ−−++

)
+ εσ++

00 − ε cos(2φ)Re σ++
+− −

√
ε(1 + ε) cosφRe (σ++

+0 + σ−−+0 )

− Pℓ

√
ε(1− ε) sinφ Im (σ++

+0 + σ−−+0 )

− SL
[
ε sin(2φ) Im σ++

+− +
√
ε(1 + ε) sinφ Im (σ++

+0 − σ−−+0 )

]

+ SLPℓ

[√
1− ε2 1

2

(
σ++
++ − σ−−++

)
−
√
ε(1− ε) cosφRe (σ++

+0 − σ−−+0 )

]

− ST
[
sin(φ− φS) Im (σ+−++ + εσ+−00 ) +

ε

2
sin(φ+ φS) Im σ+−+− +

ε

2
sin(3φ− φS) Imσ−++−

+
√
ε(1 + ε) sinφS Imσ+−+0 +

√
ε(1 + ε) sin(2φ− φS) Imσ−++0

]

+ STPℓ

[√
1− ε2 cos(φ− φS)Re σ+−++

−
√
ε(1− ε) cosφS Re σ+−+0 −

√
ε(1− ε) cos(2φ− φS)Re σ−++0

]
. (29)

For the sake of legibility we have labeled the target spin states by ± instead of ±1
2 . In the following

we will also use the common notation

σT = 1
2(σ

++
++ + σ−−++), σL = σ++

00 (30)

for the transverse and longitudinal γ∗p cross sections. The dependence of the ℓp cross section on ε
and on the angles φ and φS (or ψ as explained in Sect. 2.2) is fully explicit in (29).

Relations analogous to (28) and (29) hold for cross sections and interference terms that are dif-
ferential in M2

X and t, or equivalently in M2
X and P 2

hT , where P hT is the transverse component of
the hadron momentum with respect to the virtual photon momentum (see Fig. 1). Let us analyze
the behavior of the different interference terms in the region of small P hT . To this end we go to
the γ∗p center of mass and consider the amplitudes for γ∗p → hX as a function of the scattering
angle Θ between h and γ∗. For semi-inclusive processes, we can choose the set of states X to be
summed over in the cross section such that the system X has definite total spin jX and definite spin
projection mX along its momentum. For exclusive processes we simply choose helicity states of the
single hadron X. Also taking states with definite helicity mh of the hadron h, we can perform a
partial-wave decomposition of the γ∗p scattering amplitude (see e.g. [9]):

Ai
m(jX ,mX ,mh; Θ) =

∑

J

aim(jX ,mX ,mh;J) d
J
i−m,mX−mh

(Θ). (31)

For Θ→ 0 the rotation functions follow the behavior dJµ, µ′(Θ) ∼ Θ|µ−µ
′|. In the product (Ai

m)∗Aj
n we

thus have a sum over terms which behave like Θ to the power |i−m−mX +mh|+ |j−n−mX +mh| ≥
|i−m− j + n|. Since Θ ∼ |P hT | for small Θ, we finally obtain a power behavior like

dσijmn

dP 2
hT

∼ |P hT ||m−n−i+j| for P hT → 0, (32)

10



or like a higher power of |P hT |. Applying this to our cross section formula (29) we find the simple
rule that terms coming with an angular dependence cos(Mφ+NφS) or sin(Mφ+NφS) behave like
dσijmn/(dP

2
hT ) ∼ |P hT |M or like a higher power, where M = 0, 1, 2, 3 and N = −1, 0, 1.

Using the transformations (5) and (8) we obtain from (29) the cross sections for definite target
polarization with respect to the lepton beam,

[
αem

4π2
y2

1− ε
1− xB
xB

1

Q2

]−1
dσ

dxB dQ2 dφ

∣∣∣∣∣
PT=0

= terms independent of PL

− PL

[
sinφ

(
cos θ

√
ε(1 + ε) Im (σ++

+0 − σ−−+0 )− sin θ Im (σ+−++ + εσ+−00 )− sin θ
ε

2
Imσ+−+−

)

+ sin(2φ)
(
cos θ ε Imσ++

+− − sin θ
√
ε(1 + ε) Imσ−++0

)

− sin(3φ) sin θ
ε

2
Imσ−++−

]

+ PLPℓ

[
cos θ

√
1− ε2 1

2
(σ++

++ − σ−−++) + sin θ
√
ε(1 − ε) Re σ+−+0

− cosφ
(
cos θ

√
ε(1 − ε)Re (σ++

+0 − σ−−+0 ) + sin θ
√
1− ε2 Reσ+−++

)

+ cos(2φ) sin θ
√
ε(1− ε) Reσ−++0

]
(33)

for longitudinal and
[

cos θ

1− sin2θ sin2φS

]−1 [
αem

8π3
y2

1− ε
1− xB
xB

1

Q2

]−1
dσ

dxB dQ2 dφ dφS

∣∣∣∣∣
PL=0

= terms independent of PT

− PT√
1− sin2θ sin2φS

[
sinφS cos θ

√
ε(1 + ε) Imσ+−+0

+ sin(φ− φS)
(
cos θ Im (σ+−++ + εσ+−00 ) +

1

2
sin θ

√
ε(1 + ε) Im (σ++

+0 − σ−−+0 )
)

+ sin(φ+ φS)
(
cos θ

ε

2
Imσ+−+− +

1

2
sin θ

√
ε(1 + ε) Im (σ++

+0 − σ−−+0 )
)

+ sin(2φ− φS)
(
cos θ

√
ε(1 + ε) Imσ−++0 +

1

2
sin θ ε Imσ++

+−

)

+ sin(2φ+ φS)
1

2
sin θ ε Imσ++

+−

+ sin(3φ− φS) cos θ
ε

2
Imσ−++−

]

− PTPℓ√
1− sin2θ sin2φS

[
cosφS

(
cos θ

√
ε(1 − ε) Reσ+−+0 − sin θ

√
1− ε2 1

2
(σ++

++ − σ−−++)
)

− cos(φ− φS)
(
cos θ

√
1− ε2 Reσ+−++ −

1

2
sin θ

√
ε(1− ε) Re (σ++

+0 − σ−−+0 )
)

+ cos(φ+ φS)
1

2
sin θ

√
ε(1− ε) Re (σ++

+0 − σ−−+0 )

+ cos(2φ− φS) cos θ
√
ε(1− ε) Re σ−++0

]
(34)

11



for transverse polarization. The terms independent of PL and PT are those given in the first two
lines on the right-hand side of (29). Although the expressions for the experimentally accessible
cross sections (33) and (34) are a little lengthy, they have a clear structure. Using the relations
cosφS sin(nφ) = 1

2 [ sin(nφ+φS)+sin(nφ−φS) ] and cosφS cos(nφ) = 1
2 [ cos(nφ+φS)+cos(nφ−φS) ],

we have written the cross sections such that the terms in each line can be experimentally separated
by measuring the dependence on φ and (with transverse target polarization) on φS . Different terms
σijmn(xB , Q

2) multiplying the same function of φ and φS can be separated by the Rosenbluth technique,
measuring at several ℓp collision energies to get several values of ε at the same xB and Q2. A different
possibility is to combine data with transverse and longitudinal target polarization. Here one can
analyze a limited number of terms at a time:

1. The three combinations Im (σ++
+0 − σ−−+0 ), Im (σ+−++ + εσ+−00 ) and Imσ+−+− can be separated by

combined analysis of the sinφ term in the longitudinal cross section (33) and the sin(φ − φS)
and sin(φ + φS) terms in the transverse cross section (34). Further separation of Imσ+−++ and
Imσ+−00 is only possible with the Rosenbluth method, as is the separation of the cross sections
σT and σL in σT + εσL. The terms just discussed are of particular physical interest, and we will
come back to them in Sect. 5, 6 and 7.

2. The cross section difference σ++
++ − σ−−++ and the interference term Re σ+−+0 can be obtained by

combined analysis of the φ independent terms in (33) and (34), i.e. by integrating over φ and
forming double spin asymmetries for polarized beam and target. In this case, the transformation
between asymmetries for target polarization with respect to the beam or to the virtual photon
direction is well known from the measurement of the structure functions g1 and g2 in inclusive
DIS. We give the relation between the notation usually employed in the literature and ours in
App. B.

