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Abstrat

We present a detailed disussion of the ollinear subtration terms needed to estab-

lish a massive variable-avour-number sheme for the one-partile inlusive produ-

tion of heavy quarks in hadroni ollisions. The subtration terms are omputed

by onvoluting appropriate partoni ross setions with perturbative parton distri-

bution and fragmentation funtions relying on the method of mass fatorization.

We �nd (with one minor exeption) omplete agreement with the subtration terms

obtained in a previous publiation by omparing the zero-mass limit of a �xed-order

alulation with the genuine massles results in the MS sheme. This presentation

will be useful for extending the massive variable-avour-number sheme to other

proesses.
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1 Introdution

Heavy-quark prodution in highly energeti e

+

e

�

, , p, ep and p�p ollisions has at-

trated muh interest in the past few years, both experimentally and theoretially. Heavy

quarks are those with masses m� �

QCD

so that �

s

(m)� 1, where �

s

(�

R

) is the strong-

oupling onstant at renormalization sale �

R

. Aording to this de�nition, the harm,

bottom and top quarks (; b; t) are heavy whereas the up, down and strange quarks (u; d; s)

are light. Sine �

s

(m) � 1, heavy-quark prodution is a alulable proess in perturba-

tive QCD. The heavy-quark mass ats as a uto� for initial- and �nal-state ollinear

singularities and sets the sale for the perturbative expansion in �

s

.

On this basis, most of the next-to-leading-order (NLO) QCD alulations have been per-

formed in the past [1, 2, 3, 4℄. Corresponding results are reliable when m is the only large

sale, as for example in alulations of the total ross setion or if any additional sale,

for example the transverse momentum p

T

of the produed heavy quark in , p and p�p

reations or the lepton momentum transfer Q in deep-inelasti ep sattering (DIS), is not

muh larger than the mass m. However, when p

T

(or Q) is muh larger than the mass,

large logarithms ln(p

2

T

=m

2

) or ln(Q

2

=m

2

) arise to all orders, so that �xed-order perturba-

tion theory is no longer valid. As is well known, these logarithms an be resummed and,

this way, the perturbation series an be improved.

The isolation and resummation of large logarithms is similar to the onventional mass-

less parton model approah, where initial- or �nal-state ollinear singularities are ab-

sorbed into parton distribution funtions (PDF) of the inoming hadrons or photons and

into fragmentation funtions (FF) for the produed light hadrons (or photons), respe-

tively. Therefore, this approah is usually referred to as zero-mass variable-avour-number

sheme (ZM-VFNS). The notion \variable avour number" is used sine, in the parton

model, the number of ative quark avours is inreased by one unit, n

f

! n

f

+ 1, when

the fatorization sale rosses ertain transition sales (whih are usually taken to be of

the order of the heavy-quark mass)

1

. In ontrast, the �xed-order treatment, where m is

kept as a large sale, is alled the �xed-avour-number sheme (FFNS), sine the number

of avours in the initial state is �xed to n

f

= 3 (4) for harm (bottom) prodution. One

an ombine ross setions alulated in the FFNS after ertain modi�ations with heavy-

quark FFs and PDFs whih ontain the resummed large logarithms. This presription is

alled the massive or general-mass VFNS (GM-VFNS)

2

.

One might expet that the partoni ross setions alulated in the FFNS approah the

orresponding ZM-VFNS ross setions in the limitm! 0 if the ollinear singular terms

proportional to ln(m

2

=s) are subtrated, i.e., the subtrated FFNS ross setions di�er

from the ZM-VFNS ross setions only by terms � m

2

=p

2

T

. If this was true, the FFNS

and ZM-VFNS results for the ross setions would approah eah other for p

2

T

� m

2

.

This expetation, however, is not true, as was �rst demonstrated by Mele and Nason

1

For a detailed disussion see the appendix in Ref. [5℄ and referenes given there.

2

For details see, e.g., Refs. [6, 7℄.

2



[8℄ for inlusive heavy-quark prodution in e

+

e

�

annihilation at NLO (e

+

e

�

! QQg,

where Q is the heavy quark). They found that the limit m ! 0 of the ross setion for

e

+

e

�

! QQg and the ross setion alulated with m = 0 from the beginning (in the

MS sheme) di�er by �nite terms of O(�

s

). The reason for the ourrene of these �nite

terms is the di�erent de�nition of the ollinear singular terms in the two approahes. In

the ZM-VFNS alulation, the heavy-quark mass is set to zero from the beginning and

the ollinearly divergent terms are de�ned with the help of dimensional regularization.

This �xes the �nite terms in a spei� way (in a given fatorization sheme), and their

form is inherent to the hosen regularization proedure. If, on the other hand, one starts

with m 6= 0 and performs the limitm! 0 afterwards, the �nite terms an be di�erent. In

Ref. [8℄, it was shown that these additional �nite terms emerging in the limit m! 0 out

of the theory with m 6= 0 an be generated in the theory for m = 0 with MS fatorization

by onvoluting this ross setion with a partoni fragmentation funtion d

Q!Q

(x; �) for

the transition from massless to massive heavy quarks Q (the expliit form of d

Q!Q

(x; �)

will be given later).

If this interpretation of the �nite terms in the theory with m 6= 0 as partoni FF is

generally true, then d

Q!Q

(x; �) should be proess independent and ould be used in any

other heavy-quark prodution proess. The universality of the partoni FF has been

on�rmed by performing the same alulation as in Ref. [8℄ for the proess 

?

Q ! Qg

[9, 10℄, where 

?

is a spae-like virtual photon,  ! QQg [11℄ and gg ! QQg [12℄ and

showing that the �nite terms are obtained from a onvolution of the orresponding LO

ross setions with d

Q!Q

(x; �). The proess-independene of d

Q!Q

(x; �) was established

on more general grounds in Ref. [13℄. Moreover, proess-independent derivations of the

partoni FFs have been performed by Ma [14℄ and reently by Melnikov and Mitov [15, 16℄,

who have omputed the partoni FFs to O(�

2

s

).

The fat that the theory with m 6= 0 and the ZM-VFNS are related by the onvolution

of the ZM-VFNS ross setion with partoni FFs has been used in several ways. In

Ref. [8℄, d

Q!Q

(x; �

0

) was used as the initial ondition, at � = �

0

= O(m), for the

alulation of d

Q!Q

(x; �) at an arbitrary sale � with the standard evolution equation.

Later, Caiari and Greo alulated with the same proedure the ross setion for heavy-

quark prodution in p�p and pp ollisions from the ZM-VFNS ross setion supplemented

with evolved d

Q!Q

(x; �) as a funtion of p

T

[17℄. Partoni FFs used together with a zero-

mass hard-sattering ross setion have subsequently been applied also to heavy-quark

prodution in  [18℄ and p [19, 20℄ proesses. In Ref. [20℄, the approah was generalized

to the reation +p! D

?

+X. The transition ! D

?

was desribed by a FF ontaining

besides a non-perturbative ontribution the purely perturbative partoni FF. The non-

perturbative part was desribed by a funtion ontaining two parameters whih were �xed

by omparison to experimental data for e

+

+ e

�

! D

?

+X. In Refs. [17, 18, 19, 20℄, the

perturbative FF approah was motivated by the requirement to math the ZM-VFNS as

lose as possible to the m 6= 0 theory. This ould be ahieved sine at small p

T

= O(m)

the evolution of d

Q!Q

(x; �

0

) was not yet e�etive and, therefore, d

Q!Q

was just taking

aount of the di�erene of the two theories. However, terms proportional to m

2

=p

2

T

are

3



not inluded in this way.

