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Abstra
t

We present a detailed dis
ussion of the 
ollinear subtra
tion terms needed to estab-

lish a massive variable-
avour-number s
heme for the one-parti
le in
lusive produ
-

tion of heavy quarks in hadroni
 
ollisions. The subtra
tion terms are 
omputed

by 
onvoluting appropriate partoni
 
ross se
tions with perturbative parton distri-

bution and fragmentation fun
tions relying on the method of mass fa
torization.

We �nd (with one minor ex
eption) 
omplete agreement with the subtra
tion terms

obtained in a previous publi
ation by 
omparing the zero-mass limit of a �xed-order


al
ulation with the genuine massles results in the MS s
heme. This presentation

will be useful for extending the massive variable-
avour-number s
heme to other

pro
esses.
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1 Introdu
tion

Heavy-quark produ
tion in highly energeti
 e

+

e

�

, 

, 
p, ep and p�p 
ollisions has at-

tra
ted mu
h interest in the past few years, both experimentally and theoreti
ally. Heavy

quarks are those with masses m� �

QCD

so that �

s

(m)� 1, where �

s

(�

R

) is the strong-


oupling 
onstant at renormalization s
ale �

R

. A

ording to this de�nition, the 
harm,

bottom and top quarks (
; b; t) are heavy whereas the up, down and strange quarks (u; d; s)

are light. Sin
e �

s

(m) � 1, heavy-quark produ
tion is a 
al
ulable pro
ess in perturba-

tive QCD. The heavy-quark mass a
ts as a 
uto� for initial- and �nal-state 
ollinear

singularities and sets the s
ale for the perturbative expansion in �

s

.

On this basis, most of the next-to-leading-order (NLO) QCD 
al
ulations have been per-

formed in the past [1, 2, 3, 4℄. Corresponding results are reliable when m is the only large

s
ale, as for example in 
al
ulations of the total 
ross se
tion or if any additional s
ale,

for example the transverse momentum p

T

of the produ
ed heavy quark in 

, 
p and p�p

rea
tions or the lepton momentum transfer Q in deep-inelasti
 ep s
attering (DIS), is not

mu
h larger than the mass m. However, when p

T

(or Q) is mu
h larger than the mass,

large logarithms ln(p

2

T

=m

2

) or ln(Q

2

=m

2

) arise to all orders, so that �xed-order perturba-

tion theory is no longer valid. As is well known, these logarithms 
an be resummed and,

this way, the perturbation series 
an be improved.

The isolation and resummation of large logarithms is similar to the 
onventional mass-

less parton model approa
h, where initial- or �nal-state 
ollinear singularities are ab-

sorbed into parton distribution fun
tions (PDF) of the in
oming hadrons or photons and

into fragmentation fun
tions (FF) for the produ
ed light hadrons (or photons), respe
-

tively. Therefore, this approa
h is usually referred to as zero-mass variable-
avour-number

s
heme (ZM-VFNS). The notion \variable 
avour number" is used sin
e, in the parton

model, the number of a
tive quark 
avours is in
reased by one unit, n

f

! n

f

+ 1, when

the fa
torization s
ale 
rosses 
ertain transition s
ales (whi
h are usually taken to be of

the order of the heavy-quark mass)

1

. In 
ontrast, the �xed-order treatment, where m is

kept as a large s
ale, is 
alled the �xed-
avour-number s
heme (FFNS), sin
e the number

of 
avours in the initial state is �xed to n

f

= 3 (4) for 
harm (bottom) produ
tion. One


an 
ombine 
ross se
tions 
al
ulated in the FFNS after 
ertain modi�
ations with heavy-

quark FFs and PDFs whi
h 
ontain the resummed large logarithms. This pres
ription is


alled the massive or general-mass VFNS (GM-VFNS)

2

.

One might expe
t that the partoni
 
ross se
tions 
al
ulated in the FFNS approa
h the


orresponding ZM-VFNS 
ross se
tions in the limitm! 0 if the 
ollinear singular terms

proportional to ln(m

2

=s) are subtra
ted, i.e., the subtra
ted FFNS 
ross se
tions di�er

from the ZM-VFNS 
ross se
tions only by terms � m

2

=p

2

T

. If this was true, the FFNS

and ZM-VFNS results for the 
ross se
tions would approa
h ea
h other for p

2

T

� m

2

.

This expe
tation, however, is not true, as was �rst demonstrated by Mele and Nason

1

For a detailed dis
ussion see the appendix in Ref. [5℄ and referen
es given there.

2

For details see, e.g., Refs. [6, 7℄.
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[8℄ for in
lusive heavy-quark produ
tion in e

+

e

�

annihilation at NLO (e

+

e

�

! QQg,

where Q is the heavy quark). They found that the limit m ! 0 of the 
ross se
tion for

e

+

e

�

! QQg and the 
ross se
tion 
al
ulated with m = 0 from the beginning (in the

MS s
heme) di�er by �nite terms of O(�

s

). The reason for the o

urren
e of these �nite

terms is the di�erent de�nition of the 
ollinear singular terms in the two approa
hes. In

the ZM-VFNS 
al
ulation, the heavy-quark mass is set to zero from the beginning and

the 
ollinearly divergent terms are de�ned with the help of dimensional regularization.

This �xes the �nite terms in a spe
i�
 way (in a given fa
torization s
heme), and their

form is inherent to the 
hosen regularization pro
edure. If, on the other hand, one starts

with m 6= 0 and performs the limitm! 0 afterwards, the �nite terms 
an be di�erent. In

Ref. [8℄, it was shown that these additional �nite terms emerging in the limit m! 0 out

of the theory with m 6= 0 
an be generated in the theory for m = 0 with MS fa
torization

by 
onvoluting this 
ross se
tion with a partoni
 fragmentation fun
tion d

Q!Q

(x; �) for

the transition from massless to massive heavy quarks Q (the expli
it form of d

Q!Q

(x; �)

will be given later).

If this interpretation of the �nite terms in the theory with m 6= 0 as partoni
 FF is

generally true, then d

Q!Q

(x; �) should be pro
ess independent and 
ould be used in any

other heavy-quark produ
tion pro
ess. The universality of the partoni
 FF has been


on�rmed by performing the same 
al
ulation as in Ref. [8℄ for the pro
ess 


?

Q ! Qg

[9, 10℄, where 


?

is a spa
e-like virtual photon, 

 ! QQg [11℄ and gg ! QQg [12℄ and

showing that the �nite terms are obtained from a 
onvolution of the 
orresponding LO


ross se
tions with d

Q!Q

(x; �). The pro
ess-independen
e of d

Q!Q

(x; �) was established

on more general grounds in Ref. [13℄. Moreover, pro
ess-independent derivations of the

partoni
 FFs have been performed by Ma [14℄ and re
ently by Melnikov and Mitov [15, 16℄,

who have 
omputed the partoni
 FFs to O(�

2

s

).

The fa
t that the theory with m 6= 0 and the ZM-VFNS are related by the 
onvolution

of the ZM-VFNS 
ross se
tion with partoni
 FFs has been used in several ways. In

Ref. [8℄, d

Q!Q

(x; �

0

) was used as the initial 
ondition, at � = �

0

= O(m), for the


al
ulation of d

Q!Q

(x; �) at an arbitrary s
ale � with the standard evolution equation.

Later, Ca

iari and Gre
o 
al
ulated with the same pro
edure the 
ross se
tion for heavy-

quark produ
tion in p�p and pp 
ollisions from the ZM-VFNS 
ross se
tion supplemented

with evolved d

Q!Q

(x; �) as a fun
tion of p

T

[17℄. Partoni
 FFs used together with a zero-

mass hard-s
attering 
ross se
tion have subsequently been applied also to heavy-quark

produ
tion in 

 [18℄ and 
p [19, 20℄ pro
esses. In Ref. [20℄, the approa
h was generalized

to the rea
tion 
+p! D

?

+X. The transition 
! D

?

was des
ribed by a FF 
ontaining

besides a non-perturbative 
ontribution the purely perturbative partoni
 FF. The non-

perturbative part was des
ribed by a fun
tion 
ontaining two parameters whi
h were �xed

by 
omparison to experimental data for e

+

+ e

�

! D

?

