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Abstract. Snake “resonances” are classified in terms of the invarjaintfeeld and the amplitude
dependent spin tune. Exactly at snake “resonance” thegedemtinuous invariant spin field at most
orbital amplitudes.

PROLOGUE

This is an extended version of the paper with the same titiighed in the proceedings
of the conference SPIN20C [1]. A key aspect of the origiaglgr was that the invariant
spin field for snake “resonances” is irreducibly discontinsiat most orbital amplitudes.
However, details were omitted owing to the page limit. In theantime other papers
[, 5] have appeared which discuss the invariant spin fietshake “resonances” and it
has become clear that it would be useful to extend [1] to giveendetails.

We begin by presenting a slightly polished version of thgioal paper. Then the
additional material is presented as an addendum. Thearitaéire also updated.

INTRODUCTION

Spin motion in storage rings and circular accelerators istrategantly systematised in
terms of the invariant spin field (ISF) and the amplitude deleat spin tune (ADST).
Here we apply them in the context of snake "resonances”. Wl briefly recapitu-
lating some necessary basic ideas. For more detail€istg[4'b

Spin motion in electric and magnetic fields at the 6—dimaeraiphase space point
and positiorns around the ring, is described by the T-BMT precession equdﬁ/ds =
Q(z;s) x S [M, ] whereS is the spin expectation value (“the spin”) in the rest frarhe o
the particle and(Z;s) contains the electric and magnetic fields in the laborafBing
ISF, denoted by:(Z;s), is a 3—vectofield of unit length obeying the T-BMT equation
along particle orbit$z(s); s) and fulfilling the periodicity conditiom(Z; s + C) = i(Z; s)
whereC is the circumference. Thug ¥ (zZ;s);s + C) = A(M(Z;s);s) = R, (% 5)i(Z; s)
whereM(Z; s) is the new phase space vector after one turn startibgrads andr,_,(7; s)
is the corresponding spin transfer matrix. The scalar profiu= S - 7 is invariant along
an orbit, since both vectors obey the T-BMT equation. Thuk véspect to the local ~
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the motion ofS is simply a precession aroumd The fieldr"can be constructed at each
reference energy where it exists without reference to idds spins.

The chief aspects of the ISF are that: 1) For a turn—to—twariant particle distri-
bution in phase space, a distribution of spins initiallygaéd along the ISF remains
invariant (in equilibrium) from turn—to—turn, 2) for integple orbital motion and away
from orbital resonances the ISF determines the maximurmatike time averaged po-
larisationP, . = |(n(Z;s))| on a phase space torus at eaciWwhere() denotes the average
over the orbital phases, 3) under appropriate conditigissan adiabatic invariant while
system parameters such as the reference energy are sloidg,v4) it provides the
main axis for orthonormal coordinate systems at each poiphase space which serve
to define the ADST which in turn is used to define the conceppi®rbit resonance.

