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This work ontains a systemati treatment of single partile Synhrotron Radiation and some ap-

pliation to realisti beams with given ross setion area, divergene and energy spread. Standard

theory relies on several approximations whose appliability limits and auray are often forgotten.

We begin remarking that on the one hand, a paraxial approximation an always be applied without

loss of generality and with ultra relativisti auray. On the other hand, dominane of the ael-

eration �eld over the veloity part in the Lienard-Wiehert expressions is not always granted and

onstitutes a separate assumption, whose appliability is disussed. Treating Synhrotron Radia-

tion in paraxial approximation we derive the equation for the slow varying envelope funtion of the

Fourier omponents of the eletri �eld vetor. Calulations of Synhrotron Radiation properties

performed by others showed that the phase of the Fourier omponents of the eletri �eld vetor

di�ers from the phase of a virtual point soure. In this paper we present a systemati, analytial de-

sription of this phase shift, alulating amplitude and phase of eletri �eld from bending magnets,

short magnets, two bending magnet system separated by a straight setion (edge radiation) and

undulator devies. We pay partiular attention to region of appliability and auray of approx-

imations used. Finally, taking advantage of results of analytial alulation presented in redued

form we analyze various features of radiation from a omplex insertion devie (set of two undulators

with a fousing triplet in between) aounting for the inuene of energy spread and eletron beam

emittane.

PACS numbers: 41.60.Ap, 41.60.-m, 41.20.-q

I. INTRODUCTION

About sixty years have passed sine the �rst, pioneer-

ing works on Synhrotron Radiation have been published

(see [1℄ and referenes therein). The way sientists on-

sider this phenomenon has drastially hanged during

this period. At �rst, Synhrotron Radiation was regarded

only as a detrimental fator, a limitation on the maximal

partile energy attainable with aelerators (see, for in-

stane, [2℄). Nowadays it is an outstanding researh tool

allowing ontinuous advanement of both fundamental

and applied sienes and it is used worldwide by tens

of thousands of sientists from many di�erent disiplines

like physis, hemistry, material sienes and strutural

biology.

The properties of Synhrotron Radiation an be de-

rived by applying the methods of lassial eletrodynam-

is to the motion of relativisti eletrons (or positrons) in

magneti strutures like bending magnets or undulators.

The theory of Synhrotron Radiation based on the works

by Iwanenko, Pomeranhuk and Shwinger has been de-

sribed in detail both in onvenient summaries [3℄ as well

as in textbooks [4, 5, 6, 7, 8, 9, 10℄.

On the one hand, these texts ontain derivation of fun-

damental equations desribing spetral-angular proper-

ties of Synhrotron Radiation in the far-zone for single

eletrons. A usual starting point for quantitative desrip-

�
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tions of these properties is provided by the formulas for

the Lienard-Wiehert �elds [4℄.

On the other hand, in relation with the onstrution

of beam lines at Synhrotron Radiation failities it is im-

portant to understand the modi�ations to single partile

treatment whih is due to realisti beams with given ross

setion area, divergene and energy spread.

This raises several questions. First, disussing �nite

eletron beam emittane e�ets, an obvious remark is

that, in the ase of seond generation light soures, the

emittane of the eletron beam was muh larger than the

radiation wavelength of interest. As a result, both pho-

tons and eletrons phase spae had the same hamiltonian

struture, and properties of radiation ould be treated on

the basis of geometrial optis. In reent years though,

more and more speialized and optimized Synhrotron

Radiation soures have started operation. During de-

sign and optimization of these soures muh emphasis

has been direted at reduing the transverse phase spae

area of the eletrons. Among the most exiting proper-

ties of today's third generation soures is the tiny vertial

emittane whih is an order of magnitude smaller than

1

�

A (for design parameters of an up-to-date soure see,

for instane, [11℄). In this ase geometrial optis annot

be applied any more and even basi properties like angu-

lar distribution of intensity at �xed frequeny, or spetral

intensity distribution at �xed observation angle should be

alulated applying full eletromagneti equations.

A seond question arises onsidering the features of un-

dulator insertion devies. In older soures, typial length

of insertion devies was about 1 � 2 m, while the dis-

mailto:gianluca.aldo.geloni@desy.de
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tane to the user station was of order 20� 30 m. In this

situation the asymptoti formulas for the far zone ould

be applied and the question of their appliability region

was of theoretial interest only. Nowadays installation of

20 meter-long undulators has been planned at PETRA

III (see [11℄) and distanes between soure and observer

of several tens of meters have been proposed. A similar

devie (a 25 m long segmented undulator with no fous-

ing elements between the segments) has been installed

and operates at SPring-8 (see [12℄). In this situation ap-

pliability region of far-�eld formulas and orretion for

near �eld e�ets are of atual pratial importane, not

to mention the interest for far infrared edge radiation.

Another problem is related with the inreasing om-

plexity of insertion devies. For instane at PETRA III

(see again [11℄), installation of two undulators segments

separated by a fousing triplet in between has been pro-

posed to obtain small vertial betatron funtions. Com-

putation of radiation harateristis from these novel de-

vies onstitute a rather hallenging problem.

Furthermore, a question whih is somewhat related to

all the previous ones is linked with the dramati inrease

of brilliane ahieved in third generation light soures

with respet to older designs, whih has triggered a

number of new tehniques and experiments unthinkable

before. Among the most exiting properties of today

third generation failities is the high ux of oherent x-

rays provided. The availability of intense oherent x-ray

beams has fostered the development of new oherene

based tehniques like utuation orrelation dynamis

[13, 14, 15, 16, 17, 18℄, phase imaging [19, 20, 21, 22℄,

and oherent x-ray di�ration (CXD) [23, 24, 25, 26℄.

In all these �elds, the understanding of the evolution of

transverse oherene properties along the beam line is

of uttermost importane: in partiular, both the beam

size and divergene should be taken into aount in the

evolution model.

As one an see these questions address quite di�erent

physial phenomena; yet they all belong to the �eld of

Synhrotron Radiation. This number of di�erent issues

stems from the fat that pratial appliations make use

of a very wide range of radiation wavelengths, from 0:1

�

A

to 100 �m, whih span over seven orders of magnitude. It

is no surprise that very di�erent problems arise when the

wavelength of interest is tuned to suh di�erent regions of

the eletromagneti spetrum. Considering, for instane,

bending magnet radiation, it is lear that near �eld e�ets

will be of pratial importane for FIR (Far Infra-Red)

appliations but hardly for X-ray radiation, beause of its

muh shorter radiation formation length. On the other

hand, the inuene of the emittane on X-ray radiation

will be important beause the magnitude of the emittane

is omparable with the radiation wavelength, but it will

be negligible when it omes to the haraterization of FIR

radiation properties, sine in this ase the wavelength of

interest is way larger than the emittane.

As a result, all the matters mentioned above are of

great pratial importane in some partiular region of

the spetrum, although they are systematially negleted

in Synhrotron Radiation textbooks and reviews. Rea-

tion of synhrotron-radiation-users ommunities to this

set of problems was the development of omputer odes

apable to alulate radiation properties from realisti se-

tups starting from �rst priniples [27, 28℄. At �rst glane

this settles all issues sine, at least from a pratial view-

point, users have the possibility to alulate all the prop-

erties they need.

Yet, omputer odes an alulate properties for a

given set of parameters, but an hardly improve physi-

al understanding, whih is partiularly important in the

stage of planning experiments. Understanding of orret

approximations and their region of appliability an sim-

plify many tasks a lot, inluding pratial and non-trivial

ones. The use of dimensional analysis in an analytial

framework is of uttermost importane to this goal. By

that, dimensionless quantities of physial interest an be

easily identi�ed. In partiular, dimensionless parameters

muh smaller (or muh larger) than unity always orre-

spond to simpli�ations of fundamental equations: most

physial theories originate from reognizing and taking

advantage of suh small (or large) quantities.

In ontrast, relying only on omputational power to

solve physial problems, besides being inelegant, would

automatially neglet the presene of small (or large) pa-

rameters and simpli�ations related to them. The lak,

or poor understanding of approximations involved in a

ertain theory will result, in its turn, in poor understand-

ing of the mehanisms involved in physial phenomena

whih would undoubtedly result in gross mistakes. More-

over, just a few odes are available, whih an be mod-

i�ed to aount for partiular situations (like oherene

properties or radiation harateristis from a omplex in-

sertion devie for instane) by a few experts only, while

there are about twenty failities eah with its own set of

partiular setups and situation to be aounted for.

We propose to overome all these diÆulties by devel-

oping a theory of Synhrotron Radiation whih aounts

for all omplexities analytially. Analytial approah will

help to understand physis of real Synhrotron Radiation

soures, thus �lling the gap between idealized textbook

analysis and atual situations. We will make expliit use

of small (or large) parameters involved in the desription

of ases of pratial interest. In this way we will redue

problems as muh as possible, to a level where physial

insight is easy, so that simple omputer odes, apable to

desribe the situation under study, an be developed also

by non-expert programmers. In this proess we will put

partiular are in the spei�ation of the region of appli-

ability and of the auray of the approximations made,

whih is usually negleted in analytial alulations.

In the next Setion we disuss methods for omputa-

tion of Synhrotron Radiation from a single partile on

a generi trajetory. We start reviewing the two algo-

rithms used today, the �rst based on Lienard-Wiehert

�elds, the seond on Lienard-Wiehert potentials. We

propose to start alulations from the very beginning
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by solving paraxial Maxwell equations for a given har-

moni of the �eld. This is, from a logial and eduational

viewpoint, the most natural way to perform alulations;

from a omputational viewpoint it is also the simplest

way. The use of a paraxial approximation is justi�ed

by the features of an ultra relativisti system harater-

ized by a Lorentz fator 

2

� 1: radiation formation

length is, then, muh longer than the wavelength, and

the radiation is distributed within a one with opening

angle muh smaller than unity. Maxwell equation for a

given harmoni of the �eld

�

E(r; !), whih has ellipti

harateristi, an be then transformed into a paraboli

equation. We solve this equation with the help of an ap-

propriate Green's funtion thus oming, in Setion II, to

a very generi expression for

�

E. We end the Setion by

addressing the obvious question of the relation between

our method, and the two algorithm introdued at the

beginning.

Subsequently we apply our expression to reover

some well-known and less well-known properties of Syn-

hrotron Radiation from bending magnets and undula-

tors, in Setion III and Setion IV respetively. This is

far from being a mere repetition of already known results.

In fat our method will prove superior when it omes to

physial understanding and determination of appliabil-

ity region and auray of approximations: this has, of

ourse, important appliation in estimation of pratial

quantities, like �eld intensities, with their auray. We

will also disuss in detail the methodologial issues about

de�nition of �elds and intensities from single devies. As

an example of appliation of our new understanding we

will show, in Setion V, how radiation harateristis

from a omplex setup an be disussed in very simple

terms. Finally, in Setion VI we ome to onlusions.

II. METHOD

A. Review of known methods

There are two basi methods whih are used to alu-

late Synhrotron Radiation harateristis.

The �rst [4, 5, 6, 7, 8, 9, 10℄ is based on Lienard-

Wiehert �elds. It is the better known of the two and it

is used in a very widespread way in textbooks. Lienard-

Wiehert �elds an be ustomary separated in a veloity

and an aeleration term. Usually, the aeleration part

alone is analyzed in Fourier omponents of the eletri

�eld vetor:

�

E(r

o

; !) = �

e



Z

1

�1

dt

0

n�

h

(n� �) �

_

�

i

jr

o

� r

0

(t

0

)j (1� n � �)

2

� exp

�

i!

�

t

0

+

jr

o

� r

0

(t

0

)j



��

; (1)

where (�e) is the eletron harge, n(t

0

) is the unit ve-

tor from the partile to the observer position, r

0

(t

0

) is

the partile position, r

o

is the observer position �(t

0

)

and

_

�(t

0

) are, respetively, the partile veloity, v(t

0

),

normalized to the speed of light  and its derivative, all

alulated at time t

0

. It is lear that use of Eq. (1) implies

that the so-alled veloity part of the �eld is negleted in

the omputation.

The seond method [27, 28, 29, 30℄ is based on Lienard-

Wiehert potentials. As an alternative to the use of

Lienard-Wiehert �elds as a starting point for omputa-

tions based on �rst priniples, a few authors of sienti�

researh papers start with the Lienard-Wiehert poten-

tials (A(r

o

; t); �(r

o

; t)). These an be deomposed in

their harmonis (

�

A(r

o

; !);

�

�(r

o

; !)) whih an be subse-

quently used to alulate

�

E(r

o

; !) aording to

�

E(r

o

; !) = �

i!e



Z

1

�1

dt

0

�

�

� � n

jr

o

� r

0

(t

0

)j

�

i

!

n

jr

o

� r

0

(t

0

)j

2

�

� exp

�

i!

�

t

0

+

jr

o

� r

0

(t

0

)j



��

: (2)

We failed to �nd textbooks using this seond method for

eduational purposes: although some authors (see [10℄

for instane) start their derivation with harmoni analy-

sis of potentials, when it omes to atual alulation of

Synhrotron Radiation they go bak to the �rst method

based on Lienard-Wiehert �elds.

Questions arise about the relation between Eq. (1)

and Eq. (2). First, in ontrast to Eq. (1), Eq. (2)

is exat, in the sense that the veloity �eld term is not

negleted. It is then natural to ask what are the ondi-

tions for whih the veloity �eld term in Eq. (1) an be

dropped, and with what auray this an be done. In

fat, when approximated expressions like Eq. (1) and its

speialization to partiular magneti systems (like un-

dulators and bending magnets) are found, speial are

should be taken in speifying their region of appliability

and auray; yet we failed to �nd, through referenes

[4, 5, 6, 7, 8, 9, 10℄ quantitative spei�ation of auray

of results obtained under given approximations. Seond,

Eq. (1) and Eq. (2) are used both in the far and in

the near �eld region and simpli�ed under the paraxial

approximation: it is important to understand relations

between the paraxial approximation and the far or near

�eld assumptions as well as region of appliability and

auray of results. Third, Eq. (1) is often used to-

gether with integration by parts and negleting the edge

terms after integration: in this ase it is interesting to

ask what are the onditions whih allow the edge terms

to be dropped. Moreover, as a remark to both methods,

we should note that, in general, one needs to know the

entire history of the eletron from t

0

= �1 to t

0

= 1

sine integration in Eq. (1) and Eq. (2) is performed be-

tween these limits. This statement should be interpreted,

physially, depending on the situation under study: inte-

gration should in fat be performed from and up to times
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when the eletron does not ontribute to the �eld any-

more. This does not present any problem in the ase, for

instane, of a irular motion beause the partile tra-

jetory is limited in spae. In pratial situation though,

one deals with radiation from a beamline whih is a om-

position of insertion devies, like undulators and bending

magnets, and straight setions. The requirement of in-

tegration over the entire history of the eletron poses,

then, the following methodologial problem: one has to

give a meaning to the onept of radiation from a given

insertion devie, independently of the trajetory followed

by the partile before and after the devie. This problem

will be disussed in more detail as we go through our pa-

per. In general one an break up the eletron trajetory

in several parts, orresponding to physial devies like

undulators, drifts and bending magnets, thus alulating

the integral in Eq. (1) or Eq. (2) along a �nite time

interval whih orresponds to a partiular devie. In do-

ing this, it is assumed that the observer is loated far

away enough from the devie, so that the veloity part

of the �eld is negligible with respet to the aeleration

part. In this way, again, dropping veloity �eld part in

Eq. (1) is justi�ed and the results from Eq. (1) and Eq.

(2) oinide. It is understood that di�erent ontributions

from di�erent devies must be aounted for with the or-

ret relative phase relation to get the total

�

E(r; !) as a

sum of the separate ontributions from single devies. In

this way onepts like radiation �eld from a undulator

or radiation �eld from a bending magnet have a well de-

�ned, pratially useful meaning as partial ontribution

to the total �eld at the observation point. The onept

of intensity is, instead, subtler, sine it involves alula-

tion of j

�

E(r; !) j

2

. In this ase then, also interferene

terms between di�erent devies should be aounted for,

in the most generi ase. Only when these are not im-

portant the total spetral intensity from a given beamline

an be broken up in the sum of separate terms from the

single devies, and radiation intensity from a undulator

or radiation intensity from a bending magnet are, then,

well-de�ned.

Finally, Eq. (1) is based on the integration of Maxwell

equation in time and in the subsequent harmoni anal-

ysis. This is quite involved from a logial viewpoint: it

is muh simpler to start with the equations for a given

harmoni ! so to obtain diretly

�

E after integration of

Maxwell equations. A similar omment an be made re-

garding the way Eq. (2) was obtained: �rst the potentials

were found, then their Fourier transform was taken. In

both ases one is bound to solve the full Maxwell equation

even though the ultra relativisti nature of the systems

onsidered in pratie allows systemati appliation of

a muh more onvenient paraxial approximation. Note

that, usually, paraxial approximation is applied, but only

at a later stage, whih often makes analytial derivations

more involved, and region of appliability and auray

of results diÆult to speify.

B. Derivation using paraxial Green's funtion

A system of eletromagneti soures an be onve-

niently desribed by its harge density �(r; t) and urrent

density j(r; t). In this paper we will be onerned about

a single eletron so that, using the Dira delta distribu-

tion, we an write

�(r; t) = �eÆ(r � r

0

(t)) (3)

and

j(r; t) = �ev(t)Æ(r � r

0

(t)) ; (4)

where r

0

(t) and v(t) are, respetively, the position and

the veloity of the partile at a given time t in a �xed ref-

erene frame. We will assume that the partile trajetory

is given a priori, and that Maxwell equations in vauum

allow a good desription of the soure �eld. In this ase

the magneti �eld B an be easily reovered when the

eletri �eld E is known simply remembering

B(r

0

; t) =

1



n�E (5)

where n is the unit vetor pointing from the retarded

position of the partile, r

0

(t

0

) to the position r

0

at time

t = t

0

+ r

0

(t

0

)=. Therefore in this paper we will onen-

trate on the eletri �eld E(r

0

; t).

Trivial manipulations of Maxwell equations in gs sys-

tem:

r�E = �

1



�B

�t

(6)

and

r�B =

4�



j +

1



�E

�t

(7)

give the well-known equation for the eletri �eld:



2

r� (r�E) = �

�

2

E

�t

2

� 4�

�j

�t

: (8)

With the help of the identity

r� (r�E) = r(r �E)�r

2

E (9)

and Poisson equation

r �E = 4�� (10)

we obtain the inhomogeneous wave equation for E



2

r

2

E �

�

2

E

�t

2

= 4�

2

r� + 4�

�j

�t

: (11)
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Eq. (11) is a partial di�erential equation of hyperboli

type. We introdue the Fourier transform

�

f (!) of a quan-

tity f(t) as follows:

�

f (!) =

Z

1

�1

dtf(t)e

i!t

; (12)

so that

f(t) =

1

2�

Z

1

�1

d!

�

f (!)e

�i!t

: (13)

Using the representation in Eq (13) for the quantities in

Eq. (11) we get



2

r

2

�

E + !

2

�

E = 4�

2

r�� � 4�i!