3. Imσ++
+− and Imσ−++0 can be separated by measuring both the sin(2φ) term in (33) and the

sin(2φ − φS) term in (34). Imσ++
+− can also directly be obtained from the sin(2φ + φS) term

for transverse target polarization, where it is however suppressed by sin θ. The situation is
analogous for the cosφ term in (33) and the cos(φ− φS) and cos(φ+ φS) terms in (34).

4. Imσ−++− can either be extracted from the sin(3φ − φS) term in the transverse cross section, or
from the sin(3φ) term in the longitudinal one, where it is however suppressed by sin θ. An
analogous statement holds for the cos(2φ − φS) term in (34) and the cos(2φ) term in (33).
Finally, the interference term Imσ+−+0 only appears in the transverse cross section (34).

To conclude this section we take a closer look on azimuthal moments for transverse target polarization,
which are given by

〈w(φ, φS) 〉ℓUT =

∫
dφ dφS w(φ, φS) [S(φ, φS)− S(φ, φS + π)]
∫
dφ dφS [S(φ, φS) + S(φ, φS + π)]

∣∣∣∣∣
PT=1,PL=0

(35)

and similarly for the double spin asymmetry with polarized beam and target. For brevity we have
written S(φ, φS) = dσ/(dxB dQ

2 dφ dφS) and not displayed the dependence on xB , y and Q
2. Without

the φS dependence introduced by the global factor

f(sin2φS) =
cos θ

(1− sin2θ sin2φS)3/2
(36)

in the PT dependent part of S(φ, φS), the moment of w(φ, φS) = 2 sin(mφ+φS) would directly project
out the sin(mφ+ φS) term in the transverse cross section (34), where m = 0,±1,±2,−3. Taking the
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effect of this term into account is straightforward, given that

1

2π2

∫ 2π

0
dφ

∫ 2π

0
dφS f(sin

2φS) sin(nφ+ φS) sin(mφ+ φS) (37)

=





1

π

∫ 2π

0
dφS f(sin

2φS) sin
2φS = 1 + 5

8 sin
2θ +O(sin4θ) for n = m = 0,

1

2π

∫ 2π

0
dφS f(sin

2φS) = 1 + 1
4 sin

2θ +O(sin4θ) for n = m 6= 0,

1

2π

∫ 2π

0
dφS f(sin

2φS) (2 sin
2φS − 1) = 3

8 sin
2θ +O(sin4θ) for n = −m 6= 0,

1

2π2

∫ 2π

0
dφ

∫ 2π

0
dφS f(sin

2φS) cos(nφ+ φS) cos(mφ+ φS)

=





1

π

∫ 2π

0
dφS f(sin

2φS) cos
2 φS = 1− 1

8 sin
2θ −O(sin4θ) for n = m = 0,

1

2π

∫ 2π

0
dφS f(sin

2φS) = 1 + 1
4 sin

2θ +O(sin4θ) for n = m 6= 0,

1

2π

∫ 2π

0
dφS f(sin

2φS) (2 cos
2 φS − 1) = −3

8 sin
2θ −O(sin4θ) for n = −m 6= 0,

where for all other combinations of m and n the integrals are zero. For simplicity we have Taylor
expanded the exact expressions, which are given by elliptic integrals. We see in particular that the
moment 〈 2 sin(mφ+φS) 〉ℓUT projects out not only the sin(mφ+φS) term in the cross section but has an
admixture from the sin(mφ−φS) term, and vice versa. This admixture comes with a prefactor 3

8 sin
2θ

and therefore is typically small in deep inelastic kinematics. If high precision is required, one can
readily invert the linear relation between the moments 〈 2 sin(mφ+ φS) 〉ℓUT and 〈 2 sin(mφ− φS) 〉ℓUT

and the coefficients of sin(mφ + φS) and sin(mφ − φS) in the cross section. Alternatively, one can
avoid this mixing effect by including a factor 1/f(sin2φS) in the weight functions w(φ, φS), which
then also depend on θ.

We emphasize that the results in this section do not depend on our choice of coordinate systems.
They depend on the angles φ and φS and on the phase conventions for spin states as specified in (20)
and (24), which can be defined independently of a reference frame and coordinate system (see also [7]).
We have used the different systems C, C ′ and C ′′ of Fig. 1 in order to have simple expressions in
intermediate steps of our derivation.

4 Hadron pair production

In a number of physically interesting cases one considers processes

ℓ(l) + p(P )→ ℓ(l′) + h1(P1) + h2(P2) +X(P ′) (38)

with two hadrons h1 and h2 instead of a single hadron as in (1). Examples are semi-inclusive or
exclusive production of π+π− pairs, either from the decay of a ρ0 or from the continuum. Let us
write Ph = P1+P2 for the total momentum of the hadron pair. To describe the kinematics of (38) we
need three more variables in addition to the case of a single hadron h (where one can e.g. choose xB ,
y, Q2, φS , φ,M

2
X and P 2

hT ). One additional variable is the squared invariant massM2
h = P 2

h of h1 and
h2, and the two others can be chosen as the polar and azimuthal angles ϑ, ϕ of the hadron h1 in the
rest frame of the pair, defined in a coordinate system with the z axis pointing opposite to P ′ and the x
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axis taken such that P lies in the x-z plane and has a positive x component.5 The invariant mass Mh

is invariant under a parity transformation, and so is the polar angle ϑ (which can be expressed through
scalar products of four-vectors). As a consequence, the relations (28) also hold for the differential
cross sections and interference terms dσijmn/(dM

2
h dcos ϑ), and our cross section formulae (29), (33)

and (34) can be made differential in M2
h and in cos ϑ. This is for instance important for the analysis

of exclusive pion pair production, which we will briefly discuss in Sect. 6. Note that our results do
not generalize so easily to the dependence on the azimuthal angle ϕ. Since ϕ is not invariant under a
parity transformation, the relations (28) no longer hold when the ϕ dependence is included. General
analyses of the cross section structure for this case can be found in [12] for an unpolarized and in [13]
for a polarized target.

A different generalization of the results in Sect. 3 is relevant for the analysis of semi-inclusive
hadron pair production in the framework of dihadron fragmentation functions. This offers a way to
measure the transversity distribution of quarks in the proton, see [14] for a discussion and references.
In this case the ℓp cross section is required as a function not of the angle φ between the lepton plane
and the plane spanned by q and P h, but of the angle φR between the lepton plane and the plane
spanned by q and the relative momentum R = 1

2(P 1 − P 2) (with all momenta taken in the target
rest frame). Our derivation in Sect. 3 used γ∗p cross sections and interference terms for polarizations
defined with respect to the q–P h plane, with the crucial point that this definition only referred to
the kinematics of the γ∗p subprocess. It is straightforward to repeat the derivation for polarizations
defined with respect to the q–R plane, and the result will be the analogs of the cross section formulae
(29), (33) and (34) with φ replaced by φR, and with γ∗p cross sections and interference terms referring
to different polarization states than in Sect. 3. The cross sections σiimm and the interference term σ+−+0

are actually the same in both cases, since they appear without a φ or φR dependence, but all other
interference terms will in general depend on the choice of polarization states.

5 Semi-inclusive deep inelastic scattering

Let us now take a closer look at semi-inclusive hadron production. It is customary to trade the
variable M2

X for z = (Ph · P )/(q · P ) in this case. In the kinematical limit of large Q2 at given
xB, z and P h, the cross section factorizes into a hard-scattering subprocess multiplied with parton
densities and fragmentation functions that explicitly depend on the transverse parton momentum.
The corresponding Born level expressions have been calculated in [15, 16, 17, 18] at leading and first
subleading order in 1/Q. We will remark on αs effects at the end of this section. The Born level
results show a simple pattern:

1. At leading order in 1/Q we have cross sections and interference terms σij++ and σij+− that involve
only transverse photon polarization. They are expressed in terms of twist-two parton densities
and twist-two fragmentation functions. These twist-two functions have a simple probabilistic
interpretation in the parton model. see e.g. [19, 20].

2. The interference terms σij+0 between a transverse and a longitudinal photon are suppressed by
one power of 1/Q. They involve a twist-two parton density times a twist-three fragmentation
function or vice versa.

3. The longitudinal cross section σ++
00 and the interference term σ+−00 do not appear in the result.

At Born level they must hence be suppressed by 1/Q2.