The so-alled FONLL approah [21, 22, 23, 24, 25℄ is an attempt to repair this de�ieny.

There, the ZM-VFNS with perturbative FFs together with a non-perturbative omponent

was ombined with the FFNS with n

f

= 3 (4) for harm (bottom) prodution, introduing

a p

T

dependent suppression fator by hand. In addition, m

2

=p

2

T

terms have been inluded

in extensions of the ACOT sheme [26, 27℄ to one-partile inlusive prodution of D

mesons in harged-urrent and neutral-urrent DIS [10, 28℄. In Ref. [29℄, the ACOT

sheme has been applied to one-partile inlusive heavy-quark prodution in p�p ollisions.

Instead of inorporating the �nite terms d

Q!Q

(x; �) into the initial onditions of the

perturbative FFs at � = �

0

= O(m), one an take this di�erene also into aount by

swithing to a new fatorization sheme, whih we all the massive fatorization sheme.

In this sheme, starting from the ZM-VFNS, one adjusts the fatorization of the �nal-

state ollinear singularities assoiated with the massive quarks in suh a way that it

mathes the massive alulation in the limit m ! 0. Of ourse, the hard-sattering

ross setions of any other proess for inlusive D

?

prodution must be transformed to

the new sheme as well. This is partiularly important for the reation e

+

+ e

�

!

D

?

+X from whih the information on the non-perturbative FF for ! D

?

is obtained

by omparison to experimental data. So far, alulations in this massive fatorization

sheme were performed for +p ! D

?

+X in Ref. [30℄, where also �ts of the new FFs for

! D

?

have been presented (for a omparison of FFs in the massive and the MS sheme,

see Ref. [31℄).

The simplest way to onnet the truly massless ross setions in the MS sheme with

the massive ross setions is to subtrat the �nite piees d

Q!Q

(x; �

0

) from the massive

theory. In this way, one an inorporate also the m

2

=p

2

T

terms, as given in the massive

theory, with the advantage that the massive theory approahes the ZM-VFNS theory in

the limit p

T

! 1 or m ! 0. In addition, by inluding also the terms proportional to

lnm

2

ontained in d

Q!Q

(x; �) one an obtain not only the �nite subtration terms but

also the terms needed for a transition to a new fatorization sale. This approah has

been applied to  +  ! D

?

+X [11, 32℄, to  + p! D

?

+X [33℄ and to p+ �p ! D

?

+X

[12℄. In partiular in Ref. [12℄, we obtained the �nite subtration terms by omparing the

ross setions of the massive theory, worked out by Bojak and Stratmann [34, 35℄, in the

limitm! 0 with the ross setions in the genuine massless theory in the MS fatorization

sheme as dedued by Aversa et al. [36℄ in a form whih is equivalent to the onvolution

of the massless ross setion with d

Q!Q

(x; �).

We are going to present details of this quite involved alulation in this paper. The

purpose is, on the one hand, to exatly demonstrate that all the subtration terms are

generated by the onvolution with partoni FFs, at NLO just with d

Q!Q

(x; �). On the

other hand, we hope that the detailed presentation will show how the alulation arries

over to other proesses a+ b! D

?

+X. Sine heavy-quark prodution in hadron-hadron

ollisions is the most omplex ase, we shall onentrate on this partiular proess. Some

results will also be diretly relevant for heavy-quark prodution in  and p proesses.
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Figure 1: Feynman diagrams for the LO gluon-gluon fusion proess g + g ! Q+Q.
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Figure 2: The LO quark-antiquark annihilation proess q + q ! Q+Q.

The outline of this paper is as follows. In Se. 2, we onsider heavy-quark prodution in

hadroni ollisions, introdue the notation and review the derivation of the subtration

terms in Ref. [12℄. In Se. 3, we present the onvolution formulas, from whih, in Se.

4, the various subtration terms are alulated and ompared with the results in Ref.

[12℄. Setion 5 ontains a summary and some onluding remarks. The subproess ross

setions needed in the onvolutions have been olleted in App. A for onveniene.

2 Hadroprodution of heavy quarks

In the FFNS, the following partoni subproesses ontribute to p+ �p! H+X in leading

order (LO) and NLO, where H = D; D

?

, B : : : is a heavy meson:

1. g(k

1

)+ g(k

2

)! Q(p

1

)+Q(p

2

)+ [g(p

3

)℄, where Q = ; b denotes a heavy quark. The

LO Feynman diagrams are shown in Fig. 1.

2. q(k

1

) + �q(k

2

) ! Q(p

1

) + Q(p

2

) + [g(p

3

)℄. In LO, there is one Feynman diagram,

whih is shown in Fig. 2.

3. g(k

1

) + q(k

2

) ! Q(p

1

) +Q(p

2

) + q(p

3

) and g(k

1

) + �q(k

2

) ! Q(p

1

) + Q(p

2

) + �q(p

3

)

ontribute at NLO. The Feynman diagrams for these proesses, as well as those for

the NLO ontributions of gg ! QQg and q�q ! QQg, an be found in App. B.
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Our aim is to alulate di�erential ross setions with an observed heavy quark Q of

momentum p

1

. Therefore we de�ne the following invariants

s = (k

1

+ k

2

)

2

;

t

1

= t�m

2

= (k

1

� p

1

)

2

�m

2

;

u

1

= u�m

2

= (k

2

� p

1

)

2

�m

2

; (1)

and

s

2

= S

2

�m

2

= (k

1

+ k

2

� p

1

)

2

�m

2

= s+ t

1

+ u

1

(2)

with s + t

1

+ u

1

= 0 at LO, where p

3

= 0. As usual, we introdue the dimensionless

variables v and w by

v = 1 +

t

1

s

; w = �

u

1

s+ t

1

; (3)

so that

t

1

= �s(1� v); u

1

= �svw : (4)

In LO, we have w = 1.

In a reent publiation [12℄, we have presented a NLO alulation for the inlusive produ-

tion ofD

?

mesons in p�p ollisions inluding heavy-quark mass e�ets in the hard-sattering

ross setions. The following proedure has been adopted [11, 32℄ (see also Refs. [7, 37℄):

(i) We have derived the zero-mass limit of the ross setions in the massive FFNS with

n

f

= 3 [34, 35℄ for the partoni subproesses listed above only keeping m as a

regulator in logarithms ln (m

2

=s). Speial are was required in order to reover the

distributions Æ(1�w), (1=(1 � w))

+

and (ln(1� w)=(1 � w))

+

ourring in the mass-

less MS alulation, see, e.g., Eq. (12) in Ref. [12℄. The result, generially denoted

lim

m!0

d~�(m), ontains mass singular logarithms ln(m

2

), but ollinear singularities

assoiated with light quarks and gluons are already subtrated in d~�(m).

(ii) Then we have ompared the massless limit with the orresponding hard-sattering

ross setions in the genuine massless MS alulation in order to identify appropriate

subtration terms. Generially, one an write

d�

sub

= lim

m!0

d~�(m)� d�̂

MS

; (5)

where d�̂

MS

is a hard-sattering ross setion in the genuine MS alulation.

(iii) The desired massive hard-sattering ross setions have then been onstruted by

removing the subtration terms from the massive ross setions in the �xed-order

theory:

d�̂(m) = d~�(m)� d�

sub

: (6)

By this proedure, the ollinear logarithms ln(m

2

=s) along with �nite terms whih

are independent of the heavy-quark mass are subtrated from d~�(m). On the other

hand, all �nite mass terms of the form (m

2

=p

2

T

)

n

(with an integer n) are kept in the

hard-sattering ross setions.