�

j : (14)

Eq. (14) is the well-known Helmholtz equation whih

has ellipti harateristi. Upon introdution of a �xed

artesian referene system (x; y; z), it is always possible

to de�ne a quantity

e

E suh that

�

E =

e

Ee

i!z=

: (15)

However this de�nition is useful only in the ase when

e

E varies slowly along z with respet to the length � =

2�=!: only in that ase, in fat, Eq. (15) is a useful

fatorization of

�

E as the produt of a fast and a slowly

varying funtion of z. With the help of Eq. (15) one an

write Eq. (14) as



2

e

i!z=

�

r

2

+

2i!



�

�z

�

e

E = 4�

2

r�� � 4�i!

�

j : (16)

Let us now write the equation for the soures with the

help of the urvilinear absissa s, simply de�ned as s =

vt. Here we assume that v =j v(t) j is a onstant. We

will use the general property

Æ[f(x)℄ =

X

i

Æ(x� x

i

)

j f

0

(x

i

) j

; (17)

where x

i

are the zeros of f(x). Then, we will regard

Æ(z � z

0

(t)) as Æ[f(t)℄, for any �xed value of z. The only

zero of f(t) will be readily indiated with t(z), whih is

the value of t for whih z � z

0

(t) = 0, while j f

0

(t(z)) j=

v

z

(z(t)). Therefore, with the help of Eq. (17) we an

write

Æ(z � z

0

(t)) =

1

v

z

(z)

Æ(t� t(z)) : (18)

Then, using s(z) = vt(z), Eq. (3) and Eq. (4) give

�(r

?

; z; t) = �

e

v

z

(z)

Æ

�

r

?

� r

0

?

(z)

�

Æ

�

s(z)

v

� t

�

(19)

and

j(r

?

; z; t) = �

e

v

z

(z)

v(z)Æ

�

r

?

� r

0

?

(z)

�

Æ

�

s(z)

v

� t

�

(20)

so that

��(r

?

; z; !) = �

e

v

z

(z)

Æ

�

r

?

� r

0

?

(z)

�

e

i!s(z)=v

(21)

and

�

j(r

?

; z; !) = �

e

v

z

(z)

v(z)Æ

�

r

?

� r

0

?

(z)

�

e

i!s(z)=v

:

(22)

By substitution in Eq. (16) we obtain

�

r

2

+

2i!



�

�z

�

e

E =

4�e

v

z

(z)

exp

�

i!

�

s(z)

v

�

z



��

�

�

i!



2

v(z)Æ

�

r

?

� r

0

?

(z)

�

�rÆ

�

r

?

� r

0

?

(z)

�

�

: (23)

Eq. (23) is still fully general and may be solved in any

�xed referene system (x; y; z) of hoie with the help

of an appropriate Green's funtion. In general,

e

E will

vary, in z

0

, on a harateristi length whih is related

with exp fi! (s=v � z=)g, whih enters in the Green's

funtion solution of Eq. (23) as a fator in the integrand.

As it will be learer after Paragraph IIC, as we integrate

along z

0

, the fator !(s(z

0

)=v � z

0

=) grows larger and

larger leading, eventually, to a highly osillatory behavior

of the integrand whih does not ontribute anymore to

the �nal integration result. The value of z

0

for whih

!(s(z

0

)=v � z

0

=) � 1 an be onsidered as a measure of

the value of z

0

for whih the integrand starts to display

suh osillatory behavior and it is naturally de�ned as the

radiation formation length L

f

of the system at frequeny

!. It is easy to see by inspetion that if v is sensibly

smaller than  (but still of order ), i.e. v �  but 1=

2

�

1, then L

f

� �. On the ontrary, when v is very lose

to , i.e. 1=

2

� 1, the terms !s(z

0

)=v and �!z

0

= tend

to ompensate so that L

f

� �. The exat expression for

L

f

depends on the partiular magneti system, i.e. on

s(z

0

), and on the frequeny of interest !.

Let us onsider the assumption 1=

2

� 1. We will hold

this assumption ful�lled throughout our paper. In gen-

eral, introdution of a small (or large) parameter in any

theory brings simpli�ations. In partiular the ultra rela-

tivisti approximationhas two onsequenes: �rst, as just

remarked, the radiation formation length is muh larger

than � and, seond, as it will be disussed in Paragraph

IIC, radiation is emitted in a narrow one of opening

angle muh smaller than unity. Aounting for these fea-

tures of the radiation, and onsidering an eletron mov-

ing on a given trajetory, there will always be, in pra-

tial ases of interest, some privileged referene system
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θx

θy

FIG. 1: Geometry and referene system for Synhrotron Ra-

diation problems in paraxial approximation.

(x; y; z) in whih Eq. (23) is simpli�ed in a paraxial form,

due to the ultra relativisti assumption, for some set of

observer points.

To apply suh paraxial approximation we should �rst

assume ultra relativisti motion and identify a main ob-

server P . Then we an de�ne a frame with the z axis

oriented as the tangent from some trajetory point T , to

P . As it will be disussed in Paragraph IIC, using this

frame we an desribe radiation at P from all points of

the trajetory with veloity vetor forming with the z

axis an angle muh smaller than unity. In other words,

for all these points 

2

z

� 1: this ondition is neessary

and suÆient for the appliability of the paraxial approx-

imation. This is not a restrition, in pratie, beause it

still keeps open the possibility of angles muh larger or

muh smaller than 1= (bending magnet or undulator

ase). The situation is desribed with a partiular exam-

ple for the ase of a irular motion, in Fig. 1. Note that

the referene frame used to desribe radiation at P an

be also used for observers in the neighborhood of P , pro-

vided that these form an angle muh smaller than unity

with respet to the veloity at T . Sine we presented,

as partiular example, the ase of a irular motion, it

is worth to underline the di�erene between the frame

depited in Fig. 1 and the standard frame used for Syn-

hrotron Radiation omputations in Fig. 2: using the

frame in Fig. 2 we will never be able to desribe the �eld

at to observer loations displaed along the x axis. This

is required, for instane, if one needs to alulate the au-

toorrelation funtion of the �eld at those two points.

On the ontrary, suh a desription is allowed with the

hoie of a frame like in Fig. 1.

Sine the radiation formation length is muh longer

than the wavelength,

e

E does not vary muh along z on

the sale of �, that is j �

z

e

E

x;y

j� != j

e

E

x;y

j. Therefore,

the seond order derivative with respet to z in the r

2

operator on the left hand side of Eq. (23) is negligible

with respet to the �rst order derivative. This means

that we an apply a paraxial approximation whih on-

FIG. 2: Standard referene frame for Synhrotron Radiation

omputations.

siderably simpli�es Eq. (23) as

�

r

?

2

+

2i!



�

�z

�

e

E

?

=

4�e



exp

�

i!

�

s(z)

v

�

z



��

�

�

i!



2

v

?

(z)Æ

�

r

?

� r

0

?

(z)

�

�r

?

Æ

�

r

?

� r

0

?

(z)

�

�

; (24)

where we onsider transverse omponents of

e

E only and

we substituted v

z

(z) with , having used the fat that

1=

2

z

� 1. Eq. (24) is Maxwell's equation in paraxial ap-

proximation. Note that this approximation transformed

Eq. (23) whih is an ellipti partial di�erential equation,

into Eq. (24), whih is of paraboli type.

The Green's funtion for Eq. (24), namely the solu-

tion orresponding to the unit point soure, satis�es the

equation:

�

r

?

2

+

2i!



�

�z

�

G(z

o

� z; r

?o

� r

?

)

= Æ(r

?o

� r

?

)Æ(z

o

� z) ; (25)

and, in an unbounded region, an be written expliitly

as

G(z

o

� z

0

; r

?o

� r

0

?

) = �

1

4�(z

o

� z

0

)

� exp

�

i!

j r

?o

� r

0

?

j

2

2(z

o

� z

0

)

�

: (26)

As usual we will denote soure oordinates with primes

and observer oordinates with the index o. With the aid

of the Green's funtion G, the solution of Eq. (24) an

be represented as

e

E

?

(z

o

; r

?o

; !) = �

e



Z

1

�1

dz

0

1

z

o

� z

0

Z

dr

0

?

�

�

i!



2

v

?

(z

0

)Æ

�

r

0

?

� r

0

?

(z

0

)

�

�r

0

?

Æ

�

r

0

?

� r

0

?

(z

0

)

�

�
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� exp

�

i!

�

j r

?o

� r

0

?

j

2

2(z

o

� z

0

)

+

�

s(z

0

)

v

�

z

0



���

;

(27)

where r

0

?

represents the gradient operator with respet

to the soure point. The integration over transverse o-

ordinates an be arried out leading to the �nal result:

e

E

?

(z

o

; r

?o

; !) = �

i!e



2

Z

1

�1

dz

0

e

i�

T

z

o

� z

0

��

v

x

(z

0

)



�

x

o

� x

0

(z

0

)

z

o

� z

0

�

x̂ +

�

v

y

(z

0

)



�

y

o

� y

0

(z

0

)

z

o

� z

0

�

ŷ

�

; (28)

where the total phase �

T

is given by

�

T

= !

�

s(z

0

)

v

�

z

0



�

+!

"

(x

o

� x

0

(z

0

))

2

+ (y

o

� y

0

(z

0

))

2

2(z

o

� z

0

)

#

(29)

Eq. (28) an be used in all generality to haraterize radi-

ation from an eletron moving on any trajetory as long

as the ultra relativisti approximation is satis�ed, and

a referene system suitable for paraxial approximation

exists, whih is always the ase in situation of pratial

interest. Note that both x̂ and ŷ polarizations terms in

Eq. (28) are a sum of two parts whih an be traed

bak to urrent and harge densities: in fat, the �rst

part, proportional to the partile veloity in the x or

y diretion, follows from the transverse urrent density

j

?

. The seond instead, follows from the gradient of the

harge density r�. Our result makes a onsistent use of

paraxial approximation and of harmoni analysis whih

brings simpliity and power to the method. In the fol-

lowing Setions we will show how Eq. (28) an be used

to haraterize bending magnet radiation and undulator

radiation.

C. Disussion

Following the previous derivation very natural ques-

tions arise whih regard the relation between our expres-

sion, Eq. (28), with Eq. (1) and Eq. (2) as well as the

appliability region and the auray of our Eq. (28).

In order to investigate these subjets we go bak to

the most general Eq. (14) and we note that it an be

solved by diret appliation of the Green's funtion for

the Helmholtz equation:

G(r

o

� r

0

) = �

1

4� jr

o

� r

0

j

exp

n

i

!



j r

o

� r

0

j

o

: (30)

Integrating by parts the term in r�� we have

�

E = �

Z

dr

0

"

i!

 jr

o

� r

0

j

�

��n�

�

j



�

+

��n

jr

o

� r

0

j

2

#

� exp

n

i

!



j r

o

� r

0

j

o

: (31)

Use of expliit expressions for ��, Eq. (21), and

�

j, Eq.

(22), leads straightforwardly to

�

E(r

o

; !) = �

i!e



Z

1

�1

dz

0

�

1

v

z

(z

0

)

�

� �n

jr

o

� r

0

(z

0

)j

�

i

!

n

jr

o

� r

0

(z

0

)j

2

�

� exp

�

i!

�

s(z

0

)

v

+

jr

o

� r

0

(z

0

)j



��

: (32)

Finally, remembering z

0

= v

z

t

0

we obtain Eq. (2). This

result simply on�rms that Eq. (2) is derived under most

general onditions; the derivation that we proposed from

diret use of �elds is muh less involved, from a logial

viewpoint, with respet to the original, whih makes use

of potentials (see [29, 30℄) and it may be interesting for

eduational purposes.

It is interesting to note that the only approximation

applied to Eq. (14) in order to obtain, �nally, Eq. (28)

was simply the paraxial approximation. We an easily

see that if we apply paraxial approximation to Eq. (2)

we get bak Eq. (28). Let us show how this is possible.

The hoie of ! depends on our interest. Then, our ul-

tra relativisti approximation implies a formation length

L

f

� �. Moreover in pratial ases, jr

o

�r

0

j will always

be at least of order L

f

, so that jr

o

�r

0

j � =! and, with

an auray �=(2�L

f

), Eq. (2) an be simpli�ed as

�

E(r

o

; !) = �

i!e



Z

1

�1

dt

0

� � n

jr

o

� r

0

(t

0

)j

� exp

�

i!

�

t

0

+

jr

o

� r

0

(t

0

)j



��

(33)

or, using again z

0

= v

z

t

0

, v

z

'  and also s = vt

0

�

E(r

o

; !) = �

i!e



2

Z

1

�1

dz

0

� � n

jr

o

� r

0

(z

0

)j

� exp

�

i!

�

s(z

0

)

v

+

jr

o

� r

0

(z

0

)j



��

: (34)

Remembering that

�

E

?

=

e

E

?

expfi!z

o

=g we write the

transverse �eld omponents as

e

E

?

(r

o

; !) = �

i!e



2

Z

1

�1

dz

0

�

?

� n

?

jr

o

� r

0

(z

0

)j

� exp

�

i!

��

s(z

0

)

v

�

z

0



�

+

�

jr

o

� r

0

(z

0

)j



�

z

o

� z

0



���

: (35)

In any situation, it is mathematially orret to expand

jr

o

� r

0

j as an in�nite sum of terms

jr

o

� r

0

j ' (z

o

� z

0

) +

jr

?o

� r

0

?

j

2

2(z

o

� z

0

)

+ ::: (36)
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Trunation of the series in Eq. (36) and subsequent sim-

pli�ation of the phase in the integrand of Eq. (35) is a

deliate business.

The �rst term of the expansion Eq. (36) naturally

anels the term �i!(z

o

� z

0

)= in the phase of Eq.

(35) so that one is left with phase ontributions due to

higher order terms from the expansion Eq. (36) and with

i!(s(z

0

)=v � z

0

=). This last ontribution depends on

s(z

0

) and an be spei�ed only when the magneti sys-

tem is spei�ed. As has already been said in Paragraph

II B, as we integrate along z

0

, !(s(z

0

)=v � z

0

=) grows

larger and larger leading, eventually, to a highly osilla-

tory behavior of the integrand whih does not ontribute

anymore to the �nal integration result. The value of z

0

for whih !(s(z

0

)=v � z

0

=) � 1 an be onsidered as a

measure of the value of z

0

for whih the integrand starts

to display suh osillatory behavior and it is naturally de-

�ned as the radiation formation length L

f

of the system

at frequeny !.

Another length ditated by the physis of the problem

is the natural size of the system. We will refer to it as the

harateristi length of the system and we will indiate

it with L

h

; for instane, in the ase of a irular motion,

L

h

is simply the irle radius.

Relation between L

h

and L

f

depends on the system.

In the ultra relativisti approximation we an say that

L

h

an be either muh larger or omparable to L

f

, but

in any ase never smaller, sine integration of the Green's

funtion is performed along a path length omparable

with L

h

. Moreover, in the ultra relativisti approxima-

tion the two terms !s(z

0

)=v and - !z

0

= nearly ompen-

sate leading to a formation length muh longer than � so

that L

f

� �, and therefore also L

h

� �. It should be

stressed that, although the previous properties are very

general, the relation between L

f

, L

h

and � depends on

the partiular physial situation under study and an be

better spei�ed only in relation with that situation: for

instane, in the ase of ultra relativisti motion on a ir-

ular trajetory L

f

= [�R

2

=(2�)℄

1=3

. Also, note that

if the ultra relativisti approximation annot be applied

anymore, then even the general saling laws between L

h

,

L

f

and � hange. For instane, when if v �  but  � 1,

one has L

h

� L

f

� �.

The expansion Eq. (36) makes sense only if !(s(z

0

)=v�

z

0

=) is smaller or omparable to unity sine the two

terms !s(z

0

)=v and �!z

0

= an be grouped together in

a useful way. One a ertain wavelength of interest is

�xed, the ondition !(s(z

0

)=v� z

0

=) � 1 determines the

formation length L

f

, whih an be used in the seond

term of Eq. (36). By imposing that also this seond

term is not larger than unity one obtains a ondition on

the observation points of interest:

jr

?o

� r

0

?

j

2

2(z

o

� z

0

)

2

<

�

�

2�L

f

� 1 ; (37)

where we assumed z

o

�z

0

>

�

L

f

. The third term in the ex-

pansion an be then negleted, together with seond and

next terms in the expansion of the denominator of the

integrand in Eq. (35), with an auray �=(2�L

f

). Note

that, whatever the magnitude of r

0

?

aross the beamline,

it follows from Eq. (37) that the square of the opening

angle of radiation r

2

?o

=z

2

o

, is muh smaller than unity.

This justify our attention to the transverse omponents

of

e

E only.

If we substitute the �rst two terms of Eq. (36) in the

phase of the integrand of Eq. (35), and the �rst term in

its denominator we �nd

e

E

?

(r

o

; !) = �

i!e



2

Z

1

�1

dz

0

�

?

� n

?

z

o

� z

0

� exp

�

i!

�

s

v

�

z

0



+

jr

?o

� r

0

?

j

2

2(z

o

� z

0

)

��

: (38)

that is just Eq. (28).

We demonstrated that appliation of paraxial approx-

imation to Eq. (2) gives us bak Eq. (28). This fat

is, however, quite obvious. In our derivation of Eq. (28)

we applied paraxial approximation to Maxwell equations

from the very beginning, while here we simply apply the

same approximation after solving Maxwell equations in

their more generi form. For onsisteny reasons we had

to obtain the same result.

The previous disussion tells that our approah is a

speialization of the more general approah desribed by

Eq. (2). The novelty in this, stems from the fat that

Synhrotron Radiation, by de�nition, applies to radia-

tion by ultrarelativisti partiles in magneti strutures;

in Paragraph II B we demonstrated that paraxial approx-

imation an always be applied to Maxwell equations in

the ase of ultrarelativisti partiles. Eq. (2) an always

be redued to Eq. (28) in the treatment of Synhrotron

Radiation. In other words, there is no point in starting

from Eq. (2) when treating Synhrotron Radiation prob-

lems: one may start, diretly, with the simpler Eq. (28)

without loss of generality.

Compared to Eq. (2), Eq. (28) is easier to apply for

analytial investigations, whose importane we already

stressed in the introdution, beause the paraxial ap-

proximation has been applied from the very beginning, so

that the approximationsmade, their region of appliabil-

ity and their auray ould be disussed independently

of the magneti system seleted.

The relation between our approah and the method

in Eq. (1) simpli�es then, to the relation between Eq.

(2) and Eq. (1). It is not straightforward to show this

relation beause Eq. (2) does not oinide with Eq. (1)

one the term in jr

o

� r

0

j

�2

is dropped. However, it

is straightforward to show that Eq. (2) is ompletely

equivalent to the expression for the Fourier transform of

the Lienard-Wiehert �elds inluding the veloity �eld

part. This an be shown in full generality, regardless of

the paraxial approximation. Eq. (2) an be written as

�

E(r

o

; !) = �e

Z

1

�1

dt

0

n

jr

o

� r

0

(t

0

)j

2
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� exp

�

i!