5See for instance Fig. 6 in [10] or Fig. 5 in [11], where these angles are denoted by (θ, φ) or (θ, ϕ), respectively.
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Figure 3: Semi-inclusive hadron production γ∗p → hX at large Q2. (a) Born level graph. (b) A
next-to-leading order graph where the hadron h has transverse momentum of order Q.

For brevity we will in the following refer to the cross sections and interference terms of point 1 as
“twist-two” and to those of point 2 as “twist-three” quantities. The finding in point 1 has a simple
physical reason. To leading accuracy in 1/Q the transverse momentum and the virtuality of the
incoming and outgoing parton is set to zero when evaluating the hard scattering, which at Born
level is just the scattering of a quark or antiquark on a virtual photon, see Fig. 3a. In the Breit
frame one readily sees that conservation of the fermion helicity requires the photon to have transverse
polarization. This is the well-known mechanism responsible for the Callan-Gross relation in inclusive
DIS.

For definiteness let us express the leading-twist results from [17] in terms of γ∗p cross sections and
interference terms. Using the abbreviation

Γ =
4π3αem

Q2

xB
1− xB

(39)

we can write

1

2

[
dσ++

++

dz dP 2
hT

+
dσ−−++

dz dP 2
hT

]
= ΓF

[
f1D1

]
,

1

2

[
dσ++

++

dz dP 2
hT

− dσ−−++

dz dP 2
hT

]
= ΓF

[
g1D1

]
,

Re
dσ++

+−

dz dP 2
hT

= ΓF
[
|pT | |kT | cos(ϕp + ϕk)

MpMh
h⊥1 H

⊥
1

]
,

Im
dσ++

+−

dz dP 2
hT

= ΓF
[
|pT | |kT | cos(ϕp + ϕk)

MpMh
h⊥1LH

⊥
1

]
,

Re
dσ+−++

dz dP 2
hT

= ΓF
[
|pT | cosϕp

Mp
g1TD1

]
,

Im
dσ+−++

dz dP 2
hT

= ΓF
[
|pT | cosϕp

Mp
f⊥1TD1

]
,

Im
dσ+−+−
dz dP 2

hT

= ΓF
[
|kT | cosϕk

Mh
2h1H

⊥
1

]
,

Im
dσ−++−

dz dP 2
hT

= ΓF
[
|pT |2|kT | cos(2ϕp + ϕk)

M2
p Mh

h⊥1TH
⊥
1

]
, (40)
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with convolution integrals given by

F
[
wfD

]
=
∑

a=q,q̄

e2a

∫
d2pT d

2kT δ
(2)
(
pT − kT − P hT/z

)
w(pT ,kT ) f

a(xB ,p
2
T ) D

a(z, z2k2
T ), (41)

where f represents a parton density, D a fragmentation function, and w an additional weight function.
To write the weight functions in a compact way we have used angles ϕp = 6 (pT ,P hT ) and ϕk =
6 (kT ,P hT ) in the transverse plane. The quark or antiquark densities (in lowercase symbols) depend
on xB and on the transverse momentum pT of the parton relative to the proton. The fragmentation
functions (in uppercase symbols) depend on z and on the transverse momentum kT of the parton
relative to the hadron h (or the transverse momentum −zkT of h relative to the parton).6 We note
that some of the convolutions in (40) acquire an explicit minus sign when the integrals over pT and
kT are carried out, see e.g. App. D in [15]. As remarked in [16], the convolutions (41) factorize into
separate transverse momentum integrals over parton densities and over fragmentation functions if one
forms weighted cross sections

∫
dP 2

hT |P hT/z |M dσijmn/(dz dP
2
hT ) with the power M = |m−n− i+ j|

we encountered in (32). We shall not discuss all parton densities and fragmentation functions here
(see [15, 16] for their definitions and [19] for an overview), but point out two terms of particular
interest in ongoing and planned experiments [21, 22, 23, 24]. The Sivers function f⊥1T together with
the usual unpolarized fragmentation function D1 appears in Imσ+−++, and the transversity distribution
h1 comes together with the Collins fragmentation function H⊥1 in Imσ+−+−. Many investigations have
shown these functions to reveal subtle aspects of the dynamics and the structure of hadrons, see
e.g. [20, 25] for recent reviews.

We notice in (40) that all possible cross sections and interference terms with transverse photons
are nonzero. The results of [15, 16, 18] show that all interference terms σij+0 are nonvanishing as well.7

Taking into account the Q2 behavior specified above and keeping in mind that sin θ is of order 1/Q,
we can now discuss the relative size of terms which have the same dependence on φ and φS in the
cross sections (33) and (34) for definite target polarization with respect to the beam.

1. For longitudinal target polarization the Sivers and Collins terms, Imσ+−++ and Imσ+−+−, come with
a factor sin θ and thus appear with the same power in 1/Q as the twist-three interference term
Im (σ++

+0 − σ−−+0 ). For a transversely polarized target, this twist-three term is multiplied with
sin θ and thus suppressed by 1/Q2 compared with the Sivers or the Collins term. Furthermore,
the Sivers term Imσ+−++ always comes together with Imσ+−00 , which is 1/Q2 suppressed according
to our above discussion.

2. For the φ independent terms in the cross section the situation is reverse (and well-known from
inclusive DIS). Here it is for transverse target polarization that both the twist-two cross section
difference σ++

++−σ−−++ and the twist-three term Reσ+−+0 appear with the same power in 1/Q. For
a longitudinally polarized target this twist-three term is accompanied by sin θ and thus down
by 1/Q2 compared with σ++

++ − σ−−++.

For the terms with cosφ and cos(φ − φS) in the polarized cross sections (33) and (34) the situation
is as in case 1, and for the terms with sin(2φ) and sin(2φ− φS) as in case 2.

In those cases where a “competing term” in the cross section is suppressed by 1/Q2, one may argue
that it should be consistently neglected in an analysis based on theoretical results with accuracy only
up to order 1/Q. After all, quantities like Imσ+−++ have themselves 1/Q2 suppressed contributions

6See [15] for a discussion of adequate reference frames in this context. We also remark that P h⊥ in the notation of
[15] is the same as P hT in the present paper.

7This is in contrast to semi-inclusive hadron-pair production in dependence of the angle φR discussed in Sect. 4,
where the calculation of [26] gives zero entries for several interference terms σij

++, σ
ij
+−

and σij
+0.
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in addition to the leading-twist part which one would like to extract. In general, subtracting one
particular type of power-suppressed term from an observable can improve the comparison with leading-
twist theory, but it can also make it worse, since different power-suppressed terms may have opposite
sign and partially compensate each other. Our case is however special. Taking for example the 1/Q2

suppressed quantities εImσ+−00 and sin θ
√
ε(1 + ε) Im (σ++

+0 − σ−−+0 ), which compete with Imσ+−++ in
the sin(φ − φS) term, we see that they come with a different dependence on ε. Since the σijmn are
independent of this variable, these power-suppressed terms can in general not compensate power
corrections in Imσ+−++ itself. This provides some theoretical motivation to try and separate such
contributions, which may be of practical relevance especially if a twist-two term is “accidentally”
small because the relevant parton distributions or fragmentation functions are.

Let us finally remark on loop corrections to the Born level formulae on which we have based our
discussion so far. At leading accuracy in 1/Q these have been recently investigated in [27, 28]. Note
that at next-to-leading order in αs there are hard-scattering graphs where two partons with transverse
momenta of order Q are produced, see Fig. 3b. It was emphasized in [27] that such graphs do not
contribute when P hT is small compared with Q and can be generated from the transverse momentum
dependence in the parton densities and fragmentation functions, as expressed in (41). They do
however contribute if one integrates the cross section over all P hT (or takes P hT weighted cross
sections as mentioned above). They produce effects at leading order in 1/Q and can be evaluated
using standard collinear factorization, with parton densities and fragmentation functions that are
integrated over the transverse parton momentum. In particular, these graphs generate an order αs

contribution to the longitudinal cross section σ++
00 , just as in the well-known case of inclusive DIS.

Explicit calculation for an unpolarized target shows that they also generate a cosφ and cos(2φ)
modulation in the cross section [29], described by the interference terms Re (σ++

+0 +σ−−+0 ) and Reσ++
+− .

The lepton polarization dependence for an unpolarized target is due to Im (σ++
+0 + σ−−+0 ). Because

of time reversal invariance, this term requires an absorptive part in the amplitude and thus appears
only at order α2

s in the large P hT region [30].