+X. In Refs. [17, 18, 19, 20℄, the

perturbative FF approa
h was motivated by the requirement to mat
h the ZM-VFNS as


lose as possible to the m 6= 0 theory. This 
ould be a
hieved sin
e at small p

T

= O(m)

the evolution of d

Q!Q

(x; �

0

) was not yet e�e
tive and, therefore, d

Q!Q

was just taking

a

ount of the di�eren
e of the two theories. However, terms proportional to m

2

=p

2

T

are

3



not in
luded in this way.

The so-
alled FONLL approa
h [21, 22, 23, 24, 25℄ is an attempt to repair this de�
ien
y.

There, the ZM-VFNS with perturbative FFs together with a non-perturbative 
omponent

was 
ombined with the FFNS with n

f

= 3 (4) for 
harm (bottom) produ
tion, introdu
ing

a p

T

dependent suppression fa
tor by hand. In addition, m

2

=p

2

T

terms have been in
luded

in extensions of the ACOT s
heme [26, 27℄ to one-parti
le in
lusive produ
tion of D

mesons in 
harged-
urrent and neutral-
urrent DIS [10, 28℄. In Ref. [29℄, the ACOT

s
heme has been applied to one-parti
le in
lusive heavy-quark produ
tion in p�p 
ollisions.

Instead of in
orporating the �nite terms d

Q!Q

(x; �) into the initial 
onditions of the

perturbative FFs at � = �

0

= O(m), one 
an take this di�eren
e also into a

ount by

swit
hing to a new fa
torization s
heme, whi
h we 
all the massive fa
torization s
heme.

In this s
heme, starting from the ZM-VFNS, one adjusts the fa
torization of the �nal-

state 
ollinear singularities asso
iated with the massive quarks in su
h a way that it

mat
hes the massive 
al
ulation in the limit m ! 0. Of 
ourse, the hard-s
attering


ross se
tions of any other pro
ess for in
lusive D

?

produ
tion must be transformed to

the new s
heme as well. This is parti
ularly important for the rea
tion e

+

+ e

�

!

D

?

+X from whi
h the information on the non-perturbative FF for 
! D

?

is obtained

by 
omparison to experimental data. So far, 
al
ulations in this massive fa
torization

s
heme were performed for 
+p ! D

?

+X in Ref. [30℄, where also �ts of the new FFs for


! D

?

have been presented (for a 
omparison of FFs in the massive and the MS s
heme,

see Ref. [31℄).

The simplest way to 
onne
t the truly massless 
ross se
tions in the MS s
heme with

the massive 
ross se
tions is to subtra
t the �nite pie
es d

Q!Q

(x; �

0

) from the massive

theory. In this way, one 
an in
orporate also the m

2

=p

2

T

terms, as given in the massive

theory, with the advantage that the massive theory approa
hes the ZM-VFNS theory in

the limit p

T

! 1 or m ! 0. In addition, by in
luding also the terms proportional to

lnm

2


ontained in d

Q!Q

(x; �) one 
an obtain not only the �nite subtra
tion terms but

also the terms needed for a transition to a new fa
torization s
ale. This approa
h has

been applied to 
 + 
 ! D

?

+X [11, 32℄, to 
 + p! D

?

+X [33℄ and to p+ �p ! D

?

+X

[12℄. In parti
ular in Ref. [12℄, we obtained the �nite subtra
tion terms by 
omparing the


ross se
tions of the massive theory, worked out by Bojak and Stratmann [34, 35℄, in the

limitm! 0 with the 
ross se
tions in the genuine massless theory in the MS fa
torization

s
heme as dedu
ed by Aversa et al. [36℄ in a form whi
h is equivalent to the 
onvolution

of the massless 
ross se
tion with d

Q!Q

(x; �).

We are going to present details of this quite involved 
al
ulation in this paper. The

purpose is, on the one hand, to exa
tly demonstrate that all the subtra
tion terms are

generated by the 
onvolution with partoni
 FFs, at NLO just with d

Q!Q

(x; �). On the

other hand, we hope that the detailed presentation will show how the 
al
ulation 
arries

over to other pro
esses a+ b! D

?

+X. Sin
e heavy-quark produ
tion in hadron-hadron


ollisions is the most 
omplex 
ase, we shall 
on
entrate on this parti
ular pro
ess. Some

results will also be dire
tly relevant for heavy-quark produ
tion in 

 and 
p pro
esses.

4
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Figure 1: Feynman diagrams for the LO gluon-gluon fusion pro
ess g + g ! Q+Q.

k
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k
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p
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Figure 2: The LO quark-antiquark annihilation pro
ess q + q ! Q+Q.

The outline of this paper is as follows. In Se
. 2, we 
onsider heavy-quark produ
tion in

hadroni
 
ollisions, introdu
e the notation and review the derivation of the subtra
tion

terms in Ref. [12℄. In Se
. 3, we present the 
onvolution formulas, from whi
h, in Se
.

4, the various subtra
tion terms are 
al
ulated and 
ompared with the results in Ref.

[12℄. Se
tion 5 
ontains a summary and some 
on
luding remarks. The subpro
ess 
ross

se
tions needed in the 
onvolutions have been 
olle
ted in App. A for 
onvenien
e.

2 Hadroprodu
tion of heavy quarks

In the FFNS, the following partoni
 subpro
esses 
ontribute to p+ �p! H+X in leading

order (LO) and NLO, where H = D; D

?

, B : : : is a heavy meson:

1. g(k

1

)+ g(k

2

)! Q(p

1

)+Q(p

2

)+ [g(p

3

)℄, where Q = 
; b denotes a heavy quark. The

LO Feynman diagrams are shown in Fig. 1.

2. q(k

1

) + �q(k

2

) ! Q(p

1

) + Q(p

2

) + [g(p

3

)℄. In LO, there is one Feynman diagram,

whi
h is shown in Fig. 2.

3. g(k

1

) + q(k

2

) ! Q(p

1

) +Q(p

2

) + q(p

3

) and g(k

1

) + �q(k

2

) ! Q(p

1

) + Q(p

2

) + �q(p

3

)


ontribute at NLO. The Feynman diagrams for these pro
esses, as well as those for

the NLO 
ontributions of gg ! QQg and q�q ! QQg, 
an be found in App. B.
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Our aim is to 
al
ulate di�erential 
ross se
tions with an observed heavy quark Q of

momentum p

1

. Therefore we de�ne the following invariants

s = (k

1

+ k

2

)

2

;

t

1

= t�m

2

= (k

1

� p

1

)

2

�m

2

;

u

1

= u�m

2

= (k

2

� p

1

)

2

�m

2

; (1)

and

s

2

= S

2

�m

2

= (k

1

+ k

2

� p

1

)

2

�m

2

= s+ t

1

+ u

1

(2)

with s + t

1

+ u

1

= 0 at LO, where p

3

= 0. As usual, we introdu
e the dimensionless

variables v and w by

v = 1 +

t

1

s

; w = �

u

1

s+ t

1

; (3)

so that

t

1

= �s(1� v); u

1

= �svw : (4)

In LO, we have w = 1.

In a re
ent publi
ation [12℄, we have presented a NLO 
al
ulation for the in
lusive produ
-

tion ofD

?

mesons in p�p 
ollisions in
luding heavy-quark mass e�e
ts in the hard-s
attering


ross se
tions. The following pro
edure has been adopted [11, 32℄ (see also Refs. [7, 37℄):

(i) We have derived the zero-mass limit of the 
ross se
tions in the massive FFNS with

n

f

= 3 [34, 35℄ for the partoni
 subpro
esses listed above only keeping m as a

regulator in logarithms ln (m

2

=s). Spe
ial 
are was required in order to re
over the

distributions Æ(1�w), (1=(1 � w))

+

and (ln(1� w)=(1 � w))

+

o

urring in the mass-

less MS 
al
ulation, see, e.g., Eq. (12) in Ref. [12℄. The result, generi
ally denoted

lim

m!0

d~�(m), 
ontains mass singular logarithms ln(m

2

), but 
ollinear singularities

asso
iated with light quarks and gluons are already subtra
ted in d~�(m).