6



(iv) Contributions with harm quarks in the initial state have been inluded in the mass-

less approah. It an be shown that negleting the orresponding heavy-quark mass

terms orresponds to a onvenient hoie of sheme (S-ACOT sheme [38℄) whih

does not imply any loss of preision. In fat, the error whih is made is of the same

order as the error of the fatorization formula, as has been disussed in the on-

text of heavy-quark prodution in deep inelasti sattering [38, 39℄. Obviously, this

rule is of great pratial importane sine the existing massless results for the hard-

sattering ross setions [36℄ an simply be used, whereas their massive analogues

are unknown and would require a dediated alulation of these proesses.

3

Note that also the FONLL alulation in Ref. [21℄ has been onstruted with the help of

the zero-mass limit of the �xed-order alulation in Refs. [1, 2℄. On the other hand, in the

GM-VFNS of Ref. [29℄, the ollinear subtrations have been obtained using the methods

of mass fatorization in a massive regularization sheme. In this approah, the subtration

terms are omputed by onvolutions of appropriate subproesses with universal partoni

PDFs and FFs. However, the disussion in Ref. [29℄ is rather generi without presenting

many details. It is the purpose of this paper to provide a detailed desription of the

derivation of the ollinear subtration terms using the onvolution method and to ompare

with the results obtained in our previous publiation [12℄.

3 Mass fatorization with massive quarks

The starting point in our approah is the basi fatorization formula at the partoni level:

d~�(a+ b! Q+X) = f

a!i

(x

1

)
 f

b!j

(x

2

)
 d�̂(i+ j ! k +X)
 d

k!Q

(z) ; (7)

where d~� denote partoni ross setions (with singularities due to light-quark and gluon

lines already subtrated via onventional mass fatorization [40℄) and d�̂ are IR-safe hard-

sattering ross setions whih are free of logarithms of the heavy-quark mass. The indies

a, b, and i, j, k denote partons, and a sum over double indies is implied here and in

the following. All logarithms of the heavy-quark mass (i.e. the mass singularities in

the zero-mass limit) are ontained in the partoni distribution funtions f

a!i

and in the

partoni fragmentation funtions d

k!Q

. The onvolution 
 denotes the usual onvolution

integral and will be spei�ed below in Eqs. (14), (23) and (30). Equation (7) reets the

fat that the partoni ross setions d~� an be fatorized into proess-dependent IR-safe

hard-sattering ross setions d�̂, whih are well-behaved and �nite in the limit m! 0,

and universal (proess-independent) partoni PDFs f

a!i

and partoni FFs d

k!Q

.

3

For deep inelasti sattering, massive-quark-initiated oeÆients have been obtained in Refs. [9, 10℄;

the results for this simpler ase are already quite involved.
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Equation (7) an be expanded in powers of �

s

with the help of

f

a!i

(x

1

) = Æ

ia

Æ(1� x

1

) + f

(1)

a!i

+ f

(2)

a!i

+ : : : ;

f

b!j

(x

2

) = Æ

jb

Æ(1� x

2

) + f

(1)

b!j

+ f

(2)

b!j

+ : : : ;

d

k!Q

(z) = Æ

kQ

Æ(1� z) + d

(1)

k!Q

+ d

(2)

k!Q

+ : : : ; (8)

d�̂ = d�̂

(0)

+ d�̂

(1)

+ d�̂

(2)

+ : : : ;

d~� = d~�

(0)

+ d~�

(1)

+ d~�

(2)

+ : : : :

For the partoni PDFs and FFs, the supersript denotes the order of �

s

. For the ross

setions, it indiates the relative order in �

s

with respet to the Born ross setions. The

expansion of Eq. (7) an be used to determine order by order the relation between the

hard-sattering and partoni ross setions. Up to NLO, one �nds

d�̂

(0)

(a+ b! Q+X) = d~�

(0)

(a+ b! Q+X) = d�

(0)

(a+ b! Q+X) ; (9)

d�̂

(1)

(a+ b! Q+X) = d~�

(1)

(a+ b! Q+X)

�f

(1)

a!i

(x

1

)
 d�

(0)

(i+ b! Q+X)

�f

(1)

b!j

(x

2

)
 d�

(0)

(a+ j ! Q+X) (10)

�d�

(0)

(a+ b! k +X)
 d

(1)

k!Q

(z) :

The three onvolutions in Eq. (10) an be identi�ed with the subtration term d�

sub

in

Eq. (6).

The fatorization in Eq. (7) has to be de�ned at a de�nite energy or momentum sale

whih enters as an argument into the PDFs, FFs and d�̂. We denote the fatorization

sales by �

F

for initial-state fatorization (entering the PDFs) and by �

0

F

for �nal-state

fatorization (entering the FFs). The renormalization sale will be alled �

R

.

3.1 Partoni parton distribution and fragmentation funtions

The funtions f

(1)

i!j

for the initial state are given in the MS sheme

4

, keeping the heavy-

quark mass as a regulator for the ollinear divergenes, by

f

(1)

g!Q

(x; �

R

; �

F

) =

�

s

(�

R

)

2�

P

(0)

g!q

(x) ln

�

2

F

m

2

;

f

(1)

Q!Q

(x; �

R

; �

F

) =

�

s

(�

R

)

2�

C

F

�

1 + x

2

1 � x

�

ln

�

2

F

m

2

� 2 ln(1� x)� 1

��

+

; (11)

f

(1)

g!g

(x; �

R

; �

F

) =�

�

s

(�

R

)

2�

2

3

T

f

ln

�

2

F

m

2

Æ(1� x) ;

4

Note that it is assumed that the MS sheme is de�ned in the onventional way where photons and

gluons have d � 2 degrees of freedom (where d is the number of spae-time dimensions). Furthermore,

subtrations f

ij


 d�

(0)

are performed with subproess ross setions alulated in d dimensions.

8



where P

(0)

g!q

(x) =

1

2

[x

2

+(1�x)

2

℄ and P

(0)

q!q

(x) = C

F

[(1+x

2

)=(1�x)℄

+

(appearing in f

(1)

Q!Q

)

are the onventional (spae-like) one-loop splitting funtions and T

f

= 1=2. The funtion

f

(1)

Q!Q

(x; �

R

; �

F

) will not be used in the following, sine heavy quarks in the initial state

are treated as massless quarks as explained in Se. 2. It would be present in ases where

massive heavy quarks Q appear in the initial state as for example in Refs. [9, 10, 26, 27℄.

The funtions d

(1)

i!j

for the �nal state read [8, 9, 10, 14℄

d

(1)

g!Q

(z; �

R

; �

0

F

) =

�

s

(�

R

)

2�

P

(0)

g!q

(z) ln

�

0 2

F

m

2

;

d

(1)

Q!Q

(z; �

R

; �

0

F

) =

�

s

(�

R

)

2�

C

F

�

1 + z

2

1 � z

�

ln

�

0 2

F

m

2

� 2 ln(1 � z)� 1

��

+

: (12)

Generally, the splitting funtions entering the partoni FFs are time-like splitting fun-

tions whih are, however, idential to the spae-like splitting funtions at the one-loop

level. It should be noted that the funtion f

(1)

Q!Q

(x; �

R

; �

F

) in Eq. (11) is of the same form

as d

(1)

Q!Q

(x; �

R

; �

0

F

) at O(�

1

s

) [9, 10℄. This will not be true at higher orders sine the NLO

spae- and time-like splitting funtions P

(1)

q!q

(x) are di�erent. All the other partoni PDFs

and FFs not listed here are zero at O(�

1

s

). Furthermore, analogous results for proesses

involving photon splittings an be found by obvious replaements (g ! , �

s

! � and

appropriate modi�ations of olour fators) in Eqs. (11) and (12).