6 Exclusive meson production

Exclusive electroproduction of light mesons such as ℓp→ ℓρ0p or ℓp→ ℓπ+n provides opportunities to
study generalized parton distributions (GPDs), see [4, 31] for recent reviews. In the limit of large Q2

at fixed xB and t, the γ∗p amplitude factorizes into the convolution of a hard-scattering subprocess
with generalized parton distributions in the nucleon and the light-cone distribution amplitude of the
produced meson (see Fig. 4). The factorization theorem shows that the leading transitions in the
large Q2 limit have both the virtual photon and the produced meson longitudinally polarized, all
other transitions being suppressed by at least one power of 1/Q [32, 33]. This gives a hierarchy
opposite to the one we have encountered for semi-inclusive production in Sect. 5:

1. The only leading-twist observables are the longitudinal cross section σ++
00 and the interference

term σ+−00 .

2. Transverse-longitudinal interference terms σij+0 are at least one power of 1/Q down compared
with σ++

00 .

3. Cross sections and interference terms σij++ and σij+− with transverse photon polarization are
suppressed by at least 1/Q2 compared with σ++

00 .

Using the abbreviation

Γ′ =
αem

Q6

x2B
1− xB

(42)
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Figure 4: Example graphs for exclusive production of a meson M at large Q2. Instead of the proton
there may be a different baryon in the final state. The lower blobs represent twist-two generalized
parton distributions, and the upper blobs stand for the twist-two distribution amplitude of the meson.

the leading-twist results given in [4, 31] can written as8

1

Γ′
dσ++

00

dt
= (1− ξ2) |HM |2 −

(
ξ2 +

t

4M2
p

)
|EM |2 − 2ξ2 Re (E∗MHM ),

1

Γ′
Im

dσ+−00
dt

= −
√
1− ξ2

√
t0 − t
Mp

Im (E∗MHM ) (43)

for mesons with natural parity like ρ0, ρ+, f2, and as

1

Γ′
dσ++

00

dt
= (1− ξ2) |H̃M |2 − ξ2

t

4M2
p

|ẼM |2 − 2ξ2 Re (Ẽ∗MH̃M ),

1

Γ′
Im

dσ+−00
dt

=
√
1− ξ2

√
t0 − t
Mp

ξ Im (Ẽ∗M H̃M ) (44)

for mesons with unnatural parity like π0, π+, η. In the kinematical factors on the right-hand side9

we have used the scaling variable ξ and the smallest kinematically allowed momentum transfer −t0,
given by

ξ =
xB

2− xB
, −t0 =

4ξ2M2
p

1− ξ2 (45)

up to relative corrections of order xBM
2
p /Q

2, xB t/Q
2 and M2

h/Q
2. Note that

√
t0 − t ∝ |P hT |, so

that the behavior of Im dσ+−00 /dt illustrates our general result (32).
The quantities HM , EM , H̃M , ẼM are integrals over the GPDs H, E, H̃, Ẽ appropriate for the

production of the meson M (given in App. C for ℓp → ℓρ0p and ℓp → ℓπ+n). They depend on ξ, t
and Q2, where the dependence on Q2 is only logarithmic and reflects the familiar scaling violations
from loop corrections to the hard-scattering kernels. We note that for mesons with natural parity
both quark and gluon GPDs in general contribute at leading order in αs, whereas for mesons with
unnatural parity only quark distributions appear at this accuracy [31].

The interest of measuring Im dσ+−00 /dt in addition to dσ++
00 /dt is immediately clear from (43) and

(44). The combination of these two observables provides a handle to separate the contributions from
the GPDs H and E or H̃ and Ẽ, which describe different spin dependence.10 The nucleon helicity-
flip distributions Eq and Eg are of particular interest because they carry information about the

8The relation between the angle β used in [4] and the angles used here is sin β[4] = − sin(φ− φS)here .
9Their expressions for the case where outgoing baryon is not a nucleon can be found in [34].

10Unfortunately, these two observables are insufficient to uniquely determine both the size of the convolutions HM

and EM or H̃M and ẼM and their relative phase.
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contribution from the orbital angular momentum of quarks and gluons to the total spin of the proton
[5]. With the Q2 behavior discussed above, we find from (34) that with transverse target polarization
one can obtain Imσ+−00 from the sin(φ − φS) dependent term of the ℓp cross section, where it comes
together with the terms Imσ+−++ and sin θ Im (σ++

+0 − σ−−+0 ), both of which are suppressed by at least
1/Q2. In the cross section (33) for longitudinal target polarization, sin θ Imσ+−00 and Im (σ++

+0 −σ−−+0 )
contribute to the sinφ dependence with the same power of 1/Q, together with at least 1/Q2 suppressed
terms sin θ Imσ+−++ and sin θ Imσ+−+− . We note that a nonzero effect for this sinφ modulation has been
measured in ep→ eπ+n by HERMES [35].

As discussed in the previous section, one may want to extract separate γ∗p cross sections and
interference terms without an a priori assumption on their relative size. The leading-twist interference
term Imσ+−00 in (43) could for instance be “accidentally” small because EM is much smaller than HM

or because their relative phase is close to zero. Combining data for transverse and longitudinal target
polarization one can separate the terms Im (σ+−++ + εσ+−00 ), Imσ+−+− and Im (σ++

+0 − σ−−+0 ), provided
that one measures both the sin(φ − φS) and sin(φ + φS) dependence for a transversely polarized
target. Without the Rosenbluth technique one can however not isolate the longitudinal contribution
in Im (σ+−++ + εσ+−00 ), nor the longitudinal part from σT + εσL in the unpolarized cross section.

For electroproduction of vector mesons one experimentally finds that the ratio σL/σT is not very
large for Q2 of a few GeV2 [10, 36], which means that the predicted power suppression of transverse
photon amplitudes is numerically not yet very effective in this kinematics. In addition one finds that
transitions with the same helicity for photon and meson are clearly larger than those changing the
helicity [10, 36], which is commonly referred to as approximate s-channel helicity conservation. The
largest power suppressed amplitudes are hence those from a transverse photon to a transverse vector
meson. A possibility to remove this particularly important type of power correction in an analysis is
to measure the decay angular distribution of the vector meson, say in ρ→ π+π−. Here we can make
use of our result in Sect. 4. If only the dependence on the polar decay angle ϑ but not the azimuth
ϕ is considered, our cross section formulae (33) and (34) can be made differential in cos ϑ. Different
helicities of the ρ do not interfere if ϕ is integrated over, so that for all m,n and i, j we have

dσijmn(γ
∗p→ π+π−p)

d(cos ϑ)
=

3 cos2ϑ

2
σijmn(γ

∗p→ ρLp) +
3 sin2ϑ

4
σijmn(γ

∗p→ ρT p) (46)

with γ∗p cross sections and interference terms for longitudinal and transverse ρ polarization. Since
σij++(ρL) is the product of two s-channel helicity nonconserving amplitudes, it should be negligible

in σij++(ρL) + εσij00(ρL), unless ε is small. Using the ϑ dependence in (46) to project out the ρL
contribution from the sin(φ − φS) term in the cross section will hence help toward isolating the
twist-two observable σ+−00 (ρL).

We finally mention that an angular analysis analogous to (46) can also be performed for the
production of continuum π+π− pairs, where one can measure the interference between partial waves
with different total spin of the pion pair, see [37, 31] and [38]. The ϑ dependence for interference terms
dσ+−mn/(d cos ϑ) is the same as for the terms dσ++

mn/(d cos ϑ) accessible with an unpolarized target.