(ii) Then we have 
ompared the massless limit with the 
orresponding hard-s
attering


ross se
tions in the genuine massless MS 
al
ulation in order to identify appropriate

subtra
tion terms. Generi
ally, one 
an write

d�

sub

= lim

m!0

d~�(m)� d�̂

MS

; (5)

where d�̂

MS

is a hard-s
attering 
ross se
tion in the genuine MS 
al
ulation.

(iii) The desired massive hard-s
attering 
ross se
tions have then been 
onstru
ted by

removing the subtra
tion terms from the massive 
ross se
tions in the �xed-order

theory:

d�̂(m) = d~�(m)� d�

sub

: (6)

By this pro
edure, the 
ollinear logarithms ln(m

2

=s) along with �nite terms whi
h

are independent of the heavy-quark mass are subtra
ted from d~�(m). On the other

hand, all �nite mass terms of the form (m

2

=p

2

T

)

n

(with an integer n) are kept in the

hard-s
attering 
ross se
tions.

6



(iv) Contributions with 
harm quarks in the initial state have been in
luded in the mass-

less approa
h. It 
an be shown that negle
ting the 
orresponding heavy-quark mass

terms 
orresponds to a 
onvenient 
hoi
e of s
heme (S-ACOT s
heme [38℄) whi
h

does not imply any loss of pre
ision. In fa
t, the error whi
h is made is of the same

order as the error of the fa
torization formula, as has been dis
ussed in the 
on-

text of heavy-quark produ
tion in deep inelasti
 s
attering [38, 39℄. Obviously, this

rule is of great pra
ti
al importan
e sin
e the existing massless results for the hard-

s
attering 
ross se
tions [36℄ 
an simply be used, whereas their massive analogues

are unknown and would require a dedi
ated 
al
ulation of these pro
esses.

3

Note that also the FONLL 
al
ulation in Ref. [21℄ has been 
onstru
ted with the help of

the zero-mass limit of the �xed-order 
al
ulation in Refs. [1, 2℄. On the other hand, in the

GM-VFNS of Ref. [29℄, the 
ollinear subtra
tions have been obtained using the methods

of mass fa
torization in a massive regularization s
heme. In this approa
h, the subtra
tion

terms are 
omputed by 
onvolutions of appropriate subpro
esses with universal partoni


PDFs and FFs. However, the dis
ussion in Ref. [29℄ is rather generi
 without presenting

many details. It is the purpose of this paper to provide a detailed des
ription of the

derivation of the 
ollinear subtra
tion terms using the 
onvolution method and to 
ompare

with the results obtained in our previous publi
ation [12℄.

3 Mass fa
torization with massive quarks

The starting point in our approa
h is the basi
 fa
torization formula at the partoni
 level:

d~�(a+ b! Q+X) = f

a!i

(x

1

)
 f

b!j

(x

2

)
 d�̂(i+ j ! k +X)
 d

k!Q

(z) ; (7)

where d~� denote partoni
 
ross se
tions (with singularities due to light-quark and gluon

lines already subtra
ted via 
onventional mass fa
torization [40℄) and d�̂ are IR-safe hard-

s
attering 
ross se
tions whi
h are free of logarithms of the heavy-quark mass. The indi
es

a, b, and i, j, k denote partons, and a sum over double indi
es is implied here and in

the following. All logarithms of the heavy-quark mass (i.e. the mass singularities in

the zero-mass limit) are 
ontained in the partoni
 distribution fun
tions f

a!i

and in the

partoni
 fragmentation fun
tions d

k!Q

. The 
onvolution 
 denotes the usual 
onvolution

integral and will be spe
i�ed below in Eqs. (14), (23) and (30). Equation (7) re
e
ts the

fa
t that the partoni
 
ross se
tions d~� 
an be fa
torized into pro
ess-dependent IR-safe

hard-s
attering 
ross se
tions d�̂, whi
h are well-behaved and �nite in the limit m! 0,

and universal (pro
ess-independent) partoni
 PDFs f

a!i

and partoni
 FFs d

k!Q

.

3

For deep inelasti
 s
attering, massive-quark-initiated 
oeÆ
ients have been obtained in Refs. [9, 10℄;

the results for this simpler 
ase are already quite involved.

7



Equation (7) 
an be expanded in powers of �

s

with the help of

f

a!i

(x

1

) = Æ

ia

Æ(1� x

1

) + f

(1)

a!i

+ f

(2)

a!i

+ : : : ;

f

b!j

(x

2

) = Æ

jb

Æ(1� x

2

) + f

(1)

b!j

+ f

(2)

b!j

+ : : : ;

d

k!Q

(z) = Æ

kQ

Æ(1� z) + d

(1)

k!Q

+ d

(2)

k!Q

+ : : : ; (8)

d�̂ = d�̂

(0)

+ d�̂

(1)

+ d�̂

(2)

+ : : : ;

d~� = d~�

(0)

+ d~�

(1)

+ d~�

(2)

+ : : : :

For the partoni
 PDFs and FFs, the supers
ript denotes the order of �

s

. For the 
ross

se
tions, it indi
ates the relative order in �

s

with respe
t to the Born 
ross se
tions. The

expansion of Eq. (7) 
an be used to determine order by order the relation between the

hard-s
attering and partoni
 
ross se
tions. Up to NLO, one �nds

d�̂

(0)

(a+ b! Q+X) = d~�

(0)

(a+ b! Q+X) = d�

(0)

(a+ b! Q+X) ; (9)

d�̂

(1)

(a+ b! Q+X) = d~�

(1)

(a+ b! Q+X)

�f

(1)

a!i

(x

1

)
 d�

(0)

(i+ b! Q+X)

�f

(1)

b!j

(x

2

)
 d�

(0)

(a+ j ! Q+X) (10)

�d�

(0)

(a+ b! k +X)
 d

(1)

k!Q

(z) :

The three 
onvolutions in Eq. (10) 
an be identi�ed with the subtra
tion term d�

sub

in

Eq. (6).

The fa
torization in Eq. (7) has to be de�ned at a de�nite energy or momentum s
ale

whi
h enters as an argument into the PDFs, FFs and d�̂. We denote the fa
torization

s
ales by �

F

for initial-state fa
torization (entering the PDFs) and by �

0

F

for �nal-state

fa
torization (entering the FFs). The renormalization s
ale will be 
alled �

R

.

3.1 Partoni
 parton distribution and fragmentation fun
tions

The fun
tions f

(1)

i!j

for the initial state are given in the MS s
heme

4

, keeping the heavy-

quark mass as a regulator for the 
ollinear divergen
es, by

f

(1)

g!Q

(x; �

R

; �

F

) =

�

s

(�

R

)

2�

P

(0)

g!q

(x) ln

�

2

F

m

2

;

f

(1)

Q!Q

(x; �

R

; �

F

) =

�

s

(�

R

)

2�

C

F

�

1 + x

2

1 � x

�

ln

�

2

F

m

2

� 2 ln(1� x)� 1

��

+

; (11)

f

(1)

g!g

(x; �

R

; �

F

) =�

�

s

(�

R

)

2�

2

3

T

f

ln

�

2

F

m

2

Æ(1� x) ;

4

Note that it is assumed that the MS s
heme is de�ned in the 
onventional way where photons and

gluons have d � 2 degrees of freedom (where d is the number of spa
e-time dimensions). Furthermore,

subtra
tions f

ij


 d�

(0)

are performed with subpro
ess 
ross se
tions 
al
ulated in d dimensions.

8



where P

(0)

g!q

(x) =

1

2

[x

2

+(1�x)

2

℄ and P

(0)

q!q

(x) = C

F

[(1+x

2

)=(1�x)℄

+

(appearing in f

(1)

Q!Q

)

are the 
onventional (spa
e-like) one-loop splitting fun
tions and T

f

= 1=2. The fun
tion

f

(1)

Q!Q

(x; �

R

; �

F

) will not be used in the following, sin
e heavy quarks in the initial state

are treated as massless quarks as explained in Se
. 2. It would be present in 
ases where

massive heavy quarks Q appear in the initial state as for example in Refs. [9, 10, 26, 27℄.