The partoni PDFs and FFs are known to order O(�

2

s

). They would be needed, together

with the three-loop beta funtion of QCD, for omputing subtration terms at next-to-

NLO (NNLO). For the initial state, the partoni PDFs at order O(�

2

s

) an be found in

Ref. [41℄ (with the exeption of f

(2)

Q!Q

(x), whih is unknown). Reently, also the O(�

2

s

)

ontributions to the perturbative FFs have been derived [15, 16℄. It should be noted

that, at O(�

2

s

), all of the perturbative PDFs and FFs are non-vanishing at �

F

= m and

�

0

F

= m, respetively. In fat, the parts proportional to logarithms of the fatorization

sale follow from the evolution equations, so that the new information obtained from the

O(�

2

s

) alulation is ontained in the non-vanishing piees at �

F

; �

0

F

= m.

In Se. 4, we will need the distribution d

(1)

Q!Q

(�z) with �z = 1� v + vw as a distribution in

the kinemati variables v and w. This form of d

(1)

Q!Q

(�z) an be written as:

d

(1)

Q!Q

(�z) = A(v) Æ(1� w) +B(v)

1

(1 � w)

+

+ C(v)

�

ln(1� w)

(1 � w)

�

+

+D(v;w) ; (13)

9



x

1

k

1

k

2

p

1

(a)

x

2

k

1

k

2

p

1

(b)

z

�1

k

1

k

2

p

1

()

Figure 3: Sketh of kinematis of mass fatorization for (a) upper inoming line (b) lower

inoming line and () outgoing line.

with

A(v) = C

F

�

s

(�

R

)

2�

1

2v

�

ln

�

0

F

2

m

2

(3 + 4 ln v) + 4(1� ln v � ln

2

v)

�

;

B(v) = C

F

�

s

(�

R

)

2�

2

v

�

ln

�

0

F

2

m

2

� 1� 2 ln v

�

;

C(v) = �C

F

�

s

(�

R

)

2�

4

v

;

D(v;w) = �C

F

�

s

(�

R

)

2�

[2 � v(1� w)℄

�

ln

�

0

F

2

m

2

� 1 � 2 ln v � 2 ln(1� w)

�

:

3.2 Subtration terms at NLO

We distinguish mass fatorization in the initial state and in the �nal state. For one-partile

inlusive prodution, where one �nal-state partile has a �xed momentum (above, we had

hosen p

1

), we have to distinguish further two ases with initial-state singularities orre-

sponding to t- and u-hannel sattering. A graphial representation of the subtration

terms in form of ut diagrams for all ases is shown in Fig. 3. These diagrams an be

found by applying all possible uts to internal lines of the Feynman diagrams (see App.

B). The uts are allowed if the 2 ! 2 subproesses are kinematially possible and the

1 ! 2 proess involves the splitting into a heavy-quark line. In an axial gauge, the ut

diagrams orrespond to atual Feynman diagrams.

3.2.1 Initial-state fatorization

In the �rst ase with u-hannel sattering (see Fig. 3(a)), the ollinear subtrations are

given by

d�

sub

(a+ b! Q+X) =

Z

1

0

dx

1

f

(1)

a!i

(x

1

; �

R

; �

F

) d�̂

(0)

(i(x

1

k

1

) + b(k

2

)! Q(p

1

) +X)

� f

(1)

a!i

(x

1

)
 d�̂

(0)

(i+ b! Q+X) : (14)

10



Here a+ b! Q+X stands for the one-partile inlusive partoni subproesses (g + g !

Q+X, q + �q ! Q+X, g + q ! Q+X, g + �q ! Q+X), f

a!i

(x

1

; �

R

; �

F

) desribes the

ollinear splitting of parton 'a' into parton 'i', and i+ b! Q+X are the orresponding

2 ! 2 subproesses with momenta x

1

k

1

, k

2

and p

1

. A sum over i is implied, i.e., all

possible splittings and subproesses have to be taken into aount.

We de�ne the following invariants for the subproess:

ŝ = (x

1

k

1

+ k

2

)

2

= x

1

s ;

^

t

1

= (x

1

k

1

� p

1

)

2

�m

2

= x

1

t

1

; (15)

û

1

= (k

2

� p

1

)

2

�m

2

= u

1

;

and

v̂ = 1 +

^

t

1

ŝ

= v ; ŵ = �

û

1

ŝ+

^

t

1

=

w

x

1

; (16)

^

t

1

= �ŝ(1� v̂) ; û

1

= �ŝv̂ŵ = �ŝv̂ : (17)

For the alulation of d

2

�

sub

=(dvdw) in Eq. (14), it is onvenient to write the subproess

ross setion as

d

2

�̂

(0)

dvdw

= J

d

2

�̂

(0)

dv̂dŵ

= J

d�̂

(0)

dv̂

Æ(1� ŵ) (18)

with

Æ(1� ŵ) = wÆ(x

1

� �x

1

) ; �x

1

= w : (19)

The Æ-funtion imposes the 2 ! 2 proess kinematis ŝ +

^

t

1

+ û

1

= 0, i.e. ŵ = 1, and

implies �x

1

= w. The Jaobian reads

J =

�(v̂; ŵ)

�(v;w)

=

1

x

1

: (20)

Combining these results we �nd

d

2

�̂

(0)

dvdw

=

d�̂

(0)

dv̂

�

�

�

�

ŝ!�x

1

s; v̂!v

Æ(x

1

� �x

1

) ; (21)

so that the subtration terms for initial-state fatorization of the upper inoming line an

be alulated as

d

2

�

sub

dvdw

(a+ b! Q+X) = f

(1)

a!i

(�x

1

; �

R

; �

F

)

d�̂

(0)

dv̂

(i+ b! Q+X)

�

�

�

�

v̂!v; ŝ!�x

1

s

: (22)

In the seond ase with t-hannel sattering (see Fig. 3(b)), the ollinear subtrations are

given by

d�

sub

(a+ b! Q+X) =

Z

1

0

dx

2

f

(1)

b!j

(x

2

; �

R

; �

F

) d�̂

(0)

(a(k

1

) + j(x

2

k

2

)! Q(p

1

) +X)

� f

(1)

b!j

(x

2

) 
 d�̂

(0)

(a+ j ! Q+X) : (23)
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The invariants for the subproess are now given by

ŝ = (k

1

+ x

2

k

2

)

2

= x

2

s ;

^

t

1

= (k

1

� p

1

)

2

�m

2

= t

1

; (24)

û

1

= (x

2

k

2

� p

1

)

2

�m

2

= x

2

u

1

;

and

v̂ =

x

2

� 1 + v

x

2

; ŵ =

x

2

vw

x

2

� 1 + v

: (25)

Again, we write the subproess ross setion as in Eq. (18) with

Æ(1� ŵ) = �x

2

2

vw

1 � v

Æ(x

2

� �x

2

) ; �x

2

=

1� v

1� vw

; (26)

and

J =

�(v̂; ŵ)

�(v;w)

=

v

x

2

� 1 + v

: (27)

For the 2 ! 2 subproess kinematis, we have ŵ = 1, x

2

= �x

2

, v̂ = vw and J = 1=(�x

2

w).