7 Positivity constraints

In Sect. 3 we introduced γ∗p cross sections and interference terms for specific polarization states. The
γ∗p cross section must be positive or zero for any polarization state of the photon-proton system, so
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that
∑

ijmn(c
i
m)∗ σijmn c

j
n ≥ 0 for arbitrary complex coefficients cim. This means that the matrix

M =




σ++
00 i Im σ+−00 (σ++

+0 )
∗ (σ−++0 )

∗ −(σ−−+0 )
∗ (σ+−+0 )

∗

−i Imσ+−00 σ++
00 (σ+−+0 )

∗ (σ−−+0 )
∗ (σ−++0 )

∗ −(σ++
+0 )

∗

σ++
+0 σ+−+0 σ++

++ σ+−++ σ++
+− i Imσ+−+−

σ−++0 σ−−+0 (σ+−++)
∗ σ−−++ i Imσ−++− (σ++

+−)
∗

−σ−−+0 σ−++0 (σ++
+−)

∗ −i Imσ−++− σ−−++ −(σ+−++)
∗

σ+−+0 −σ++
+0 −i Imσ+−+− σ++

+− −σ+−++ σ++
++




(47)

formed by M(mi)(nj) = σijmn must be positive semidefinite, where the rows and columns are ordered

such that they correspond to the combinations (0,+1
2 ), (0,−1

2 ), (+1,+1
2 ), (+1,−1

2 ), (−1,+1
2 ), (−1,−1

2 )
of photon and proton helicities. In writing down (47) we have used the relations (28) from hermiticity
and parity invariance. We have not been able to find closed expressions for the eigenvalues of this
matrix (and if they existed, they might be too complicated to be useful in practice). More tractable
sets of positivity bounds can be obtained if one uses that submatrices of M are also positive semidef-
inite. As simple example is the submatrix for longitudinal photons, formed from the first and second
rows and columns of M , whose positivity implies

| Imσ+−00 | ≤ σ++
00 . (48)

The submatrix for transverse photons, formed by the third to sixth rows and columns of M , has
eigenvalues

2e1,2 = σ++
++ − Imσ+−+− + σ−−++ + Imσ−++−

±
√
(σ++

++ − Imσ+−+− − σ−−++ − Imσ−++−)
2 + 4(Re σ++

+− − Imσ+−++)
2 + 4(Re σ+−++ + Imσ++

+−)
2 ,

2e3,4 = σ++
++ + Imσ+−+− + σ−−++ − Imσ−++−

±
√
(σ++

++ + Imσ+−+− − σ−−++ + Imσ−++−)
2 + 4(Re σ++

+− + Imσ+−++)
2 + 4(Re σ+−++ − Imσ++

+−)
2 . (49)

Note that e3 and e4 are obtained from e1 and e2 by changing the signs of all proton helicity-flip terms
σ+−mn . All four eigenvalues (49) must be nonnegative, which implies

| Imσ+−+−| ≤ σ++
++ , | Imσ−++−| ≤ σ−−++ , (50)

and

(
Re σ++

+− − Imσ+−++

)2
+
(
Reσ+−++ + Imσ++

+−

)2
≤

(
σ++
++ − Imσ+−+−

)(
σ−−++ + Imσ−++−

)
,

(
Re σ++

+− + Imσ+−++

)2
+
(
Reσ+−++ − Imσ++

+−

)2
≤

(
σ++
++ + Imσ+−+−

)(
σ−−++ − Imσ−++−

)
. (51)

One can easily obtain inequalities that are weaker than (51) but involve fewer interference terms, e.g.
by omitting one of the squared terms on the left-hand-sides. Adding the bounds (51) one has

(Reσ++
+−)

2 + (Imσ+−++)
2 + (Reσ+−++)

2 + (Im σ++
+−)

2 ≤ (σ++
++) (σ

−−
++)− (Imσ+−+−) (Imσ−++−), (52)

where any of the terms on the left-hand side can be omitted. We note that the submatrix of M
formed by the 1st, 2nd, 4th and 5th rows and columns has eigenvalues given in analytic form similar
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Figure 5: Region in the plane of σL and Imσ+−00 allowed by the positivity bounds (48) and (54).

to (49), as well as the submatrix formed by the 1st, 2nd, 3rd and 6th rows and columns. This provides
inequalities similar to (51) which involve different cross sections and interference terms.

As already mentioned, the dependence of the polarized ℓp cross section on φ and φS allows one to
separate all γ∗p cross sections and interference terms, except for

σ++
ε = 1

2(σ
++
++ + σ−−++) + εσ++

00 = σT + εσL, Imσ+−ε = Im(σ+−++ + εσ+−00 ), (53)

whose individual contributions from transverse and longitudinal photons can only be disentangled by
the Rosenbluth technique. Let us show how the bounds (51) restrict the longitudinal contributions
εσL and ε Im σ+−00 to the measurable combinations σ++

ε and Imσ+−ε . For simplicity we start from
the bound (52) and omit the term Re σ+−++, whose extraction requires measurement of the angular
dependence in a double spin asymmetry. We then have

(A− εσL) (B − εσL)− (C − ε Imσ+−00 )2 ≥ D, εσL ≤ 1
2 (A+B), (54)

where

A = σ++
ε + 1

2 (σ
++
++ − σ−−++), B = σ++

ε − 1
2(σ

++
++ − σ−−++), C = Imσ+−ε ,

D = (Re σ++
+−)

2 + (Imσ++
+−)

2 + (Imσ+−+−) (Im σ−++−) (55)

are measurable without Rosenbluth separation. The corresponding allowed region in the plane of σL
and Imσ+−00 is bounded on the right by a branch of the hyperbola defined by (A− εσL) (B − εσL)−
(C − ε Imσ+−00 )2 = D. Together with |Imσ+−00 | ≤ σL this leaves the shaded region shown in Fig. 5.
Note that this region depends on ε, both explicitly through the factors multiplying σL and Imσ+−00 in
(54) and implicitly through σ++

ε and Imσ+−ε in A, B and C. Stronger restrictions on σL and Imσ+−00
are obtained in the same manner if one starts with the two bounds (51), each of which can be written
in the form (54) with suitable coefficients A, B, C, D.

8 Deeply virtual Compton scattering

In this section we discuss the specific case of DVCS, which is measured in the exclusive electropro-
duction process

ℓ(l) + p(P )→ ℓ(l′) + γ(q′) + p(P ′), (56)

where a real photon with momentum q′ now plays the role taken in the previous sections by the
produced hadron h with momentum Ph. We use the same kinematical variables as before, introduced
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Figure 6: Graphs for virtual Compton scattering (a) and for the Bethe-Heitler process (b).

in Sect. 2 and in (25) and (45). In particular, the azimuthal angle φ is defined as in Fig. 1 with Ph

replaced by q′.
DVCS is one of the most valuable sources of information about generalized parton distributions.

One reason is that in the reaction (56) Compton scattering interferes with the Bethe-Heitler process,
see Fig. 6. The ℓp cross section thus receives contributions

dσ(ℓp→ ℓγp) = dσVCS + dσBH + dσINT (57)

from Compton scattering and from the Bethe-Heitler process, as well as from their interference term.
The Compton part dσVCS of the cross section has the same general structure as discussed in Sect. 3.
With suitable kinematics and observables, one can however also access the interference term dσINT ,
which has a simple linear dependence on the helicity amplitudes of the subprocess γ∗p → γp (as
opposed to a quadratic dependence in dσVCS ). In addition, the interference term provides access to
the phases of these subprocess amplitudes.

In the generalized Bjorken limit of large Q2 at fixed xB and t, the Compton amplitude can be
written as the convolution of hard-scattering kernels with GPDs [39]. The detailed dependence of
the ℓp cross section on these convolutions has been given in [40]11 at the leading and first subleading
order in 1/Q. To see which combinations of GPDs are measurable with which polarization, we give
here the expression of the interference term at leading order in 1/Q,

dσINT

dxB dQ2 dt dφ dψ
≈ − eℓ

α3
em

2π2
y2

Q4

2− xB
|t|

Mp

Q

√
2

ε(1− ε)
1

P (cosφ)

×
(
cosφRe M̂++ + Pℓ

√
1− ε2 sinφ Im M̂++

+ SL
[
sinφ Im M̂ L

++ + Pℓ

√
1− ε2 cosφRe M̂ L

++

]

+ ST cos(φ− φS)
[
sinφ Im M̂ S

++ + Pℓ

√
1− ε2 cosφRe M̂ S

++

]

+ ST sin(φ− φS)
[
cosφ Im M̂ N

++ − Pℓ

√
1− ε2 sinφRe M̂ N

++

] )
, (58)

where eℓ = ±1 is the charge of the lepton beam. Notice that the factor

P (cos φ) = 1− 2 cosφ

√
2(1 + ε)

ε

1− ξ
1 + ξ

t0 − t
Q2

+O
( 1

Q2

)
(59)

from the lepton propagators in the Bethe-Heitler amplitude influences the φ dependence of the cross
section. This effect is formally of order 1/Q but can be rather important in experimentally relevant