�

t

0

+

jr

o

� r

0

(t

0

)j



��

�

e



Z

1

�1

dt

0

� �n

(1� n ��)jr

o

� r

0

(t

0

)j

�

d

dt

0

exp

�

i!

�

t

0

+

jr

o

� r

0

(t

0

)j



��

; (39)

where we have used relation

1



d

dt

0

jr

o

� r

0

(t

0

)j = �n � � : (40)

Eq. (39) an be integrated by parts. When the edge

terms an be dropped (we will disuss this assumption

below) one obtains

�

E(r

o

; !) = �e

Z

1

�1

dt

0

n

jr

o

� r

0

(t

0

)j

2

� exp

�

i!

�

t

0

+

jr

o

� r

0

(t

0

)j



��

+

e



Z

1

�1

dt

0

d

dt

0

�

� �n

(1� n � �)jr

o

� r

0

(t

0

)j

�

� exp

�

i!

�

t

0

+

jr

o

� r

0

(t

0

)j



��

(41)

With the help of Eq. (40) and

dn

dt

0

=



jr

o

� r

0

(t

0

)j

[�� + n (n � �)℄ (42)

one obtains, from Eq. (41) the Fourier transform of the

Lienard-Wiehert �elds:

�

E(r

o

; !) = �e

Z

1

�1

dt

0

�

n� �



2

(1� n ��)

2

jr

o

� r

0

j

2

�

� exp

�

i!

�

t

0

+

jr

o

� r

0

(t

0

)j



��

�

e



Z

1

�1

dt

0

"

1

(1�n � �)

2

n� [(n� �)�

_

�℄

jr

o

� r

0

j

#

� exp

�

i!

�

t

0

+

jr

o

� r

0

(t

0

)j



��

: (43)

The only assumption made going from Eq. (39) to Eq.

(43) is that the edge term in the integration by parts is

simply zero. This assumption an be justi�ed by means

of physial arguments in the most general situation a-

ounting for the fat that the integral in dt

0

has to be

performed over the entire history of the partile and that

at t

0

= �1 and t

0

= +1 the eletron does not on-

tribute to the �eld anymore. It is obvious that the same

line of reasoning an be followed starting from Eq. (43)

and going bak to Eq. (39): in general, edge terms an

be dropped.

The previous statement is very general and per se triv-

ial but it should be interpreted from a physial viewpoint

depending on the situation.

Screen

L zo
z

x

A B

FIG. 3: A system onstituted by two bending magnets on-

neted by a straight setion of length L. Radiation is olleted

at a distane z

o

from the downstream magnet.

For instane, onsider the ase of a system like the

one skethed in Fig. 3 (whih will be treated extensively

in Paragraph III C). Fig. 3 shows two bending magnets

separated by a straight line. Before and after the straight

lines are two semi-in�nite straight setions. A question

arises about what we may take as t

0

= �1 and t

0

= +1

in this partiular situation. Intuitively the magnets at

like swithes: the �rst magnet swithes radiation on, the

seond swithes it o�. The statement that edge terms an

be dropped, ombined with the paraxial approximation

tell that we an take t

0

= �1 and t

0

= +1 as the partile

is well inside the �rst and the seond bend, respetively,

and neglet other parts of the trajetory.

Note that an expression alternative to Eq. (2) for the

Fourier transform of the eletri �elds an be found in

[31℄. After starting with Eq. (43), the authors of [31℄

organized integration by part in a di�erent way ompared

with what has been done in Eq. (41). First they found

that

n� [(n� �)�

_

�℄

jr

o

� r

0

j(1�n � �)

2

=

1

jr

o

� r

0

j

d

dt

0

�

n� (n� �)

(1�n � �)

�

�

�

_n(n � �) +n( _n � �)� _n(n � �)

2

� �( _n � �)

jr

o

� r

0

j(1� n � �)

2

�

: (44)

Note that Eq. (44) aounts for the fat that n = (r

o

�

r

0

(t

0

))=jr

o

� r

0

(t

0

)j is not a onstant in time. Seond,

using Eq. (44) in the integration by parts they got:

�

E(r

o

; !) = �

i!e



Z

1

�1

dt

0

�

�

�

n� (n� �)

jr

o

� r

0

(t

0

)j

+

i

!

� � n� 2n(n � �)

jr

o

� r

0

(t

0

)j

2

�

� exp

�

i!

�

t

0

+

jr

o

� r

0

(t

0

)j



��

(45)

where, similarly as before, the edge terms have been

dropped. Eq. (45) inludes an integrand whih is om-
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pletely di�erent with respet to Eq. (2). This is no mis-

take. Both Eq. (2) and (45) are orret: using integra-

tion by parts in di�erent ways simply gives di�erent in-

tegrands whih anyway, after integration, yield the same

value for

�

E(r

o

; !). It is interesting to note that, both in

Eq. (2) and Eq. (45), terms in the �rst and seond pow-

ers of jr

o

� r

0

(t

0

)j

�1

annot be interpreted as is usually

done in time domain, as aeleration and veloity terms

respetively nor they onstitute, mathematially, Fourier

pairs with

�

E(r

o

; !). In fat, a di�erent organization of

the integration by parts leads to di�erent results: suh

terms have, here, no separate physial meaning. We have

just shown that this situation is obtained starting from

the Lienard-Wiehert �eld, applying integration by parts

in two di�erent ways and dropping the edge terms.

Going bak to the fat that edge terms an be dropped,

we an make now some remark whih is partiularly in-

teresting from a methodologial viewpoint. Edge terms

are important only when alulation of radiation proper-

ties from a given system is performed over a part of it,

that is integration is not taken from t

0

= �1 to t

0

= +1

but only on a part of the trajetory arbitrarily hosen.

However, summing up all non-negligible ontributions

is equivalent to integrate the system from t

0

= �1 to

t

0

= +1. From this viewpoint edge radiation an be

alulated without aounting for edge terms, whih are

arti�ial. As we will show in Paragraph III C, the low-

frequeny omponent of the �eld generated by a partile

moving as in Fig. 3, usually referred to as edge radiation,

atually arises from the straight line between the bends

when one integrates the system over all the partile tra-

jetory.

As said before, on the one hand the term in jr

o

�r

0

j

�2

in Eq. (2) an be dropped in paraxial approximation but,

on the other hand, Eq. (2) does not oinide with Eq.

(1) one the veloity term is dropped. In other words,

the term in jr

o

� r

0

(t

0

)j

�1

of Eq. (43) is not the term in

jr

o

� r

0

(t

0

)j

�1

of Eq. (2). Even in paraxial approxima-

tion, the veloity term in Eq. (43), in general, annot be

dropped. In fat, in order to do so, it is required that the

ratio between the modulus of the veloity �eld and the

modulus of the aeleration �eld is muh smaller than

unity:

 j n� � j



2

jr

o

� r

0

j j n� [(n� �)�

_

�℄ j

� 1 (46)

Then, in paraxial approximation we have

n�[(n��)�

_

�℄ = �n�[

_

��(n��)℄ ' [

_

��(n��)℄n (47)

Substitution in ondition (46) gives



2

jr

o

� r

0

j



�

n� �

j n� � j

�

_

�

�

� 1 : (48)

Condition (48) depends on the system under investiga-

tion, but in general is not automatially satis�ed. For

instane, in the ase of irular motion

_

�= � 1=R, R

being the irle radius. Then we have



2

jr

o

� r

0

j



�

n� �

j n� � j

�

_

�

�

�



2

r

o

�

o

R

: (49)

where �

o

is the angle between n and

_

�. For instane, it

is well known that the radiation formation length at the

ritial wavelength �



� R=

3

is simply L

f

� R= and

that �

o

� 1=; then, in the ase r

o

� L

f

, we have



2

r

o

�

o

R

� 1 : (50)

As a result, when r

o

� L

f

and � � �



ondition (48)

is not satis�ed, although the paraxial approximation is

enfored. This ounterexample shows that paraxial ap-

proximation, alone, is not suÆient to guarantee that the

veloity �eld in Eq. (43) an be dropped.

The region of parameter spae for whih the veloity

�eld an be negleted is usually referred to as the far �eld

zone. In order to be in the far �eld zone the paraxial

approximation is neessarily enfored.

We take the ondition that n is onstant as a de�nition

of the far �eld zone. When this is the ase, the lassial

result (see for instane [4℄)

n� [(n� �)�

_

�℄

(1� n ��)jr

o

� r

0

j

=

1

r

o

d

dt

0

�

n� (n� �)

1� n ��

�

(51)

an be used to perform integration by parts. Starting

from Eq. (43) and assuming, as explained before, that

the edge terms an be dropped, we arrive at the widely

used result presented in textbooks (see again [4℄)

�

E(r

o

; !) = �

i!e

r

o

Z

1

�1

dt

0

[n� (n� �)℄

� exp

�

i!

�

t

0

�

1



n � r

0

��

: (52)

Now, with ultra relativisti auray 1 � n � � one has

n�(n��) ' ��n: using this relation we see straightfor-

wardly that, in the far �eld zone, Eq. (52) is equivalent

to Eq. (33). To onlude, in this disussion we have seen

that paraxial approximation an be applied in the al-

ulation of Synhrotron Radiation properties for any set

of parameters. Moreover, in general, we should aount

for both veloity and aeleration term in the Lienard-

Wiehert expression: however, in the ase n an be taken

as a onstant (far zone approximation), the veloity term

an always be dropped.
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III. BENDING MAGNET RADIATION

A. Cirular motion

Consider a partile moving along a irular trajetory

and an observer as skethed in Fig. 1. The radiation from

a partile movingwith veloity v along a irle of radiusR

is observed from a point P . R is the only harateristi

length of the system so that we an impose naturally

that L

h

is R. When �

y

and �

x

, de�ned in Fig. 1, are

muh smaller than unity the referene system (x; y; z)

indiated in Fig. 1 is a onsistent with the onditions

for paraxial treatment explained in the previous Setion

and Eq. (28) an be used to haraterize the radiation

at P . The motion along the urvilinear absissa s an be

desribed as

r

0

?

(s) = �R (1� os(s=R)) x̂ (53)

and

z

0

(s) = R sin(s=r) (54)

where s = vt

0

and the expansion in Eq. (53) is justi�ed,

one again, in the framework of the paraxial approxima-

tion.

Sine the integral in Eq. (28) is performed along z

0

we should invert z(s) in Eq. (54) and �nd the expliit

dependene s(z

0

):

s(z

0

) = R arsin(z

0

=r) ' z

0

+

z

03

6R

2

(55)

so that

r

0

?

(z

0

) = �

z

02

2R

x̂ (56)

Substituting Eq. (55), Eq.(54) and Eq. (53) in Eq.

(28) we an write

e

E

?

(z

o

; r

?o

; !) =

i!e



Z

1

�1

dz

0

e

i�

T

z

o

� z

0

�

��

vz

0

R

+

x

o

+ z

02

=(2R)

z

o

� z

0

�

x̂ +

�

y

o

z

o

� z

0

�

ŷ

�

;

(57)

where �

T

is given by

�

T

= !

 

z

0

2

2



+

z

03

6R

2

v

+

�

x

o

+ z

02

=(2R)

�

2

+ y

2

o

2(z

o

� z

0

)

!

:

(58)

At this stage our expression is still very general and valid

for any observation distane z

o

. We keep up to the third

order in z

0

in the expression for s(z

0

) in the phase, sine

the term z

0

=(2

2

) inludes the small parameter 1=

2

.

Note that, although integration is performed from�1

to 1, the only part of the trajetory ontributing to

the integral is of order of the radiation formation length

L

f

= [�R

2

=(2�)℄

1=3

. At the ritial wavelength R=

3

that is simply � R=. Physially, this is inluded in our

paraxial approximation. Mathematially, it is reeted

in the fat that �

T

in Eq. (58) exhibits more and more

rapid osillations as z

0

beomes larger and larger due to

non linear terms: in partiular note that, as z

0

� L

f

, the

term in z

03

in Eq. (58) is of order unity. If z

o

� L

f

we

an expand all expressions in (z

o

� z

0

)

�1

around z

o

. We

will be onsidering the so-alled far field radiation limit

so that, expanding (z

o

� z

0

)

�1

we will retain up to the

third order in z

0

in the expression for the phase and up to

the �rst order in z

0

in the rest of the integrand. We intro-

due angles �

x

= x

o

=z

o

and �

y

= y

o

=z

o

as in Fig. 1 (with

the restrition �

x

� 1 and �

y

� 1). Then, aounting

for v ' , Eq. (57) and Eq. (58) read respetively

e

E =

i!e



2

z

o

Z

1

�1

dz

0

e

i�

T

�

z

0

+R�

x

R

x̂+ �

y

ŷ

�

(59)

and

�

T

= !

" 

�

2

x

+ �

2

y

2

z

o

!

+

 

1

2

2



+

�

2

x

+ �

2

y

2

!

z

0

+

�

�

x

2R

�

z

02

+

�

1

6R

2



�

z

03

�

: (60)

One an easily reorganize the terms in Eq. (60) to obtain

�

T

= !

" 

�

2

x

+ �

2

y

2

z

o

!

�

R�

x

2

�

1



2

+

�

2

x

3

+ �

2

y

�

+

�

1



2

+ �

2

y

�

(z

0

+R�

x

)

2

+

(z

0

+ R�

x

)

3

6R

2



#

: (61)

Finally, rede�nition of z

0

as z

0

+R�

x

gives the �nal result

e

E =

i!e



2

z

o

e

i�

s

e

i�

o

Z

1

�1

dz

0

�

z

0

R

x̂ + �

y

ŷ

�

� exp

�

i!

�

z

0

2

2



�

1 + 

2

�

2

y

�

+

z

03

6R

2



��

; (62)

where

�

s

=

!z

o

2

�

�

2

x

+ �

2

y

�

(63)

and

�

o

= �

!R�

x

2

�

1



2

+

�

2

x

3

+ �

2

y

�

: (64)
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Note that the linear term in (�

2

x

+ �

2

y

)z

0

in the phase of

Eq. (59) de�nes the maximal angle of interest. In fat,

when z

0

� L

f

, this term is of order unity if �

2

x

+ �

2

y

�

[�=(2�R)℄

2=3

; this is simply the ratio of L

2

f

to L

2

h

. As the

observation angle grows more the linear term beomes

larger and larger resulting in an osillatory behavior of

the entire integral in Eq. (59) and thus giving no net

ontribution to the �eld. A similar mehanism has been

disussed in relation with the radiation formation length.

Now that we have found an upper limit to the observation

angle, L

f

=L

h

, it is interesting to disuss the auray of

our expression. We have

jr

?o

� r

0

?

j

2

2(z

o

� z

0

)

2

� �

2

x

+ �

2

y

� �

x

L

2

f

Rz

0

+

L

4

f

4R

2

z

2

o

�

L

2

f

R

2

� 1 :

(65)

In other words, the auray of our alulations is given

by the square of the maximal observation angle.

To ompare Eq. (62) with results in literature (for

instane [5, 7℄) we should remember that the latter are

obtained using a referene system like the one in Fig. 2.

Therefore, in order to perform a omparison, we should

let �

x

= 0, so that �

o

= 0. Then, sine results are often

obtained in terms of integration along the retarded time

t

0

we should use z

0

' vt

0

. Finally we obtain

e

E =

i!e

z

o

e

i�

s

Z

1

�1

dt

0

�

t

0

R

x̂+ �

y

ŷ

�

� exp

�

i!

�

t

0

2

2

�

1 + 

2

�

2

y

�

+

t

03



2

6R

2

��

: (66)

Every Synhrotron Radiation textbook (see, for instane

[6℄) shows that Eq. (66) an be written as

e

E = �

p

3e

z

o

2R!

3

3



e

i�

s

(1 + 

2

�

2

y

)

�

"

K

2=3

(�)x̂ � i

�

y

K

1=3

(�)

(1 + 

2

�

2

y

)

1=2

#

: (67)

Here K

2=3

and K

1=3

are the modi�ed Bessel funtions of

seond kind of frational order 2=3 and 1=3 respetively,

while

� =

R!

3

3



(1 + 

2

�

2

y

)

3=2

: (68)

Note that, depending on the de�nition of Fourier trans-

form Eq. (12), textbook versions of Eq. (66) or Eq.

(67) may di�er by a fator 1=

p

2� and (or) by the oper-

ation of omplex onjugation; moreover textbooks often

neglet the exat phase fator for the �eld, sine they are

usually more interested in the alulation of the intensity,

whih involves the square modulus of Eq. (66).

The result in Eq. (67) is far from being trivial. Bessel

funtions are real, therefore the x̂ omponent in Eq. (67)
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ωφo(rad) – x polarization component

FIG. 4: Phase orretion for the horizontal polarization om-

ponent of the �eld; ase disussed in [27℄.

is real, while the ŷ omponent is purely imaginary. In

other words, the x̂ omponent of the integral in Eq. (66)

is purely imaginary, while the ŷ omponent is real. This

is not immediately obvious, but it an be easily seen by

inspetion, aounting for the fat that the exponential

funtion in the integrand an be written as exp(i � ) =

os(�) + i sin(�); then, for parity reasons, the term in x̂,

being odd, ouples with the sine funtion, thus giving an

imaginary result while the term in ŷ, being even, ouples

with the osine funtion, giving a real result.

From the previous remarks it follows that the only

non-trivial phase fator is spei�ed by the surviving ex-

ponential argument �

s

= !z

o

�

2

y

=(2), whih is usually

negleted in literature. This simply represents, in our

paraxial approximation, the phase di�erene between the

point (0; y

o

; z

o

) and the point (0; 0; z

o

). Physially, in the

partiular referene frame of Fig. 2, whih we have ho-

sen by setting �

x

= 0, the eletri �eld is represented by

a spherial wave propagating outwards from the origin of

the oordinate system.

It is interesting now to investigate the meaning of

the phase �

o

, whih is nonzero for nonzero values of

�

x

. This term has no equivalent in the usual treatment

of Synhrotron Radiation, beause displaement along

the x axis annot be onsidered in the referene system

skethed in Fig. 2. In the usual treatment, an x

o

dis-

plaement is treated rede�ning the referene frame so

that x

o

= 0. This rede�nition has simply the e�et of

shifting the phase of the �eld expressed in the old refer-

ene frame of a quantity i�

o

.

There is a onsiderable amount of literature dealing

with the phase of the Fourier omponents of the ele-

tri �eld vetor in Synhrotron Radiation (see, for in-

stane [27℄). In partiular, [27℄ reports the results of a

thorough simulation of single partile e�ets. It is obvi-

ously found that the wavefront of a single partile is not

spherial; a orrespondent phase shift (with respet to
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-0.01

0

0.01

-0.01

-0.005

0

0.005

0.01

-10

0

10

-0.01

0

0.01

yo(m) xo(m)

ωφo+π χ(θ)(rad) – y polarization component

FIG. 5: Phase orretion for the vertial polarization om-

ponent of the �eld; ase disussed in [27℄.

the spherial wave) for the �eld of a single partile was

omputed and analytial estimations within 1% of the

numerial result were presented whih are in omplete

agreement with Eq. (64). For the sake of ompleteness

and omparison we present, in Fig. 4 and Fig. 5 the

phase shifts alulated for the horizontal and vertial po-

larization omponents, respetively by means of our Eq.