Combining these results, we �nd

d

2

�̂

(0)

dvdw

=

v

1� vw

d�̂

(0)

dv̂

�

�

�

�

ŝ!�x

2

s; v̂!vw

Æ(x

2

� �x

2

) ; (28)

so that the subtration terms for initial-state fatorization of the lower inoming line an

be alulated as

d

2

�

sub

dvdw

(a+ b! Q+X) = f

(1)

b!j

(�x

2

; �

R

; �

F

)

v

1� vw

d�̂

(0)

dv̂

(a+ j ! Q+X)

�

�

�

�

v̂!vw; ŝ!�x

2

s

(29)

3.2.2 Final-state fatorization

The ase shown in Fig. 3() orresponds to fatorization of singularities in the �nal state.

Here the ollinear subtrations are given by

d�

sub

(a+ b! Q+X) =

Z

1

0

dz d�̂

(0)

�

a(k

1

) + b(k

2

)! k(z

�1

p

1

) +X

�

d

(1)

k!Q

(z; �

R

; �

0

F

)

� d�̂

(0)

(a+ b! k +X)
 d

(1)

k!Q

(z) : (30)

The invariants for the subproess an be de�ned as follows

ŝ = (k

1

+ k

2

)

2

= s ;

^

t

1

= (k

1

� z

�1

p

1

)

2

�m

2

=

1

z

t

1

; (31)

û

1

= (k

2

� z

�1

p

1

)

2

�m

2

=

1

z

u

1

;
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and

v̂ =

z � 1 + v

z

; ŵ =

vw

z � 1 + v

: (32)

As before, we write the subproess ross setion as in Eq. (18) with

Æ(1� ŵ) = vwÆ(z � �z) ; �z = 1� v + vw ; (33)

and

J =

�(v̂; ŵ)

�(v;w)

=

1

z

v

z � 1 + v

: (34)

From ŵ = 1 one �nds �z = 1 � v + vw, v̂ = vw=�z and J = 1=(�zw). Combining these

results, we �nd

d

2

�̂

(0)

dvdw

=

v

�z

d�̂

(0)

dv̂

�

�

�

�

ŝ!s; v̂!

vw

�z

Æ(z � �z) ; (35)

so that the subtration terms for �nal-state fatorization an be alulated as

d

2

�

sub

dvdw

(a+ b! Q+X) = d

(1)

k!Q

(�z; �

R

; �

0

F

)

v

�z

d�̂

(0)

dv̂

(a+ b! k +X)

�

�

�

�

v̂!vw=�z; ŝ!s

(36)

3.3 Sheme dependene and implementation freedom

Before we turn to a disussion of our results for the ollinear subtration terms alulated

aording to Eqs. (22), (29) and (36), we add some additional remarks.

The partoni PDFs and FFs introdued in Se. 3.1 are given in the MS fatorization and

renormalization sheme. However, in the FFNS alulations of heavy-quark prodution

[1, 2, 3, 4, 34, 35℄, a modi�ation of the MS sheme has been adopted, alled MS

m

or

deoupling sheme [42℄, where divergenes due to light quarks and gluons are treated in

the MS sheme and divergenes arising from heavy-quark loops are subtrated at zero

momentum. In order to swith from the MS

m

to the MS sheme the following terms have

to be added to the partoni ross setions of the �xed-order alulations (see Se. 3 in

Ref. [21℄):

� �

s

(�

R

)

2T

f

3�

ln

�

2

R

m

2

d�

(0)

q�q

(q + �q ! Q+X) ; (37)

��

s

(�

R

)

2T

f

3�

ln

�

2

R

�

2

F

d�

(0)

gg

(g + g ! Q+X) : (38)

In Eqs. (37) and (38), the parts proportional to ln�

2

R

are due to the hange of �

s

when

going from the MS

m

to the MS sheme. If �

(n

f

�1)

s

(�

R

) and �

(n

f

)

s

(�

R

) denote the strong-

oupling onstants in the MS

m

and MS shemes, respetively, one an derive from the

renormalization group equation the following relationship between the ouplings:

�

(n

f

�1)

s

(�

R

) = �

(n

f

)

s

(�

R

)

 

1�

�

(n

f

)

s

(�

R

)

3�

T

f

ln

�

2

R

m

2

!

+O(�

3

s

) : (39)
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1

p
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Figure 4: Feynman diagrams representing (a) f

(1)

g!g

(x

1

) 
 d�̂

(0)

(gg ! QQ) and (b)

f

(1)

g!g

(x

2

)
d�̂

(0)

(gg ! QQ). The fermion loops on the external gluon lines are heavy-quark

loops.

The parts proportional to ln�

2

F

an be obtained by subtrating from the ross setion in

the gluon-gluon hannel the term

�

f

(1)

g!g

(x

1

) + f

(1)

g!g

(x

2

)

�


 d�̂

(0)

(g + g ! Q + Q) (see

Fig. 4). Sine the funtion f

(1)

g!g

(x) in Eq. (11) is proportional to Dira's delta funtion,

this amounts to a simple multipliation with the Born ross setion in the gluon-gluon

hannel. This subtration term takes into aount the di�erent treatment of heavy-quark

loop ontributions to external gluon lines in the MS and the MS

m

shemes. The oeÆients

in Ref. [12℄ are given in the MS

m

sheme. Changing the results in Ref. [12℄ to the MS

sheme aording to Eqs. (37) and (38) has the expeted e�et of replaing �

(n

f

�1)

0

by

�

(n

f

)

0

in the oeÆients

^

d

1

and

~

d

1

in Eqs. (28), (29) and (55) of Ref. [12℄, so that in the

MS sheme �

^

d

1

= �

~

d

1

= 0 in Eqs. (35), (36) and (59) of Ref. [12℄.

Even �xing the fatorization sheme to the MS sheme leaves some freedom in the im-

plementation of a massive VFNS, as has been disussed for the ase of deep inelasti

sattering in Ref. [6℄. Consider for example the ondition

lim

m!0

(d~�(m)� d�

sub

(m))

!

= d�̂

MS

; (40)

whih might be used as an attempt to de�ne the subtration terms. d�̂

MS

is the massless

hard-sattering ross setion in the MS sheme. However, this requirement �xes the sub-

tration term d�

sub

(�=m;m=p

T

) only up to terms m=p

T

vanishing in the limit m ! 0.

The preise treatment of suh terms proportional to m=p

T

is not presribed by fatoriza-

tion. The presription in Eq. (5), d�

sub

= lim

m!0

d~�(m)� d�̂

MS

, is minimal in the sense

that no �nite mass terms are removed from the hard part in addition to the ollinear

logarithms ln(m

2

=s).

The same is true from the point of view of mass fatorization: The fatorization and

renormalization sheme unambiguously determines the partoni PDFs and FFs. However,

the onvolution presription leaves some freedom in the hoie of the integration variable

14



and, therefore, is only unique up to terms of the order m=Q (where Q is the hard sale).

One example is the ACOT-� presription [6℄ in inlusive DIS, whih guarantees the orret

threshold behaviour of the heavy-quark-initiated ontributions. Furthermore, it is possible

to retain the mass terms in the subproess ross setions entering the onvolution formulas.

Atually, this is done in the original ACOT sheme [26, 27℄.