11Note that the angles used in [40] are related to the ones used here by φ[40] = [π−φ ]here and ϕ[40] = [π−φS +φ ]here .
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kinematics, also because P (cosφ) appears in the denominator of (58). The coefficients appearing in
(58) are linear combinations of γ∗p → γp helicity amplitudes with both photons having helicity +1.
They can be written in terms of Compton form factors as

M̂++ =
√
1− ξ2

√
t0 − t
2Mp

[
F1H + ξ(F1 + F2)H̃ −

t

4M2
p

F2 E
]
, (60)

M̂ L
++ =

√
1− ξ2

√
t0 − t
2Mp

[
F1H̃ + ξ(F1 + F2)

(
H +

ξ

1 + ξ
E
)
−
( ξ

1 + ξ
F1 +

t

4M2
p

F2

)
ξẼ
]
,

M̂ S
++ =

[
ξ2
(
F1 +

t

4M2
p

F2

)
− t

4M2
p

F2

]
H̃ −

( t

4M2
p

+
ξ2

1 + ξ

)
ξ(F1 + F2) E

+

[( t

4M2
p

+
ξ2

1 + ξ

)
F1 +

t

4M2
p

ξF2

]
ξẼ − ξ2(F1 + F2)H ,

M̂ N
++ = − t

4M2
p

(
F2H− F1 E

)
+ ξ2

(
F1 +

t

4M2
p

F2

)
(H + E)− ξ2(F1 + F2)

(
H̃ +

t

4M2
p

Ẽ
)
,

with the Dirac and Pauli form factors F1 and F2 of the proton evaluated at momentum transfer t. The
term with superscript S (“sideways”) contributes most strongly to the cross section for transverse
target polarization in the hadron plane, and the term with superscript N (“normal”) contributes
most for target polarization perpendicular to the hadron plane, according to the respective factors
cos(φ−φS) and sin(φ−φS) in (58). The Compton form factors are given as integrals over GPDs and
read

H(ξ, t) =
∑

q

e2q

∫ 1

−1
dxHq(x, ξ, t)

(
1

ξ − x− iε −
1

ξ + x− iε

)
+O(αs),

H̃(ξ, t) =
∑

q

e2q

∫ 1

−1
dx H̃q(x, ξ, t)

(
1

ξ − x− iε +
1

ξ + x− iε

)
+O(αs), (61)

where the sums are over quark flavors q with eu = 2
3 and ed = es = −1

3 . The expressions for E and
Ẽ are analogous to those of H and H̃, respectively. In (61) we have suppressed the dependence of
the Compton form factors on Q2, which arises at order αs in analogy to the scaling violation in deep
inelastic structure functions.

We see in (58) that single beam or target spin asymmetries project out the imaginary parts of
the Compton form factors, which according to (61) are just GPDs at x = ±ξ to leading order in αs.
The real part of M̂++ appears in the unpolarized ℓp cross section, and the real parts of the other
three combinations in double spin asymmetries. From (60) one readily finds that separation of all
four Compton form factors is possible.

Since ξ is small in a wide range of experimentally relevant kinematics, it is instructive to write

M̂ S
++ = − t

4M2
p

[
F2H̃ − F1 ξẼ

]
− ξ t

4M2
p

[
(F1 + F2)E − F2 ξẼ

]
+ ξ2O(H, E , H̃, ξẼ) ,

M̂ N
++ = − t

4M2
p

[
F2H− F1E

]
− ξ t

4M2
p

(F1 + F2) ξẼ + ξ2O(H, E , H̃) . (62)

For counting powers of ξ we use ξẼ rather than Ẽ in comparison with H, because the contribution to
Ẽ from pion exchange scales like ξ−1, see [4, 31]. The only combination in (60) where the helicity-flip
distribution E is not kinematically suppressed compared with other GPDs turns out to be M̂ N

++,
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which comes with an angular dependence like sin(φ−φS) cos φ or sin(φ−φS) sinφ in the interference
term. Note that one may rewrite

cos(φ− φS)
[
sinφ Im M̂ S

++ + Pℓ

√
1− ε2 cosφRe M̂ S

++

]

+sin(φ− φS)
[
cosφ Im M̂ N

++ − Pℓ

√
1− ε2 sinφRe M̂ N

++

]

=
1

2

[
sin(2φ− φS) Im (M̂ S

++ + M̂ N
++) + Pℓ

√
1− ε2 cos(2φ − φS)Re (M̂ S

++ + M̂ N
++)

+ sinφS Im (M̂ S
++ − M̂ N

++) + Pℓ

√
1− ε2 cosφS Re (M̂ S

++ − M̂ N
++)

]
, (63)

which results in a simpler form of the angular dependence, as we have used in Sect. 3. In terms of
dominant contributions from the different GPDs, the combinations M̂ S

++ and M̂ N
++ appear however

more natural than their difference and sum, see (62).
Let us now take a closer look at how the different Compton form factors can be extracted from

the polarized ℓp cross section. To this end we need the general dependence on the angles φ and φS ,
which has the form [40]

Q4

y2
dσBH

dxB dQ2 dt dφ dψ
=

1

|t|
1

ε

1

P (cos φ)

(
2∑

n=0

cos(nφ) cBH
nU + SLPℓ

1∑

n=0

cos(nφ) cBH
nL (64)

+ STPℓ

[
cos(φ− φS)

1∑

n=0

cos(nφ) cBH
nS + sin(φ− φS) sin φ sBH

1N

])
,

Q4

y2
dσVCS

dxB dQ2 dt dφ dψ
=

1

Q2

1

1− ε

(
2∑

n=0

cos(nφ) cVCS
nU + Pℓ sinφ s

VCS
1U

+ SL

2∑

n=1

sin(nφ) sVCS
nL + SLPℓ

1∑

n=0

cos(nφ) cVCS
nL

+ ST
[
sin(φ− φS)

2∑

n=0

cos(nφ) cVCS
nN + cos(φ− φS)

2∑

n=1

sin(nφ) sVCS
nS

]

+ STPℓ

[
cos(φ− φS)

1∑

n=0

cos(nφ) cVCS
nS + sin(φ− φS) sinφ sVCS

1N

])
,

Q4

y2
dσINT

dxB dQ2 dt dφ dψ
= − eℓ

1

|t|
Mp

Q

1

ε
√
1− ε

1

P (cos φ)

(
3∑

n=0

cos(nφ) cINT
nU + Pℓ

2∑

n=1

sin(nφ) sINT
nU

+ SL

3∑

n=1

sin(nφ) sINT
nL + SLPℓ

2∑

n=0

cos(nφ) cINT
nL

+ ST
[
sin(φ− φS)

3∑

n=0

cos(nφ) cINT
nN + cos(φ− φS)

3∑

n=1

sin(nφ) sINT
nS

]

+ STPℓ

[
cos(φ− φS)

2∑

n=0

cos(nφ) cINT
nS + sin(φ− φS)

2∑

n=1

sin(nφ) sINT
nN

])
,

where the subscripts U , L, S, N of the angular coefficients c and s indicate an unpolarized target, or
longitudinal, sideways or normal target polarization as explained after (60). These angular coefficients
depend on ε, xB , Q

2, t, and the kinematic prefactors have been chosen such that (up to logarithms
in Q2) they all remain finite or vanish in the limit of large Q2 relevant for the extraction of GPDs.12

12For the purpose of our presentation we have normalized the coefficients c, s differently than in [40], and we have
chosen a different notation to indicate the target spin dependence.
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For ε → 0 the coefficients behave like cn, sn ∼
√
ε
n
, and for ε → 1 the coefficients accompanied by

the lepton polarization Pℓ vanish like
√
1− ε whereas the others remain finite. We see in (64) that

generically σBH dominates over σVCS in generalized Bjorken kinematics (where |t| ≪ Q2) except if
ε is sufficiently close to 1. The interference term lies in between σBH and σVCS , and it can most
directly be isolated from the difference of cross sections for positive and negative lepton beam charge.
Furthermore, we see that the Bethe-Heitler contribution depends only on the product of beam and
target polarizations, so that it drops out in single beam or target spin asymmetries. Unless ε is close
to 1 these asymmetries will then be dominated by the interference term, with smaller contributions
from the Compton cross section.

Let us now discuss the dynamical content and the power behavior in Q of the angular coefficients
in the generalized Bjorken limit. It is independent of the target polarization, and in the following we
write cn and sn to collectively denote the coefficients with subscripts U , L, S, N . Detailed formulae
and references can be found in [40]. It is understood that the power behavior discussed in the following
is modified by logarithms in Q2 for the Compton and interference terms.