(64) for the same example onsidered in [27℄: bending

magnet emission from a 2:5 GeV partile, onstant mag-

neti �eld in bending magnet 1:56 T, photon energy 40

eV and distane from tangential soure point to optial

omponent 5 m. Note that these parameters orrespond

to the far zone ase where z

o

� R=. The phase for the

y-polarization omponent, in Fig. 5, is simply the phase

for the x-polarization omponent (that is Fig. 4) added

to �H(�

y

), where H(�

y

) = 1 for �

y

� 0 and H(�

y

) = 0

for �

y

< 0: this last terms simply aounts for the fat

that the y omponent of Eq. (66) is odd.

B. Cirular motion with o�set and deetion

Eletrons following a irular motion are, of ourse, an

approximation. Eletron beams have always some small

angular spread and o�set with respet to the nominal tra-

jetory. Any beam with a small geometrial emittane

an be thought, in agreement with paraxial treatment,

as a omposition of perfetly ollimated beams with dif-

ferent deetion angles with respet to the orbital plane

of the nominal trajetory. This representation is use-

ful when one is interested in alulating, for instane,

the inuene of angular spread and o�set on the eletri

�eld intensity: one an simply ompute the ontribution

for eah ollimated beam and sum up the results. This

method allows to simplify alulations of more ompli-

ated quantities like the �eld autoorrelation funtion,

whih is of uttermost importane in the haraterization

of the statistial properties of a light soure. We have al-

ready disussed the advantage of our method regarding

alulations of the �eld autoorrelation funtion in on-

netion with the hoie of a �xed referene frame as in

Fig. 1. Let us now disuss how it an be used to alulate

e

E from a single partile with a given angular deetion

with respet to the orbital plane of a nominal eletron.

Suh an expression was �rst alulated, starting from the

Lienard-Wiehert �elds, in [32℄.

The meaning of horizontal and vertial deetion an-

gles �

x

and �

y

is lear one we speify the partile veloity

v(s) = v

h

sin

�

s

R

+ �

x

�

os(�

y

)x̂+ sin(�

y

)ŷ

+os

�

s

R

+ �

x

�

os(�

y

)ẑ

i

(69)

so that the trajetory an be expressed as a funtion of

the urvilinear absissa s as

r

0

=

h

l

x

+ R os

�

s

R

+ �

x

�

os(�

y

)

�R os(�

x

) os(�

y

)℄ x̂+ [l

y

+ s sin(�

y

)℄ ŷ

+

h

+R sin

�

s

R

+ �

x

�

os(�

y

) �R sin(�

x

) sin(�

y

)

i

ẑ

(70)

Here we have introdued, also, an arbitrary o�set

(l

x

; l

y

; 0) in the trajetory. Using Eq. (70) an approx-

imated expression for s(z

0

) an be found:

s(z

0

) = z

0

+

z

03

6R

2

+

z

02

�

x

2R

+

z

0

�

2

x

2

+

z

0

�

2

y

2

(71)

so that

v

?

(z

0

) =

�

�

vz

0

R

+ v�

x

�

x̂+ (v�

y

) ŷ (72)

and

r

0

?

(z

0

) =

�

�

z

02

2R

+ �

x

z

0

+ l

x

�

x̂+ (�

y

z

0

+ l

y

) ŷ : (73)

We will onsider �

x

� 1 and �

y

� 1 in agreement with

the fat that we deal with eletron beams with small an-

gular deetion and not with more general kind of plas-

mas.

Substituting, as in the previous Paragraph, Eq. (71),

Eq. (73) and Eq. (72) in Eq. (28) we an write

e

E

?

(z

o

; r

?o

; !) =

i!e



Z

1

�1

dz

0

e

i�

T

z

o

� z

0

�

��

z

0

R

� �

x

+

x

o

� l

x

� �

x

z

0

+ z

02

=(2R)

z

o

� z

0

�

x̂

+

�

��

y

+

y

o

� l

y

� �

y

z

0

z

o

� z

0

�

ŷ

�

;
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(74)

where �

T

is given by

�

T

= !

 

z

0

2

2



+

z

03

6R

2

v

+

z

02

�

x

2Rv

+

z

0

�

2

x

2v

+

z

0

�

2

y

2v

+

�

x

o

� l

x

� �

x

z

0

+ z

02

=(2R)

�

2

+ [y

o

� l

y

� �

y

z

0

℄

2

2(z

o

� z

0

)

!

: (75)

At this stage, as in the previous Paragraph, our expres-

sion is still very general and valid for any observation

distane z

o

, and again as we did before, we have retained

up to the third order in z

0

in the expression for s(z

0

) in

the phase, sine the term z

0

=(2

2

) inludes the small

parameter 1=

2

and up to the �rst order in z

0

in the

rest of the integrand. We will now onsider the far �eld

radiation limit whih, as the reader remembers, allows

expansion of all expressions in (z

o

� z

0

)

�1

around z

o

: as

before we will retain up to the third order in z

0

in the

expression for the phase and up to the �rst order in z

0

in the rest of the integrand. From Eq. (74), Eq. (75)

and Eq. (73) it is evident that the o�sets l

x

and l

y

are

always subtrated from x

o

and y

o

respetively: shifting

the partile trajetory on the vertial plane is equivalent

to a shift of the observer in the opposite diretion. With

this in mind, in analogy with Fig. 1, we introdue angles

�

�

x

= �

x

� l

x

=z

o

and

�

�

y

= �

y

� l

y

=z

o

(with the restrition

�

�

x

� 1 and

�

�

y

� 1). Then, aounting for �

x

� 1 and

�

y

� 1, Eq. (74) and Eq. (75) an be written down

respetively, as follows:

e

E =

i!e



2

z

o

Z

1

�1

dz

0

e

i�

T

�

�

z

0

+ R(

�

�

x

� �

x

)

R

x̂+ (

�

�

y

� �

y

)ŷ

�

(76)

and

�

T

=

 

�

�

2

x

+

�

�

2

y

2

z

o

!

+

1

2

�

1



2

+

�

�

�

x

� �

x

�

2

+

�

�

�

y

� �

y

�

2

�

z

0

+

�

�

�

x

2R

�

z

02

+

�

1

6R

2



�

z

03

: (77)

One an easily reorganize the terms in Eq. (77) to obtain

�

T

=

 

�

�

2

x

+

�

�

2

y

2

z

o

!

�

R(

�

�

x

� �

x
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2

�

�

1



2

+ (

�

�

y

� �

y

)

2

+

(

�

�

x

� �

x

)

2

3

�

+

�

1



2

+ (

�

�

y

� �

y

)

2

�

�

z

0

+R(

�

�

x

� �

x

)

�

2

+

�

z

0

+R(

�

�

x

� �

x

)

�

3

6R

2



: (78)

Rede�nition of z

0

as z

0

+ R(

�

�

x

� �

x

) gives the result

e

E =

i!e
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z

o

e

i�

s

e

i�

o

Z

1

�1

dz

0

�

z

0

R

x̂ + (

�

�
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� �

y

)ŷ

�

� exp

�
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�
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1 + 

2

(

�

�

y

� �

y

)

2

�

+

z

03

6R

2



��

; (79)

where

�

s

=

!z

o

2

�

�

�

2

x

+

�

�

2

y

�

(80)

and

�

o

= �

!R(

�

�

x

� �

x

)

2

�

1



2

+ (

�

�

y

� �

y

)

2

+

(

�

�

x

� �

x

)

2

3

�

:

(81)

Exept for the phase term �

s

, Eq. (79) an be obtained

from Eq. (62) simply by substituting �

x

with

�

�

x

� �

x

and �

y

with

�

�

y

� �

y

: besides a ommon phase fator

then, we an say that inluding a deetion angle has the

same e�et of shifting the observer position of the same

angle. Still, we should remember that

�

�

x

= �

x

� l

x

=z

o

and

�

�

y

= �

y

� l

y

=z

o

.

In the limit for l

x;y

=z

o

� �

F

, with �

F

= [�=(2�R)℄

1=3

,

one an simplify further Eq. (79). Note how introdution

of small parameters allows inreasing speialization and

simpli�ation of the theory: for instane, in this Para-

graph we started with an expressions for the �elds ob-

tained in the limit for 1=

2

z

� 1, that ould be ast into

simpler form in the limit L

f

=z

o

� 1 and now further

speialized assuming l

x;y

=z

o

� �

F

leading to:

e

E =

i!e
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z
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e

i�

s

e
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Z

1

�1

dz
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x̂ + (�
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) ŷ

�
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1 + 

2

(�
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� �
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2

�

+
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03
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; (82)

where

�

s

=

!z

o

2

�

�

2

x

+ �

2

y

�

(83)

and

�

o

' �

!R(�

x

� �

x

)

2

�

1



2

+ (�

y

� �

y

)

2

+

(�

x

� �

x

)

2

3

�

�

!



(l

x

�

x

+ l

y

�

y

) : (84)

Eq. (79) is an extremely useful tool, beause it desribes

the radiation from an eletron with o�set and deetion

as in an eletron beam with �nite emittane, inluding

the orret phase fator for the �eld. Starting from Eq.

(79) then, it is possible to alulate the �eld orrelation

funtion, and to provide a study of transverse oherene

properties of the radiation from a given eletron beam by

means of analytial tehniques.
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As has already been remarked, oherene is a spe-

ial and important property of Synhrotron Radiation

soures. In the far zone, the spatial oherene at di�er-

ent observer angles �

(1)

x;y

and �

(2)

x;y

is haraterized by the

autoorrelation funtion (see [36, 37℄ and [38℄ for appli-

ations to Synhrotron Radiation siene):

�

ij

�

�

(1)

x;y

; �

(2)

x;y

; !

�

=

D

e

E

�

i

�

�

(1)

x;y

; �

x;y

; l

x;y

�

e

E

j

�

�

(2)

x;y

; �

x;y

; l

x;y

�E

(85)

where

e

E

i

is the i-th Fourier omponent of the eletri �eld

given in Eq. (79), and brakets h:::i denote an ensemble

average with respet to eletron parameters. Note that

a given eletron is orrelated just with itself, that is why

Eq. (85) only inludes the eletri �eld from a single ele-

tron and not from two di�erent partiles. The ensemble

average an be replaed by integration over the eletron

phase-spae density. The intensity distribution an be

obtained diretly from Eq. (85) by letting �

(1)

x;y

= �

(2)

x;y

.

Of ourse a numerial ode an always be developed,

either starting from Eq. (28) or just from the Lienard-

Wiehert �elds, whih alulates the �eld orrelation

funtion in a generi ase, but suh a ode would not

help in physial understanding of the situation. On the

ontrary, Eq. (79) inludes all relevant information about

an eletron in a realisti beam (i.e. with o�set and dee-

tion) and, being an analytially manageable expression,

onstitutes the �rst step towards the haraterization of

transverse oherene properties from bending magnet ra-

diation.

C. Edge radiation

In this Paragraph we will stress the importane of the

knowledge of the entire trajetory followed by the ele-

tron as we study the e�et of a hange in longitudinal

veloity due to the passage of an eletron in a magneti

system. This results in ollimated emission of radiation

in the low photon energy range, a mehanism analogous

to transition radiation, whih is well-known in literature

under the name of edge radiation [27, 39, 40℄.

We restrit ourselves to the system depited in Fig.

3, whih shows two bending magnets separated by a

straight line of length L. Radiation is deteted at a

sreen positioned at distane z

o

from the downstream

magnet. We will require that the bending magnets de-

et the eletron trajetory of an angle muh larger than

[�=(2�R)℄

1=3

, � being the wavelength of interest: in this

way the straight lines before the upstream bend and after

the downstream bend do not ontribute to the �eld de-

teted at the sreen position. Intuitively, the magnets at

like swithes: the �rst magnet swithes the radiation on,

the seond swithes it o�. The trajetory an be there-

fore split in three parts: the two bends and the straight

setion of length L between them. With the help of Eq.

(28) we write the ontribution from the straight line as

e

E

AB

=

i!e



2

z

o

Z

B

A

dz

0

e

i�

T

(�

x

x̂ + �

y

ŷ) (86)

where we assumed z

o

� L. The previous assumption is

not always veri�ed in ases of pratial interest. Here,

however, we are only onerned with an example of ap-

pliation of our method. �

T

in Eq. (86) is given by

�

T

= !

"

�

2

x

+ �

2

y

2

z

o

+

z

0

2

�

1



2

+ �

2

x

+ �

2

y

�

#

: (87)

The harateristi length related to the straight setion

is obviously L

h

= L. In general, the formation length of

radiation at wavelength � is given imposing !z

0

=(2

2

) �

1, whih gives L

f

� 

2

�. However, if we are interested in

low frequenies suh that !L=(2

2

)� 1, we an simply

onsider L

f

� L and neglet the term in 1=

2

in Eq.

(87). Trivial alulations show that

e

E

AB

= �

i!eL



2

z

o

e

i�

s

(�

x

x̂+ �

y

ŷ)

sin

�

!L(�

2

x

+ �

2

y

)=(4)

�

[!L(�

2

x

+ �

2

y

)=(4)℄

;

(88)

where �

s

has the usual meaning (ompare, for instane,

with Eq. (63)). The magnitude of the ontribution from

the straight setion AB an be estimated noting that the

sin funtion in Eq. (88) drops rapidly as �

2

x

+�

2

y

reah the

value 4=(!L) = 2�=(�L). This means that a maximal

observation angle of interest related to the straight line

an be found in the transverse diretion:

�

2

x;y

�

�

2�L

: (89)

At this angle, the formation length for the straight line

radiation at wavelength � is simply equal to the straight

setion length, L, as it an be seen from Eq. (87). Then,

the magnitude of

e

E

AB

is of order

j

e

E

AB

j�

2e

z

o

�

!L



�

1=2

: (90)

On the other hand, the magnitude of the ontributions

from the bends an be estimated as

e

E

b

� �

!e



2

z

o

Z

1

0

dz

0

�

z

0

R

x̂ + �

y

ŷ

�

� exp

�

i!

�

z

0

2

2



�

1 + 

2

�

2

y

�

+

z

03

6R

2



��

: (91)

In Eq. (91) we have rede�ned the origin of our referene

system, as it is lear from the integration limits; however,
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here we are interested in the magnitude and not in the

phase of the �eld, so that we an use Eq. (91) without

further disussion on the orret phase. The linear term

in z

0

in the exponential funtion in Eq. (91) is of order

unity for angles �

y

suh that

!L

f

2

�

2

y

� 1 : (92)

Substituting the formation length for the bends L

fB

�

[�R

2

=(2�)℄

1=3

we obtain a ondition for the maximal ob-

servation angle of interest related to the bending magnets

�

2

y

�

�

�

2�R

�

2=3

: (93)

The previous ondition on �

2

y

found for the bends has to

be ompared with the ondition on �

2

y

previously found

for the straight line, �

2

y

� �=(2�L). The ratio between

the latter and the former is equal to the ratio of the

formation length for the straight line to the formation

length for the bends respetively, that is L=L

fB

. As-

suming L=L

fB

� 1, that is always veri�ed in pratie,

we obtain that the maximal observation angle of interest

related the straight line is muh smaller than the maxi-

mal observation angle of interest related to the bend. As

a result the entire linear term in the phase of Eq. (91)

an be negleted thus leading to the following simpli�ed

expression for

e

E

b

:

e

E

b
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!e
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o
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dz
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(94)

An estimate of Eq. (94) is
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: (95)

The ratio between the magnitude of the bend and the

straight setion ontribution is then

e

E

b

j

e

E

AB

j

� �

1

2

�

!R



�

1=3

�



!L

�

1=2
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�

�

!R
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2=3

�



!L

�

ŷ = �

1

2

r

L

f

L

x̂�

L

f

L

ŷ : (96)

Therefore, under the already aepted ondition L �

L

f

one an neglet the ontribution from the bending

magnet. The only remaining ontribution is given by Eq.

(88), whih represents an expression for the �eld at the

detetor position. We plot the intensity orresponding to

FIG. 6: Intensity distribution of radiation from the setup in

Fig. 3 at � = 10�m and for L = 1 m. Radiation is olleted

at z

o

= 10 m from the downstream magnet. A ontour plot

(upper �gure) and a horizontal ut by the median plane (lower

�gure) are presented.

the �eld in Eq. (88) in Fig. 6 for the ase � = 10 �m,

L = 4 m and z

o

= 20 m.

Eq. (88) is the same reported in [40, 41℄. It is in-

teresting to remark that in onventional treatments of

Synhrotron Radiation, edge radiation has its origin in

the edge term arising in the integration by parts of Eq.

(1); in other words it is found from the aeleration part

of the Lienard-Wiehert �eld, whih is present only in

the magnets. On the other hand, from our method, edge

radiation arises as the ontribution from the straight se-

tion between the magnets. This seems paradoxial, but

one has to remember that there is no physial meaning in

the alulation of the �eld harmoni ontent over a part

of the trajetory alone. It does not make any sense, for

instane, to alulate the �eld intensity from the edge of

a single bend, beause there will be either a seond bend,

as in Fig. 3, other strutures downstream of the seond
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FIG. 7: Radiation �eld from an eletron moving along a irle

in the time and in the frequeny domain

bend whih must be taken into aount in the alulation

of the total �eld: the sum of all these ontributions will

give interferene terms when the intensity is alulated.

Then, aepting the viewpoint that only the knowledge of

the entire trajetory of the partile brings physial sense

to �eld alulations, there is no real ontradition: in our

method edge radiation appears from the straight setion.

In the usual approah, instead, it appears from the edge

terms in the integration by part of the aeleration �eld.

Yet these terms, alone, have no physial meaning. This

solves our paradox.

D. Short magnet radiation

Our method an be used to ompute radiation hara-

teristis from a short magnet, haraterized by a bending

angle 2 � 1=. This devie has the quite interesting

harateristi that the Fourier transform of the eletri

�eld in the far �eld limit has non-zero value for ! ! 0

and that the ritial frequeny does not depend on the

magnet radius but only on the magnet length. These

features an be explained in a simple way. For irular

motion the far �eld from a single partile has the prop-

erty:

Z

1

�1

Edt = 0 : (97)

When the eletron moves in ar of irles with di�erent

angular extensions 2 though, the time-average of the

eletri �eld is nonzero; then, its Fourier transform has a

nonzero omponent for ! ! 0.

The �rst studies on long wavelength asymptoti an be

found in [33℄. For a review on the subjet it may be in-

teresting to onsult [7℄; for a disussion dealing also with

properties of CSR (Coherent Synhrotron Radiation) see

[34℄. In Fig. 7, Fig. 8 and Fig. 9 we plot the energy

spetrum of the radiation in the ase of an eletron mov-

ing on irular motion, dipole magnet and short bend,

FIG. 8: Radiation �eld from an eletron moving along an ar

of a irle in the time and in the frequeny domain

FIG. 9: Radiation �eld from an eletron moving along a short

bending magnet in the time and in the frequeny domain

respetively. All �gures refer to the x̂ polarization om-

ponent. As Eq. (97) does not hold we �nd a nonzero

omponent of the energy spetrum at ! ! 0. As the

magnet extension beomes smaller than 1= the ritial

frequeny depends only on the magnet length L

m

= 2R 

aording to !