4 Subtration terms: results

We now present the results for the ollinear subtration terms, alulated using Eqs. (22),

(29) and (36). The universal partoni PDFs an be found in Se. 3.1. The required

subproess ross setions have been listed for ompleteness in App. A. We retain the

heavy-quark mass terms in the subproess ross setions entering the onvolutions. In

order to ompare with our results in Ref. [12℄, these mass terms have to be dropped.

In order to failitate the omparison with our previous results, we expand the subtration

ross setion in the following form,

d

2

�

sub

dvdw

= �

1

Æ(1� w) + �

2

�

1

1 � w

�

+

+�

3

�

ln(1 �w)

1� w

�

+

+�

5

ln v +�

10

ln(1� w) + �

11

; (41)

and use the abbreviations

X = 1� vw; Y = 1� v + vw; v

i

= i� v (i = 1; 2) : (42)

4.1 Subtration terms for g + g ! Q +Q + g

The oeÆients �

i

are deomposed into an Abelian and two non-Abelian parts, following

Ref. [35℄:

�

i

= C(s)

�

C

2

F

�

qed

i

+

C

2

A

4

�

oq

i

+

1

4

�

kq

i

�

; (43)

with

C(s) =

�

3

s

2(N

2

� 1)s

: (44)

There are four di�erent ut diagrams ontributing to the total result, whih we disuss in

the following.

d�̂

(0)

(gg ! QQ)
 d

(1)

Q!Q

(z)

The ut diagrams are shown in Fig. 5. The ross setion d�̂

(0)

(gg ! QQ) is proportional
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Figure 5: Feynman diagrams representing d�̂

(0)

(gg ! QQ)
 d

(1)

Q!Q

(z).

to the funtion

� (v) =

v

1� v

+

1 � v

v

+

4m

2

sv(1� v)

�

1�

m

2

sv(1� v)

�

; (45)

whih appears in the following expressions for the �

i

. They are given by

�

1

=

��

3

4

+ ln v

�

ln

�

0

F

2

m

2

+ 1� ln v � ln

2

v

�

� 2C(s)C

F

� (v)[C

F

� C

A

v(1� v)℄ ; (46)

�

2

=

�

ln

�

0

F

2

m

2

� 1 � 2 ln v

�

� 2C(s)C

F

� (v)[C

F

� C

A

v(1� v)℄ ; (47)

�

3

= �2� 2C(s)C

F

� (v) [C

F

� C

A

v(1� v)℄ ; (48)

�

5

= C(s)

�

C

2

F

�

qed

5

+

1

4

(C

2

A

� 1)�

oq

5

�

; (49)

where

�

qed

5

=

2v

v

1

�

2(2 � 2v + v

2

)

vw

+

2v

2

w

v

1

+

4v

Y

+

m

2

s

�

8v(3 � 2v)

v

1

�

8(2 � 2v + v

2

)

vw

+

8v

2

w

v

1

�

+

m

4

s

2

�

�8v(11� 15v + 6v

2

)

v

2

1

+

8v

1

(2� 2v + v

2

)

v

2

w

2

+

8(2 + 4v � 7v

2

+ 4v

3

)

v

2

w

+

8v

2

(�5 + 4v)w

v

2

1

�

8v

3

w

2

v

2

1

�

; (50)

�

oq

5

= �4v +

8vv

2

1

Y

3

�

8v

2

v

1

Y

2

+

4v(3� 6v + 4v

2

)

Y

+

m

2

s

�

�16v +

16v

Y

�

+

m

4

s

2

�

16v(3 � 2v)

v

1

�

16(2 � 2v + v

2

)

vw

+

16v

2

w

v

1

�

: (51)

We �nd that �

kq

5

= ��

oq

5

and, �nally,

�

10

= �

5

; (52)

�

11

=

1

2

�

5

�

1 � ln

�

0

F

2

m

2

�

: (53)
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Figure 6: Feynman diagrams representing of d�̂

(0)

(gg ! gg)
 d

(1)

g!Q

(z).

Figure 7: Feynman diagrams representing of f

(1)

g!Q

(x

1

) 
 d�̂

(0)

(Qg ! Qg).

The latter two relations an be derived from d

(1)

Q!Q

(�z) in Eq. (13) inspeting the expressions

for B(v), C(v) and D(v;w). (Note that the parts with B(v) and C(v) ontribute to �

11

and �

10

, respetively, in ases where the 1=(1 � w)

+

is aneled by fators (1� w).)

Now we turn to a omparison with the results in Ref. [12℄, whih have been derived as

desribed in Se. 2. For �

0

F

= m (and negleting terms of the order O(m

2

=s)), Eqs. (46){

(53) are in omplete agreement with Eqs. (18) and (21){(24) in Ref. [12℄. Furthermore,

the parts proportional to ln(�

0 2

F

=m

2

) in Eqs. (46) and (47) are idential to Eqs. (37) and

(38) in Ref. [12℄. As for �

11

in Eq. (53), the part proportional to ln(�

0 2

F

=m

2

) is in agree-

ment with Eqs. (41) and (43) for the 'qed' and 'kq' parts. The 'oq' part reprodues Eq.

(42) in Ref. [12℄ after adding the ontribution given in Eq. (54).

d�̂

(0)

(gg ! gg)
 d

(1)

g!Q

(z)

The ut diagram Fig. 6 only ontributes to the part of �

11

proportional to C

2

A

:

�

oq

11

=

�

� 48v

2

+

8v

1

(1 � 2v + 2v

2

)

vw

2

+

16(1 � 3v + 2v

2

)

w

+

8v

2

(7� 14v + 8v

2

)w

v

2

1

�

16v

3

(�1 + 2v)w

2

v

2

1

+

16v

4

w

3

v

2

1

+

8vv

2

1

Y

3

�

8(3v � 5v

2

+ 2v

3

)

Y

2

+

8(7v � 6v

2

+ 2v

3

)

Y

�

ln

�

0

F

2

m

2

: (54)

f

(1)

g!Q

(x

1

)
 d�̂

(0)

(Qg ! Qg)

The u-hannel ut in the initial state desribed by the diagram in Fig. 7 ontributes:
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Figure 8: Feynman diagrams representing of f

(1)

g!Q

(x

2

) 
 d�̂

(0)

(gQ! Qg).

�

qed

11

=

1 + v

2

vw

(1 � 2w + 2w

2

) ln

�

F

2

m

2

; (55)

�

oq

11

=

1 + v

2

v

2

1

2

w

(1 � 2w + 2w

2

) ln

�

F

2

m

2

; (56)

�

kq

11

= ��

oq

11

: (57)

f

(1)

g!Q

(x

2

)
 d�̂

(0)

(gQ! Qg)

Finally, we have a ontribution from the u-hannel ut in the initial state desribed by

the diagram in Fig. 8:

�

qed

11

=

�

v(�1 + 2v)

v

1

�

v

2

w

v

1

+

2v

1

v

X

3

�

2v

X

2

+

v(3� 4v + 2v

2

)

v

1

X

�

ln

�

F

2

m

2

; (58)

�

oq

11

=

�

2v

v

1

+

4(1 � 2v + 2v

2

)

v

1

vw

2

+

4(1 � 4v + 2v

2

)

v

1

w

+

4vv

1

X

2

+

4v(1� 2v)

X

�

�

ln

�

F

2

m

2

; (59)

�

kq

11

= ��

oq

11

: (60)

The sum of Eqs. (55) and (58), that of Eqs. (56) and (59), and that of Eqs. (57) and (60)

are idential to Eqs. (44), (45), and (46) in Ref. [12℄, respetively.