1. The Bethe-Heitler coefficients cBH
n and sBH

n behave like 1/Qn.

2. The leading coefficients in the Compton cross section are the cVCS
0 , which (up to logarithms)

become independent of Q in the Bjorken limit. They are quadratic in the twist-two Compton
form factors H, E , H̃, Ẽ introduced above, which parameterize γ∗p→ γp amplitudes with equal
helicity of the initial and final state photon.

cVCS
1 and sVCS

1 are suppressed by 1/Q and can be expressed through products of twist-two with
twist-three Compton form factors. The twist-three form factors parameterize the γ∗p → γp
amplitudes with a longitudinal γ∗. They contain a part involving the twist-two GPDs already
discussed and another part involving matrix elements of quark-antiquark-gluon operators in the
nucleon, in analogy with the sum g1 + g2 of inclusive structure functions for DIS.

cVCS
2 and sVCS

2 become again Q independent in the Bjorken limit, but only start at order αs.
They can be expressed through products of the Compton form factors H, E , H̃, Ẽ with form
factors parameterizing γ∗p → γp transitions from photon helicity −1 to +1. These transitions
have a twist-two contribution from gluon transversity distributions, coming of course with a
factor of αs. They also have a twist-four contribution from quark distributions, which comes
without αs but with a 1/Q2 suppression [41]. Very little is known about gluon transversity
distributions, so that we cannot say which piece will be more important in given kinematics.

3. In the interference term the leading coefficients are cINT
1 and sINT

1 , as we already saw in (58).
They provide access to the linear form factor combinations (60) and thus are especially important
observables to extract from measurement.

The coefficients cINT
0 involve the Compton form factors H, E , H̃, Ẽ as well, but they come with

a kinematical suppression factor 1/Q.

The coefficients cINT
2 and sINT

2 are linear combinations of twist-three Compton form factors
and scale as 1/Q. If one is willing to make the Wandzura-Wilczek approximation, where quark-
antiquark-gluon matrix elements are neglected, these observables provide additional information
on the twist-two distributions H, E, H̃, Ẽ.

cINT
3 and sINT

3 are sensitive to the γ∗p → γp transitions from photon helicity −1 to +1 and
thus have a Q independent piece starting at order αs.

For completeness we remark that the angular coefficients cINT and sINT of the interference term
receive further contributions [31], which are suppressed compared with those just discussed by either
powers of 1/Q2 or of αs. We need not discuss them here, given the accuracy we aim at.
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Using the transformation rules from Sects. 2.1 and 2.2 and some relations between trigonometric
functions, one can readily extract from (64) the ℓp cross sections for longitudinal and for transverse
target polarization with respect to the beam, as we did in Sect. 3. We restrict ourselves here to an
unpolarized lepton beam, where the Bethe-Heitler cross section does not contribute to the PL or PT

dependence as mentioned above. In suitable kinematics one is then most sensitive to the interference
term, which reads

P (cosφ)
dσINT

dxB dQ2 dt dφ

∣∣∣∣∣
PT=0,Pℓ=0

∝ terms independent of PL

+ PL

(
sinφ

[
cos θ sINT

1L − sin θ cINT
0N + 1

2 sin θ (c
INT
2N − sINT

2S )
]

+ sin(2φ)
[
cos θ sINT

2L − 1
2 sin θ (c

INT
1N + sINT

1S ) + 1
2 sin θ (c

INT
3N − sINT

3S )
]

+ sin(3φ)
[
cos θ sINT

3L − 1
2 sin θ (c

INT
2N + sINT

2S )
]
− sin(4φ) 1

2 sin θ (c
INT
3N + sINT

3S )

)
(65)

for longitudinal and

(1− sin2θ sin2φS)
3/2

cos θ
P (cosφ)

dσINT

dxB dQ2 dt dφ dφS

∣∣∣∣∣
PL=0,Pℓ=0

∝ terms independent of PT

+ PT sin(φ− φS)
(
cos θ cINT

0N + 1
2 sin θ s

INT
1L

+ cosφ
[
cos θ cINT

1N + 1
2 sin θ s

INT
2L

]
+ cos(2φ)

[
cos θ cINT

2N − 1
2 sin θ (s

INT
1L − sINT

3L )
]

+ cos(3φ)
[
cos θ cINT

3N − 1
2 sin θ s

INT
2L

]
− cos(4φ) 1

2 sin θ s
INT
3L

)

+ PT cos(φ− φS)
(
sinφ

[
cos θ sINT

1S + 1
2 sin θ s

INT
2L

]
+ sin(2φ)

[
cos θ sINT

2S + 1
2 sin θ (s

INT
1L + sINT

3L )
]

+ sin(3φ)
[
cos θ sINT

3S + 1
2 sin θ s

INT
2L

]
+ sin(4φ) 1

2 sin θ s
INT
3L

)
(66)

for transverse target polarization, where we have not displayed kinematic factors which are indepen-
dent on φ and φS . For both polarizations, the sinφ or cosφ modulation in the cross section (at
given φ − φS) receives its main contribution from the coefficients sINT

1L , cINT
1N or sINT

1S containing the
twist-two Compton form factors, with corrections that are power suppressed by 1/Q2. In the sin(2φ)
and cos(2φ) terms, however, the coefficients sINT

2L , cINT
2N and sINT

2S containing the twist-three Compton
form factors appear together with other terms of the same order in 1/Q. Their extraction would
require at least subtraction of the contributions from the coefficients sINT

1L , cINT
1N , sINT

1S , which are
presumably larger than sINT

3L , cINT
3N , sINT

3S according to our discussion above.
A rigorous separation of sINT

1L , cINT
1N and sINT

1S from the 1/Q2 corrections that accompany them in
the sinφ or cosφ terms requires measurement of almost the full φ and φS dependence in the polarized
cross sections (the information from the sin(4φ) and cos(4φ) terms is redundant). For small enough
sin θ one can however easily estimate whether these 1/Q2 corrections are numerically important,
provided one knows the size of the sin(2φ) term in (65) and of the sin(φ − φS), sin(φ − φS) cos(2φ)
and cos(φ− φS) sin(2φ) terms in (66).
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9 Summary

We have studied the analysis of lepton scattering on a polarized spin 1
2 target. Starting point was the

general transformation between target spin states defined with respect to the lepton beam direction,
which are relevant in experiment, and spin states defined with respect to the lepton momentum
transfer q = l − l′, which are natural to describe the hadronic part of the process in the one-photon
exchange approximation. This transformation can easily be incorporated at the level of polarized
cross sections and of spin asymmetries.

Detailed information on spin properties of the nucleon can be obtained in semi-inclusive and in
exclusive ℓp scattering from the distribution in the azimuthal angle φ between the lepton scattering
plane and a suitably defined hadron plane. We have given the general form of the ℓp cross section
for longitudinal or transverse target polarization relative to the beam direction, expressed in terms
of polarized cross sections and interference terms of the γ∗p subprocess. Our main results, given in
(29), (33) and (34) are valid for all kinematics and thus hold in a variety of dynamical contexts.
They can be used for any definition of a hadronic plane, provided this definition depends only on
four-momenta of the γ∗p subprocess. They readily generalize to cross sections which depend on
kinematical variables describing the hadronic final state, provided these variables are invariant under
a parity transformation. Combining the information from both longitudinal and transverse target
polarization, one can separate all γ∗p cross sections and interference terms, except for the contributions
from longitudinal and transverse photons to σT + εσL and to its counterpart Im (σ+−++ + εσ+−00 ) for
proton helicity-flip. These contributions can be disentangled only by Rosenbluth separation, which
requires measurement at different ℓp energies. Without this possibility, one can however use positivity
constraints to obtain limits on σL and Imσ+−00 from measuring the angular dependence of the polarized
ℓp cross sections.

We have then studied the particular cases of semi-inclusive deep inelastic scattering and of exclu-
sive meson production. We have also considered the case of deeply virtual Compton scattering, where
a special angular and polarization dependence arises from the interference term between Compton
scattering and the Bethe-Heitler process. Taking into account the power behavior in the large scale Q
for each of these reactions, we have in particular discussed how from measured cross sections one can
separate twist-two and twist-three quantities, whose analysis in QCD provides specific information
on the role of spin at the interface of partons and hadrons.