The fun
tions d

(1)

i!j

for the �nal state read [8, 9, 10, 14℄

d

(1)

g!Q

(z; �

R

; �

0

F

) =

�

s

(�

R

)

2�

P

(0)

g!q

(z) ln

�

0 2

F

m

2

;

d

(1)

Q!Q

(z; �

R

; �

0

F

) =

�

s

(�

R

)

2�

C

F

�

1 + z

2

1 � z

�

ln

�

0 2

F

m

2

� 2 ln(1 � z)� 1

��

+

: (12)

Generally, the splitting fun
tions entering the partoni
 FFs are time-like splitting fun
-

tions whi
h are, however, identi
al to the spa
e-like splitting fun
tions at the one-loop

level. It should be noted that the fun
tion f

(1)

Q!Q

(x; �

R

; �

F

) in Eq. (11) is of the same form

as d

(1)

Q!Q

(x; �

R

; �

0

F

) at O(�

1

s

) [9, 10℄. This will not be true at higher orders sin
e the NLO

spa
e- and time-like splitting fun
tions P

(1)

q!q

(x) are di�erent. All the other partoni
 PDFs

and FFs not listed here are zero at O(�

1

s

). Furthermore, analogous results for pro
esses

involving photon splittings 
an be found by obvious repla
ements (g ! 
, �

s

! � and

appropriate modi�
ations of 
olour fa
tors) in Eqs. (11) and (12).

The partoni
 PDFs and FFs are known to order O(�

2

s

). They would be needed, together

with the three-loop beta fun
tion of QCD, for 
omputing subtra
tion terms at next-to-

NLO (NNLO). For the initial state, the partoni
 PDFs at order O(�

2

s

) 
an be found in

Ref. [41℄ (with the ex
eption of f

(2)

Q!Q

(x), whi
h is unknown). Re
ently, also the O(�

2

s

)


ontributions to the perturbative FFs have been derived [15, 16℄. It should be noted

that, at O(�

2

s

), all of the perturbative PDFs and FFs are non-vanishing at �

F

= m and

�

0

F

= m, respe
tively. In fa
t, the parts proportional to logarithms of the fa
torization

s
ale follow from the evolution equations, so that the new information obtained from the

O(�

2

s

) 
al
ulation is 
ontained in the non-vanishing pie
es at �

F

; �

0

F

= m.

In Se
. 4, we will need the distribution d

(1)

Q!Q

(�z) with �z = 1� v + vw as a distribution in

the kinemati
 variables v and w. This form of d

(1)

Q!Q

(�z) 
an be written as:

d

(1)

Q!Q

(�z) = A(v) Æ(1� w) +B(v)

1

(1 � w)

+

+ C(v)

�

ln(1� w)

(1 � w)

�

+

+D(v;w) ; (13)

9



x

1

k

1

k

2

p

1

(a)

x

2

k

1

k

2

p

1

(b)

z

�1

k

1

k

2

p

1

(
)

Figure 3: Sket
h of kinemati
s of mass fa
torization for (a) upper in
oming line (b) lower

in
oming line and (
) outgoing line.

with

A(v) = C

F

�

s

(�

R

)

2�

1

2v

�

ln

�

0

F

2

m

2

(3 + 4 ln v) + 4(1� ln v � ln

2

v)

�

;

B(v) = C

F

�

s

(�

R

)

2�

2

v

�

ln

�

0

F

2

m

2

� 1� 2 ln v

�

;

C(v) = �C

F

�

s

(�

R

)

2�

4

v

;

D(v;w) = �C

F

�

s

(�

R

)

2�

[2 � v(1� w)℄

�

ln

�

0

F

2

m

2

� 1 � 2 ln v � 2 ln(1� w)

�

:

3.2 Subtra
tion terms at NLO

We distinguish mass fa
torization in the initial state and in the �nal state. For one-parti
le

in
lusive produ
tion, where one �nal-state parti
le has a �xed momentum (above, we had


hosen p

1

), we have to distinguish further two 
ases with initial-state singularities 
orre-

sponding to t- and u-
hannel s
attering. A graphi
al representation of the subtra
tion

terms in form of 
ut diagrams for all 
ases is shown in Fig. 3. These diagrams 
an be

found by applying all possible 
uts to internal lines of the Feynman diagrams (see App.

B). The 
uts are allowed if the 2 ! 2 subpro
esses are kinemati
ally possible and the

1 ! 2 pro
ess involves the splitting into a heavy-quark line. In an axial gauge, the 
ut

diagrams 
orrespond to a
tual Feynman diagrams.

3.2.1 Initial-state fa
torization

In the �rst 
ase with u-
hannel s
attering (see Fig. 3(a)), the 
ollinear subtra
tions are

given by

d�

sub

(a+ b! Q+X) =

Z

1

0

dx

1

f

(1)

a!i

(x

1

; �

R

; �

F

) d�̂

(0)

(i(x

1

k

1

) + b(k

2

)! Q(p

1

) +X)

� f

(1)

a!i

(x

1

)
 d�̂

(0)

(i+ b! Q+X) : (14)

10



Here a+ b! Q+X stands for the one-parti
le in
lusive partoni
 subpro
esses (g + g !

Q+X, q + �q ! Q+X, g + q ! Q+X, g + �q ! Q+X), f

a!i

(x

1

; �

R

; �

F

) des
ribes the


ollinear splitting of parton 'a' into parton 'i', and i+ b! Q+X are the 
orresponding

2 ! 2 subpro
esses with momenta x

1

k

1

, k

2

and p

1

. A sum over i is implied, i.e., all

possible splittings and subpro
esses have to be taken into a

ount.

We de�ne the following invariants for the subpro
ess:

ŝ = (x

1

k

1

+ k

2

)

2

= x

1

s ;

^

t

1

= (x

1

k

1

� p

1

)

2

�m

2

= x

1

t

1

; (15)

û

1

= (k

2

� p

1

)

2

�m

2

= u

1

;

and

v̂ = 1 +

^

t

1

ŝ

= v ; ŵ = �

û

1

ŝ+

^

t

1

=

w

x

1

; (16)

^

t

1

= �ŝ(1� v̂) ; û

1

= �ŝv̂ŵ = �ŝv̂ : (17)

For the 
al
ulation of d

2

�

sub

=(dvdw) in Eq. (14), it is 
onvenient to write the subpro
ess


ross se
tion as

d

2

�̂

(0)

dvdw

= J

d

2

�̂

(0)

dv̂dŵ

= J

d�̂

(0)

dv̂

Æ(1� ŵ) (18)

with

Æ(1� ŵ) = wÆ(x

1

� �x

1

) ; �x

1

= w : (19)

The Æ-fun
tion imposes the 2 ! 2 pro
ess kinemati
s ŝ +

^

t

1

+ û

1

= 0, i.e. ŵ = 1, and

implies �x

1

= w. The Ja
obian reads

J =

�(v̂; ŵ)

�(v;w)

=

1

x

1

: (20)

Combining these results we �nd

d

2

�̂

(0)

dvdw

=

d�̂

(0)

dv̂

�

�

�

�

ŝ!�x

1

s; v̂!v

Æ(x

1

� �x

1

) ; (21)

so that the subtra
tion terms for initial-state fa
torization of the upper in
oming line 
an

be 
al
ulated as

d

2

�

sub

dvdw

(a+ b! Q+X) = f

(1)

a!i

(�x

1

; �

R

; �

F

)

d�̂

(0)

dv̂

(i+ b! Q+X)

�

�

�

�

v̂!v; ŝ!�x

1

s

: (22)

In the se
ond 
ase with t-
hannel s
attering (see Fig. 3(b)), the 
ollinear subtra
tions are

given by

d�

sub

(a+ b! Q+X) =

Z

1

0

dx

2

f

(1)

b!j

(x

2

; �

R

; �

F

) d�̂

(0)

(a(k

1

) + j(x

2

k

2

)! Q(p

1

) +X)

� f

(1)

b!j

(x

2

) 
 d�̂

(0)

(a+ j ! Q+X) : (23)
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The invariants for the subpro
ess are now given by

ŝ = (k

1

+ x

2

k

2

)

2

= x

2

s ;

^

t

1

= (k

1

� p

1

)

2

�m

2

= t

1

; (24)

û

1

= (x

2

k

2

� p

1

)

2

�m

2

= x

2

u

1

;

and

v̂ =

x

2

� 1 + v

x

2

; ŵ =

x

2

vw

x

2

� 1 + v

: (25)

Again, we write the subpro
ess 
ross se
tion as in Eq. (18) with

Æ(1� ŵ) = �x

2

2

vw

1 � v

Æ(x

2

� �x

2

) ; �x

2

=

1� v

1� vw

; (26)

and

J =

�(v̂; ŵ)

�(v;w)

=

v

x

2

� 1 + v

: (27)

For the 2 ! 2 subpro
ess kinemati
s, we have ŵ = 1, x

2

= �x

2

, v̂ = vw and J = 1=(�x

2

w).