4.2 Subtration terms for q + �q ! Q +Q+ g

The results for the oeÆients �

i

have the following olour deomposition:

�

i

= C

q

(s)

C

F

2

�

C

F

�

f

i

+ C

A

�

a

i

�

; (61)

with

C

q

(s) =

�

3

s

2Ns

: (62)

There are two di�erent ut diagrams ontributing to the total result.
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Figure 9: Feynman diagrams representing of d�̂

(0)

(q�q ! QQ)
 d

(1)

Q!Q

(z).

d�̂

(0)

(q�q ! QQ)
 d

(1)

Q!Q

(z)

Figure 9 shows the diagram with a ut in the �nal state. The 2! 2 proess ross setion

d�̂(q�q! QQ) is proportional to the funtion

�

q

(v) = (1 � v)

2

+ v

2

+

2m

2

s

; (63)

whih will our in the results below. Furthermore, for this ontribution, the C

A

parts

vanish, i.e., �

a

i

= 0 (i = 1; 2; 3; 5; 10; 11). Therefore, the �nal results are proportional

to the olour fator C

2

F

:

�

1

=

��

3

4

+ ln v

�

ln

�

0

F

2

m

2

+ 1� ln v � ln

2

v

�

� 2C

q

(s)�

q

(v)C

2

F

; (64)

�

2

=

�

ln

�

0

F

2

m

2

� 1� 2 ln v

�

� 2C

q

(s)�

q

(v)C

2

F

; (65)

�

3

= �2� 2C

q

(s)�

q

(v)C

2

F

; (66)

�

5

= 2C

q

(s)C

2

F

�

v �

2vv

2

1

Y

3

+

2v

2

v

1

Y

2

�

3v � 6v

2

+ 4v

3

Y

+

m

2

s

2v

�

1 �

1

Y

��

: (67)

Finally, we �nd again

�

10

= �

5

; (68)

�

11

=

1

2

�

5

�

1 � ln

�

0

F

2

m

2

�

: (69)

One an observe the same struture of the results as for d�̂

(0)

(gg ! QQ)
d

(1)

Q!Q

(z) given

in Se. 4.1.

Now we turn again to the omparison with the results in Ref. [12℄. For �

0

F

= m (and

negleting terms of the order O(m

2

=s)), Eqs. (64){(69) are idential to Eqs. (51){(54) in

Ref. [12℄. The parts proportional to ln(�

0 2

F

=m

2

) in Eqs. (64) and (65) oinide with Eqs.

(60) and (61) in Ref. [12℄. As for �

11

in Eq. (69), the part proportional to ln(�

02

F

=m

2

)

is in agreement with Eq. (62) in Ref. [12℄ only after inluding the ontribution from
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Figure 10: Feynman diagrams representing of d�̂

(0)

(q�q! gg)
 d

(1)

g!Q

(z).

d�̂(q�q! gg)
 d

(1)

g!Q

(z), whih will be given in the next subsetion.

d�̂

(0)

(q�q ! gg)
 d

(1)

g!Q

(z)

The result for the ut diagram Fig. 10 reads

�

f

11

=

�

2v(3� 4v + 2v

2

)

v

1

+

2(1 � 2v + 2v

2

)

w

�

4v

3

w

v

1

+

4v

3

w

2

v

1

�

4v

Y

�

ln

�

0

F

2

m

2

; (70)

�

a

11

=

�

4(2 � v)v � 4v

2

w �

4vv

2

1

Y

3

+

4(3v � 5v

2

+ 2v

3

)

Y

2

�

2(9v � 12v

2

+ 4v

3

)

Y

�

�

ln

�

0

F

2

m

2

: (71)

Sine �

11

in Eq. (69) only has a C

F

part, Eq. (71) is the only ontribution to the C

A

part and hene is in agreement with Eq. (64) in Ref. [12℄. Furthermore, it is easy to see

that the sum of �

f

11

in Eq. (69), taken from the part / ln(�

02

F

=m

2

), and �

f

11

in Eq. (70)

reprodues Eq. (63) in Ref. [12℄.

4.3 Subtration terms for g + q ! Q +Q+ q

The proess gq ! QQq appears for the �rst time at NLO. It has the olour deomposition

�

i

= C

gq

(s)

�

C

F

�

f

i

+ C

A

�

a

i

�

; (72)

with

C

gq

(s) =

�

3

s

2Ns

: (73)

There are two di�erent ut diagrams ontributing to the total result. The results for the

proess g�q ! QQ�q are the same as an be easily seen with the help of the expressions in

App. A.3.

d�̂

(0)

(gq ! gq)
 d

(1)

g!Q

(z)

For the ut diagram shown Fig. 11, we �nd
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Figure 11: Feynman diagrams representing of d�̂

(0)

(gq ! gq)
 d

(1)

g!Q

(z).

Figure 12: Feynman diagrams representing of f

(1)

g!Q

(x

1

)
 d�̂

(0)

(Qq! Qq).

�

f

11

=

�

�2v

2

+

1 � 2v + 2v

2

2w

+ 2v

2

w �

v

1

v

2Y

2

+

3v � 2v

2

2Y

�

ln

�

0

F

2

m

2

; (74)

�

a

11

=

�

�v

2

+

v

2

(2� 4v + 3v

2

)w

v

2

1

+

2v

3

(1 � 2v)w

2

v

2

1

+

2v

4

w

3

v

2

1

+

v

2Y

�

ln

�

0

F

2

m

2

: (75)

Equations (74) and (75) are in agreement with Eqs. (69) and (70) in Ref. [12℄.

f

(1)

g!Q

(x

1

)
 d�̂

(0)

(Qq ! Qq)

The ontribution of the ut diagram Fig. 12 is given by

�

f

11

=

1 + v

2

2v

2

1

w

�

1 � 2w + 2w

2

�

ln

�

F

2

m

2

; (76)

�

a

11

= 0 : (77)

Equation (76) is idential to Eq. (68) in Ref. [12℄.

5 Conlusions and disussion

We have presented a detailed desription of the derivation of ollinear subtration terms

with the help of mass fatorization keeping the heavy-quark mass as a regulator for

ollinear divergenes. As an example, we have onsidered heavy-quark prodution in

hadron-hadron ollisions, whih is the most omplex ase. With one minor exeption (see

below), we have reprodued all the subtration terms derived in Ref. [12℄ and found nie

agreement. For a summary of the omparison, see Table 1. Apart from giving additional
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hannel this paper Ref. [12℄

gg ! Q
Q
g:

�

0

F

= m (46){(53) (18), (21){(24)

/ ln

�

0

F

2

m

2

(46), (47) (37), (38)

/ ln

�

0

F

2

m

2

(53)[QED-part℄, (53)[KQ-part℄ (41), (43)

/ ln

�

0

F

2

m

2

(53)[OQ-part℄+(54) (42)

/ ln

�

F

2

m

2

(55)+(58), (56)+(59), (57)+(60) (44), (45), (46)

q�q! QQg:

�

0

F

= m (64){(69) (51){(54)

/ ln

�

0

F

2

m

2

(64), (65) (60), (61)

/ ln

�

0

F

2

m

2

(69)[C

F

-part℄ + (70) (63)

/ ln

�

0

F

2

m

2

(71) (64)

gq ! QQq:

/ ln

�

0

F

2

m

2

(74), (75) (69), (70)

/ ln

�

F

2

m

2

(76) (68)

Table 1: Collinear subtration terms for the partoni subproesses g + g ! Q + Q + g,

q+ �q ! Q+Q+ g and g+ q ! Q+Q+ q in omparison with the results of Ref. [12℄. In

the seond olumn, '�

0

F

= m' indiates that the �nal state fatorization sale �

0

F

has to be

set to m in the equations in the third olumn. Furthermore, / ln

�

0

F

2

m

2

(/ ln

�

F

2

m

2

) refers to

those parts of the equations in the third olumn whih are proportional to ln

�

0

F

2

m

2

(ln

�

F

2

m

2

).