The parameter controlling the mixing of polarizations defined relative to the beam or to the
photon direction is γ = 2xBMp/Q. For deep inelastic measurements at low xB one can thus typically
neglect this mixing and directly use cross section formulae like (29) and (64) for the analysis. For
moderate or high xB, our results allow one to take these mixing effects into account without further
model assumptions.

Acknowledgments

We gratefully acknowledge discussions with D. Boer, J. Collins, P. Mulders, and with many of our
colleagues from the HERMES collaboration. Special thanks go to D. Hasch, O. Nachtmann and W.-
D. Nowak for valuable remarks on the manuscript. The work of M.D. is supported by the Helmholtz
Assciation, contract number VH-NG-004. S.S. acknowledges support by the DESY Summer Student
Programme and thanks DESY for warm hospitality.

27



A Interference terms vs. cross sections

Interference terms σijmn between different polarizations in the process γ∗p → hX can be expressed
through cross sections in a suitable basis of spin states. In particular, we have

Reσ+−++ = 1
2

(
σ→→++ − σ←←++

)
,

Imσ+−++ = −1
2

(
σ↑↑++ − σ↓↓++

)
, Imσ+−00 = −1

2

(
σ↑↑00 − σ

↓↓
00

)
, (67)

where the labels → and ← respectively denote definite proton spin projection +1
2 and −1

2 along the
x′′ axis, and the labels ↑ and ↓ definite proton spin projection +1

2 and −1
2 along the y′′ axis. In other

words, Reσ+−++ corresponds to the asymmetry for transverse proton polarization in the hadron plane,
and Imσ+−++ and Imσ+−00 to asymmetries for transverse proton polarization normal to the hadron
plane.

The interference terms between photon helicities +1 and −1 can be written as combinations of
cross sections for linear photon polarization. With photon polarization vectors

ǫ→ = (0, 1, 0, 0), ǫ↑ = (0, 0, 1, 0), ǫր =
1√
2
(0, 1, 1, 0), ǫտ =

1√
2
(0,−1, 1, 0) (68)

defined in coordinate system C ′′ we have

Reσ++
+− = 1

2

(
σ++
↑↑ − σ++

→→

)
,

Imσ++
+− = 1

2

(
σ++
րր − σ++

տտ

)
,

Im (σ+−+− + σ−++−) = 1
2

(
σ→→րր − σ←←րր − σ→→տտ + σ←←տտ

)
,

Im (σ+−+− − σ−++−) = − 1
2

(
σ↑↑↑↑ − σ

↓↓
↑↑ − σ↑↑→→ + σ↓↓→→

)
. (69)

B Inclusive deep inelastic scattering

Our derivation in Sect. 3 can readily be adapted to inclusive lepton-proton scattering ℓp→ ℓX. The
inclusive hadronic state X does not define a hadron plane, so that we introduce γ∗p cross sections
and interference terms for photon and proton polarizations with respect to the lepton plane spanned
by q and l′ in the target rest frame (cf. also our remarks at the end of Sect. 4). In the inclusive case
we have additional symmetry relations σjinm = σijmn since the inclusive hadronic tensor is constrained
by time reversal invariance.13 We then obtain for the ℓp cross section

[
αem

2π

y2

1− ε
1− xB
xB

1

Q2

]−1
dσ

dxB dQ2

∣∣∣∣∣
PT=0

=
1

2

(
σ++
++ + σ−−++

)
+ εσ++

00

+ PLPℓ

[
cos θ

√
1− ε2 1

2
(σ++

++ − σ−−++) + sin θ
√
ε(1 − ε)σ+−+0

]
(70)

for longitudinal and
[
αem

4π2
y2

1− ε
1− xB
xB

1

Q2

]−1
dσ

dxB dQ2 dψ

∣∣∣∣∣
PL=0

=
1

2

(
σ++
++ + σ−−++

)
+ εσ++

00

− PTPℓ cosψ

[
cos θ

√
ε(1− ε) σ+−+0 − sin θ

√
1− ε2 1

2
(σ++

++ − σ−−++)

]
(71)

13For the semi-inclusive or exclusive case time reversal does not constrain the hadronic tensor (23) since it transforms
the states |hX〉 from “out” to “in” states. In the inclusive case this is of no consequence because one sums over a
complete set of final states.
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for transverse target polarization. Using the relation between ψ and φS from Sect. 2.2 and taking into
account that σ+−+0 is now purely real because of time reversal invariance, we see that this corresponds to
the φ independent terms of our formulae (29), (33) and (34) for semi-inclusive or exclusive scattering.
It is customary to introduce double spin asymmetries [42]

A‖(xB , y,Q
2) =

dσ→(PL = +1)− dσ→(PL = −1)− dσ←(PL = +1) + dσ←(PL = −1)
dσ→(PL = +1) + dσ→(PL = −1) + dσ←(PL = +1) + dσ←(PL = −1)

∣∣∣∣∣
PT=0

,

A⊥(xB , y,Q
2) = − 1

cosψ

dσ→(ψ)− dσ→(ψ + π)− dσ←(ψ) + dσ←(ψ + π)

dσ→(ψ) + dσ→(ψ + π) + dσ←(ψ) + dσ←(ψ + π)

∣∣∣∣∣
PT=1,PL=0

(72)

where σ→ denotes right-handed and σ← left-handed lepton beam polarization. Note that the ψ
dependence of the numerator is divided out in A⊥. One further introduces asymmetries A1 and A2

for the subprocess γ∗p→ X, which are related to the usual inclusive structure functions by

A1(xB , Q
2) =

g1 − γ2g2
F1

, A2(xB , Q
2) =

γ(g1 + g2)

F1
. (73)

The relation between lepton and photon asymmetries is usually given in the form [43]

A‖ = D (A1 + ηA2), A⊥ = d (A2 − ζA1), (74)

where

D =
1− (1− y)ε

1 + εR
, η =

γyε

1− (1− y)ε , d = D

√
2ε

1 + ε
, ζ = η

1 + ε

2ε
(75)

with R = σL/σT . In our notation this reads

A‖ =
1

1 + εR

[
cos θ

√
1− ε2 A1 + sin θ

√
2ε(1− ε) A2

]
,

A⊥ =
1

1 + εR

[
cos θ

√
2ε(1 − ε) A2 − sin θ

√
1− ε2 A1

]
. (76)

Comparing with (70) and (71) we identify

A1 =
σ++
++ − σ−−++

σ++
++ + σ−−++

, A2 =

√
2σ+−+0

σ++
++ + σ−−++

. (77)

The factors (1 + εR)−1 = σT /(σT + εσL) in (76) reflect that the γ∗p asymmetries are defined with
respect to the transverse cross section σT . Positivity of the matrix (47) implies |σ+−+0 | ≤ (σ++

00 σ++
++)

1/2

and we thus recover the bound
|A2| ≤

√
1
2(1 +A1)R (78)

derived in [44].

C Integrals for exclusive meson production

For definiteness we give here the convolution integrals appearing in (43) and (44) for ℓp→ ℓρ0p and
for ℓp→ ℓπ+n. Results for other channels can be found in [4, 31, 34]. To leading order in αs one has
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Hρ0 =
4παs

9

fρ√
2

∫ 1

0
dz

φρ(z)

z(1 − z)

∫ 1

−1
dx

[
1

ξ − x− iε −
1

ξ + x− iε

]
(79)

×
[
2

3
Hu(x, ξ, t) +

1

3
Hd(x, ξ, t) +

3

8

Hg(x, ξ, t)

x

]
,

H̃π+ =
4παs

9
fπ

∫ 1

0
dz

φπ(z)

z(1− z)

∫ 1

−1
dx

[
2

3

1

ξ − x− iε +
1

3

1

ξ + x− iε

][
H̃u(x, ξ, t) − H̃d(x, ξ, t)

]

with the meson decay constants fρ ≈ 209 MeV and fπ ≈ 131 MeV and the respective light-cone
distribution amplitudes normalized as

∫ 1
0 dz φ(z) = 1. Our definitions of GPDs are such that for ξ = 0,

t = 0 and x > 0 they are related to the usual parton densities in the proton as Hq(x, 0, 0) = q(x),
Hg(x, 0, 0) = xg(x) and H̃q(x, 0, 0) = ∆q(x) [31]. The convolutions Eρ0 and Ẽπ+ are obtained from

(79) by replacing H with E and H̃ with Ẽ.
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