Combining these results, we �nd

d

2

�̂

(0)

dvdw

=

v

1� vw

d�̂

(0)

dv̂

�

�

�

�

ŝ!�x

2

s; v̂!vw

Æ(x

2

� �x

2

) ; (28)

so that the subtra
tion terms for initial-state fa
torization of the lower in
oming line 
an

be 
al
ulated as

d

2

�

sub

dvdw

(a+ b! Q+X) = f

(1)

b!j

(�x

2

; �

R

; �

F

)

v

1� vw

d�̂

(0)

dv̂

(a+ j ! Q+X)

�

�

�

�

v̂!vw; ŝ!�x

2

s

(29)

3.2.2 Final-state fa
torization

The 
ase shown in Fig. 3(
) 
orresponds to fa
torization of singularities in the �nal state.

Here the 
ollinear subtra
tions are given by

d�

sub

(a+ b! Q+X) =

Z

1

0

dz d�̂

(0)

�

a(k

1

) + b(k

2

)! k(z

�1

p

1

) +X

�

d

(1)

k!Q

(z; �

R

; �

0

F

)

� d�̂

(0)

(a+ b! k +X)
 d

(1)

k!Q

(z) : (30)

The invariants for the subpro
ess 
an be de�ned as follows

ŝ = (k

1

+ k

2

)

2

= s ;

^

t

1

= (k

1

� z

�1

p

1

)

2

�m

2

=

1

z

t

1

; (31)

û

1

= (k

2

� z

�1

p

1

)

2

�m

2

=

1

z

u

1

;
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and

v̂ =

z � 1 + v

z

; ŵ =

vw

z � 1 + v

: (32)

As before, we write the subpro
ess 
ross se
tion as in Eq. (18) with

Æ(1� ŵ) = vwÆ(z � �z) ; �z = 1� v + vw ; (33)

and

J =

�(v̂; ŵ)

�(v;w)

=

1

z

v

z � 1 + v

: (34)

From ŵ = 1 one �nds �z = 1 � v + vw, v̂ = vw=�z and J = 1=(�zw). Combining these

results, we �nd

d

2

�̂

(0)

dvdw

=

v

�z

d�̂

(0)

dv̂

�

�

�

�

ŝ!s; v̂!

vw

�z

Æ(z � �z) ; (35)

so that the subtra
tion terms for �nal-state fa
torization 
an be 
al
ulated as

d

2

�

sub

dvdw

(a+ b! Q+X) = d

(1)

k!Q

(�z; �

R

; �

0

F

)

v

�z

d�̂

(0)

dv̂

(a+ b! k +X)

�

�

�

�

v̂!vw=�z; ŝ!s

(36)

3.3 S
heme dependen
e and implementation freedom

Before we turn to a dis
ussion of our results for the 
ollinear subtra
tion terms 
al
ulated

a

ording to Eqs. (22), (29) and (36), we add some additional remarks.

The partoni
 PDFs and FFs introdu
ed in Se
. 3.1 are given in the MS fa
torization and

renormalization s
heme. However, in the FFNS 
al
ulations of heavy-quark produ
tion

[1, 2, 3, 4, 34, 35℄, a modi�
ation of the MS s
heme has been adopted, 
alled MS

m

or

de
oupling s
heme [42℄, where divergen
es due to light quarks and gluons are treated in

the MS s
heme and divergen
es arising from heavy-quark loops are subtra
ted at zero

momentum. In order to swit
h from the MS

m

to the MS s
heme the following terms have

to be added to the partoni
 
ross se
tions of the �xed-order 
al
ulations (see Se
. 3 in

Ref. [21℄):

� �

s

(�

R

)

2T

f

3�

ln

�

2

R

m

2

d�

(0)

q�q

(q + �q ! Q+X) ; (37)

��

s

(�

R

)

2T

f

3�

ln

�

2

R

�

2

F

d�

(0)

gg

(g + g ! Q+X) : (38)

In Eqs. (37) and (38), the parts proportional to ln�

2

R

are due to the 
hange of �

s

when

going from the MS

m

to the MS s
heme. If �

(n

f

�1)

s

(�

R

) and �

(n

f

)

s

(�

R

) denote the strong-


oupling 
onstants in the MS

m

and MS s
hemes, respe
tively, one 
an derive from the

renormalization group equation the following relationship between the 
ouplings:

�

(n

f

�1)

s

(�

R

) = �

(n

f

)

s

(�

R

)

 

1�

�

(n

f

)

s

(�

R

)

3�

T

f

ln

�

2

R

m

2

!

+O(�

3

s

) : (39)
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(a)

k

1

k

2

p

1

p

2

(b)

Figure 4: Feynman diagrams representing (a) f

(1)

g!g

(x

1

) 
 d�̂

(0)

(gg ! QQ) and (b)

f

(1)

g!g

(x

2

)
d�̂

(0)

(gg ! QQ). The fermion loops on the external gluon lines are heavy-quark

loops.

The parts proportional to ln�

2

F


an be obtained by subtra
ting from the 
ross se
tion in

the gluon-gluon 
hannel the term

�

f

(1)

g!g

(x

1

) + f

(1)

g!g

(x

2

)

�


 d�̂

(0)

(g + g ! Q + Q) (see

Fig. 4). Sin
e the fun
tion f

(1)

g!g

(x) in Eq. (11) is proportional to Dira
's delta fun
tion,

this amounts to a simple multipli
ation with the Born 
ross se
tion in the gluon-gluon


hannel. This subtra
tion term takes into a

ount the di�erent treatment of heavy-quark

loop 
ontributions to external gluon lines in the MS and the MS

m

s
hemes. The 
oeÆ
ients

in Ref. [12℄ are given in the MS

m

s
heme. Changing the results in Ref. [12℄ to the MS

s
heme a

ording to Eqs. (37) and (38) has the expe
ted e�e
t of repla
ing �

(n

f

�1)

0

by

�

(n

f

)

0

in the 
oeÆ
ients

^

d

1

and

~

d

1

in Eqs. (28), (29) and (55) of Ref. [12℄, so that in the

MS s
heme �

^

d

1

= �

~

d

1

= 0 in Eqs. (35), (36) and (59) of Ref. [12℄.

Even �xing the fa
torization s
heme to the MS s
heme leaves some freedom in the im-

plementation of a massive VFNS, as has been dis
ussed for the 
ase of deep inelasti


s
attering in Ref. [6℄. Consider for example the 
ondition

lim

m!0

(d~�(m)� d�

sub

(m))

!

= d�̂

MS

; (40)

whi
h might be used as an attempt to de�ne the subtra
tion terms. d�̂

MS

is the massless

hard-s
attering 
ross se
tion in the MS s
heme. However, this requirement �xes the sub-

tra
tion term d�

sub

(�=m;m=p

T

) only up to terms m=p

T

vanishing in the limit m ! 0.

The pre
ise treatment of su
h terms proportional to m=p

T

is not pres
ribed by fa
toriza-

tion. The pres
ription in Eq. (5), d�

sub

= lim

m!0

d~�(m)� d�̂

MS

, is minimal in the sense

that no �nite mass terms are removed from the hard part in addition to the 
ollinear

logarithms ln(m

2

=s).