' 2

2

=L

m

.

The short magnet is a devie of partiular interest also

beause its radiation harateristis are related to the

methodologial issue introdued in Setion I. From the

very beginning, our method relies on harmoni analysis

of the eletri �eld, so that the entire trajetory of an

eletron is onsidered known. This gives no partiular

problem in the ase of a losed trajetory, as disussed

in the previous Subsetions, but a question arises, now

that a short magnet is onsidered, about the trajetory

of our partile outside the short magnet. In general, the

�eld at the observation position depends strongly on the

trajetory followed by the eletron before and after the

magnet. So one should larify what is the meaning of

the term short magnet radiation by itself, when it is

not spei�ed what follows and what preedes the bend.

Computing the �eld from the magnet alone as it is usu-

ally done has a meaning, but only in a partiular sense:

one an always break up the beamline in several parts,
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alulate ontributions separately and �nally add them

up, aounting for the proper relative phase, to get the

total �eld at the observer position. Then the short mag-

net radiation is simply a part of the total �eld, a ontri-

bution to be added up to something else, whih depends,

ase by ase, on what preedes and follows the magnet.

In onlusion, when we talk about radiation from a

short magnet, we mean the ontribution to the total �eld

at the observer position P due to the short magnet alone:

this makes sense as long as we onsider it only a part of

the total �eld, alulated separately just for omputa-

tional onveniene.

With this in mind we alulate the short magnet �eld

from Eq. (59) limiting the integration to the magnet

extent and using 2 � 1=. This introdues a further

small parameter in our system whih leads to extra sim-

pli�ation of already known formulas derived for the ase

of a bending magnet with arbitrary extension. From Eq.

(59) we obtain

e
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i!e
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where �

s

is de�ned as in Eq. (63). In Eq. (98) we

intentionally separated phase fators expfi!�

x

z

02

=2Rg

and expfi!z

03

=(6R

2

)g beause we intend to neglet the

seond and expand the �rst around unity. For our sys-

tem the harateristi length is obviously L

h

= R . In

general, the formation length of the radiation is �xed

by the �rst phase fator, L

f

� 

2

�, but we will be

interested in studying the long wavelength region suh

that L

f

� R , that is the maximum attainable value,

sine it is always L

f

<

�

L

h

. Then, the �rst phase

fator imposes, simultaneously, !R =(2

2

)

<

�

1 and

!�

2

x

R =

<

�

1. If on the one hand, from the �rst of

these onditions !

max

' 2

2

=(R ), from the seond

ondition follows that �

2

x

<

�

1=(2

2

) and from the seond

phase fator one has !�

x

(R )

2

=(2R) �  � 1. On

the other hand if, from the �rst of these onditions,

! � 2

2

=(R ), then from the seond ondition follows

that �

2

x

' =(!R )� 1=(2

2

) and from the seond phase

fator one has !�

x

(R )

2

=(2R) ' ( )=(�

x

) � 1.

It follows from these onsiderations that we an per-

form the expansion of expfi!�

x

z

02

=2Rg up to the se-

ond term with an auray ( )

2

or better and neglet

expfi!z

03

=(6R

2

)g with the same auray for any hoie

of !. Then we an write

e

E =

i!e



2

z

o

e

i�

s

Z

R 

�R 

dz

0

�

z

0

+ R�

x

R

x̂+ �

y

ŷ
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Performing alulations and dropping negligible terms we

�nd
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where

� =

!

2

2

�

1 + 

2

(�

2
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+ �

2

y

)

�

(101)

and

��

[�R ;R ℄

(�) =

Z

R 

�R 

dz

0

exp fi�z

0

g : (102)

If we de�ne a funtion �

[�R ;R ℄

whih assumes uni-

tary value on the interval [�R ;R ℄ and zero value else-

where, then �

[�R ;R ℄

simply represents the magneti

�eld shape at the magnet position, and ��

[�R ;R ℄

is its

Fourier transform with respet to �.

Suppose now the magneti �eld has a generi shape

B(z

0

). Keeping the same auray as before, we an gen-

eralize Eq. (100) substituting relations

x

0
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) = �

e

m
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and

v

x

(z

0

) = �

e

m
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dz

00

B(z

00

) ; (104)

where m

e

is the eletron rest mass, in plae of x

0

=

�z

02

=(2R) and v

x

= = �z

0

=R diretly in Eq. (98).

Performing approximations as before and integrating by

parts two time the term in x

0

and one time the term in

v

x

we �nd that Eq. (100) an be easily generalized.

Results in literature are often given in ylindrial o-

ordinates (�; �; z) where sin� = y

o

=

p

x

2

o

+ y

2

o

and � =

�

2

x

+ �

2

y

. The same hoie an be found, for instane, [7℄.

Making use of this system we obtain:
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where r

e

is the lassial radius of the eletron

r

e

=

e

2

m

e
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(106)

and
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�

B(�) =

Z

1

�1

dz

0

B(z

0

) exp fi�z

0

g : (107)

As has been said, the �eld from a short magnet makes

sense only as a part of the total �eld from a given beam-

line. In this Paragraph we have alulated, for suh on-

tribution, the expression in Eq. (105) whih an also be

found in [7℄. Our aim, here, is not to review a well-known

result, but to ast new light in its physial interpretation.

In order to do so we need �rst a digression. Our Eq.

(28) is based on the more general Eq. (2). In Para-

graph IIC we have shown that Eq. (2) is equivalent to

the Fourier transform of the Lienard-Wiehert �elds Eq.

(43) provided that the edge term in the integration by

parts going from Eq. (43) to Eq. (2) (or vieversa) an

be dropped. On the one hand we showed that this an

always be done sine the integral in Eq. (43) and Eq.

(2) should be performed over the entire eletron history,

and only a �nite part of the trajetory ontributes, pra-

tially, to the eletri �eld at the observer position. On

the other hand, one is free to break up the beamline in

parts and sum up partial ontributions to the total �eld

using Eq. (43) followed by integration by parts for eah

segment. In this ase one must retain edge terms to ob-

tain the same result: as an example of this fat, using

our method, we have shown in Paragraph III C that the

edge radiation from the system depited in Fig. 3 arises

as the ontribution from the straight setion between the

magnets, while onventional alulations indiate its ori-

gins in the edge term from the integration by parts of Eq.

(43) in the far �eld limit.

Now oming bak to the subjet of this Paragraph, typ-

ial derivations of Eq. (105) (see [7, 33, 35℄) start from

Eq. (1) and inlude the omplete expression for the ael-

eration �eld. Then, following onventional derivations, it

is not lear wether edge terms play an important role in

Eq. (105) or not. Yet, we were able to obtain Eq. (105)

without starting with Eq. (1): in fat we began with Eq.

(98) whih is Eq. (59) with di�erent integration limits

whih is, in its turn, a redution of Eq. (28) that, �nally,

is a simpli�ation of Eq. (2). Sine our result oinide

with the one in literature it follows that edge radiation

from the presene of the short magnet is ompletely ig-

norable.

Of ourse, one should still aount for ontributions

from the other parts of the beamline: for instane, if the

short magnet were installed in the middle of the straight

setion in Fig. 3 one should onsider the edge radiation

ontribution as in Paragraph III C.

However, aording to our reasoning we an onlude

that one an safely drop the ontribution of edge terms

due to the presene of the short magnet. On the ontrary,

beginning with Eq. (1) as is done in usual treatments,

one is not able to separate the two physial phenomena

and, indeed, may be easily misunderstand and misinter-

pret results onluding, erroneously, that short magnet

radiation annot be derived without edge ontributions.

x

z

y

-N λw/2 N λw/2

zo

Screen

FIG. 10: Geometry for undulator radiation.

Here we have seen that a ritial study of the theoret-

ial status of well-known formulas, an sometimes yield

surprises.

IV. RADIATION FROM INSERTION DEVICES

A. Standard undulator

For a review of up to date knowledge on undulator

radiation one may be interested in onsulting referenes

[5℄ to [10℄. An experimental haraterization of radiation

from insertion devies at third generation light soures

an be found in [42℄. Eq. (28) an be used to derive the

expression for

�

E(r; !) in the ase of an undulator as well.

Again, as before, we remark that, with the term undu-

lator �eld we atually mean a part of the total �eld seen

by an observer and that one should aount, in general,

for the entire motion of the partile. The situation is

skethed in Fig. 10, where a planar undulator onsisting

of N

w

periods is skethed. We will follow [5℄ in deriving

well-known relations. For the eletron transverse veloity

we assume

v

?
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0

) = �

K
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)x : (108)

Here K is the deetion parameter, k

w

= 2�=�

w

, where

�

w

is the undulator period, so that the undulator length

is L

w

= N

w

�

w

. The undulator length L

w

is also, nat-

urally, the harateristi length of the system, so that

L

h

= L

w

. The transverse position of the eletron is

therefore

r

0

?

(z

0

) =

K

k

w

os (k

w

z

0

)x : (109)

An expression for the urvilinear absissa s as a funtion

of z is given by

s(z

0

) =

�

�

av

z

0

�

K

2

8

2

k

w

sin (2k

w

z

0

) : (110)

where �

av

is the time-averaged veloity along the z di-
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FIG. 11: Radiation geometry for the undulator �eld.

retion, that an be expressed as:

�

av

= �

�

1�

K

2

4

2

�

(111)

We an now substitute Eq. (109) and Eq. (108) in our

Eq. (28). Suh a substitution leads to a general expres-

sion, valid for any observer distane z

o

. It is possible to

obtain, similarly to many Synhrotron Radiation text-

books, a simpli�ed expression valid in the limit for large

values of z

o

. Sine we are interested in the ontribution

of the undulator devie to the total �eld at the observer

position, we will integrate Eq. (28) only along the undu-

lator. Then all terms in (z

o

� z

0

)

�1

in the phase fator

of Eq. (28) an be expanded around z

o

. In the limit

z

o

� N

w

�

w

, we an usually retain �rst order terms in z

0

:

later on, in Paragraph IVC, we will disuss the applia-

bility region of this approximation and we will see that

there are partiular regions of parameters whih do not

allow retention of �rst order terms alone. Dropping negli-

gible terms and de�ning � and � aording to Fig. 11 (or

remembering the analogous de�nition given in Paragraph

IIID) we obtain
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Here
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where �

s

= !�

2

z

o

=(2), as usual, and !
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FIG. 12: Undulator followed and preeded by bending mag-

nets and straight setions. Information about the partile

trajetory before and after the undulator is neessary to al-

ulate the radiation spetrum.

Note that as ! = !

1

, the formation length of our system

is simply given by L

f

= 1=k

w

as it is seen immediately

from Eq. (113) imposing the �rst term in phase to be

of order unity. Yet it should be stressed here that the

formation length L

f

= 1=k

w

is obtained in the most gen-

eral ase, without aounting for speial onditions whih

are very often hosen for undulator operation. In fat,

when a large number of undulator periods is seleted an

extra large-parameter is introdued in the system yield-

ing simpli�ations within the theory; then, as it will be

lear after reading Paragraph IVB, if the so alled res-

onane ondition is met, the atual formation length of

the system beomes L

f

� L

w

.

The hoie of the integration limits in Eq. (112) ex-

press expliitly the fat that the referene system has its

origin in the enter of the undulator as in Fig. 10. As said

before, Eq. (112) gives only a partial ontribution to the

total �eld, whih must be summed up with terms arising

from strutures preeding and following the undulator.

In [5℄, for instane, no partiular attention is given to

this problem: the alulation of undulator radiation dis-

tribution is performed onsidering the aeleration term

of the Lienard-Wiehert �elds alone, integrating by parts,

and dropping the edge term.

It is indeed very useful, at this point, to omment some

passage of [5℄. At page 412 one an read: "No assump-

tions on the magneti �eld parameters have been made

to derive the radiation spetrum in the form of equation

(7.87) whih we use to alulate the radiation spetrum

from a wiggler magnet". Eq. (7.87) in [5℄ is the radiation

spetrum from a partile moving on a generi trajetory

alulated, indeed, starting from the Lienard-Wiehert

�eld expression for the aeleration �eld, integrating by

parts and negleting the edge terms; it obviously appears

in the form of an integration with limits from �1 to 1:

this is just our Eq. (52) that was derived exatly as Eq.

(7.87) in [5℄. Dropping the veloity �eld in the Lienard-

Wiehert expression is done under the suÆient (but not

neessary, in general!) ondition thatn an be onsidered
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onstant. This is regarded as the far �eld approximation.

Then, negleting of edge terms an be done under physi-

al assumptions disussed muh earlier in Paragraph IIC.

Again, the integral in dt

0

has to be performed over the

entire history of the partile; the physial meaning of

t

0

= �1 and t

0

= +1 is that at these times, the ele-

tron does not ontribute to the �eld anymore. From this

viewpoint, the geometry spei�ed in Fig. 10 is no more

suÆient. One has to provide information about what

preedes and what follows the undulator; an example is

depited in Fig. 12. In the ase of the sheme in Fig.

12 for instane, t

0

= �1 and t

0

= +1 refer to moments

when the partile is well inside the �rst and the seond

bend, respetively, and do not ontribute anymore to the

resulting radiation spetrum. In order to drop edge terms

in the partiular ase of the trajetory in Fig. 12, one has

to onsider ontributions from the �rst bend, then from

A to B along the straight line, from B to C inside the

undulator, from C to D along the seond straight line

and, �nally, from the seond bending magnet.

Instead of following this presription, the author of [5℄

substitutes harateristi quantities for a trajetory on

an in�nitely long undulator in Eq. (7.87), and then he

simply sets the undulator strength parameter K to zero

outside of a given temporal interval, whih is simply the

physial time that an eletron takes to pass through the

undulator. This is equivalent to onsider two in�nite

straight lines before and after the end of the undulator.

Then, although results are orret in some partiular ase

(namely under resonant approximation, whih we disuss

in Paragraph IVB) the reader is left with the unsolvable

task of understanding what is the physial meaning of

two in�nite straight lines and, espeially, what is the on-

tribution of these in�nite parts of the trajetory to the

total eletri �eld at the observer position. Again, if one

wishes to drop the edge terms, one should start onsid-

ering the entire trajetory of the eletron, not a part of

it alone.

In the ase depited in Fig. 12 for instane, we will

have di�erent interfering ontributions from the straight

lines before and after the undulator and we would end up

with both edge radiation and transition undulator radi-

ation. Again, in the most general ase, Eq. (112) refers

to a part of the eletri �eld seen by the observer and it

should be added to other ontributions orresponding to

the entire history of the partile. Only in partiular sit-

uations like the one disussed in the following Paragraph

IVB alulation of radiation properties from Eq. (112)

alone makes sense: in Paragraph IVB we will disuss the

resonant approximation whih an be used in the ase of

a large number of undulator periods, N

w

� 1. Again, the

presene of an extra large (or small) parameter yields to

further simpli�ations of the theory. However it should

be noted that, in pratie, N

w

ranges from a few units,

in the ase of Far Infrared insertion devies to about one

thousand, for X-ray FELs, so that the appliability of

the resonant approximation strongly depends on the sit-

uation under study.

B. Resonant approximation

In general, it does not make sense to alulate the in-

tensity distribution from Eq. (112) alone, without extra

interfering terms. Yet, we an �nd partiular situations

for whih the ontribution from Eq. (112) is dominant

with respet to others. In this ase, and only in this ase,

Eq. (112), alone, is endowed with physial meaning.

The method proposed in [43℄ to alulate the integral in

Eq. (112) is very well-known and used by every textbook

treating the details of undulator radiation. Again, we will

follow notation in [5℄ during our derivation. The method

onsists in using the identity

e

ia sin( )

=

1

X

p=�1

J

p

(a)e

ip 

; (115)

where J

p

indiates the Bessel funtion of the �rst kind of

order p.

After introdution of

Q =

2K�

av

� os(�)

1 +K

2

=2 + 

2

�

2

(116)

and

S =

K

2

�

av

4(1 +K

2

=2 + 

2

�

2

)

(117)

one an express the exponential funtion in Eq. (112) as:
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where
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S ; v =
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Then, Eq. (112) an be re-written in the more suggestive

form:
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Performing the integral in Eq. (120) one gets:
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)

�N

w

R

!

ŷ

�

:

(121)

As is well known, and an be seen by inspetion, terms in

Eq. (121) exhibit resonant harater. Maxima of di�er-

ent terms are found asR

!

= 0, R

!

+1 = 0 andR

!

�1 = 0.

These orrespond to partiular frequenies multiples of

the fundamental !

1

. Always following [5℄ we introdue

the harmoni number k and we set !

k

= k!

1

. Then,

after setting �!

k

= !� !

k

, the following expression an

be obtained for the �eld around frequeny !

k

:

e

E

?;k

=

i!e�

w

N

w

e

i�

s



2

z

o

sin(�N

w

�!

k

=!

1

)

�N

w

�!

k

=!

1

�

1

X

m=�1

��

K

2

i

�

J

m

(u)J

k�2m�1

(v)e

i�(k�2m�1)=2

�J

m

(u)J

k�2m+1

(v)e

i�(k�2m+1)=2

�

+� os (�) J

m

(u)J

k�2m

(v)e

i�(k�2m)=2

i

x̂

+� sin (�)J

m

(u)J

k�2m

(v)e

i�(k�2m)=2

ŷ

o

:

(122)

The fator sin(�)=(�) represents the well-known resonant

harater of the devie: our eletron produes �eld

peaked at frequenies !

k

only. !

k

is a funtion of the

angle �. One an observation angle � is �xed, a resonant

frequeny !

k

(�) is also de�ned and the bandwidth of the

radiation is determined by �!

k

(�) through the resonant

fator sin(�)=(�). If we are interested in the angular width

of the peak around the observation angle �, we an intro-

due an angular displaement �� with respet to �. The

resonant frequeny at angle � +��, that is !

k

(� +��),

has a di�erent value with respet to !

k

(�). When ��

beomes large enough, !

k

(�+��) gets outside the band-

width �!

k

(�). This happens for an angular displaement

�� suh that

N

w

(!

k

(� +��)� !

k

(�))=!

1

(�) � 1 (123)

whih is the �rst zero of the sin(�)=(�) funtion in Eq.

(122). If we are interested in the angular width of the

peak around � = 0 in the ase k = 1, that is for the

fundamental harmoni, we should solve the equation

N

w

(!

1

(��) � !

1

(0))=!

1

(0) = 1 (124)

with respet to ��. Eq. (124) should be taken only as

a rough indiation of the angular width of the radiation

peak. In fat, taking the �rst zero of the sin(�)=(�) fun-

tion in Eq. (122) is just a onvention: as we will see,

only through similarity tehniques we will be able to de-

termine the natural angle whih �ts with the physial

situation under study: � an be ompared in a natural

way only with that angle, and not with the solution of

Eq. (124). Yet, following textbooks and tradition we will

all with �



the solution in �� of Eq. (124), and we will

refer to it as a rough indiation of the angular width of

the radiation for the 1st harmoni. The one with aper-

ture �



is usually alled entral one. It an be found

that (see [5℄)

�



=

1

p

2N

w



z

(125)

where 

z

= =

p

1 +K

2

=2. From the previous disussion

follows that Eq. (122) an be drastially simpli�ed un-

der the approximation N

w

� 1 and within the entral

one �

<

�

�



. In partiular when k = 1, that is for the

fundamental harmoni, we have

e

E

?