The third and forth olumns list the equation numbers for the orresponding subtration

terms derived in this paper and in Ref. [12℄, respetively. Equations ombined by a 'plus'

sign have to be added.

insight and providing a onsisteny hek of our previous results, this detailed example

will be useful for extending the GM-VFN sheme to other proesses.

Note however, that some exeptions have been found. (i) In Eq. (25) of Ref. [12℄, we have

found an extra ontribution to the oeÆient �

1

in the gg ! QQ hannel resulting in

a modi�ation �

1

! �

1

� C(s)C

A

1

9

v(1� v). This extra piee has its origin in heavy-

quark loop ontributions to the virtual orretions to the Born proess gg ! QQ in Ref.

[34℄ and has no ounterpart in the results of Se. 4.1. However, these terms are absent

in the massless limit of the alulation in Refs. [3, 4℄. Numerially, this modi�ation

of �

1

turned out to be negligible. (ii) In a publiation by two of us [32℄, subtration

terms for the non-Abelian part of the proess g ! QQg have been derived by omparing

the zero-mass limit of Ref. [43℄ with the massless theory of Ref. [44℄, whih do not meet

the expetations of mass fatorization in Se. 3. The subtration terms derived this way
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orretly desribe the transition between the two theories. Obviously, if one of the theories

uses onventions di�ering from the onventional MS sheme, the results will not agree with

the subtration terms derived via mass fatorization. Whether this is indeed the reason

for the disrepany, an be lari�ed only with the help of a new full alulation. It is

noteworthy that also for the hannel q ! QQq a non-vanishing result for the oeÆient

�

11

(see Eq. (78) in Ref. [32℄) was found, whih would have been zero employing the

methods in Se. 3. In this ase, the di�erene ould be traed bak to an error in Ref.

[44℄.
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A Cross setions for 2! 2 subproesses

In this appendix, we list the ross setions for all one-partile-inlusive subproesses,

a+ b!  +X, needed to ompute the subtration terms in Se. 4. For brevity, part X

of the �nal state is not written expliitly in the following. We begin with subproesses

ourring in the hannel g + g ! Q+Q+ g, needed in Se. 4.1.

A.1 Subproesses in g + g! Q+Q + g

d�̂

(0)

dv̂

(gg ! Q) = �

2

s

�

1

(N

2

� 1)

1

ŝ

[C

F

�Nv̂(1� v̂)℄ � (ŝ; v̂) ; (78)

d�̂

(0)

dv̂

(gg ! g) = �

2

s

�

4N

2

N

2

� 1

1

ŝ

(1 � x)

3

x

2

; (79)

d�̂

(0)

dv̂

(gQ! Q) = �

2

s

�

1

N

2

� 1

1

ŝ

1 + (1� v̂)

2

v̂

2C

F

[C

F

v̂

2

+N(1 � v̂)℄

1

v̂(1 � v̂)

; (80)

d�̂

(0)

dv̂

(Qg ! Q) =

d�̂

(0)

dv̂

(gQ! Q)

�

�

�

�

v̂$1�v̂

= �

2

s

�

1

N

2

� 1

1

ŝ

1 + v̂

2

1� v̂

2C

F

�

C

F

(1� v̂)

2

+Nv̂

�

1

v̂(1� v̂)

; (81)
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where

� (ŝ; v̂) =

v̂

1� v̂

+

1� v̂

v̂

+

4m

2

ŝv̂(1� v̂)

�

1 �

m

2

ŝv̂(1� v̂)

�

; (82)

x= v̂(1 � v̂) : (83)

A.2 Subproesses in q + �q ! Q+Q + g

d�̂

(0)

dv̂

(q�q! Q) = �

2

s

�

C

F

N

1

ŝ

�

(1� v̂)

2

+ v̂

2

+

2m

2

ŝ

�

; (84)

d�̂

(0)

dv̂

(q�q ! g) =

d�̂

(0)

dv̂

(gg ! Q)

�

�

�

�

m!0

= �

2

s

�

1

N

2

� 1

1

ŝ

[C

F

�Nv̂(1� v̂)℄

�

v̂

1� v̂

+

1 � v̂

v̂

�

: (85)

A.3 Subproesses in g + q ! Q+Q + q and g + �q ! Q +Q+ �q

d�̂

(0)

dv̂

(qg! g) = �

2

s

�

1

2N

2

1

ŝ

(2� 2v̂ + v̂

2

)

�

(N

2

� 1)v̂

2

+ 2N

2

(1 � v̂)

�

1

v̂

2

(1 � v̂)

; (86)

d�̂

(0)

dv̂

(gq ! g) =

d�̂

(0)

dv̂

(qg! g)

�

�

�

�

v̂$1�v̂

= �

2

s

�

1

2N

2

1

ŝ

(1 + v̂

2

)

�

(N

2

� 1)v̂

2

+ 2v̂ + (N

2

� 1)

�

1

v̂(1� v̂)

2

; (87)

d�̂

(0)

dv̂

(Qq! Q) = �

2

s

�

C

F

N

1

ŝ

1 + v̂

2

(1 � v̂)

2

; (88)

d�̂

(0)

dv̂

(Q�q ! Q) =

d�̂

(0)

dv̂

(Qq! Q) : (89)

B Feynman diagrams

In this appendix we list the bremsstrahlung Feynman diagrams ontributing at NLO to

the proess p + �p ! H + X (H denotes a heavy meson, D, D

?

, B : : :) in the FFNS.

They are the basis to generate the ut diagrams Figs. 5{12 as desribed in Se. 3.2. We

show separately the subset of Feynman diagrams for gg ! QQg whih, after replaing

one of the inoming gluons by a photon, ontribute also to heavy-quark photoprodution,

 + p! H +X.
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(a)

(b) ()

(d)

Figure 13: Feynman diagrams for the NLO gluon bremsstrahlung proess +g ! Q+Q+

g. Reversing the heavy-quark lines yields the remaining graphs. Diagrams obtained from

the ones shown here by replaing the photon with a gluon ontribute to g+g ! Q+Q+g.

(a) (b) ()

(d) (e) (f)

(g)

Figure 14: Additional Feynman diagrams for the NLO gluon bremsstrahlung proess

g + g ! Q + Q + g. Replaing the photons by gluons in Fig. 13 and reversing the

heavy-quark lines of part (a) yields the remaining graphs.
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(a)

(b) ()

(d) (e)

Figure 15: Feynman diagrams for the NLO gluon bremsstrahlung proess q+�q ! Q+Q+g.

(a) (b)

() (d)

Figure 16: Feynman diagrams for the NLO light-quark-initiated subproess  + q !

Q+Q+ q: \Bethe-Heitler" graphs (a) and (b), \Compton" graphs () and (d). Diagrams

obtained from the ones shown here by replaing the photon with a gluon ontribute to

g + q ! Q+Q+ q.

Figure 17: Additional Feynman diagram for the NLO light-quark-initiated subproess

g + q ! Q + Q + q. Replaing the photons by gluons in Fig. 16 yields the remaining

graphs.
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