The same is true from the point of view of mass fa
torization: The fa
torization and

renormalization s
heme unambiguously determines the partoni
 PDFs and FFs. However,

the 
onvolution pres
ription leaves some freedom in the 
hoi
e of the integration variable

14



and, therefore, is only unique up to terms of the order m=Q (where Q is the hard s
ale).

One example is the ACOT-� pres
ription [6℄ in in
lusive DIS, whi
h guarantees the 
orre
t

threshold behaviour of the heavy-quark-initiated 
ontributions. Furthermore, it is possible

to retain the mass terms in the subpro
ess 
ross se
tions entering the 
onvolution formulas.

A
tually, this is done in the original ACOT s
heme [26, 27℄.

4 Subtra
tion terms: results

We now present the results for the 
ollinear subtra
tion terms, 
al
ulated using Eqs. (22),

(29) and (36). The universal partoni
 PDFs 
an be found in Se
. 3.1. The required

subpro
ess 
ross se
tions have been listed for 
ompleteness in App. A. We retain the

heavy-quark mass terms in the subpro
ess 
ross se
tions entering the 
onvolutions. In

order to 
ompare with our results in Ref. [12℄, these mass terms have to be dropped.

In order to fa
ilitate the 
omparison with our previous results, we expand the subtra
tion


ross se
tion in the following form,

d

2

�

sub

dvdw

= �


1

Æ(1� w) + �


2

�

1

1 � w

�

+

+�


3

�

ln(1 �w)

1� w

�

+

+�


5

ln v +�


10

ln(1� w) + �


11

; (41)

and use the abbreviations

X = 1� vw; Y = 1� v + vw; v

i

= i� v (i = 1; 2) : (42)

4.1 Subtra
tion terms for g + g ! Q +Q + g

The 
oeÆ
ients �


i

are de
omposed into an Abelian and two non-Abelian parts, following

Ref. [35℄:

�


i

= C(s)

�

C

2

F

�


qed

i

+

C

2

A

4

�


oq

i

+

1

4

�


kq

i

�

; (43)

with

C(s) =

�

3

s

2(N

2

� 1)s

: (44)

There are four di�erent 
ut diagrams 
ontributing to the total result, whi
h we dis
uss in

the following.

d�̂

(0)

(gg ! QQ)
 d

(1)

Q!Q

(z)

The 
ut diagrams are shown in Fig. 5. The 
ross se
tion d�̂

(0)

(gg ! QQ) is proportional

15



Figure 5: Feynman diagrams representing d�̂

(0)

(gg ! QQ)
 d

(1)

Q!Q

(z).

to the fun
tion

� (v) =

v

1� v

+

1 � v

v

+

4m

2

sv(1� v)

�

1�

m

2

sv(1� v)

�

; (45)

whi
h appears in the following expressions for the �


i

. They are given by

�


1

=

��

3

4

+ ln v

�

ln

�

0

F

2

m

2

+ 1� ln v � ln

2

v

�

� 2C(s)C

F

� (v)[C

F

� C

A

v(1� v)℄ ; (46)

�


2

=

�

ln

�

0

F

2

m

2

� 1 � 2 ln v

�

� 2C(s)C

F

� (v)[C

F

� C

A

v(1� v)℄ ; (47)

�


3

= �2� 2C(s)C

F

� (v) [C

F

� C

A

v(1� v)℄ ; (48)

�


5

= C(s)

�

C

2

F

�


qed

5

+

1

4

(C

2

A

� 1)�


oq

5

�

; (49)

where

�


qed

5

=

2v

v

1

�

2(2 � 2v + v

2

)

vw

+

2v

2

w

v

1

+

4v

Y

+

m

2

s

�

8v(3 � 2v)

v

1

�

8(2 � 2v + v

2

)

vw

+

8v

2

w

v

1

�

+

m

4

s

2

�

�8v(11� 15v + 6v

2

)

v

2

1

+

8v

1

(2� 2v + v

2

)

v

2

w

2

+

8(2 + 4v � 7v

2

+ 4v

3

)

v

2

w

+

8v

2

(�5 + 4v)w

v

2

1

�

8v

3

w

2

v

2

1

�

; (50)

�


oq

5

= �4v +

8vv

2

1

Y

3

�

8v

2

v

1

Y

2

+

4v(3� 6v + 4v

2

)

Y

+

m

2

s

�

�16v +

16v

Y

�

+

m

4

s

2

�

16v(3 � 2v)

v

1

�

16(2 � 2v + v

2

)

vw

+

16v

2

w

v

1

�

: (51)

We �nd that �


kq

5

= ��


oq

5

and, �nally,

�


10

= �


5

; (52)

�


11

=

1

2

�


5

�

1 � ln

�

0

F

2

m

2

�

: (53)
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Figure 6: Feynman diagrams representing of d�̂

(0)

(gg ! gg)
 d

(1)

g!Q

(z).

Figure 7: Feynman diagrams representing of f

(1)

g!Q

(x

1

) 
 d�̂

(0)

(Qg ! Qg).

The latter two relations 
an be derived from d

(1)

Q!Q

(�z) in Eq. (13) inspe
ting the expressions

for B(v), C(v) and D(v;w). (Note that the parts with B(v) and C(v) 
ontribute to �


11

and �


10

, respe
tively, in 
ases where the 1=(1 � w)

+

is 
an
eled by fa
tors (1� w).)

Now we turn to a 
omparison with the results in Ref. [12℄, whi
h have been derived as

des
ribed in Se
. 2. For �

0

F

= m (and negle
ting terms of the order O(m

2

=s)), Eqs. (46){

(53) are in 
omplete agreement with Eqs. (18) and (21){(24) in Ref. [12℄. Furthermore,

the parts proportional to ln(�

0 2

F

=m

2

) in Eqs. (46) and (47) are identi
al to Eqs. (37) and

(38) in Ref. [12℄. As for �


11

in Eq. (53), the part proportional to ln(�

0 2

F

=m

2

) is in agree-

ment with Eqs. (41) and (43) for the 'qed' and 'kq' parts. The 'oq' part reprodu
es Eq.

(42) in Ref. [12℄ after adding the 
ontribution given in Eq. (54).

d�̂

(0)

(gg ! gg)
 d

(1)

g!Q

(z)

The 
ut diagram Fig. 6 only 
ontributes to the part of �


11

proportional to C

2

A

:

�


oq

11

=

�

� 48v

2

+

8v

1

(1 � 2v + 2v

2

)

vw

2

+

16(1 � 3v + 2v

2

)

w

+

8v

2

(7� 14v + 8v

2

)w

v

2

1

�

16v

3

(�1 + 2v)w

2

v

2

1

+

16v

4

w

3

v

2

1

+

8vv

2

1

Y

3

�

8(3v � 5v

2

+ 2v

3

)

Y

2

+

8(7v � 6v

2

+ 2v

3

)

Y

�

ln

�

0

F

2

m

2

: (54)

f

(1)

g!Q

(x

1

)
 d�̂

(0)

(Qg ! Qg)

The u-
hannel 
ut in the initial state des
ribed by the diagram in Fig. 7 
ontributes:

17



Figure 8: Feynman diagrams representing of f

(1)

g!Q

(x

2

) 
 d�̂

(0)

(gQ! Qg).

�


qed

11

=

1 + v

2

vw

(1 � 2w + 2w

2

) ln

�

F

2

m

2

; (55)

�


oq

11

=

1 + v

2

v

2

1

2

w

(1 � 2w + 2w

2

) ln

�

F

2

m

2

; (56)

�


kq

11

= ��


oq

11

: (57)

f

(1)

g!Q

(x

2

)
 d�̂

(0)

(gQ! Qg)

Finally, we have a 
ontribution from the u-
hannel 
ut in the initial state des
ribed by

the diagram in Fig. 8:

�


qed

11

=

�

v(�1 + 2v)

v

1

�

v

2

w

v

1

+

2v

1

v

X

3

�

2v

X

2

+

v(3� 4v + 2v

2

)

v

1

X

�

ln

�

F

2

m

2

; (58)

�


oq

11

=

�

2v

v

1

+

4(1 � 2v + 2v

2

)

v

1

vw

2

+

4(1 � 4v + 2v

2

)

v

1

w

+

4vv

1

X

2

+

4v(1� 2v)

X

�

�

ln

�

F

2

m

2

; (59)

�


kq

11

= ��


oq

11

: (60)

The sum of Eqs. (55) and (58), that of Eqs. (56) and (59), and that of Eqs. (57) and (60)

are identi
al to Eqs. (44), (45), and (46) in Ref. [12℄, respe
tively.