= �

K!e�

w

N

w

e

i�

s



2

z

o



sin(�N

w

�!

1

=!

1

)

�N

w

�!

1

=!

1

�A

JJ

�

!K

2

8k

w



2

�

x̂ : (126)

Here we negleted all terms but the one proportional to

N

w

. Also, A

JJ

(u) � J

0

(u)�J

1

(u), and we have used the

fat that K � .

Note that at this point we are not able to speify the

auray of this approximation preisely: we an only say

that, when � � �



, our auray sales as 1=N

w

. This an

be seen showing that the third term in x̂ and the term

in ŷ in the series of Eq. (122) an be negleted with an

error � 1=N

w

. First we �x k = 1, that is the fundamental

harmoni. Seond we note, from Eq. (119), that for any

value of K and � muh smaller than 1=

z

we have u of

order unity while v is muh smaller than unity, so that

we an take it as a small parameter: then, the largest

ontributions from the sum in Eq. (122) will be for the

smallest indexes of the Bessel funtions J(v) beause of

the asymptoti behavior of J

q

(v) � v

q

. It follows that

the third term in x̂ and the term in ŷ in the series of

Eq. (122) are of magnitude �J

0

(u)J

1

(v) or �J

1

(u)J

�1

(v)

to be ompared with the �rst two terms in x̂ saling as

K=(2)J

0

(u)J

0

(v) and K=(2)J

1

(u)J

0

(v).

This situation refers to the ase when trigonometri

funtions in � are of order unity, otherwise extra fa-

tors os

2

(�) or sin(�) os(�) should be inluded as well.

Taking the trigonometri fators of order unity gives an

upper limit to the auray of our alulation and we will

always do this. Whatever the value of u, negleting the

third term in x̂ and the term in ŷ in Eq. (122) an be

done with an auray given by the ratio

R =

�Q=2

K=(2)

= 

2

z

�

2

: (127)
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Then, when � � �



we obtain R � 1=N

w

. Yet, as has

already been remarked, �



is not the natural angle to

whih � should be ompared and as a result we annot

speify numerial fators in front of the 1=N

w

. Later we

will omment further on this point.

Eq. (126) is indeed well-known, but usually no at-

tention is paid to its deeper meaning. As we have said

before, it does not make sense to alulate the inten-

sity distribution from Eq. (112) alone, without extra

interfering terms. Yet, we have told that, in partiular

situations, the ontribution from Eq. (112) is dominant

with respet to others and that in this ase Eq. (112),

alone, is endowed with physial meaning. On the other

hand, we have seen that Eq. (112) simplify to Eq. (126)

if k = 1, N

w

� 1 and within the entral one �

<

�

�



.

Again, when � � �



suh simpli�ation is valid within an

auray saling with 1=N

w

. By inspetion of Eq. (126)

we see that, due to resonane, the only surviving term

sales with N

w

. Any extra term added to Eq. (126) due

to non resonant devies like bending magnets or straight

lines will be simply negligible with respet the �eld in Eq.

(126) with an auray saling with 1=N

w

. Note that Eq.

(126) is valid regardless the value of K (in partiular, in

the limit for K � 1 we have an extra small parameter,

then A

JJ

(u) ' 1 and Eq. (126) an be further simpli-

�ed). This is the power of the resonant approximation.

We an show that the same result is ahievable start-

ing with Eq. (28) and negleting the gradient terms in

Eq. (28) (inluding, therefore, the entire ŷ-polarization

ontribution) and also the onstrained partile motion in

that part of the phase �

T

whih follows from the Green's

funtion, that an be found in the seond term in Eq.

(29). In fat, with these presriptions, Eq. (112) and Eq.

(113) redue to

e

E

?

=

!eK

2

2

z

o

Z

N

w

�

w

=2

�N

w

�

w

=2

dz

0

e

i�

T

�

e

ik

w

z

0

� e

�ik

w

z

0

�

x̂
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and

�

T

= !

�

z

0

2

2

z



+

�

2

z

0

2

�

1

�

K

2

8

2

k

w

sin(2k

w

z

0

)

�

+�

s

:

(129)

Eq. (128) an be rewritten as

e
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!eK
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2

z

o

Z

N

w

�

w

=2

�N

w

�
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�
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�
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2

2

z
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�
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�
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�

i

�

!

2

2
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� k

w

�
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��

exp

�
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�

�

2

z

0

2

�

1

�

�

K

2

8

2

k

w

sin(2k

w

z

0

)

�

+ �

s

�

x̂

: (130)

Introduing the detuning parameter C

C =

!

2

2

z



� k

w

; (131)

Eq. (130) an be written as

e

E

?

= �

!eK

2

2

z

o

Z

N

w

�

w

=2

�N

w

�

w
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� [1� exp(2ik

w

z

0
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�

i

�
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2

2

�

z

0

�
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�

�

1

�

K

2

8

2

k

w

sin(2k

w

z

0

)

�

+�

s

�

x̂ (132)

Note that

e

E

?

has maximal magnitude when C +

!�

2

=2 = 0 beause otherwise the integrand in Eq. (132)

starts displaying osillatory behavior. For � = 0 this

simply means C = 0. Condition

C +

!�

2

2

= 0 (133)

is alled the resonant ondition.

With the help of Eq. (115), Eq. (132) an be trans-

formed to

e

E

?

= �

!eK

2

2

z

o

e

i�

s

1

X

m=�1

J

m

�

�
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N

w
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[1� exp(2ik
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� exp
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i
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C +

!�
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�

z

0

�

exp [2imk

w
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0

℄ x̂ (134)

The only non-zero terms are for m = 0 and m = �1 so

that

e

E

?

= �

!eK

2

2

z

o

e

i�

s

A

JJ

�

Z

L

w

=2

�L

w

=2

dz

0

exp

�

i

�

C +

!�

2

2

�

z

0

�

x̂ ; (135)

where the argument of A

JJ

is implied. Eq. (135) an be

integrated leading to

e

E

?

= �

K!eL

w

e

i�

s
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z

o



sin[CL

w

=2 + !L

w

�

2

=(4)℄
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w

=2 + !L

w

�

2

=(4)

A

JJ

x̂ :

(136)

Eq. (136) is equivalent to Eq. (126). This an be seen

noting that the argument in the resonant term an be

written as

�N

w

�!

1

(�)

!

1

(�)

= �N

w

�

! � !

1

(0)

!

1

(0)

+
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2

2k

w



�



25

=

�

L

w

C

2

+

!L

w

�

2

4

�

; (137)

as it an be readily shown. The previous result an be

ast in a more ompat way, suitable for further manip-

ulations, using the following normalized quantities

^

E

?

= �



2

z

o



~

E

?

K!eL

w

A

JJ

;

^

C = L

w

C = 2�N

w

�!

1

=!

1

;

^

� = �

r

!L

w



;

ẑ =

z

L

w

: (138)

As remarked before, introdution of similarity tehniques

involves reognition of natural quantities whih enter in

the normalization of equations in one possible way only

and �t with the physial nature of the problem. For

instane, after the introdution of the normalized an-

gle

^

� we an say that � is to be ompared, naturally,

with the angle [=(!L

w

)℄

1=2

and not with �



. When

� � [=(!L

w

)℄

1=2

, Eq. (127) gives, naturally, the nu-

merial fator in front of 1=N

w

that we were not able to

speify before. In partiular, substitution in Eq. (127)

gives the following auray for our alulations:

R =

1

4�N

w

: (139)

Using Eq. (138), Eq. (135) and Eq. (136) an be written

respetively as

^

E
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= e

i�

s

Z

1=2

�1=2

dẑ

0

exp

"

i

 

^

C +

^
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2
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(140)

and

^

E

?

= e

i�

s

sin[

^

C=2 +

^

�

2

=4℄

^

C=2 +

^

�

2

=4

; (141)

whih are valid in the limit for ẑ � 1, 4�N

w

� 1, and

^

C +

^

�

2

=2 � 4�N

w

. The last relation omes from the

fat that we are interested in the fundamental harmoni

of our devie; then �!

1

=!

1

� 1; use of Eq. (137) gives

then

^

C +

^

�

2

=2 � 4�N

w

. Note that for

^

C +

^

�

2

=2

<

�

1,

that is near resonane, the formation length of the system

beomes L

f

� L

w

, as one an readily see imposing that

the phase of the integrand in Eq. (141) be of order unity.

As already remarked, although Eq. (140) and Eq.

(141) are well known in literature (at least in their di-

mensional form), our disussion is far from being a mere

repetition of textbook material. In fat we put partiu-

lar attention to the assumptions used in order to obtain

them, whih are ompletely negleted in textbooks. Our

method helped to larify these assumptions. Now, after

this step, Eq. (140) and Eq. (141) onstitute the starting

point for further manipulations: the investigation of the

near-�eld e�ets treated in the next Paragraph, and the

derivation of the �eld in ase of an eletron with o�set

and deetion, treated in Paragraph IVD.

C. Near-�eld e�ets

As it has just been said, Eq. (141) is derived under

several assumptions: ẑ

o

� 1, 4�N

w

� 1, and

^

C+

^

�

2

=2�

4�N

w

. Here we will relax the ondition ẑ

o

� 1 and we

will treat near �eld e�ets, showing how we an ontrol

the auray of alulations using our method.

We start onsidering the near �eld region, where ẑ

o

>

�

1=2. In pratie, the �eld at the very end of the undulator

is not interesting beause detetors are, in pratie, never

put at ẑ

o

= 1=2. Therefore in pratial situation we will

be always interested in situation where ẑ

o

>

�

1 or ẑ

o

>

�

2.

In this region, suitable for our investigations, the assump-

tion 4�N

w

� 1, and the resonant approximation are still

retained valid, and allow substantial simpli�ation of the

equation for the �eld at the fundamental harmoni, muh

like Eq. (141) is a simpli�ation of Eq. (122). Using the

same line of reasoning in the last Paragraph, but without

expanding expressions (ẑ

o

� ẑ

0

)

�1

around ẑ

o

, we obtain

the following simpli�ed expression for the �eld, that is

^

E
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= ẑ

o

Z

1=2

�1=2

dẑ

0

1

ẑ
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� ẑ

0
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Cz
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2(ẑ

o

� ẑ

0

)

��

: (142)

Here we introdued normalized units x̂

o

=

x

o

[!=(L

w

)℄

1=2

and ŷ

o

= y

o

[!=(L

w

)℄

1=2

. These

de�nitions for normalized units, together with the ones

given in (138), are naturally ditated by the system itself,

through the non-normalized equations whih desribe

it. In partiular, x̂

o

and ŷ

o

an be derived from the

de�nitions of

^

� and ẑ in (138). Using normalized units

allows one to ompare eah physial quantity with its

natural measure and has the advantage of reduing the

number of parameters that the system depends on to the

few �tting the physial harateristis of the problem.

Note that beause of the resonant approximation, the

phase fator in Eq. (142) is muh smaller than 4�N

w

.

Eq. (142) is valid for any value of ẑ

o

with an auray

1=(4�N

w

). We may wish to push analytial investiga-

tions further: in fat we have now full ontrol over the

expansion of (ẑ

o

� ẑ

0

)

�1

, meaning that we an deide

when to trunate the series

(ẑ

o

� ẑ

0

)

�1

=

1

ẑ

o

1

X

n=0

�

ẑ

0

ẑ

o

�

n

(143)
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both in the �rst fator and in the exponential fator of

Eq. (142).

Negleting terms of order higher than n = m in the

expansion of the �rst fator in Eq. (142) an be done

with an auray better than (ẑ

0

=ẑ

o

)

m+1

� 1=(ẑ

o

)

m+1

so

that, with this auray, we have
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X

n=0

1
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dẑ

0

ẑ
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2(ẑ
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� ẑ

0
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(144)

Now we should study the exponential fator. Let us keep

orders up to l = j:

x̂

2

o

+ ŷ

2

o

2(ẑ

o

� ẑ

0

)

=

^

�

2

ẑ

o

2

j

X

l=0

�

ẑ

0

ẑ

o

�

l

+O(ẑ

0j+1

) ; (145)

where

^

�

2

= x̂

2

o

=ẑ

2

o

+ ŷ

2

o

=ẑ

2

o

. The �rst term to be ne-

glet will give a ontribution to the integrand equal to

exp[i

^

�

2

ẑ

0j+1

=(2ẑ

j

o

)℄. Now, if (ẑ

o

)

�j

�

^

�

2

=2 < 1, this expo-

nential ontribution an be expanded too, and the domi-

nant term in the expansion, after unity, will be just of or-

der

^

�

2

=(2ẑ

j

o

). Negleting this term an therefore be done

with an auray (ẑ

o

)

�j

�

^

�

2

=2. If we impose that this

auray be of order 1=(ẑ

o

)

m+1

, we have automatially

that (ẑ

o

)

�j

�

^

�

2

=2 < 1 and we �nd the useful ondition

^

�

2

2

� (z

o

)

j�m�1

: (146)

This an be used to retain important terms: for instane,

given a maximal observation angle of interest and an a-

uray to be reahed, for a ertain setup, we �nd j suh

that (ẑ

o

)

�j

�

^

�

2

=2 is the desired auray; then we �nd

m suh that Eq. (146) is satis�ed. To give a numeri-

al example, if we hoose ẑ

o

' 5 and

^

�

2

=2 ' 1 and we

want to get our result with an auray of about 4% we

an put j = 2; of ourse we should ompare this 4% a-

uray with the auray of the resonant approximation

1=(4�N

w

), whih is usually about 1% or smaller. Then,

solving Eq. (146) for m we �nd m = 1. Note that expan-

sions up tom = 1 and j = 2 are easy to solve analytially.

One obtains the following result:
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(147)

where

�

U =

^

C +

^

�

2

2

: (148)

and

�

W =

^

�

2

2ẑ

o

(149)

The parameter

�

W is losely related to the near �eld pa-

rameter W = L

2

w

�

2

=(2�z

o

) introdued in [44℄. In fat,

one translated in dimensional units,

�

W = 2�W . We are

therefore able to reprodue the results in [44℄, but this

time aounting, thanks to our approah, for auray

and appliability region of the approximations.

The integrals in Eq. (147) an be alulated analyti-

ally leading to

^

E

?

= e

i�

s

�

B

1

+

B

2

ẑ

o

�

(150)

where

B

1

=

p

�(1 + i)

2

p

2

�

W

�

erf

�

e

3i�=4

(

�

U �

�

W )

2

p

�

W

�

�erf

�

e

3i�=4

(

�

U +

�

W )

2

p

�

W

��

exp

�

i

�

U

2

4

�

W

�
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and

B

2

=

1

8

�

W

3=2

�

�4i exp

�

i

2

�

U

2

+

�

W

2

4

�

W

�

p

�

W

�

�

�1 + exp(i

�

U )

�

+ (1 + i)

�

U exp

�

i

�

U

�

U + 2

�

W

4

�

W

�

p

2�

�

�

�erf

�

e

3i�=4

(

�

U �

�

W )

2

p

�
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�

+erf

�

e

3i�=4

(

�

U +

�

W )

2

p

�

W

���

exp

"

i

�

U

�

�

U +

�

W

�

2

�

W

#
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It might be remarked that the erf funtion an be rep-

resented in terms of Fresnel funtions whih were used

in presentation of results in [44℄. For the sake of om-

parison with [44℄ it may be interesting to plot j B

1

j

2

as

a funtion of

^

�. When terms in B

2

are negligible this

represents, in normalized units, the intensity in the near

�eld. This is the ase, for instane, if we hoose ẑ

o

' 5,

^

�

2

=2 ' 1 and we want to get our result with an auray

of about 20%: then we may set j = 2 and m = 0. Results

are plotted in Fig. (13) and in Fig. (14) as intensity as

a funtion of

�

U for di�erent values of

�

W .

The understanding of the region of appliability in-

volved in the derivation of Eq. (150) allows us to make

interesting remarks. For instane, note that for any given

negative value of the detuning parameter

^

C there is a

value of

^

� suh that

�

U = 0. This means that even when

^

C = �40, for example, the value

^

�

2

=2 = 40 is suh that

�

U = 0 and the ontribution of the near �eld

�

W is dom-

inant. In this ase, even hoosing ẑ

o

= 40,

�

W = 1 and
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FIG. 13: Intensity, in arbitrary units, from the term B

1

, as a

funtion of

�

U for

�

W=(2�) = 8 (upper plot) and for

�

W=(2�) =

4 (lower plot).

letting m = 0 and j = 2, the term in

�

W is the only

ontribution up to an auray of 5% (note that this is

onsistent with Eq. (146), whih gives a maximal angle

^

�

2

=2 � 40. This is a very partiular region of parameters,

where the eletri �eld depends on the near �eld param-

eter

�

W even though ẑ

o

� 1. In this partiular situation

we an write

^

E

?

= �e

i�

s

p

�(1 + i)

p

2

�

W

erf

"

e

3i�=4

p

�

W

2

#
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D. Eletron motion with o�set and deetion

The same remark given in Paragraph III B for eletrons

on a irular trajetory is valid here for partiles in an

undulator: the nominal trajetory is just an approxima-

tion. Eletron beams have always some �nite geomet-

rial emittane and they an be thought, in agreement

with paraxial treatment, as a omposition of perfetly
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W/(2 π)=0 
-

W/(2 π)=2 
-

FIG. 14: Intensity, in arbitrary units, from the term B

1

, as a

funtion of

�

U for

�

W=(2�) = 2 (upper plot) and for

�

W=(2�) =

0 (lower plot).

ollimated beams with di�erent deetion angles with

respet to the orbital plane of the nominal trajetory.

As remarked in Paragraph III B, this representation will

be of great importane in the alulation of ompliated

quantities like the �eld autoorrelation funtion, whih

is of uttermost importane in the haraterization of the

statistial properties of a light soure. Let us now dis-

uss how to alulate

e

E from a single partile moving

in an undulator with a given angular deetion and o�-

set with respet to the orbital plane of a nominal ele-

tron. One we answer this question for a single partile,

we an add up ontributions from di�erent eletrons the

way we want, in perfet symmetry with Paragraph III B.

Let us introdue eletron deetion angles �

x

and �

y

and

displaements l

x

and l

y

. The partile veloity will be

haraterized, as a funtion of z

0

, as

v

?

(z

0

) =

�

�

K



sin (k

w

z

0

) + �

x

v

z

�

x+ [�

y

v

z

℄y ; (154)

so that
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r

0

?