These coordinate systems are constructed by attachingtheo unit vectors:;(z; s)
anduz(Z;s) to all (Z,s) such that the setsi{, i, 7) are orthonormal. Like, thefields i1
anduy are 1-turn periodicin: i;(Z; s+ C) = i1;(zZ; s) for ie{1, 2}. With the basis vectors
i1 andu> we can quantify the rate of the above mentioned spin premessounda’
it is the rate of rotation of the projection 6fonto theus3, ii> plane. Except on or close
to orbital resonance, the fieldg(zZ;s) andu»(Z;s) can be chosen so that the rate of
precession is constant and independent of the orbital pHgs,55,57]. The number of
precessions per turn “measured” in this way is called the spie. The spin tune’s(J),
depends only on the orbital amplitudes (actiahshence the name ADST. The choice
of someui(Z;s) anduz(Z;s) satisfying the conditiow;(zZ; s+ C) = i1;(Z;s) for ie{1,2}
is not unique. An infinity of others can be chosen by suitabtatrons of the:;"around
n. These lead to thequivalence class of spin tunes obtained by the transformation:
Vs(J) = Vs(J) + lo+ 1101 + 1202 + 1303 for any integersd where theQ(J)'s are the
tunes on a torus of integrable orbital motibriThe ADST provides a way to quantify
the degree of coherence between the spin and orbital matidrtheereby predict how
strongly the electric and magnetic fields along particleterdtisturb spins. In particular,
the spin motion can become very erratic close to shi@—orbit resonance condition
vs(f) = mo+ m101 + moQ2 + m3Q3 where then’s are integers. At these resonances
the ISF can spread out so tiR, is very small. Examples of the behaviour®f near
spin—orbit resonance and the application of a generalisgidgart—Stora description of
the breaking of the adiabatic invariance/efvhile crossing resonances during variation
of system parameters can be founcini €7 120, 11]. Note théle resonance condition
is not expressed in terms of the spin tun@) on the closed orbit, 2) a “tune” describing
spin motion but depending on orbital phases could not be mgau in the spin—orbit
resonance condition, 3) if the system is on spin—orbit rasoa for one spin tune of
the equivalence class, itis on resonance for all othersehealy; andu, do not obey
the T-BMT equation along an orhif(s);s). But at spin—orbit resonance, they can be
chosen so that a spiis at rest in its localis, io, 1) System. Thems1Z;s) andiiz(Z; s)
do obey the T-BMT equation so that the I8[;%s) is not unique.

Nowadays we emphasise the utility of the ISF for defining iopiim spin distri-
butions. However, it was originally introduced for bringithe combined semiclassi-

1 For a recent detailed discussion of these conceptsfisee [3].
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cal Hamiltonian of spin—orbit motion into action—anglerfofor calculating the effects
of synchrotron radiatiori’ 12]. The initial Hamiltonian isitten asHs o = %"(Qljﬁ—
02J2+ Qal3) + Q- S. By viewing the spin motion in thef iy, i) Systems, a new Hamil-
tonian in full action—angle forn#ti22, = 27 Q! J; + Q45 + 03J4) + Zvs(J')Js is ob-
tained which is valid at first order il[\"]. This emphasises again that, as with all action—
angle formulations, the spin frequency cannot depend otabghases. Moreover, it is
easy to show that at orbital resonance, (ik.+ k1Q1+ k2Q2 + k3Q3 = 0 for suitable
integersk) the “diagonalisation” of the Hamiltonian (i.e. finding the, iio) might not
be possible’9]. Thus at orbital resonance the ADST may nist.e2n the other hand,
one avoids running a machine on such resonances. The s@rotuthe closed orbit
Vo = Vs(0) always exists and so doeg(s) = (0;s).

For our present purposes there are two kinds of orbital mswes: resonances where
at least one of th@’s is irrational and those where all are rational. We write tational
tunes ax; = a;/b; (i = 1,2,3) where thes; andb; are integers. Then for the second
type, the orbit is periodic overturns where: is the lowest common multiple of the.
This opens the possibility that in this case the ISF at €&ch can be obtained (up to a
sign) as the unit length real eigenvector of théurn spin map (c.f. the calculation af ~
from the 1-turn spin map on the closed orbit.). However, threesponding eigentune
¢V extracted from the complex eigenvaluks= ¢*2%Ve, depends in general on the
orbital phases at the startiggThus in general; is not a spin tune and should not be
so named: 3]. Neverthelesifs very large the dependencewfon the phases can be
very weak so that it can approximate well the ADST of nearbgtional tunes. This is
expected heuristically since the influence of the startimgsp can be diluted on forming
the spin map for a large number of turns. At non—-zero ampsudoth for irrational or
rationalQ’s, the eigentune of the 1-turn spin map usually has no palysignificance.
Of course, it normally depends on the orbital phases andditresponding eigenvectors
are normally not even solutions of the T-BMT equation.