4.2 Subtra
tion terms for q + �q ! Q +Q+ g

The results for the 
oeÆ
ients �


i

have the following 
olour de
omposition:

�


i

= C

q

(s)

C

F

2

�

C

F

�



f

i

+ C

A

�



a

i

�

; (61)

with

C

q

(s) =

�

3

s

2Ns

: (62)

There are two di�erent 
ut diagrams 
ontributing to the total result.

18



Figure 9: Feynman diagrams representing of d�̂

(0)

(q�q ! QQ)
 d

(1)

Q!Q

(z).

d�̂

(0)

(q�q ! QQ)
 d

(1)

Q!Q

(z)

Figure 9 shows the diagram with a 
ut in the �nal state. The 2! 2 pro
ess 
ross se
tion

d�̂(q�q! QQ) is proportional to the fun
tion

�

q

(v) = (1 � v)

2

+ v

2

+

2m

2

s

; (63)

whi
h will o

ur in the results below. Furthermore, for this 
ontribution, the C

A

parts

vanish, i.e., �



a

i

= 0 (i = 1; 2; 3; 5; 10; 11). Therefore, the �nal results are proportional

to the 
olour fa
tor C

2

F

:

�


1

=

��

3

4

+ ln v

�

ln

�

0

F

2

m

2

+ 1� ln v � ln

2

v

�

� 2C

q

(s)�

q

(v)C

2

F

; (64)

�


2

=

�

ln

�

0

F

2

m

2

� 1� 2 ln v

�

� 2C

q

(s)�

q

(v)C

2

F

; (65)

�


3

= �2� 2C

q

(s)�

q

(v)C

2

F

; (66)

�


5

= 2C

q

(s)C

2

F

�

v �

2vv

2

1

Y

3

+

2v

2

v

1

Y

2

�

3v � 6v

2

+ 4v

3

Y

+

m

2

s

2v

�

1 �

1

Y

��

: (67)

Finally, we �nd again

�


10

= �


5

; (68)

�


11

=

1

2

�


5

�

1 � ln

�

0

F

2

m

2

�

: (69)

One 
an observe the same stru
ture of the results as for d�̂

(0)

(gg ! QQ)
d

(1)

Q!Q

(z) given

in Se
. 4.1.

Now we turn again to the 
omparison with the results in Ref. [12℄. For �

0

F

= m (and

negle
ting terms of the order O(m

2

=s)), Eqs. (64){(69) are identi
al to Eqs. (51){(54) in

Ref. [12℄. The parts proportional to ln(�

0 2

F

=m

2

) in Eqs. (64) and (65) 
oin
ide with Eqs.

(60) and (61) in Ref. [12℄. As for �


11

in Eq. (69), the part proportional to ln(�

02

F

=m

2

)

is in agreement with Eq. (62) in Ref. [12℄ only after in
luding the 
ontribution from
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Figure 10: Feynman diagrams representing of d�̂

(0)

(q�q! gg)
 d

(1)

g!Q

(z).

d�̂(q�q! gg)
 d

(1)

g!Q

(z), whi
h will be given in the next subse
tion.

d�̂

(0)

(q�q ! gg)
 d

(1)

g!Q

(z)

The result for the 
ut diagram Fig. 10 reads

�



f

11

=

�

2v(3� 4v + 2v

2

)

v

1

+

2(1 � 2v + 2v

2

)

w

�

4v

3

w

v

1

+

4v

3

w

2

v

1

�

4v

Y

�

ln

�

0

F

2

m

2

; (70)

�



a

11

=

�

4(2 � v)v � 4v

2

w �

4vv

2

1

Y

3

+

4(3v � 5v

2

+ 2v

3

)

Y

2

�

2(9v � 12v

2

+ 4v

3

)

Y

�

�

ln

�

0

F

2

m

2

: (71)

Sin
e �


11

in Eq. (69) only has a C

F

part, Eq. (71) is the only 
ontribution to the C

A

part and hen
e is in agreement with Eq. (64) in Ref. [12℄. Furthermore, it is easy to see

that the sum of �



f

11

in Eq. (69), taken from the part / ln(�

02

F

=m

2

), and �



f

11

in Eq. (70)

reprodu
es Eq. (63) in Ref. [12℄.

4.3 Subtra
tion terms for g + q ! Q +Q+ q

The pro
ess gq ! QQq appears for the �rst time at NLO. It has the 
olour de
omposition

�


i

= C

gq

(s)

�

C

F

�



f

i

+ C

A

�



a

i

�

; (72)

with

C

gq

(s) =

�

3

s

2Ns

: (73)

There are two di�erent 
ut diagrams 
ontributing to the total result. The results for the

pro
ess g�q ! QQ�q are the same as 
an be easily seen with the help of the expressions in

App. A.3.

d�̂

(0)

(gq ! gq)
 d

(1)

g!Q

(z)

For the 
ut diagram shown Fig. 11, we �nd

20



Figure 11: Feynman diagrams representing of d�̂

(0)

(gq ! gq)
 d

(1)

g!Q

(z).

Figure 12: Feynman diagrams representing of f

(1)

g!Q

(x

1

)
 d�̂

(0)

(Qq! Qq).

�



f

11

=

�

�2v

2

+

1 � 2v + 2v

2

2w

+ 2v

2

w �

v

1

v

2Y

2

+

3v � 2v

2

2Y

�

ln

�

0

F

2

m

2

; (74)

�



a

11

=

�

�v

2

+

v

2

(2� 4v + 3v

2

)w

v

2

1

+

2v

3

(1 � 2v)w

2

v

2

1

+

2v

4

w

3

v

2

1

+

v

2Y

�

ln

�

0

F

2

m

2

: (75)

Equations (74) and (75) are in agreement with Eqs. (69) and (70) in Ref. [12℄.

f

(1)

g!Q

(x

1

)
 d�̂

(0)

(Qq ! Qq)

The 
ontribution of the 
ut diagram Fig. 12 is given by

�



f

11

=

1 + v

2

2v

2

1

w

�

1 � 2w + 2w

2

�

ln

�

F

2

m

2

; (76)

�



a

11

= 0 : (77)

Equation (76) is identi
al to Eq. (68) in Ref. [12℄.

5 Con
lusions and dis
ussion

We have presented a detailed des
ription of the derivation of 
ollinear subtra
tion terms

with the help of mass fa
torization keeping the heavy-quark mass as a regulator for


ollinear divergen
es. As an example, we have 
onsidered heavy-quark produ
tion in

hadron-hadron 
ollisions, whi
h is the most 
omplex 
ase. With one minor ex
eption (see

below), we have reprodu
ed all the subtra
tion terms derived in Ref. [12℄ and found ni
e

agreement. For a summary of the 
omparison, see Table 1. Apart from giving additional
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hannel this paper Ref. [12℄

gg ! Q
Q
g:

�

0

F

= m (46){(53) (18), (21){(24)

/ ln

�

0

F

2

m

2

(46), (47) (37), (38)

/ ln

�

0

F

2

m

2

(53)[QED-part℄, (53)[KQ-part℄ (41), (43)

/ ln

�

0

F

2

m

2

(53)[OQ-part℄+(54) (42)

/ ln

�

F

2

m

2

(55)+(58), (56)+(59), (57)+(60) (44), (45), (46)

q�q! QQg:

�

0

F

= m (64){(69) (51){(54)

/ ln

�

0

F

2

m

2

(64), (65) (60), (61)

/ ln

�

0

F

2

m

2

(69)[C

F

-part℄ + (70) (63)

/ ln

�

0

F

2

m

2

(71) (64)

gq ! QQq:

/ ln

�

0

F

2

m

2

(74), (75) (69), (70)

/ ln

�

F

2

m

2

(76) (68)

Table 1: Collinear subtra
tion terms for the partoni
 subpro
esses g + g ! Q + Q + g,

q+ �q ! Q+Q+ g and g+ q ! Q+Q+ q in 
omparison with the results of Ref. [12℄. In

the se
ond 
olumn, '�

0

F

= m' indi
ates that the �nal state fa
torization s
ale �

0

F

has to be

set to m in the equations in the third 
olumn. Furthermore, / ln

�

0

F

2

m

2

(/ ln

�

F

2

m

2

) refers to

those parts of the equations in the third 
olumn whi
h are proportional to ln

�

0

F

2

m

2

(ln

�

F

2

m

2

).