(z

0

) =
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) � 1) + �
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0

+ l

x

�

x
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y

z
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Using
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one has

s(z

0

) =

 

�

�

av

+

�

2

x

+ �

2

y

2

!

z

0

�

K�

x

k
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�

K

2

8

2

k

w

sin (2k

w

z

0

) +

K�

x

k

w

os (k

w

z

0

) : (157)

We will now work under the approximations: ẑ

o

� 1,

4�N

w

� 1 and we are interested in the fundamental

harmoni of our devie. We an use a proedure analo-

gous to the one used in Paragraph IVB (and Paragraph

IVC) to get the following simpli�ed expression for the

�eld in normalized units in resonant approximation:

^

E

?

= e

i�

U

Z

1=2

�1=2

dẑ

0

exp

"

iẑ

0
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ẑ

o

� �̂

x

!

2

+

1

2

 

^

�

y

�
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!#

; (158)

where

�

U

=

2

4
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�
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�

^
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ẑ

o

!

2
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^

�

y

�

^

l

y

ẑ

o

!

2

3

5

ẑ

o
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The same normalization for � holds also for �

x;y

.

The auray of Eq. (158) is given by the ratio of

^

C + 1=2

�

^

�

x

�

^

l

x

=ẑ

o

� �̂

x

�

2

+ 1=2

�

^

�

y

�

^

l

y

=ẑ

o

� �̂

y

�

2

to

4�N

w

. When

^

C

<

�

1 and (

^

�

x;y

�

^

l

x;y

=ẑ

o

� �̂

x;y

)

2

<

�

1 the

auray is just � 1=(4�N

w

). Finally, Eq. (158) an be

integrated giving

^

E

?

= e

i�

U

sin �

�

; (160)

where �

U

is given in Eq. (159), while

� =

^

C

2

+

1

4
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ẑ
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In the limit when

^

l

x;y

=ẑ

o

� 1, one an simplify further

Eq. (160) thus getting:

^

E

?

= e

i�

s

e

i�

o

sin �

�

; (162)

where

�

s

=

�

^

�

2

x

+

^

�

2
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�

ẑ

o

; (163)

�
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; (164)

and

� =

^

C

2

+

1

4

�

^

�

x

� �̂

x

�

2

+

1

4

�

^

�

y

� �̂

y

�

2

: (165)

The same remarks given for Eq. (79) hold for Eq. (160),

and we will repeat them here, sine we onsider them

of great importane. Eq. (160) is an extremely useful

tool, beause it desribes the radiation from an eletron

with o�set and deetion as in an eletron beam with

�nite emittane, inluding the orret phase fator for

the �eld. Eq. (79) was derived here from �rst priniples.

An alternative derivation based on the intuitive piture

that the undulator radiation an be approximated as a

sum of spherial waves emitted at the entrane of eah

pole is given in [47℄. Aounting for orret phase means

that ontributions from di�erent eletrons an be sim-

ply added up to give the �eld from a beam with given

emittane at any observer position. Starting from Eq.

(160) then, it is possible to alulate the �eld orrelation

funtion, and to provide a study of transverse oherene

properties of the radiation from a given eletron beam by

means of analytial tehniques. Again, in perfet anal-

ogy with what has been remarked in Paragraph III B, a

numerial ode an always be developed, either starting

from Eq. (28) or just from the Lienard-Wiehert �elds,

whih alulates the �eld orrelation funtion in a generi

ase, but suh a ode would not help in physial under-

standing of the situation. On the ontrary, Eq. (160)

inludes all relevant information about an eletron in a

realisti beam (i.e. with o�set and deetion) and, be-

ing an analytially manageable expression, onstitutes a

�rst step towards the more ambitious goal of harateri-

zation of transverse oherene properties from undulator

radiation, whih we leave for future work.

E. The e�ets of eletron beam emittane on the

basi harateristis of undulator radiation

In the next Setion V, we will make use of Eq. (160)

to alulate radiation from a omplex system: we will

demonstrate in this way the power and the pratial on-

veniene of our omputational method. In this Para-

graph instead, we will study in detail how to apply Eq.
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(160) to alulate angular distribution and frequeny

spetrum of radiation produed by an eletron beam in

a standard undulator when eletron beam emittane is

present. We restrit our attention to the asymptoti ase

of a large horizontal and a small vertial emittane. This

limiting situation is, in fat, of great pratial interest

for today's third generation light soures and it will be

disussed here in order to illustrate the e�etiveness of

similarity tehniques.

First we assume that we an use Eq. (162) in plae

of Eq. (160). Indiating with �

ox;y

the minimal values

of the betatron funtion in the x and y diretions and

with h

x;y

(�

x;y

) the angular distributions of the partiles,

again with respet to horizontal and vertial diretions

we have

h

x;y

(�

x;y

) =

N

p

p

2��

x

0

;y

0

exp

 

�

�

2
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2�

2

x

0

;y

0

!

; (166)

where �

2

x

0

;y

0

= "

x;y

=�

ox;y

. Upon introdution of

^

�

o

= L

�1

w

�

o

;

"̂ = (!=)" ;

(167)

where we negleted all indexes in x; y; x

0

and y

0

for nota-

tional simpliity, Eq. (166) an be rewritten as a funtion

of normalized quantities as

h(�̂) =

1

q

2�"̂=

^

�

o

exp

 

�

�̂

2

^

�

o

2"̂

!

; (168)

We will treat the limiting ase "̂

y

=

^

�

oy

� 1. When

^

�

oy

�

1 as it usually is the ase, this is simply a ondition on

the normalized emittane "̂

y

� 1.

In this partiular ase, the partile density distribution

in the vertial phase spae behaves like a Æ-distribution.

Then, the beam intensity is simply given by

I

b

=

N

p
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or, in normalized units

^

I

b

=

1
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where

^

I

b

=

4�

N

p
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FIG. 15: Solid line : relative intensity

^

�

I from a beam in the

limit "̂

x

! 1, "̂

y

! 0. The intensity is plotted as a funtion

of

^

C +

^

�

2

y

=2. Dashed line : single partile intensity

^

I as a

funtion of

^

C +

^

�

2

y

=2 for �

x

= 0

Eq. (170) simpli�es further in the limit "̂

x

=

^

�

ox

� 1.

Also in this ase, when

^

�

ox

� 1 as it is usually veri�ed,

this is a ondition on the normalized emittane "̂

x

� 1.

In this limiting situation, the funtion sin

2

�=�

2

in Eq.

(170) behaves as the Æ-distribution Æ(

^

�

x

� �̂

x

) when om-

pared with the exponential funtion, so that Eq. (170)

an be simpli�ed as

^

I

b

=

exp

h

�

^

�

2

x

^

�

ox
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Now we an introdue the relative intensity

^
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x
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so that

^

�

I =

3

8

p

�

Z

1

�1

d�̂

x

sin

2

�

�

2

; (174)

and aording to our approximations

� =

^

C

2

+

1

4

�
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�

x

� �̂

x

�

2
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^

�

2
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With an obvious hange of integration variable �̂

x

!

^

�

x

�
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FIG. 16: Solid line : approximation of

^

�

I using Eq. (178).

Dashed line : relative intensity

^

�

I from a beam in the limit

"̂

x

! 1, "̂

y

! 0. The intensity is plotted as a funtion of

^

C +

^

�

2

y

=2, as the solid line in Fig. 15.
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FIG. 17: Solid line : relative intensity

^

�

I from a beam in the

limit "̂

x

! 1, "̂

y

! 0. The intensity is plotted as a funtion

of

^

�

y

for

^

C = 0. Dashed line : single partile intensity

^

I as a

funtion of

^

�

2

y

for �

x

= 0 and

^

C = 0

�̂

x

we �nally obtain
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; (176)

It is now evident that similarity tehniques we used are

not only a theoretial tool: in fat

^

�

I is a universal fun-

tion of

^

C+

^

�

2

y

=2 and Eq. (176) an be integrated with the
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FIG. 18: Relative intensity

^

�

I from a beam in the limit "̂

x

!

1, "̂

y

! 0. The intensity is plotted as a funtion of

^

�

y

for

di�erent values of

^

C. The symbol C in the �gure legend

should be read as

^

C � 0.

-10 -8 -6 -4 -2 0 2 4 6 8 10

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1,1

1,2

 C =  0

 C = -1

 C = -2

 C = -3

 C = -4

 C = -5

^

 

 I

θy

-̂

FIG. 19: Relative intensity

^

�

I from a beam in the limit "̂

x

!

1, "̂

y

! 0. The intensity is plotted as a funtion of

^

�

y

for

di�erent values of

^

C � 0. The symbol C in the �gure legend

should be read as

^

C.

help of simple numerial tehniques to get the universal

plot in Fig. 15 (solid line). This universal plot is om-

pared, always in Fig. 15 (dashed line), with the relative

intensity in the ase when also "̂

x

=

^

�

ox

� 1. In this ase

we simply have the single partile intensity

^

I =

sin

2

h

^

C=2 +

^

�

2

y

=4 +

^

�

2

x

=4

i

h

^

C=2 +

^

�

2

y

=4 +

^

�

2

x

=4

i

2

: (177)

The dashed line in Fig. 15 refers to the ase

^

�

x

= 0;
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note the di�erent normalization fator between

^

�

I and

^

I .

It may be useful to provide a �t of the universal plot in

Fig. 15 using the following funtion:

H(�) =

8

>

>

<

>

>

:

A exp

h

�

(���

1

)

2

2�

2

2

i

� > �

0

; �

0

< 0

B

exp[�=�

3

℄

p

��=�

3

� < �

0

< 0

:

(178)

Fitting for A, B, �

1

, �

2

and �

3

and using, for instane,

a reasonable value for �

0

= �3:00 we �nd A ' 5:7,

B ' 0:24, �

1

' 1:7, �

2

' 2:8 and �

3

' 1:4 � 10

3

whih re-

sult in the solid urve in Fig. 16, the dashed urve being

a omparison with the real universal funtion plotted in

Fig. 15. It should be noted that H(�) has no partiu-

lar physial sense: it simply gives an analytial approx-

imation for the universal plot in Fig. 15 with graphial

auray shown in Fig. 16.

After Fig. 15 is tabulated, one an plot the intensity

as a funtion of

^

�

y

for given values of

^

C simply solving

^

C +

^

�

2

y

=2 = X for

^

�

y

, X being any of the tabulated

absissas with onstraint X �

^

C > 0. By �xing

^

C = 0

we obtain the universal plot in Fig. 17 (solid line). This

universal plot is ompared, always in Fig. 17 (dashed

line), with the normalized intensity as a funtion of

^

�

y

in the ase when also "̂

x

=

^

�

ox

� 1. The dashed line in

Fig. 17 refers to the ase

^

�

x

= 0; again, note the di�erent

normalization fator between

^

�

I and

^

I . Note that, for this

ase, Eq. (177) alulated for

^

C = 0 already onstitutes

a relatively good approximation for the plot in Fig. 17.

Letting

^

C vary we obtain universal plots of the inten-

sity parameterized with respet to

^

C; we show some of

them in Fig. 18 and Fig. 19 with respet to

^

C � 0 and

^

C � 0.

Finally, with the help of a Monte Carlo simulation de-

sribed in more detail in the following Setion V, we om-

pared our results with the ase of a beam with di�erent

values of "̂

x

and "̂

y

, always assuming

^

�

ox

=

^

�

oy

= 1:0

and no energy spread is present. Note that in general,

the spetrum (at

^

�

x;y

= 0) or the angular intensity (at

^

C = 0, �

x

= 0) is a funtion of two parameters: �̂

x

=

^

�

ox

and �̂

y

=

^

�

oy

. Results are shown in Fig. 20 and Fig. 21,

where relative intensities are plotted as a funtion of

^

C

for

^

�

x

= 0 and

^

�

y

= 0 and as a funtion of

^

�

y

for

^

C = 0

and

^

�

x

= 0, respetively. Fig. 20 and Fig. 21 illustrate

the auray of the asymptoti limit Eq. (176).

V. SET OF TWO UNDULATORS WITH A

FOCUSING TRIPLET IN BETWEEN

In this Setion we use our understanding of approxima-

tions and region of appliability disussed before to deal

with a diÆult setup onstituted by two or more undula-

tor segments separated by strong fousing quadrupoles.
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FIG. 20: Plots of relative intensities

^

�

I as a funtion of

^

C for

^

�

x

= 0 and

^

�

y

= 0. Here

^

�

ox

=

^

�

oy

= 1:0. Curve 1 : relative

intensity

^

�

I from a beam in the limit "̂

x

! 1, "̂

y

! 0, as

in Fig. 15. Curve 2 : relative intensity from a beam with

"̂

x

= 40, "̂

y

= 1. Curve 3 : relative intensity from a beam

with "̂

x

= 40, "̂

y

! 0. Curve 4 : relative intensity from a

beam with "̂

x

= 80, "̂

y

! 0. Curve 5 : relative intensity from

a beam with "̂

x

= 80, "̂

y

= 1.
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FIG. 21: Plots of relative intensities

^

�

I as a funtion of

^

�

y

for

^

�

x

= 0 and

^

C = 0. Here

^

�

ox

=

^

�

oy

= 1:0. Curve 1 : relative

intensity

^

�

I from a beam in the limit "̂

x

! 1, "̂

y

! 0, as

in Fig. 17. Curve 2 : relative intensity from a beam with

"̂

x

= 40, "̂

y

= 1. Curve 3 : relative intensity from a beam

with "̂

x

= 40, "̂

y

! 0. Curve 4 : relative intensity from a

beam with "̂

x

= 80, "̂

y

! 0. Curve 5 : relative intensity from

a beam with "̂

x

= 80, "̂

y

= 1.
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FIG. 22: Undulator system geometry: two undulator seg-

ments are separated by strong fousing quadrupoles.

In this Setion, and in Fig. 22, we onsider the partiular

ase of two undulator segments separated by a fousing

triplet.

This sheme is known as segmented undulator sheme.

Insertion devies at PETRA III are due to work a-

ording to an on top injetion sheme and must therefore

be ompatible with injetion of new partiles during op-

eration. In general, injetion operations require a larger

beam aeptane with respet to an already irulating

beam and this poses a strit limit to a safe hoie of the

length of the insertion devies.

Sine no fousing element is present inside the undu-

lator the �

T

funtion inreases quadratially with the

distane from the minimal value in the middle of the un-

dulator. In pratie, then, the maximal length of the in-

sertion devie is also �xed and one has the rule of thumb

L

w

� �

T

. Here we an safely talk about the vertial di-

retion only, beause the vertial �

T

funtion is also the

shortest.

In priniple, given a ertain aeptane "

a

, it is pos-

sible to inrease the �

T

-funtion by inreasing the un-

dulator gap aording to �

T

� �

2

gap

"

a

. However, the

partile energy and the radiation wavelength are nearly

�xed at PETRA III. Moreover restritions related with

the number of photons required and with operation of

third harmoni sheme apply, whih allow only values of

K around unity. Then, �

w

is �xed as well as the mag-

neti �eld on axis and, as a result, the undulator gap too.

This means that an upper limit on the �

T

funtion and

therefore to the insertion devie length L

w

is also �xed.

In pratial situation, when enough experiene with

the mahine, safety margins might be bent. For in-

stane a single 25 m-long in vauum undulator oper-

ates at SPring-8 in on top injetion mode with a vertial

�

T

' 10 m. However, safety limits indiate, for a �rst

design, muh more stringent onstraints.

For a �rst onservative design, the segmented undu-

lator sheme onstitutes a reliable alternative for �lling

the �rst straight setion at the new ar of PETRA III,

whih an aommodate a 20 m long insertion devie.

Breaking a long insertion devie in several parts allows

one to "keep the average vertial �

T

-funtion rather small

whih in turn is essential to allow for a small geometri-

al vertial aperture and magneti gap" (ited from [11℄,

Setion 4.1.8). "The maximal vertial �-funtion along

this undulator will be about 10 m. Therefore a vertial

inner size of 9:5 mm is neessary for the orresponding

hambers" (ited from [11℄, Setion 3.2.1).

With this motivation in mind we start our investiga-

tion. We are interested in omputing the radiation in-

tensity seen by an observer at angles

^

�

x

and

^

�

y

. We will

be interested in both angular and spetral intensity dis-

tribution. Although it is possible to take advantage of

the analysis performed in Paragraph IVC and treat near

�eld e�et, in this paper we will restrit our attention to

the far �eld limit. Then we will ompare our results with

the ase of an uniform undulator.

Of ourse radiation intensity an be obtained, numeri-

ally, from the Lienard-Wiehert expressions for the ele-

tromagneti �eld without approximations of any kind.

The previous statement though, sounds like delaring

that solution to all eletromagneti problems an be

found solving Maxwell's equation: it is undoubtedly true,

but quite generi. The most general expressions for the

Lienard-Wiehert �eld an be used, and have been used

(again, see [27℄ and [28℄ for instane) as a basis for numer-

ial odes, but understanding of orret approximations

and their region of appliability an simplify many tasks

a lot, inluding pratial and non-trivial ones like the one

we are going to study here. Instead of relying on ompu-

tational power we propose a simple tehnique for dealing

with the segmented undulator sheme whih minimizes

numerial diÆulties and omputation time and an be

implemented straightforwardly also by non-expert pro-

grammers. In order to reah this result we will use our

understanding of approximations in undulator radiation

theory, thus simplifying equations as muh as possible

before using, in the �nal step, some numerial integra-

tion tehnique. It is worthwhile to stress the fat that

we will have full ontrol of our approximations at every

step, meaning that we will be able to get the radiation

intensity and the auray with whih this is omputed

as well.

We will onsider the undulators tuned at the funda-

mental frequeny. Therefore we start reminding the res-

onant approximation seen in Setion IV. In partiular,

using our method we were able to demonstrate that under

the resonant approximation the �eld ontribution from

non-resonant strutures an be negleted with respet to

the undulator �eld with an auray of 1=(4�N

w

). Here

we will restrit our attention to a region of parameters

where suh an approximation is valid. Having indiated,

as in Fig. 22, with L

s

the straight setion length, we

will therefore be interested in the fundamental harmoni

of the system within the assumptions: ẑ

o

� 1 + L

s

=L

w

,

4�N

w

� 1, and

^

C +

^

�

2

=2� 4�N

w

.

Also, for the same reason and with the same auray

we an neglet the onstrained motion in the Green's

funtion phase and onsider the partile moving on a

straight line when alulating this phase term.

In Paragraph IVD we treated the ase of a single ele-

tron with o�set and deetion. If one is interested in



33

the far �eld limit ase, one an use Eq. (162) to obtain

the ontributions from eah segment but speial atten-

tion must be taken in summing up the �elds with the

orret relative phase fator.