For non—-resonant orbital tunes, the spin tune can be oltaisiag the SODOM-II
algorithm 1] whereby spin motion is written in terms of twomponent spinors and
SU(2) spin transfer matrices. Thenctional equation A(M(Z;s);s) = R, (Z;5)A(Z;5)
is then expressed in terms of a Fourier representatiort, tine orbital phases, of the
spinors and of the 1-turn SU(2) matrices. The spin tune ap@sahe set of eigentunes
of aneigen problem for Fourier components andn'is reconstructed from the Fourier
eigenvectors. SODOM-II delivers the whole spin field on thei$/ at the chosen.

THE SINGLE RESONANCE MODEL

In perfectly aligned flat rings with no solenoids, iS5 vertical andvg is in the equiv-
alence class containingyy where yy is the Lorentz factor on the closed orbit and
a is the gyromagnetic anomaly of the particle. In the absericgkew quadrupoles,
the primary disturbance to spin is then from the radial mégrfeelds along verti-
cal betatron trajectories. The disturbance can be verygtemd the polarisation can
fall if the particles are accelerated through the conditigfh = Kk = ko £+ Q2 where
mode 2 is vertical motion. This can be understood in termdef‘single resonance
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model” (SRM) whereby a rotating wave approximation is madevhich the contri-
bution to Q from the radial fields along the orbit is dominated by the keuhar-
monic atk with strengthe(J2). The SRM can be solved exactly and the ISF is given
by [F5] (@) = sgn(d) (0éz + £(é1c0S@y + é3singy)) /02 + €2 whered = ayp — K,

@ is the orbital phaseés, ey, e3) are horizontal, vertical and longitudinal unit vec-
tors and the convention-e, > 0 is used. The tilt of: "away from the verticahg is
|arcsir{e /v 82 + €2)| so that it is 90 at & = 0 for non—zer. At large|d|, the equilib-
rium polarisation directions(J,, @; s), are almost parallel tag{s) but during acceler-
ation throughd = 0, 7 varies strongly and the polarisation will change if the adiz
invariance of/s violated. The change ik for acceleration through = 0 is given by
the Froissart—Stora formula. The ADST which reduces g on the closed orbit is
Vs = sgnd)v/ 32+ €2+ k. Note that the conditiod = 0 isnot the spin—orbit resonance
condition. On the contrary, aspasses through zerg jumps by Z with our convention
for n and avoids fulfilling the true resonance condition: for et with non—zerc,
ayp is just a parameter. In this simple modelexists and is well defined near spin—
orbit resonances for afd,. This is also true in more general cases if orbital resonance
avoided.

THE SINGLE RESONANCE MODEL WITH A PAIR OF SIBERIAN
SNAKES

Snake “‘resonances”

Polarisation loss while accelerating througyk= 0 can be reduced by installing pairs
of Siberian Snakes, magnet systems which rotate spinsibgiependently of around
a “snake axis” in the machine plane. For example, one putsha&es at diametrically
opposite points on the ring. Thep-e2 = +1 in one half ring and-1 in the other. With
the snake axes relatively at 9@ is in the equivalence class containingIfor all y.
For calculations one often represents the snakes as elewfergro length (“pointlike
snakes”). Then if, in addition, the effect of vertical bedait motion is described by the
SRM, and orbital resonances are avoided, calculations 3@DOM-II, perturbation
theory 5] and the treatment i [13] suggest thgt/z) is in the equivalence class
containing ¥2 too, independently ofyp but also of/,. Thus forQ- sufficiently away
from 1/2 no spin—orbit resonancesg(J,) = ko + Q» are crossed during acceleration
throughd = 0 and the polarisation can be preserved. This is confirmeddnking
calculations. However, such calculations and analyticakvshow that the polarisation
can still be lost if the fractional part @», [Q>], is d2/2b, where here, and latar, and
b, are odd positive integers witlipy < 2b, and where here and later the brackets
are used to signal the fractional part of a number. This |s¢healled “snake resonance
phenomenon” and it also has practical consequeii= M. &specially for smalb,.
Such a/Q,] fits the condition 12 = (1—a2)/2+ by[Q2]. But calculations (see below)
show that exactly atQ,] = a2/2b2 the ADST may not exist. If it doesn't, it isn’t in
the equivalence class foy2. Then we are not dealing with a conventional resonance
Vs(J2) = (1—dp) /2+b2[Q2] and the ternresonance is inappropriate. Depolarisation
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in this model has also been attributed to the fact that foraeroJ, the eigentune of
the 1-turn spin map, which depends @ is 1/2 at some values @b [""]. However,
such a quantity does not describe spin—orbit coherenc&eSnesonances” are usually
associated with acceleration but it has been helpful inratlieumstances €] T.10] to
begin by studying theratic properties of the system, namely with the ISF. We now do
that for the SRM with two snakes for representative, pararset