The third and forth 
olumns list the equation numbers for the 
orresponding subtra
tion

terms derived in this paper and in Ref. [12℄, respe
tively. Equations 
ombined by a 'plus'

sign have to be added.

insight and providing a 
onsisten
y 
he
k of our previous results, this detailed example

will be useful for extending the GM-VFN s
heme to other pro
esses.

Note however, that some ex
eptions have been found. (i) In Eq. (25) of Ref. [12℄, we have

found an extra 
ontribution to the 
oeÆ
ient �


1

in the gg ! QQ 
hannel resulting in

a modi�
ation �


1

! �


1

� C(s)C

A

1

9

v(1� v). This extra pie
e has its origin in heavy-

quark loop 
ontributions to the virtual 
orre
tions to the Born pro
ess gg ! QQ in Ref.

[34℄ and has no 
ounterpart in the results of Se
. 4.1. However, these terms are absent

in the massless limit of the 
al
ulation in Refs. [3, 4℄. Numeri
ally, this modi�
ation

of �


1

turned out to be negligible. (ii) In a publi
ation by two of us [32℄, subtra
tion

terms for the non-Abelian part of the pro
ess 
g ! QQg have been derived by 
omparing

the zero-mass limit of Ref. [43℄ with the massless theory of Ref. [44℄, whi
h do not meet

the expe
tations of mass fa
torization in Se
. 3. The subtra
tion terms derived this way

22




orre
tly des
ribe the transition between the two theories. Obviously, if one of the theories

uses 
onventions di�ering from the 
onventional MS s
heme, the results will not agree with

the subtra
tion terms derived via mass fa
torization. Whether this is indeed the reason

for the dis
repan
y, 
an be 
lari�ed only with the help of a new full 
al
ulation. It is

noteworthy that also for the 
hannel 
q ! QQq a non-vanishing result for the 
oeÆ
ient

�


11

(see Eq. (78) in Ref. [32℄) was found, whi
h would have been zero employing the

methods in Se
. 3. In this 
ase, the di�eren
e 
ould be tra
ed ba
k to an error in Ref.

[44℄.
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A Cross se
tions for 2! 2 subpro
esses

In this appendix, we list the 
ross se
tions for all one-parti
le-in
lusive subpro
esses,

a+ b! 
 +X, needed to 
ompute the subtra
tion terms in Se
. 4. For brevity, part X

of the �nal state is not written expli
itly in the following. We begin with subpro
esses

o

urring in the 
hannel g + g ! Q+Q+ g, needed in Se
. 4.1.

A.1 Subpro
esses in g + g! Q+Q + g

d�̂

(0)

dv̂

(gg ! Q) = �

2

s

�

1

(N

2

� 1)

1

ŝ

[C

F

�Nv̂(1� v̂)℄ � (ŝ; v̂) ; (78)

d�̂

(0)

dv̂

(gg ! g) = �

2

s

�

4N

2

N

2

� 1

1

ŝ

(1 � x)

3

x

2

; (79)

d�̂

(0)

dv̂

(gQ! Q) = �

2

s

�

1

N

2

� 1

1

ŝ

1 + (1� v̂)

2

v̂

2C

F

[C

F

v̂

2

+N(1 � v̂)℄

1

v̂(1 � v̂)

; (80)

d�̂

(0)

dv̂

(Qg ! Q) =

d�̂

(0)

dv̂

(gQ! Q)

�

�

�

�

v̂$1�v̂

= �

2

s

�

1

N

2

� 1

1

ŝ

1 + v̂

2

1� v̂

2C

F

�

C

F

(1� v̂)

2

+Nv̂

�

1

v̂(1� v̂)

; (81)
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where

� (ŝ; v̂) =

v̂

1� v̂

+

1� v̂

v̂

+

4m

2

ŝv̂(1� v̂)

�

1 �

m

2

ŝv̂(1� v̂)

�

; (82)

x= v̂(1 � v̂) : (83)

A.2 Subpro
esses in q + �q ! Q+Q + g

d�̂

(0)

dv̂

(q�q! Q) = �

2

s

�

C

F

N

1

ŝ

�

(1� v̂)

2

+ v̂

2

+

2m

2

ŝ

�

; (84)

d�̂

(0)

dv̂

(q�q ! g) =

d�̂

(0)

dv̂

(gg ! Q)

�

�

�

�

m!0

= �

2

s

�

1

N

2

� 1

1

ŝ

[C

F

�Nv̂(1� v̂)℄

�

v̂

1� v̂

+

1 � v̂

v̂

�

: (85)

A.3 Subpro
esses in g + q ! Q+Q + q and g + �q ! Q +Q+ �q

d�̂

(0)

dv̂

(qg! g) = �

2

s

�

1

2N

2

1

ŝ

(2� 2v̂ + v̂

2

)

�

(N

2

� 1)v̂

2

+ 2N

2

(1 � v̂)

�

1

v̂

2

(1 � v̂)

; (86)

d�̂

(0)

dv̂

(gq ! g) =

d�̂

(0)

dv̂

(qg! g)

�

�

�

�

v̂$1�v̂

= �

2

s

�

1

2N

2

1
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(1 + v̂

2
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�

(N

2

� 1)v̂

2

+ 2v̂ + (N
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� 1)

�

1

v̂(1� v̂)

2

; (87)

d�̂

(0)

dv̂

(Qq! Q) = �

2

s

�

C

F

N

1

ŝ

1 + v̂

2

(1 � v̂)

2

; (88)

d�̂

(0)

dv̂

(Q�q ! Q) =

d�̂

(0)

dv̂

(Qq! Q) : (89)

B Feynman diagrams

In this appendix we list the bremsstrahlung Feynman diagrams 
ontributing at NLO to

the pro
ess p + �p ! H + X (H denotes a heavy meson, D, D

?

, B : : :) in the FFNS.

They are the basis to generate the 
ut diagrams Figs. 5{12 as des
ribed in Se
. 3.2. We

show separately the subset of Feynman diagrams for gg ! QQg whi
h, after repla
ing

one of the in
oming gluons by a photon, 
ontribute also to heavy-quark photoprodu
tion,


 + p! H +X.
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(a)

(b) (
)

(d)

Figure 13: Feynman diagrams for the NLO gluon bremsstrahlung pro
ess 
+g ! Q+Q+

g. Reversing the heavy-quark lines yields the remaining graphs. Diagrams obtained from

the ones shown here by repla
ing the photon with a gluon 
ontribute to g+g ! Q+Q+g.

(a) (b) (
)

(d) (e) (f)

(g)

Figure 14: Additional Feynman diagrams for the NLO gluon bremsstrahlung pro
ess

g + g ! Q + Q + g. Repla
ing the photons by gluons in Fig. 13 and reversing the

heavy-quark lines of part (a) yields the remaining graphs.
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(a)

(b) (
)

(d) (e)

Figure 15: Feynman diagrams for the NLO gluon bremsstrahlung pro
ess q+�q ! Q+Q+g.

(a) (b)

(
) (d)

Figure 16: Feynman diagrams for the NLO light-quark-initiated subpro
ess 
 + q !

Q+Q+ q: \Bethe-Heitler" graphs (a) and (b), \Compton" graphs (
) and (d). Diagrams

obtained from the ones shown here by repla
ing the photon with a gluon 
ontribute to

g + q ! Q+Q+ q.

Figure 17: Additional Feynman diagram for the NLO light-quark-initiated subpro
ess

g + q ! Q + Q + q. Repla
ing the photons by gluons in Fig. 16 yields the remaining

graphs.
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