With the help of Eq. (162) and the oordinate sys-

tem depited in Fig. 22 we start aounting for the �eld

ontributions from the �rst and the seond undulator in

the ase there is no straight setion between the two seg-

ments that is

^

L

s

, de�ned as L

s

=L

w

, is zero. In this ase

we have:

^

E

1

=

1

2

e

i(�

s

+�

o

)

e

�i�

1

=2

sin �

1

=2

�

1

=2

; (179)

while

^

E

2

=

1

2

e

i(�

s

+�

o

)

e

i�

2

=2

sin �

2

=2

�

2

=2

(180)

where

�

o

= �

^

�

x

^

l

x

�

^

�

y

^

l

y

; (181)

�

1

=

^

C

2

+

1

4

�

^

�

x

� �̂

x1

�

2

+

1

4

�

^

�

y

� �̂

y1

�

2

(182)

and

�

2

=

^

C

2

+

1

4

�

^

�

x

� �̂

x2

�

2

+

1

4

�

^

�

y

� �̂

y2

�

2

: (183)

Here �

s

is de�ned as usual by Eq. (159); o�sets

^

l

(x;y)

refer to the middle point of the system (i.e. the point

with zero value of z in Fig. 22) and deetions �̂

(x;y)1

and �̂

(x;y)2

refer to the �rst and the seond undulator

respetively, and the relation between the two is deter-

mined by the fousing elements only: therefore it makes

sense to talk about deetions for the �rst and the seond

undulator without speifying the point.

The next step is to aount for the phase shift in the

ase

^

L

s

6= 0. On the one hand, shifting the �rst segment

of a quantity �L

s

=2 gives a phase ontribution:

��

1

= �

!L

s

2

�

1

2

2

+

1

2

(�

x

� �

x1

)

2

+

1

2

(�

y

� �

y1

)

2

�

:

(184)

On the other hand, shifting the seond segment of a quan-

tity L

s

=2 leads to an extra phase term:

��

2

=

!L

s

2

�

1

2

2

+

1

2

(�

x

� �

x2

)

2

+

1

2

(�

y

� �

y2

)

2

�

:

(185)

To ompliate the situation further, we should aount

for the fat that, in order to pratially ontrol the rel-

ative phase between the two ontributions phase shifters

will be installed. These devies are also useful in FEL

tehnology (see [45℄); in the ase of PETRA III, they

will be usually designed and tuned in order to provide

mathing ondition for partiles at nominal energy mov-

ing at zero angle with respet to the undulator axis, and

with zero detuning. This means that the phase shifter

will ontribute for a relative phase �

sh

suh that

�

sh

+

!

1

L

s

2

2

= 2�n (186)

where n is an integer number. Taking out the unessential

2�n ontribution (or setting n = 0) and aounting for

�

sh

one gets

��

1

= �

!

1

L

s

2

�

! � !

1

2

2

!

1

+

1

2

(�

x

� �

x1

)

2

+

1

2

(�

y

� �

y1

)

2

�

(187)

and

��

2

=

!

1

L

s

2

�

! � !

1

2

2

!

1

+

1

2

(�

x

� �

x2

)

2

+

1

2

(�

y

� �

y2

)

2

�

:

(188)

Finally, we make use of the relation C = �!=(2

2

z

) and

we express ��

1

and ��

2

in normalized units thus writ-

ing

��

1

= �

^

C

2

^

L

0

s

�

�

1

4

�

^

�

x

� �̂

x1

�

2

+

1

4

�

^

�

y

� �̂

y1

�

2

�

^

L

s

(189)

and

��

2

=

^

C

2

^

L

0

s

+

�

1

4

�

^

�

x

� �̂

x2

�

2

+

1

4

�

^

�

y

� �̂

y2

�

2

�

^

L

s

(190)

where

^

L

0

s

=

^

L

s

1 +K

2

=2

: (191)

We an aount for a given energy deviation �= ex-

panding

^

C around the nominal energy. Trivial alula-

tions show that, for ! = !

1

, !

1

being now alulated at

� = 0 and at nominal energy we obtain a shift

^

�

E

in the

detuning parameter given by

^

�

E

= 4�N

w

�



: (192)

Inluding

^

�

E

in our equations we obtain the �nal results:

^

E

1

=

1

2

e

i(�

s

+�

o

)

e

�i�

1

=2

e

i��

1

sin �

1

=2

�

1

=2

(193)
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and

^

E

2

=

1

2

e

i(�

s

+�

o

)

e

i�

2

=2

e

i��

2

sin �

2

=2

�

2

=2

(194)

with

�

1

=

^

C +

^

�

E

2

+

1

4

�

^

�

x

� �̂

x1

�

2

+

1

4

�

^

�

y

� �̂

y1

�

2

;(195)

�

2

=

^

C +

^

�

E

2

+

1

4

�

^

�

x

� �̂

x2

�

2

+

1

4

�

^

�

y

� �̂

y2

�

2

;(196)

��

1

= �

^

C +

^

�

E

2

^

L

0

s

�

�

1

4

�

^

�

x

� �̂

x1

�

2

+

1

4

�

^

�

y

� �̂

y1

�

2

�

^

L

s

;

(197)

��

2

=

^

C +

^

�

E

2

^

L

0

s

+

�

1

4

�

^

�

x

� �̂

x2

�

2

+

1

4

�

^

�

y

� �̂

y2

�

2

�

^

L

s

;

(198)

where

^

C is now the detuning parameter for a partile

with nominal energy and other quantities are as de�ned

before.

As we have said, fousing elements simply hange the

eletron trajetory, but they do not ontribute diretly

to the total �eld at the observer position. We will treat

them like a thin lens with foal length f

x

and f

y

in

the horizontal and vertial planes respetively. We an,

therefore, introdue normalized foal lengths

^

f

x

= f

x

=L

w

and

^

f

y

= f

y

=L

w

.

From now on, when possible, we will neglet indexes

x or y for notational simpliity. If we have o�set and

deetion

^

l

1

and �̂

1

at the entrane of the system (where

ẑ = �

^

L

2

=2� 1=2, see Fig. 22), we an easily alulate

�̂

2

= �

^

l

1

^

f

+

 

1�

1 +

^

L

s

2

^

f

!

�̂

1

: (199)

It is worth to note here that if we take the limit for

^

f ! 1 and

^

L

s

! 0, the sum

^

E

1

+

^

E

2

gives bak Eq.

(160), as it must.

Sine we have many partiles here we an onsider a

olletive desription of the beam, for instane in terms

of the Twiss parameters �

T

, �

T

and 

T

for the horizontal

and vertial planes at the entrane of the system, where



T

= (1 + �

2

T

)=�

T

. Knowing the Twiss parameters and

the emittane " at the entrane of the �rst undulator it

is easy to write down the number of partiles with o�set

between l

1

and l

1

+Æl

1

and with deetion angles between

�

1

and �

1

+ Æ�

1

, always at the entrane of the system; in

fat, one an simply write it as g(l

1

; �

1

)Æl

1

Æ�

1

, where g

is the following density distribution [46℄:

g(l

1

; �

1

) =

N

p

2�"

exp

�

�



T

l

2

1

+ 2�

T

l

1

�

1

+ �

T

�

2

1

2"

�

:

TABLE I: Set of parameters for the segmented undulator

sheme

Quantity Unit Value

L

w

m 20:0

N

w

- 690

L

s

m 6:5

 - 11742:0

� m 2:5 � 10

�10

�

Tx

- 0:218

�

Tx

m 24:005



Tx

m

�1

0:044

"

x

m 1:0 � 10

�9

f

x

m 5:0

�

Ty

- 1:291

�

Ty

m 10:272



Ty

m

�1

0.260

"

y

m 1:0 � 10

�11

f

y

m 5:8

�

E

- 1:1 � 10

�3

K - 1:66

(200)

Here N

p

is the number of partiles in the beam and again,

for notational simpliity, we are taking indexes x and y

as impliit. Upon introdution of

�̂

T

= �

T

;

^

�

T

= L

�1

w

�

T

;

̂

T

= L

w



T

;

"̂ = (!=)"

(201)

we an write Eq. (200) as a funtion of dimensionless

quantities as

g(

^

l

1

; �̂

1

) =

1

2�"̂

exp

"

�

̂

T

^

l

2

1

+ 2�̂

T

^

l

1

�̂

1

+

^

�

T

�̂

2

1

2"̂

#

:

(202)

The loal energy spread of the beam will be assumed to

be a gaussian funtion with standard deviation �̂

E

:

F (

^

�

E

) =

1

p

2��̂

2

E

e

�

^

�

2

E

=(2�̂

2

E

)

; (203)
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TABLE II: Set of normalized parameters for the segmented

undulator sheme

�̂

Tx

0:218

^

�

Tx

1:20

̂

Tx

0:873

"̂

x

25:1

^

f

x

0:250

�̂

Ty

1:29

^

�

Ty

0:514

̂

Ty

5:19

"̂

y

0:251

^

f

y

0:290

^

L

s

0:325

�̂

E

9:54

^

L

0

s

0:137

where �̂

E

= 4�N

w

�

E

and

�

2

E

=

*

�

�



�

2

+

; (204)

brakets indiating the ensamble average over the partile

distribution.

A set of realisti normalized parameters for the seg-

mented undulator is given in Table I and Table II for

dimensional and dimensionless quantities, respetively.

From these tables we an already foresee a large e�et

of the normalized energy spread parameter �̂

E

whih is,

in our ase, omparable with the normalized horizontal

emittane.

We an now average the normalized intensity over the

partile distribution funtion and the energy spread of

the beam at the entrane of the system thus �nding the

�nal expression for the total intensity

^

I

b

^

I

b

= j

^

E

1

+

^

E

2

j

2

=

Z

1

�1

d

^

�

E

F (

^

�

E

)

Z

1

�1

d

^

l

x1

�

Z

1

�1

d�̂

x1

Z

1

�1

d

^

l

y1

Z

1

�1

d�̂

y1

g

x

(

^

l

x1

; �̂

x1

)g

y

(

^

l

y1

; �̂

y1

)

�

�

�

�

�

e

�i�

1

=2

e

i��

1

sin �

1

=2

�

1

=2

+ e

i�

2

=2

e

i��

2

sin �

2

=2

�

2

=2

�

�

�

�

2

: (205)

As in Eq. (171), the normalized intensity

^

I

b

is related to

the non-normalized intensity I

b

by
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Moreover �̂

2

is expressed in terms of

^

l

1

and �̂

1

in Eq.

(199).

We now reahed an expression, Eq. (205), whih an be

integrated with the help of numerial tehniques. Results

of numerial integration are the intensity as a funtion of

the detuning parameter

^

C for �xed observation angles or

the intensity as a funtion of angles for a �xed detuning

parameter.

We developed a short ode whih uses a Monte Carlo

method to ompute Eq. (205). A quasi-random gener-

ator is used to �ll the horizontal and vertial transverse

phase spae with a given number of partiles. The a-

tual simulation makes use of Sobol sequenes to redue

the formation of luster of partiles, a well known phe-

nomenon desribed, for instane, in [48℄ and referenes

therein. Then, the intensity for eah partile is alu-

lated and all ontributions are summed up to give an

estimation of Eq. (205). The ritial parameter in this

kind of odes is the number of partiles used. In general

the higher the number of partiles is, the smaller the u-

tuation of the results from run to run and the higher the

auray of the integration. On the other hand numerial

algorithm designers warn that quasi-random sequenes

start to display unwanted orrelations after several tens

of millions alls to the generating routine. We observed

that a hoie of several million partiles is more than suf-

�ient to ensure that results onverge fast enough so that

no relevant utuation is present in the outome (with

graphial auray of the results whih will be desribed

in the next few �gures).

First, we ompared results from the Monte Carlo ap-

proah in the limiting ase

^

L

s

! 0,

^

f

x;y

!1, "̂

x

!1,

"̂

y

! 0 and �̂

E

! 0. Results were in perfet agreement

with the ones shown in Fig. 15, Fig. 17, Fig. 18 and

Fig. 19 as it should be. Then, as has already been said

in Paragraph IVD we ompared this asymptoti situa-

tion with a more pratial ase of a uniform undulator

with "̂

x

' 40 and "̂

y

' 1. Results have been already

desribed, and shown in Fig. 20 and Fig. 21.

Finally we used all the features of our program in or-

der to deal with the segmented undulator ase. We set

up parameters as in Table I, whih orrespond to a de-

sign set for the PETRA III ase. The solid line in Fig.

23 represents the intensity as a funtion of the detuning

parameter

^

C at

^

�

x

= 0 and

^

�

y

= 0. The dashed line in

Fig. 23 is the intensity for the uniform undulator ase,

orresponding to the limit

^

L

s

! 0 m and

^

f !1, while

L

w

= 20 m. In this ase we set the minimal betatron

funtion values to �

ox

= 20 m in the horizontal diretion

and �

oy

= 10 m in the vertial one. Beam energy, wave-

length, undulator deetion parameter, relative energy

spread and eletron beam emittanes are left unvaried

as in Table I. Assuming the minimal �

T

funtion in the

enter of the undulator we an alulate the Twiss pa-

rameters at the system entrane using for both horizontal

and vertial plane (see, for instane, [46℄) :

�

T

(z) = �

o

"

1 +

�

z � z

w

�

o

�

2

#

; (207)
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FIG. 23: Solid line : relative intensity from a beam with

parameters listed in Table II. The intensity is plotted as a

funtion of

^

C for

^

�

x

= 0 and

^

�

y

= 0. It is normalized to

the maximal intensity from a beam in a uniform undulator.

Dashed line : relative intensity from a beam in a uniform

undulator (

^

L

s

! 0 m and

^

f ! 1). We set the minimal

betatron funtion values

^

�

ox

= 1 in the horizontal diretion

and

^

�

oy

= 0:5 m in the vertial one. "̂

x;y

and �̂

E

are left

unvaried as in Table II.
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FIG. 24: Solid line : relative intensity from a beam with

parameters listed in Table II. The intensity is plotted as a

funtion of

^

�

y

for

^

�

x

= 0 and

^

C = 0. It is normalized to

the maximal intensity from a beam in a uniform undulator.

Dashed line : omparison with the relative intensity from

a beam in a uniform undulator (

^

L

s

! 0 m and

^

f ! 1).

We set the minimal betatron funtion values

^

�

ox

= 1 in the

horizontal diretion and

^

�

oy

= 0:5 m in the vertial one. "̂

x;y

and �̂

E

are left unvaried as in Table II.
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�

T

(z) = �

o

(z � z

w
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where z

w

indiates the z-position at the beam waist,

while subsripts "o", as usual, denote minimal values of

the Twiss parameters. Taking z

w

= 0 m at the enter of

the system and z = �10 m we obtain the initial Twiss pa-

rameters to enter in our program: �

Tx

= 0:5, �

Tx

= 25:0

m and 

Tx

= 0:05 m

�1

, �

Ty

= 1:0, �

Ty

= 20:0 m and



Ty

= 0:1 m

�1

.

It is important to remark that we normalized the solid

line in Fig. 23, that is the result for the segmented un-

dulator, to the maximal intensity found for the uniform

undulator while the dashed line represents the relative

intensity for the uniform undulator. This allows diret

omparison between uniform undulator and segmented

undulator shemes.

To onlude, in Fig. 24 (solid line) we plot again the

intensity as a funtion of

^

�

y

at

^

C = 0 and

^

�

x

= 0. Simi-

larly as for Fig. 23, the dashed line in Fig 23 represents

a omparison with the uniform undulator ase

^

L

s

= 0 m

and

^

f !1, where the other parameters are left unvaried

as in Table I. Normalization of the urves are as in Fig.

23. The �nal results for the two shemes do not appear

to be dramatially di�erent.

As a omment for both Fig. 23 and Fig. 24 it is

interesting to note the smoothing ation of �nite beam

emittane ombined with �nite energy spread.

VI. CONCLUSIONS

In this paper we have shown that even well-known

and long studied subjets, like Synhrotron Radiation,

ontinue to retain interest from a theoretial viewpoint.

In partiular we have proposed a tehnique to ompute

harmoni ontributions of the eletri �eld from a mov-

ing harge partiularly suitable for analytial investi-

gations. We showed that our general expression, Eq.

(28), an be obtained from already known expression

Eq. (2) with the use of a paraxial approximation, but

also muh more straightforwardly from Maxwell's equa-

tion in paraxial form, with the help of a paraboli Green's

funtion method. The main advantage of our approah

with respet to standard tehniques is that we separated

from very beginning approximations independent from

the system under study (paraxial approximation) and as-

sumptions that, from time to time, arise in the study of

a partiular magneti system. This gave us the possibil-

ity to speify region of appliability and auray of well

known results, whih we were, of ourse, able to reover

using our method, like the �eld from a harge moving

on a irle, in a short bending magnet or in an undu-

lator and also edge radiation e�ets from a partiular
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setup. Again, our partiular approah is logially muh

less involved with respet to the others, sine it relies

on diret integration of the paraxial Maxwell's equations

for a given harmoni. As a result, our expression gives

a learer and ompletely fresh insight in old results. Be-

sides being able to disuss their region of appliability

and their auray, we pointed out that phase orretions

with respet to the spherial wavefront for an eletron

on a irle arise naturally from analytial treatment. We

have seen that short magnet radiation is a omplete sep-

arate phenomenon with respet to edge radiation. We

stressed the importane of the knowledge of the entire

eletron trajetory in order to obtain a orret alula-

tion of the �eld: from this viewpoint we have seen how

edge radiation from two dipoles separated by a straight

setion arises, in our method, from the ontribution due

to the straight setion alone, and that the �eld term from

the magnets is ompletely negligible. We disussed, un-

der resonane approximation, auray and appliability

region of the far �eld undulator radiation and we dealt

with near �eld e�ets as well: in partiular we were able

to reprodue already known results studying their region

of appliability in detail, and we found also other regions

of interest, where the near �eld parameter

�

W is of fun-

damental importane.

Besides this, our method proved to be a reliable basis

for alulation of more ompliated quantities like �eld

autoorrelation funtions, either from bending magnets

or undulators, whih are of fundamental importane in

the understanding of spatial oherene properties of Syn-

hrotron Radiation. In fat, by diret appliation of our

general formula Eq. (28) we were able to provide ana-

lytially manageable expressions for bending magnet or

undulator radiation in the ase of an eletron with a

transverse o�set and deetion. These expressions an

be integrated over realisti beam partile distributions

and an be used in very pratial alulations. Their

strength stems from the fat that they orretly aount

for the �eld phase and that they an be simply summed

up to give results for apparently ompliated situations.

Complete treatment of spatial oherene would proba-

bly double the size of this paper. For this reason, this

�rst work fouses on the basis of Synhrotron Radiation

theory only.

A few appliations whih exploit the power of our ap-

proah have been seleted for the �nal part of the paper.

At the end of Setion IV we addressed basi harater-

istis of undulator radiation in the presene of eletron

beam emittane. We disussed the asymptoti situation

for a large horizontal and a small vertial emittane.

Finally, in Setion V, we onsidered a novel undulator

on�guration (setup of two undulators separated by a fo-

using element) whih is planned for installation at PE-

TRA III. Computation of radiation harateristis from

new setups by means of numerial tehniques alone re-

quires, almost always, modi�ations of existing simula-

tion odes whih an be better done by the ode authors

themselves. Up to date, the partiular ase we hose to

study has not been inluded in existing simulation odes.

For this reason we seleted this partiular example: our

goal was to demonstrate that, in general, the appliation

of our method allows solution of apparently diÆult prob-

lems relying on simple omputer algorithm whih an be

developed by non-expert programmers, with obvious ad-

vantages in saving time and better physial understand-

ing.

We expet that our tehnique will be used in the future

as a basis for developments of simulation odes and for

physial understanding of omplex situation as well.
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