Numerical study

Figure 1 showsP,  (just before a snake) anes for 25000 equally spacefD-]'s
between 0 and 0.5 far = 0.4 andd = 0. At each[Q>], 71 is calculated by stroboscopic
averaging 4] € 25 1@ turns) at 500 equally spaceg in the range - 27T and P
is obtained by averaging over thege The ADST is obtained from SODOM-II. If the
ADST exists SODOM-II delivers a part of the equivalence slammely the spectrum
[+0.5+4+ 1,Q>] for a range of contiguous evénrestricted by the necessarily finite size
of the matrix of Fourier coefficients. Only evép are allowed by the algorithm. For
irrational Q» the range ofi» is large. For rationa, the spectrum can include0.5
but is otherwise highly degenerate or contains none or jugra few of the required
memberg+0.5+ [20»]. Thus the existence of an ADST is easily checked. The central
horizontal row of points in figure 1 shows the common memp@b of the equivalence
class of the ADST at the values @, where the ADST exists. There is an ADST
for most [Q2]’'s used. The first row of dots up from the bottom mafks| values
where there is no ADST. As expected, these are all at rati@halk such as 1/5, 1/4,
2/5...0r d»/2by = 1/6,3/14,3/10... and the[cvc] computed for thesgDy] show g
dependence The curved line shoiys and the second row of dots from the bottom
marks[Q»] values where the ISF obtained by stroboscopic averagingati¢onverge
for all phases. These coincide with sharp dipgijnand are at or nedQy] = do/2bo,

i.e in the snake “resonance” subset of {@g|’s in the first row. Thus snake “resonance”
is already a static phenomenon. Near s{@hl’s, the ISF, which for just one orbital
mode is a closed curve in three dimensions, becomes exyem@lplicated as Strives
to satisfy its defining conditions. Right &0,] = d»/2b, the nonconvergence occurs
at[@/2m = j/2b, for integersj = 1,...,2b, and, moreoverthe ISF is discontinuous
at these phases 2. For [Qs] = a2/4b2 (az < 4b,), P, and the ISF show no special
behaviour. These observations are consistent with thebative resulti 7] that for
mid—plane symmetric systems,should be well behaved near even but may show
exotic behaviour close to oda, = b,. As expectedf, and the ISF also show no
special behaviour folQ,] = ay/b2 (a2 < b2). Some snake “resonances” such as that at
[02] = 1/30 are narrower than 0.00002[if2] and are missed in this scaf), also has
several dips at values ;] (e.g. at 0.341) which appear to have no special significance,
but which should still be avoided at storage. The resultfér< [Q,] < 1.0 are the
reflection in 0.5 of the curves and points shown. Qualitatigamilar results are obtained

2 Note that in[lB] it was convenient to require that the magneid electric fields and the ISF were smooth
in @ ands. Here we drop that requirement since we are dealing with tsatiéh pointlike snakes.
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with equally distributed odd pairs of snakes set to giye- 1/2. The ISF and,  usually
vary significantly withs.
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FIGURE 1. P, (left axis) and a component of the ADST (right axis) for theNsRith 6 =0, = 0.4
and with 2 Siberian Snakes with axes at @dd O.
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FIGURE 2. The three components of ) for the SRM with 2 Siberian Snakes with axes at 86d
0° and for[Q7] = 1/6. Viewing point: just before a snak&.= 0 ands = 0.4.



Addendum

A typical example for an ISF at a snake “resonance” is showigure 2. This shows
the components of the ISF f@@,] = 1/6 ande = 0.4. In this case they are obtained by
using the 6—turn spin map to calculate the veetdn the range 0< [/ 271 < 1/2bo,
namely O to 60 degrees, while applying the constraint thgliduld be continuous in
@. Then thenfor eachg, in this range is transported with the 1-turn spin map for
six, or more, turns. One sees thathHanges sign at values @ which are multiples of
60 degrees so that the ISF is discontinuous as advertisedsiXlsets of stray points
at[@/2m = 1/12,1/4... are at phaseg, where the 6—turn spin map is the identity.
At these phases Obtained in this way is arbitrary and the algorithm deliveatues
dominated by numerical noise. Of course, if the ISF is regamesd as the locus of points
on the surface of the unit 2—sphere, this ISF gives disjaagieents. It is also easy
to demonstrate that the positions of the discontinuities lwa shifted. Thus at snake
“resonances” the invariant spin field is not only discontins but alsaion—unique and
to an extent which goes far beyond the non—uniqueness athémegp, at which the
6—turn spin map is the identity. The ISF shows analogouswhetiaat other snake
“resonances”. This is in stark contrast to the case, sayhefpure SRM. Note that
discontinuities would not be allowed for irratiori@,], but that they are not prohibited
for rational[Q>]. Moreover, theorems on uniqueness of the ISF require trstemde of
a spin tune and that the system is away from orbital resonaeourse, for snake
“resonances” with very high values 6%, the ISF and the corresponding configuration
of equilibrium polarisation is very complicated. It is thé&r from clear whether the
ISF is a useful concept for these simple models involving pree plane of orbital
motion and singular, i.e., non—physical fields, although¢aurse, such models have
been instrumental in presaging the loss of polarisatioreioesl in real storage rings
[, 8, 0].

The ISF obtained from the real eigenvector of the multi-&pim map is also non—
unique for[Qy] = d»/4b,, namely at thoség/2m where the &,—turn spin map is the
identity. Moreover, additional discontinuities in thesigan be added by hand, thereby
enhancing the choice of ISF’s. But in contrast to the casenake “resonances” such
discontinuities remain optional.

Further aspects of these matters will be reported elsewhere

Itis instructive to compare the discontinuous curves inregiwith the smooth curves
in figures 7 and 8 in'|2}. These are also said to represent ISF's at snake “resoriances
The vectors corresponding to the curves in figure 2 satisfyTHBMT equation by
construction and they are single valued[¢/2m as required for an ISF. However,
if the vectors for the curves in figures 7 and 8 [2] are tramsgul according to the
T-BMT equation, they are not single valued[ipp/2m]. Alternatively, if those curves
are taken to represent single—valued functionggef2r, as depicted, then they do not
represent spin motion, i.e., motion according to the T-BM\jjliagion. Either way, the
curves in those figures do not represent ISF’s at snake “ses@s”.

3 It is also shown infi2] that the curve in figure 1 can be repredizy the MILES algorithm by the same
author. MILES, like SODOM-II, is based on SU(2) and Fouriguansions.
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SUMMARY

A snake “resonance” is at rootsautic phenomenon characterised by an invariant spin
field which, for the simple models discussed here, is irrddyaliscontinuous ing,

for most orbital amplitudes. Moreover, on and near snaksdmance”, there is no
amplitude dependent spin tune so that the snake “resorfantékese models are
not simple spin—orbit resonances. The mechanism, in tefrig tr polarisation loss
during acceleration through= 0 at and near sudi,]’s is under study.

We thank K. Heinemann, G. H. Hoffstaetter and J.A. Ellisonueeful discussions.
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